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Abstract candidate referent. Both these clustering decisions

_ _ are locally optimized. In contrast, globally opti-
In this paper we describe a coreference  mjzeq clustering decisions were reported in (Luo
resolution method that employs a classi- ¢t 5. 2004) and (Daumelll and Marcu, 2005a),
fication and a clusterization phase. Ina \ynere all clustering possibilities are considered by
novel way, the clusterization is produced  geqching on a Bell tree representation or by us-
as a graph cutting algorithm, in which 4 the | earning as Search Optimization (LaSO)
nodes of the graph correspond to the men-  famework (Daumelll and Marcu, 2005b) respec-
tions of the text, whereas the edges of the  (yely, put the first search is partial and driven by
graph constitute the confidences derived  heristics and the second one only looks back in
from the coreference classification. In€x- eyt \We argue that a more adequate clusterization
periments, the graph cutting algorithm for - h456 for coreference resolution can be obtained
coreference resolution, calledeEBTCuUT, by using a graph representation.
achieves state-of-the-art performance. In this paper we describe a novel representa-
tion of the coreference space as an undirected
edge-weighted graph in which the nodes repre-
Recent coreference resolution algorithms tackl&ent all the mentions from a text, whereas the
the problem of identifying coreferent mentions of edges between nodes constitute the confidence
the same entity in text as a two step procedure: (1yalues derived from the coreference classification
a classification phase that decides whether pairs ghase. In order to detect the entities referred in
noun phrases corefer or not; and (2) a clusterizathe text, we need to partition the graph such that
tion phase that groups together all mentions thaill nodes in each subgraph refer to the same entity.
refer to the same entity. Aentity is an object or We have devised a graph partitioning method for
a set of objects in the real world, whileraen-  coreference resolution, calleceEBTCUT, which is
tion is a textual reference to an enfityMost of  inspired from the well-known graph-partitioning
the previous coreference resolution methods havelgorithm Min-Cut (Stoer and Wagner, 1994).
similar classification phases, implemented eitheBEsSTCUT has a different way of computing the
as decision trees (Soon et al., 2001) or as maxieut weight than Min-Cut and a different way of
mum entropy classifiers (Luo et al., 2004). More-stopping the cdt Moreover, we have slightly
over, these methods employ similar feature setamodified the Min-Cut procedures. EBTCUT re-
The clusterization phase is different across currenglaces the bottom-up search in a tree representa-
approaches. For example, there are several linkingon (as it was performed in (Luo et al., 2004))
decisions for clusterization. (Soon et al., 2001) adwith the top-down problem of obtaining the best
vocate the link-first decision, which links a men- partitioning of a graph. We start by assuming that
tion to its closest candidate referent, while (Ng andall mentions refer to a single entity; the graph cut
Cardie, 2002) consider instead the link-best decisplits the mentions into subgraphs and the split-
sion, which links a mention to its most confident

1 Introduction

- 2Whenever a graph is split in two subgraphs, as defined in
This definition was introduced in (NIST, 2003). (Cormen et al., 2001), a cut of the graph is produced.
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ting continues until each subgraph corresponds ttion to being transitive. A greedy bottom-up ap-
one of the entities. The cut stopping decision hagproach does not make full use of this property. A
been implemented as avM-based classification graph-based clusterization starts with a complete
(Cortes and Vapnik, 1995). overall view of all the connections between men-
The classification and clusterization phases agions, therefore local errors are much less proba-
sume that all mentions are detected. In order tdle to influence the correctness of the outcome. If
evaluate our coreference resolution method, wéwo mentions are strongly connected, and one of
have (1) implemented a mention detection procethem is strongly connected with the third, all three
dure that has the novelty of employing informationof them will most probably be clustered together
derived from the word senses of common nouns agven if the third edge is not strong enough, and that
well as selected lexico-syntactic information; andworks for any order in which the mentions might
(2) used a maximum entropy model for corefer-appear in the text.
ence classification. The experiments conducted on _ ,
MUC andACE data indicate state-of-the-art resultsz'1 L earning Algorithm
when compared with the methods reported in (Ngrhe coreference confidence values that become
and Cardie, 2002) and (Luo et al., 2004). the weights in the starting graphs are provided by
The remainder of the paper is organized as fola maximum entropy model, trained on the train-
lows. In Section 2 we describe the coreferencdng datasets of the corpora used in our experi-
resolution method that uses the 8rCuT cluster- ments. For maximum entropy classification we
ization; Section 3 describes the approach we havesed amaxert tool. Based on the data seen, a
implemented for detecting mentions in texts; Secmaximum entropy model (Berger et al., 1996) of-
tion 4 reports on the experimental results; Sectiofiers an expression (1) for the probability that there
5 discusses related work; finally, Section 6 sumexists coreferenc€’ between a mentiom; and a
marizes the conclusions. mentionm;.

ek Megn(mim;,C))

1)
. Z(mi7mj)
For each entity type (BRSON ORGANIZATION,  \where gr(mi,m;,C) is a feature andy is its
LOCATION, FACILITY or GPE®) we create a graph weight; Z(m;, m;) is a normalizing factor.
of thaF type in the text, the ec_jges correspond tQyay as (Luo et al., 2004), by pairing all men-
all pairwise coreference relations, and the edggons of the same type, obtaining their feature

weights are the confidences of the coreference rgsactors and taking the outcome (coreferent/non-
lations. We will divide this graph repeatedly by coreferent) from the key files.

cutting the links between subgraphs until a stop _
model previously learned tells us that we should22 Feature Representation

stop the cutting. The end result will be a partitionwe duplicated the statistical model used by (Luo
that approximates the correct division of the textet al., 2004), with three differences. First, no fea-
into entities. ture combination was used, to prevent long run-
We consider this graph approach to clustering aing times on the large amount atE data. Sec-

more accurate representation of the relations besnd, through an analysis of the validation data, we
tween mentions than a tree-based approach thghplemented seven new features, presented in Ta-
treats only anaphora resolution, trying to connecble 1. Third, as opposed to (Luo et al., 2004), who
mentions with candidate referents that appear imepresented all numerical features quantized, we
text before them. We believe that a correct resotranslated each numerical feature into a set of bi-
lution has to tackle cataphora resolution as wellnary features that express whether the value is in
by taking into account referents that appear in theeertain intervals. This transformation was neces-
text after the anaphors. Furthermore, we believgary because our maximum entropy tool performs
that a graph representation of mentions in a text ietter on binary features. (Luo et al., 2004)’s fea-
more adequate than a tree representation becaugges were not reproduced here from lack of space;
the coreference relation is symmetrical in addi-please refer to the relevant paper for details.

SEntity types as defined by (NIST, 2003). “http://homepages.inf.ed.ac.uk/s0450736/maxeatkit. html

2 BESTCUT Coreference Resolution P(Clm;,mj) =
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[ Category || Feature name | Feature description |
lexical head-match trueif the two heads are identical
type-pair for each mention: name- its type, noun— _-NOUN_, pronoun— its spelling
name-alias trueif a mention is an alias of the other one
syntactic same-governing-category true if both mentions are covered by the same type of node, e.gVRRPP
path the parse tree path froms to m4
coll-comm trueif either mention collocates with a communication verb

| grammatical]| gn-agree

trueif the two mentions agree in gender and number |
Table 1: The added features for the coreference model.

2.3 Clugerization Method: BESTCUT presented in Figure 1. TheeEBTCUT at one stage
is the cut-of-the-phase with the highest correctness

We start with five initial graphs, one for each en-<ore.

tity type, each containing all the mentions of that
type and their weighted connections. This initial iut-vveitght(Gaph G, tOJt ¢ = (g‘. 7))
e . . - COTTects- avg <— COrrects- maxr <—
lelSlon_ is correct_because no mentions of differ- 5 ¢ cach m ¢ @V
ent entity types will corefer. Furthermore, by do- 3 if m € SV then setm — S
ing this division we avoid unnecessary confusion ‘7‘ ie'fsgvgetm =T asi ght (m, ) >
. , P - neEsetm.V,n#m m,n
in the'program S deC|S|on§ qu we decrea_se its run- avgnEGV\setm‘vv\ei ght (m, n)
ning time. Each of these initial graphs will be cut 6  then corrects- avg++
repeatedly until the resulting partition is satisfac- 7 f ginesemv,n#mx; gmgmv ng >
mi n . setm. m, n
tory. In each cut, we eliminate from the graph the g ¢ hen oy \etm Vit
edges between subgraphs that have a very weak9 return (corrects- avg +
connection, and whose mentions are most likely _ corrects-maz) | 2 _
not part of the same entity. Figure 1: Computing the cut-weight.
Formally, the graph model can be defined as fol-
lows. LetM = {m; : 1..n} be n mentions in the ~ An additional learning model was trained to de-
document and? = {e; : 1..m} be m entities. Let Cide if cutting a set of mentions is better or worse
g: M — E be the map from a mentiom; € M  than keeping the mentions together. The model
to an entitye; € E. Letc : MxM — [0,1] be the Was optimized to maximize trecm-F scoré. We
confidence the learning algorithm attaches to th&Vill denote by S the larger part of the cut arifl
coreference between two mentions, m; € M. the smaller oneC.E is the set of edges crossing
Let T = {t, : 1.p} be the set of entity types the cut, and~ is the current graph before the cut.
or classes. Then we attach to each entity ctass -V andT.V are the set of vertexes ifi and in

an undirected, edge-weighted graph(Vi, Ej), T, respectively. S.E is the set of edges frorf,
where Vi, = {mq|g(m;).type = t,} and E, = WhileT.Eisthe set of edges froffi. The features

{(mi, mj, c(mi, mj))|mi,m; € Vi}. for stopping the cut are presented in Table 2. The
The partitioning of the graph is based at eacHmodel was trained using 10-fold cross-validation
step on the cut weight. As a starting point weon the training set. In order to learn when to stop
used the Min-Cut algorithm, presented and provetﬁ_he cut, we generated a “?t _Of p_osmve and nega-
correct in (Stoer and Wagner, 1994). In this simple’V€ €xamples from the training files. Each train-
and efficient method, the weight of the cut of a'n_g example is associated with ace_rtam(cﬁJ,tT)._ )
graph into two subgraphs is the sum of the weightss'nce we want to learn a stop function, 'Fhe positive
of the edges crossing the cut. The partition thaf¥@mples must be examples thatdesc_rlbe when the
minimizes the cut weight is the one chosen. Thefut must not be done, and the negative examples

main procedure of the algorithm computes cutsare examples that present situations when the cut

of-the-phase repeatedly and selects the one witust be performed. Let us con3|d§:r th}at t?ﬁ list
:l.m} wi

the minimum cut value (cut weight). We adaptedOf entities from a text i = {e;

this algorithm to our coreference situation. ej = {Miy, M, ...m;, } the list of mentions that
. - refer toe;. We generated a negative example for
To decide the minimum cut (from here on called

. each pair(S = {e;},T = {e;}) with i # j —
the BES.TCUT)’ we use as cut weight the numbereach entity must be separated from any other en-
of mentions that are correctly placed in their set.

The method for calculating the correctness score is °As introduced by (Luo et al., 2004).
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Feature name]

Feature description |

Table 2: The features for stopping the cut.

BESTCUT( G aph G;)
1 entities. cl ear ()

st-ratio |S.V|/|T.V] — the ratio between the cyt > hback( ;)
parts qugue. push_bac i
ce-ratio |C-E]/|G.E] —the proportion of the cuf 3 while not queue. enpty()
from(the e)ntirﬁ graphII _ gr (GS ? )quiuel'vrpc())p?c;fs ;(():Et E)G)
c-min min(C.E) — the smallest edge crossing e
the cut g ItLeﬁt opTheCut (G, S, T)
c-max max(C.E) — the largest edge crossin " .
maz(C.E) gest edg o 8 enitics. add(NewEnt i ty(G))
c-avg avg(C.FE) — the average of the edges 10 e deue push_back( S)
crossing the cut ) "
c-hmean hmean(C.E) — the harmonic mean of E et ugqgeue.tptqsh_back( n
the edges crossing the cut entities
c-hmeax hmeax(C.E) — a variant of the har] Figure 2: The general algorithm forE BTCUT.
monic mean. hmeaz(C.E) = 1 —
hmean(C.E") where each edge from
p : .
forpeasspgﬁ%i"r‘]’g'gz;g?foa%m Lminusthe  yne BesTCUT algorithm) by linking them to their
|t-c-avg-rati0 how many edges from the cut are-|ess antecedent Wlth the beSt Corefel’ence Confldence
— Lhan the averjlge OI the Cﬁt (asa ratl?) Figure 2 details the main procedure of the
t-c-hmean- ow many edges from the cut are less ; ; ;
ratio than the harmonic mean of the cut (ag a _BESTCUT "?"go”thm- The al'gorlthm receives as
ratio) input a weighted graph having a vertex for each
st-avg agg(SJfE + Tf) - thﬁ avr?ragi of tgf mention considered and outputs the list of entities
ocges om s Jraph when '€ ©99°S created. In each stage, a cut is proposed for all
g-avg avg(G.E) — the average of the edgds Subgraphs in the queue. In case StopTheCut de-
Lrom the graph - cides that the cut must be performed on the sub-
st-wrong-avg-| how many vertexes are in the wrong part .
ratio T of the cutyusing the average measm?rg or graph, t_he two Sldesf of the cut .are added to the
the ‘wrong’ (as a ratio) gueue (lines 10-11); if the graph is well connected
St-Wrontg- h?\tﬁ marlyverteﬁs areinthe Wrof}g Ptaft and breaking the graph in two parts would be a
max-ratio ‘c\’moﬁg‘?‘zags;nrgtio‘; mexmeasure orti® - phad thing, the current graph will be used to cre-
lt-c-avg-ratio | 1if r1 < r2, O otherwisey, is the ratio|  ate a single entity (line 8). The algorithm ends
< strt-c-avg- | of the edges fronC'.E that are smaller)  when the queue becomes empty. ProposeCut (Fig-
ratio than the average of the cut; is the ratio
of the edges fron6.E + T.E that are
smaller than the average of the cut i’r \c/\)ﬁiolsgclutG(‘C/Srl a|c>)h 1G)
g-avg > st- | liftheavg(G.E) > avg(S.E+T.E), 2 (S.T) — Pr oposeCut Phase( G)
avg and 0 otherwise 3 if the cut-of-the-phase (S, T)

is-lighter than the current
best cut (S, T3)
4 then store the cut-of-the-phase
as (Sb,Tb)

tity. We also generated negative examples for all 5 return (S, 73)
pairs(S = {e;},T = E \ S) — each entity must
be separated from all the other entities considered

together. To generate positive examples, we simyre 3) returns a cut of the graph obtained with
lated the cut on a graph corresponding to a singl@n algorithm similar to the Min-Cut algorithm’s
entity e;. Every partial cut of the mentions ef

was considered as a positive example for our stopetween our algorithm and the Min-Cut proce-

model.

We chose not to include pronouns in the -
Cur initial graphs, because, since most featuress found using expression 2:

Figure 3: The algorithm for ProposeCut.

procedure called MinimumCut. The differences

dure are thathe most tightly connected vertex
in each step of the ProposeCutPhase procedure,

are oriented towards Named Entities and common
nouns, the learning algorithrm@xeny links pro- @)
Blounstwnhdve:y hl?h r|c]J_ror:3ab|tI|ty”to mgn}[/hpOSSI- wherew,(4,y) = ] Laeaw(z,y), and theis-

€ antecedents, or which not all aré In th€ SaMgjghter test function uses the correctness score
chain. Thus, in the clusterization phase the prop esented before: the partial cut with the larger

nouns would act as a bridge between different eneqyectness score is better. The ProposeCutPhase
tities that should not be linked. To prevent this,fnction is presented in Figure 4.

we solved the pronouns separately (at the end of

z = argmazygawe(A,y)

278



ProposeCut Phase( G aph G)

1 A — {G.V.first}

2 while | A] < |GV

3 last «— the nost tightly

connect ed vertex

4 add last to A

5 store the cut-of-the-phase and
shrink G by nerging the two
vertexes added | ast

6 return (G.V \ {last}, last)

Figure 4: The algorithm for ProposeCutPhase.

2.4 An Example

Let us consider an example of how the BrCuT
algorithm works on two simple sentences (Fig-
ure 5). The entities present in this example are:
{Mary;, the girl;} and {a brothep, Johr, The
boy, }. Since they are all BRsons, the algorithm
Mary; hasa brothers, Johns. The boy, is older than
thegirls.

Figure 5: An example.
will be applied on a single graph, corresponding to
the class BRsoNand composed of all these men-
tions.

The initial graph is illustrated in Figure 6, with
the coreference relation marked through a differ-
ent coloring of the nodes. Each node number cor-
responds to the mention with the same index in

@

a) Cut, = ({1, 3, 4, 5}, {2}) b) Cut,= ({1, 4, 5}, {2, 3})
Score(Cut)) =3 Score(Cuty)= 4

¢) Cuty= ({1, 5}, {2, 3, 4) d) Cut,= ({1}, {2, 3,4, 5)
Score(Cuty) = 5; Cuty = BestCut Score(Cut) = 3.5

Figure 7: Cuts-of-the-phase

Figure 5.

Figure 6: The initial graph

cut separates node 2 from the rest of the graph.
In calculating the score of the cut (using the algo-
rithm from Figure 1), we obtain an average num-
ber of three correctly placed mentions. This can
be verified intuitively on the drawing: mentions
1, 2 and 5 are correctly placed, while 3 and 4 are
not. The score of this cut is therefore 3. The sec-
ond, the third and the fourth cuts of the phase, in
Figures 7.b, 7.c and 7.d, have the scores 4, 5 and
3.5 respectively. An interesting thing to note at
the fourth cut is that the score is no longer an in-
teger. This happens because it is calculated as an
average betweenorrects-avg = 4and corrects-
max = 3 The methods disagree about the place-
ment of mention 1. The average of the outgo-
ing weights of mention 1 is 0.225, less than 0.5

The strongest confidence score is between (the default weight assigned to a single mention)
brother, and Johry, because they are connectedtherefore the first method declares it is correctly
through an apposition relation. The graph wasplaced. The second considers only the maximum;
simplified by eliminating the edges that have an0.6 is greater than 0.5, so the mention appears to

insignificant weight, e.g. the edges betwdehny
andthe girl; or betweerMary; anda brothes.

be more strongly connected with the outside than
the inside. As we can see, the contradiction is be-

Function BEsTCuUT starts with the whole graph. cause of the uneven distribution of the weights of
The first cut of the phase, obtained by functionthe outgoing edges.
ProposeCutPhase, is the one in Figure 7.a. This The first proposed cut is the cut with the great-
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{FACILITY} {ORGANIZATION} {PERSON} {LOCATION} {GPE}

S

PERSON#1 e PEOPLE#1

CHARACTER#1 POV\\ER#Q / \

expert#l womankind#1 homeless#2

worker#l Frankenstein#2 Peter_Pan#2  oil_tycoon#1  population#1

Figure 8: Part of the hierarchy containing 42 WordNet edaivieconcepts for the five entity types, with
all their synonyms and hyponyms. The hierarchy has 31,5¥8sense pairs in total

est score, which is Cgi{Figure 7.c). Because this an outcome to each markable (NP) detected in the
is also the correct cut, all cuts proposed after thigraining files: the markables that were present in
one will be ignored— the machine learning algo-the key files took their outcome from the key file
rithm that was trained when to stop a cut will al- annotation, while all the other markables were as-
ways declare against further cuts. In the end, theociated with outcom@&nNk. We then created a
cut returned by function BSTCUT is the correct training example for each of the markables, with
one: it divides mentionMary; andthe girl; from  the feature vector described below and as target

mentionsa brothek, Johry andThe boy. function the outcome. The aforementioned out-
) _ come can be of three different types. The first type
3 Mention Detection of outcome that we tried was the entity type (one

Because our BSTCUT algorithm relies heavily Memberofthe SetERSON ORGANIZATION, LO-

on knowing entity types, we developed a method®AT!ON: FACILITY, GPE and UNK); the second
for recognizing entity types for nominal mentions. tYP€ was the genericity information €BERIC or
Our statistical approach uses maximum entropy>r EC!FIO, whereas the third type was a combi-
classification with a few simple lexical and syn- nation between the two (pairwise combinations
tactic features, making extensive use of WordNef the entity types set and the genericity set, e.g.
(Fellbaum, 1998) hierarchy information. We used"ERSON-SPECIFIC).
the ACE corpus, which is annotated with men- The feature set consists of WordNet features,
tion and entity information, as data in a super-lexical features, syntactic features and intelligent
vised machine learning method to detect nominatontext features, briefly described in Table 3. With
mentions and their entity types. We assigned sixhe WordNet features we introduce thi¢ordNet
entity types: BERSON ORGANIZATION, LOCA-  equivalent concept A WordNet equivalent con-
TION, FACILITY , GPEanduNK (for those who are cept for an entity type is a word-sense pair from
in neither of the former categories) and two generWordNet whose gloss is compatible with the def-
icity outcomes: GNERIC and $ECIFIC. We inition of that entity type. Figure 8 enumerates a
only considered the intended value of the mentiongew WordNet equivalent concepts for entity class
from the corpus. This was motivated by the factPERSON (e.g. CHARACTER#1), with their hier-
that we need to classify mentions according to tharchy of hyponyms (e.g. Frankenstein#2). The
context in which they appear, and not in a generalexical feature is useful because some words are
way. Only contextual information is useful further almost always of a certain type (e.g.-‘com-
in coreference resolution. We have experimentallypany”). The intelligent context set of features
discovered that the use of word sense disambiguare an improvement on basic context features that
tion improves the performance tremendously (ause the stems of the words that are within a win-
boost in score of 10%), therefore all the featuresdlow of a certain size around the word. In addi-
use the word senses from a previously-appliedion to this set of features, we created more fea-
word sense disambiguation program, taken fronmures by combining them into pairs. Each pair
(Mihalcea and Csomai, 2005). contains two features from two different classes.
For creating training instances, we associatedror instance, we will have features likds-a-
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[ Category | Feature name | Feature description

WordNet is-a-TYPE trueif the mention is of entity type YPE; five features
WN-eq-concept-hyp| trueif the mention is in hyponym set ofiN-eq-concept42 features
WN-eq-concept-syn| trueif the mention is in synonym set ofN-eg-concept42 features

[ lexical || stem-sense | pair between the stem of the word and the sense of the word by thesp |
syntactic pos part of speech of the word by tme® stagger
is-modifier trueif the mention is a modifier in another noun phrase

modifier-toTYPE trueif the mention is a modifier to aiPE mention

in-apposition-with | TypPE of the mention our mention is in apposition with

intelligent context|| all-mods the nominal, adjectival and pronominal modifiers in the nwars parse tree
preps the prepositions right before and after the mention’s paese

Table 3: The features for the mention detection system.

PERSON-~in-apposition-withPERSON). In our first experiment, we tested the three

All these features apply to the “true head” of coreference clusterization algorithms on the
a noun phrase, i.e. if the noun phrase is a partidevelopment-test set of thiece Phase 2 corpus,
tive construction ‘five students’, “a lot of com-  first on true mentions (i.e. the mentions annotated
panies”, “a part of the country”), we extract the in the key files), then on detected mentions (i.e.
“true head”, the whole entity that the part wasthe mentions output by our mention detection sys-
taken out of (students”, “companies”, “coun- tem presented in section 3) and finally without any
try”), and apply the features to that “true head”prior knowledge of the mention types. The results
instead of the partitive head. obtained are tabulated in Table 4. As can be ob-

For combining the mention detection moduleserved, when it has prior knowledge of the men-
with the BESTCUT coreference resolver, we also tion types BEsTCUT performs significantly bet-
generated classifications for Named Entities ander than the other two systems in them-F score
pronouns by using the same set of features minugnd slightly better in theiuc metrics. The more
the WordNet ones (which only apply to nominal knowledge it has about the mentions, the better it
mentions). For the Named Entity classifier, weperforms. This is consistent with the fact that the
added the featurdlamed-Entity-types obtained first stage of the algorithm divides the graph into
by the Named Entity Recognizer. We generatedsubgraphs corresponding to the five entity types. If
a list of all the markable mentions and their en-BESTCUT has no information about the mentions,
tity types and presented it as input to thess-  its performance ranks significantly under the Link-
CuT resolver instead of the list of perfect men-Best and Belltree algorithms iBCM-F andMucC
tions. Note that this mention detection does noR. Surprisingly enough, the Belltree algorithm, a
contain complete anaphoricity information. Only globally optimized algorithm, performs similarly
the mentions that are a part of the five consid+o Link-Best in most of the scores.

ered classes are treated as anaphoric and C|US'Despite not being as dramatically affected as
tered, while theunk mentions are ignored, even BestCuT, the other two algorithms also decrease
if an outside anaphoricity classifier might catego-in performance with the decrease of the mention
rize some of them as anaphoric. information available, which empirically proves
that mention detection is a very important module
for coreference resolution. Even with &score
The clusterization algorithms that we imple- Of 77.2% for detecting entity types, our mention
mented to evaluate in comparison with our methodl€tection system boosts the scores of all three al-
are (Luo et al., 2004)'s Belitree and Link-Best 90rithms when compared to the case where no in-
(best-first clusterization) from (Ng and Cardie, formation is available.

2002). The features used were described in section It is apparent that theuc score does not vary
2.2. We experimented on thece Phase 2 (NIST, significantly between systems. This only shows
2003) andviuc6 (MUC-6, 1995) corpora. Since that none of them is particularly poor, but it is not
we aimed to measure the performance of corefera relevant way of comparing methods— thec
ence, the metrics used for evaluation aregbb®-  metric has been found too indulgent by researchers
F (Luo et al., 2004) and theuc P, R andF scores ((Luo et al., 2004), (Baldwin et al., 1998)). The
(Vilain et al., 1995). MUC scorer counts the common links between the

4 Experimental Results
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MUC score
Clusterization algorithm Mentions ECM-F% || MUC P% | MUC R% | MUC F%
BESTCUT key 82.7 911 88.2 89.63
detected 73.0 88.3 75.1 81.17
undetected 41.2 52.0 82.4 63.76
Belltree(Luo et al., 2004) key 77.9 88.5 89.3 88.90
detected 70.8 86.0 76.6 81.03
undetected 52.6 40.3 87.1 55.10
Link-Best(Ng and Cardie, 2002) key 77.9 88.0 90.0 88.99
detected 70.7 85.1 77.3 81.01
undetected 51.6 39.6 88.5 54.72

Table 4. Comparison of results between three clusterizatlgorithms omaCce Phase 2. The learning
algorithms aremaxentfor coreference andvm for stopping the cut in BSTCUT. In turn, we obtain
the mentions from the key files, detect them with our mentietection algorithm or do not use any
information about them.

annotation keys and the system output, while thé& Related Work
ECM-F metric aligns the detected entities with the
key entities so that the number of common menlt is of interest to discuss why our implementa-
tions is maximized. Thecwm-F scorer overcomes tion of the Belltree system (Luo et al., 2004) is
two shortcomings of thetuc scorer: not consid- comparable in performance to Link-Best (Ng and
ering single mentions and treating every error a§-ardie, 2002). (Luo et al., 2004) do the clus-
equally important (Baldwin et al., 1998), which terization through a beam-search in the Bell tree
makes theECM-F a more adequate measure ofUSing either a mention-pair or an entity-mention
coreference. model, the first one performing better in their ex-
periments. Despite the fact that the Bell tree is a
Our second experiment evaluates the impacgomplete representation of the search space, the
that the different categories of our added featuregearch in it is optimized for size and time, while
have on the performance of theEBTCUT sys- potentially losing optimal solutions— similarly to
tem. The experiment was performed with a maxa Greedy search. Moreover, the fact that the two
ent classifier on thetuc6 corpus, which was pri- implementations are comparable is not inconceiv-
orly converted intoACE format, and employed aple once we consider that (Luo et al., 2004) never
mention information from the key annotations. compared their system to another coreference re-
solver and reported their competitive results on
true mentions only.

MUC score :
Model Ecw-r% PR T R |9 (Ng, 2005) tr_eats cor_eference'r_esolutlon as a
baselne =831 895 915 [ 90.49 problem of ranking candidate partitions generated
+grammatical 78.4 || 89.2 | 92.5 | 90.82 by a set of coreference systems. The overall per-
+lexical 83.11 924 91.6 | 92.00 formance of the system is limited by the perfor-
+syntactic 85.1 || 92.7 | 924 | 92,55 y y P

Table 5. Impact of feature categories oEEr mance of its best component. The m_ain differ-
CUT on MUC6. Baseline system has the (Luo etence between this approach and ours is that (Ng,

al., 2004) features. The system was tested on k(_:%,005)’3 approach takes_coreference resolutior_1 one
mentions. Step further, by comparing the results of multiple

systems, while our system is a single resolver; fur-
thermore, he emphasizes the global optimization
From Table 5 we can observe that the Iexi_of ranking clusters obtained locally, whereas our

cal features Head-match type-pait name-aliaj focus is_on.globally optimizing the clusterization
have the most influence on tlEEMm-F and MucC method inside the resolver. .
scores, succeeded by the syntactic featusame- (Daumelll and Marcu, 2005a) use thearning
governing-category path, coll-comn). Despite as Search Optimizatioframework to take into ac-
what intuition suggests, the improvement thecount the non-locality behavior of the coreference
grammatical featurgn-agreebrings to the system fgatures. _In addition, the researcher; treat mgn-
is very small. tion detection and coreference resolution as a joint
problem, rather than a pipeline approach like we
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do. By doing so, it may be easier to detect theH. Daumelll and D. Marcu. 2005b. Learning as search
entity type of a mention once we have additional Optimization: Approximate large margin methods
clues (expressed in terms of coreference features) fOF Structured prediction. Iiihe International Con-

: . ference on Machine Learning (ICML)
about its possible antecedents. For example, label-
ing Washingtoras a ERSONis more probable af- C. Fellbaum, editor. 1998 WordNet: An Electronic
ter encounterin@gseorge Washingtopreviously in Iﬁfélscsal Database and Some of its ApplicatioMiT
the text. However, the coreference problem does '

not immediately benefit from the joining. X. Luo, A. Ittycheriah, H. Jing, N. Kambhatla, and
S. Roukos. 2004. A mention-synchronous corefer-
ence resolution algorithm based on the bell tree. In
Proceedings of the 42nd Meeting of the Association
for Computational LinguisticBarcelona, Spain.

6 Conclusions

We have proposed a novel coreference clusteri-
zation method that takes advantage of the effiR. Mihalcea and A. Csomai. 2005. Senselearner:
ciency and simplicity of graph algorithms. The Word sense disambiguation for all words in unre-

; - . stricted text. InProceedings of the 43rd Meeting of
approgch 's top-down and globally optlmlzed, fa.nd the Association for Computational Linguistjgsnn
takes into account cataphora resolution in addition  z.por mi-

to anaphora resolution. Our system compares fa- o
vorably to two other implemented coreference sysMUC-6. 1995. Coreference task definition.

tems and achieves state-of-the-art performance op Ng and C. Cardie. 2002. Improving machine learn-

theACE Phase 2 corpus on true and detected men- ing approaches to coreference resolution. Plo-

tions. We have also briefly described our mention ceedings of the 40th Meeting of the Association for

detection system whose output we used in con- Computatlonal LinguistigsPhiladelphia, Pennsyl-

. . . vania.

junction with the BESTCUT coreference system to _ N

achieve better results than when no mention infor¥. Ng. 2004. fLearnmg nolu?' phrlase anaphoricity ttO
- - improve conference resolution: Issues in representa-

mation was available. tion and optimization. IrProceedings of the 42nd

Meeting of the Association for Computational Lin-
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