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Abstract 

Complex tasks like question answering 
need to be able to identify events in text 
and the relations among those events. We 
show that this event identification task 
and a related task, identifying the seman-
tic class of these events, can both be for-
mulated as classification problems in a 
word-chunking paradigm. We introduce a 
variety of linguistically motivated fea-
tures for this task and then train a system 
that is able to identify events with a pre-
cision of 82% and a recall of 71%. We 
then show a variety of analyses of this 
model, and their implications for the 
event identification task. 

1 Introduction 

Research in question answering, machine transla-
tion and other fields has shown that being able to 
recognize the important entities in a text is often 
a critical component of these systems. Such en-
tity information gives the machine access to a 
deeper level of semantics than words alone can 
provide, and thus offers advantages for these 
complex tasks. Of course, texts are composed of 
much more than just sets of entities, and archi-
tectures that rely solely on word and entity-based 
techniques are likely to have difficulty with tasks 
that depend more heavily on event and temporal 
relations. Consider a question answering system 
that receives the following questions: 

• Is Anwar al-Sadat still the president of 
Egypt? 

• How did the linking of the Argentinean 
peso to the US dollar in 1991 contribute to 
economic crisis of Argentina in 2003? 

Processing such questions requires not only 
knowing what the important people, places and 
other entities are, but also what kind of events 
they are involved in, the roles they play in those 
events, and the relations among those events. 
Thus, we suggest that identifying such events in 
a text should play an important role in systems 
that attempt to address questions like these. 

Of course, to identify events in texts, we must 
define what exactly it is we mean by “event”. In 
this work, we adopt a traditional linguistic defini-
tion of an event that divides words into two as-
pectual types: states and events. States describe 
situations that are static or unchanging for their 
duration, while events describe situations that 
involve some internal structure. For example, 
predicates like know and love would be states 
because if we know (or love) someone for a pe-
riod of time, we know (or love) that person at 
each point during the period. Predicates like run 
or deliver a sermon would be events because 
they are built of smaller dissimilar components: 
run includes raising and lowering of legs and 
deliver a sermon includes the various tongue 
movements required to produce words. 

To better explain how we approach the task of 
identifying such events, we first discuss some 
past work on related tasks. Then we briefly dis-
cuss the characteristics of the TimeBank, a cor-
pus containing event-annotated data. Next we 
present our formulation of event identification as 
a classification task and introduce the linguistic 
features that serve as input to the algorithm. Fi-
nally, we show the results of STEP (our “System 
for Textual Event Parsing”) which applies these 
techniques to the TimeBank data. 

2 Related Efforts 

Such aspectual distinctions have been alive and 
well in the linguistic literature since at least the 
late 60s (Vendler, 1967). However, the use of the 
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term event in natural language processing work 
has often diverged quite considerably from this 
linguistic notion. In the Topic Detection and 
Tracking (TDT) task, events were sets of docu-
ments that described “some unique thing that 
happens at some point in time” (Allan et. al., 
1998). In the Message Understanding Confer-
ence (MUC), events were groups of phrases that 
formed a template relating participants, times 
and places to each other (Marsh and Per-
zanowski, 1997). In the work of Filatova and 
Hatzivassiloglou (2003), events consisted of a 
verb and two named-entities occurring together 
frequently across several documents on a topic. 

Several recent efforts have stayed close to the 
linguistic definition of events. One such example 
is the work of Siegel and McKeown (2000) 
which showed that machine learning models 
could be trained to identify some of the tradi-
tional linguistic aspectual distinctions. They 
manually annotated the verbs in a small set of 
texts as either state or event, and then used a va-
riety of linguistically motivated features to train 
machine learning models that were able to make 
the event/state distinction with 93.9% accuracy.  

Another closely related effort was the Evita 
system, developed by Saurí et. al. (2005). This 
work considered a corpus of events called 
TimeBank, whose annotation scheme was moti-
vated largely by the linguistic definitions of 
events. Saurí et. al. showed that a linguistically 
motivated and mainly rule-based algorithm could 
perform well on this task. 

Our work draws from both the Siegel and 
McKeown and Saurí et. al. works. We consider 
the same TimeBank corpus as Saurí et. al., but 
apply a statistical machine learning approach 
akin to that of Siegel and McKeown. We demon-
strate that combining machine learning tech-
niques with linguistically motivated features can 
produce models from the TimeBank data that are 
capable of making a variety of subtle aspectual 
distinctions. 

3 Events in the TimeBank 

TimeBank (Pustejovsky, et. al. 2003b) consists 
of just under 200 documents containing 70,000 
words; it is drawn from news texts from a variety 
of different domains, including newswire and 
transcribed broadcast news. These documents are 
annotated using the TimeML annotation scheme 
(Pustejovsky, et. al. 2003a), which aims to iden-
tify not just times and dates, but events and the 
temporal relations between these events. 

Of interest here are the EVENT annotations, 
of which TimeBank 1.1 has annotated 8312. 
TimeBank annotates a word or phrase as an 
EVENT if it describes a situation that can “hap-
pen” or “occur”, or if it describes a “state” or 
“circumstance” that “participate[s] in an opposi-
tion structure in a given text” (Pustejovsky, et. al. 
2003b). Note that the TimeBank events are not 
restricted to verbs; nouns and adjectives denote 
events as well. 

The TimeBank definition of event differs in a 
few ways from the traditional linguistic defini-
tion of event. TimeBank EVENTs include not 
only the normal linguistic events, but also some 
linguistic states, depending on the contexts in 
which they occur. For example1, in the sentence 
None of the people on board the airbus survived 
the crash the phrase on board would be consid-
ered to describe an EVENT because that state 
changes in the time span covered by the text. Not 
all linguistic states become TimeBank EVENTs 
in this manner, however. For example, the state 
described by New York is on the east coast holds 
true for a time span much longer than the typical 
newswire document and would therefore not be 
labeled as an EVENT. 

In addition to identifying which words in the 
TimeBank are EVENTs, the TimeBank also pro-
vides a semantic class label for each EVENT. 
The possible labels include OCCURRENCE, 
PERCEPTION, REPORTING, ASPECTUAL, 
STATE, I_STATE, I_ACTION, and MODAL, 
and are described in more detail in (Pustejovsky, 
et. al. 2003a). 

We consider two tasks on this data: 

(1) Identifying which words and phrases are 
EVENTs, and 

(2) Identifying their semantic classes. 

The next section describes how we turn these 
tasks into machine learning problems. 

4 Event Identification as Classification 

We view event identification as a classification 
task using a word-chunking paradigm similar to 
that used by Carreras et. al. (2002). For each 
word in a document, we assign a label indicating 
whether the word is inside or outside of an event. 
We use the standard B-I-O formulation of the 
word-chunking task that augments each class 
label with an indicator of whether the given word 

                                                 
1 These examples are derived from (Pustejovsky, et. al. 
2003b) 
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is (B)eginning, (I)nside or (O)utside of a chunk 
(Ramshaw & Marcus, 1995). So, for example, 
under this scheme, sentence (1) would have its 
words labeled as in Table 1. 

(1) The company’s sales force 
[EVENT(I_ACTION) applauded] the 
[EVENT(OCCURRENCE) shake up] 

The two columns of labels in Table 1 show how 
the class labels differ depending on our task. If 
we’re interested only in the simple event identi-
fication task, it’s sufficient to know that ap-
plauded and shake both begin events (and so 
have the label B), up is inside an event (and so 
has the label I), and all other words are outside 
events (and so have the label O). These labels are 
shown in the column labeled Event Label. If in 
addition to identifying events, we also want to 
identify their semantic classes, then we need to 
know that applauded begins an intentional action 
event (B_I_ACTION), shake begins an occur-
rence event (B_OCCURRENCE), up is inside an 
occurrence event (I_OCCURRENCE), and all 
other words are outside of events (O). These la-
bels are shown in the column labeled Event Se-
mantic Class Label. Note that while the eight 
semantic class labels in the TimeBank could po-
tentially introduce as many as 8 • 2 + 1 = 17 
chunk labels, not all types of events appear as 
multi-word phrases, so we see only 13 of these 
labels in our data. 

5 Classifier Features 

Having cast the problem as a chunking task, our 
next step is to select and represent a useful set of 
features. In our case, since each classification 
instance is a word, our features need to provide 
the information that we deem important for rec-
ognizing whether a word is part of an event or 

not. We consider a number of such features, 
grouped into feature classes for the purposes of 
discussion. 

5.1 Text feature 

This feature is just the textual string for the word. 

5.2 Affix features 

These features attempt to isolate the potentially 
important subsequences of characters in the 
word.  These are intended to identify affixes that 
have a preference for different types of events. 

Affixes: These features identify the first three 
and four characters of the word, and the last three 
and four characters of the word. 

Nominalization suffix: This feature indicates 
which of the suffixes typically associated with 
nominalizations – ing(s), ion(s), ment(s), and 
nce(s) – the word ends with. This overlaps with 
the Suffixes feature, but allows the classifier to 
more easily treat nominalizations specially. 

5.3 Morphological features 

These features identify the various morphologi-
cal variants of a word, so that, for example, the 
words resist, resisted and resistance can all be 
identified as the same basic event type. 

Morphological stem: This feature gives the base 
form of the word, so for example, the stem of 
assisted is assist and the stem of investigations is 
investigation.  Stems are identified with a lookup 
table from the University of Pennsylvania of 
around 300,000 words. 

Root verb: This feature gives the verb from 
which the word is derived. For example, assis-
tance is derived from assist and investigation is 
derived from investigate.  Root verbs are identi-
fied with an in-house lookup table of around 
5000 nominalizations. 

5.4 Word class features 

These features attempt to group the words into 
different types of classes.  The intention here is 
to identify correlations between classes of words 
and classes of events, e.g. that events are more 
likely to be expressed as verbs or in verb phrases 
than they are as nouns. 

Part-of-speech: This feature contains the word’s 
part-of-speech based on the Penn Treebank tag 
set. Part-of-speech tags are assigned by the MX-
POST maximum-entropy based part-of-speech 
tagger (Ratnaparkhi, 1996). 

Word Event Label Event Semantic 
Class Label 

The O O 
company O O 
’s O O 
sales O O 
force O O 
applauded B B_I_ACTION 
the O O 
shake B B_OCCURRENCE 
up I I_OCCURRENCE 
. O O 

Table 1: Event chunks for sentence (1) 
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Syntactic-chunk label: The value of this feature 
is a B-I-O style label indicating what kind of 
syntactic chunk the word is contained in, e.g. 
noun phrase, verb phrase, or prepositional 
phrase. These are assigned using a word-
chunking SVM-based system trained on the 
CoNLL-2000 data2 (which uses the lowest nodes 
of the Penn TreeBank syntactic trees to break 
sentences into base phrases). 

Word cluster: This feature indicates which verb 
or noun cluster the word is a member of. The 
clusters were derived from the co-occurrence 
statistics of verbs and their direct objects, in the 
same manner as Pradhan et. al. (2004). This pro-
duced 128 clusters (half verbs, half nouns) cover-
ing around 100,000 words. 

5.5 Governing features 

These features attempt to include some simple 
dependency information from the surrounding 
words, using the dependency parses produced by 
Minipar3.  These features aim to identify events 
that are expressed as phrases or that require 
knowledge of the surrounding phrase to be iden-
tified. 

Governing light verb: This feature indicates 
which, if any, of the light verbs be, have, get, 
give, make, put, and take governs the word. This 
is intended to capture adjectival predicates such 
as may be ready, and nominal predicates such as 
make an offer, where ready and offer should be 
identified as events. 

Determiner type: This feature indicates the type 
of determiner a noun phrase has. If the noun 
phrase has an explicit determiner, e.g. a, the or 
some, the value of this feature is the determiner 
itself. We use the determiners themselves as fea-
ture values here because they form a small, 
closed class of words. For open-class determiner-
like modifiers, we instead group them into 
classes.  For noun phrases that are explicitly 
quantified, like a million dollars, the value is 
CARDINAL, while for noun phrases modified 
by other possessive noun phrases, like Bush's 
real objectives, the value is GENITIVE. For 
noun phrases without a determiner-like modifier, 
the value is PROPER_NOUN, BARE_PLURAL 
or BARE_SINGULAR, depending on the noun 
type. 

                                                 
2 http://cnts.uia.ac.be/conll2000/ 
3 http://www.cs.ualberta.ca/~lindek/minipar.htm 

Subject determiner type: This feature indicates 
for a verb the determiner type (as above) of its 
subject. This is intended to distinguish generic 
sentences like Cats have fur from non-generics 
like The cat has fur.  

5.6 Temporal features 

These features try to identify temporal relations 
between words.  Since the duration of a situation 
is at the core of the TimeBank definition of 
events, features that can get at such information 
are particularly relevant. 

Time chunk label: The value of this feature is a 
B-I-O label indicating whether or not this word is 
contained in a temporal annotation. The temporal 
annotations are produced by a word-chunking 
SVM-based system trained on the temporal ex-
pressions (TIMEX2 annotations) in the TERN 
2004 data4.  In addition to identifying expres-
sions like Monday and this year, the TERN data 
identifies event-containing expressions like the 
time she arrived at her doctor's office. 

Governing temporal: This feature indicates 
which kind of temporal preposition governs the 
word. Since the TimeBank is particularly inter-
ested in which events start or end within the time 
span of the document, we consider prepositions 
likely to indicate such a change of state, includ-
ing after, before, during, following, since, till , 
until and while. 

Modifying temporal: This feature indicates 
which kind of temporal expression modifies the 
word. Temporal expressions are recognized as 
above, and the type of modification is either the 
preposition that joins the temporal annotation to 
the word, or ADVERBIAL for any non-
preposition modification. This is intended to cap-
ture that modifying temporal expressions often 
indicate event times, e.g. He ran the race in an 
hour. 

5.7 Negation feature 

This feature indicates which negative particle, 
e.g. not, never, etc., modifies the word. The idea 
is based Siegel and McKeown’s (2000) findings 
which suggested that in some corpora states oc-
cur more freely with negation than events do. 

5.8 WordNet hypernym features 

These features indicate to which of the WordNet 
noun and verb sub-hierarchies the word belongs. 

                                                 
4 http://timex2.mitre.org/tern.html 
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Rather than include all of the thousands of dif-
ferent sub-hierarchies in WordNet, we first se-
lected the most useful candidates by looking at 
the overlap with WordNet and our training data. 
For each hierarchy in WordNet, we considered a 
classifier that labeled all words in that hierarchy 
as events, and all words outside of that hierarchy 
as non-events5. We then evaluated these classifi-
ers on our training data, and selected the ten with 
the highest F-measures. This resulted in selecting 
the following synsets: 

• noun: state 

• noun: psychological feature 

• noun: event 

• verb: think, cogitate, cerebrate 

• verb: move, displace 

• noun: group, grouping 

• verb: act, move 

• noun: act, human action, human activity 

• noun: abstraction 

• noun: entity 

The values of the features were then whether or 
not the word fell into the hierarchy defined by 
each one of these roots. Note that since there are 
no WordNet senses labeled in our data, we ac-
cept a word as falling into one of the above hier-
archies if any of its senses fall into that hierar-
chy. 

6 Classifier Parameters 

The features described in the previous section 
give us a way to provide the learning algorithm 
with the necessary information to make a classi-
fication decision. The next step is to convert our 
training data into sets of features, and feed these 
classification instances to the learning algorithm. 
For the learning task, we use the TinySVM6 sup-
port vector machine (SVM) implementation in 
conjunction with YamCha7 (Kudo & Matsumoto, 
2001), a suite for general-purpose chunking. 

YamCha has a number of parameters that de-
fine how it learns. The first of these is the win-
dow width of the “sliding window” that it uses. 

                                                 
5 We also considered the reverse classifiers, which classi-
fied all words in the hierarchy as non-events and all words 
outside the hierarchy as events. 
6 http://chasen.org/~taku/software/TinySVM/ 
7 http://chasen.org/~taku/software/yamcha/ 

A sliding window is a way of including some of 
the context when the classification decision is 
made for a word. This is done by including the 
features of preceding and following words in 
addition to the features of the word to be classi-
fied. To illustrate this, we consider our earlier 
example, now augmented with some additional 
features in Table 2. 

To classify up in this scenario, we now look 
not only at its features, but at the features of 
some of the neighboring words. For example, if 
our window width was 1, the feature values we 
would use for classification would be those in the 
outlined box, that is, the features of shake, up 
and the sentence final period. Note that we do 
not include the classification labels for either up 
or the period since neither of these classifications 
is available at the time we try to classify up. Us-
ing such a sliding window allows YamCha to 
include important information, like that up is 
preceded by shake and that shake was identified 
as beginning an event. 

In addition to the window width parameter, 
YamCha also requires values for the following 
three parameters: the penalty for misclassifica-
tion (C), the kernel’s polynomial degree, and the 
method for applying binary classifiers to our 
multi-class problem, either pair-wise or one-vs-
rest. In our experiments, we chose a one-vs-rest 
multi-class scheme to keep training time down, 
and then tried different variations of all the other 
parameters to explore a variety of models. 

7 Baseline Models 

To be able to meaningfully evaluate the models 
we train, we needed to establish a reasonable 
baseline. Because the majority class baseline 
would simply label every word as a non-event, 
we introduce two baseline models that should be 
more reasonable: Memorize and Sim-Evita. 

Word POS Stem Label 
The DT the O 
company NN company O 
’s POS ’s O 
sales NNS sale O 
force NN force O 
applauded VBD applaud B 
The DT the O 
shake NN shake B 
up RP up  
. . .  

Table 2: A window of word features 
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The Memorize baseline is essentially a lookup 
table – it memorizes the training data. This sys-
tem assigns to each word the label with which it 
occurred most frequently in the training data, or 
the label O (not an event) if the word never oc-
curred in the training data. 

The Sim-Evita model is our attempt to simu-
late the Evita system (Saurí et. al. 2005). As part 
of its algorithm, Evita includes a check that de-
termines whether or not a word occurs as an 
event in TimeBank. It performs this check even 
when evaluated on TimeBank, and thus though 
Evita reports 74% precision and 87% recall, 
these numbers are artificially inflated because the 
system was trained and tested on the same cor-
pus. Thus we cannot directly compare our results 
to theirs. Instead, we simulate Evita by taking the 
information that it encodes as rules, and encod-
ing this instead as features which we provide to a 
YamCha-based system. 

Saurí et. al. (2005) provides a description of 
Evita’s rules, which, according to the text, are 
based on information from lexical stems, part of 
speech tags, syntactic chunks, weak stative 
predicates, copular verbs, complements of copu-
lar predicates, verbs with bare plural subjects and 
WordNet ancestors. We decided that the follow-
ing features most fully covered the same infor-
mation: 

• Text 

• Morphological stem 

• Part-of-speech 

• Syntactic-chunk label 

• Governing light verb 

• Subject determiner type 

• WordNet hypernyms 

We also decided that since Evita does not con-
sider a word-window around the word to be clas-
sified, we should set our window size parameter 
to zero. 

Because our approximation of Evita uses a 
feature-based statistical machine learning algo-
rithm instead of the rule-based Evita algorithm, it 
cannot predict how well Evita would perform if 
it had not used the same data for training and 
testing. However, it can give us an approxima-
tion of how well a model can perform using in-
formation similar to that of Evita. 

8 Results 

Having decided on our feature space, our learn-
ing model, and the baselines to which we will 
compare, we now describe the results of our 
models on the TimeBank. We selected a strati-
fied sample of 90% of the TimeBank data for a 
training set, and reserved the remaining 10% for 
testing8. 

We consider three evaluation measures: preci-
sion, recall and F-measure. Precision is defined 
as the number of B and I labels our system iden-
tifies correctly, divided by the total number of B 
and I labels our system predicted. Recall is de-
fined as the number of B and I labels our system 
identifies correctly, divided by the total number 
of B and I labels in the TimeBank data. F-
measure is defined as the geometric mean of pre-
cision and recall9. 

To determine the best parameter settings for 
the models, we performed cross-validations on 
our training data, leaving the testing data un-
touched. We divided the training data randomly 
into five equally-sized sections. Then, for each 
set of parameters to be evaluated, we determined 
a cross-validation F-measure by averaging the F-
measures of five runs, each tested on one of the 
training data sections and trained on the remain-
ing training data sections. We selected the pa-
rameters of the model that had the best cross-
validation F-measure on the training data as the 
parameters for the rest of our experiments. For 
the simple event identification model this se-
lected a window width of 2, polynomial degree 
of 3 and C value of 0.1, and for the event and 
class identification model this selected a window 
width of 1, polynomial degree of 1 and C value 
0.1. For the Sim-Evita simple event identification 
model this selected a degree of 2 and C value of 
0.01, and for the Sim-Evita event and class iden-
tification model, this selected a degree of 1 and C 
value of 1.0. 

Having selected the appropriate parameters for 
our learning algorithm, we then trained our SVM 
models on the training data. Table 3 presents the 
results of these models on the test data. Our 
model (named STEP above for “System for Tex-

                                                 
8 The testing documents were: 
APW19980219.0476, APW19980418.0210, 
NYT19980206.0466, PRI19980303.2000.2550, 
ea980120.1830.0071, and the wsj_XXXX_orig documents 
numbered 0122, 0157, 0172, 0313, 0348, 0541, 0584, 0667, 
0736, 0791, 0907, 0991 and 1033. 
9 

RP
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F

+
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tual Event Parsing”) outperforms both baselines 
on both tasks. For simple event identification, the 
main win over both baselines is an increased re-
call. Our model achieves a recall of 70.6%, about 
5% better than our simulation of Evita, and 
nearly 15% better than the Memorize baseline. 
For event and class identification, the win is 
again in recall, though to a lesser degree. Our 
system achieves a recall of 51.2%, about 5% bet-
ter than Sim-Evita, and 10% better than Memo-
rize. On this task, we also achieve a precision of 
66.7%, about 10% better than the precision of 
Sim-Evita. This indicates that the model trained 
with no context window and using the Evita-like 
feature set was at a distinct disadvantage over the 
model which had access to all of the features. 

Table 4 and Table 5 show the results of our 
systems on various sub-tasks, with the “%” col-
umn indicating what percent of the events in the 
test data each subtask contained. Table 4 shows 
that in both tasks, we do dramatically better on 
verbs than on nouns, especially as far as recall is 
concerned. This is relatively unsurprising – not 
only is there more data for verbs (59% of event 
words are verbs, while only 28% are nouns), but 
our models generally do better on words they 

have seen before, and there are many more nouns 
we have not seen than there are verbs. 

Table 5 shows how well we did individually 
on each type of label. For simple event identifi-
cation (the top two rows) we can see that we do 
substantially better on B labels than on I labels, 
as we would expect since 92% of event words 
are labeled B. The label-wise performance for 
the event and class identification (the bottom 
seven rows) is more interesting. Our best per-
formance is actually on Reporting event words, 
even though the data is mainly Occurrence event 
words. One reason for this is that instances of the 
word said make up about 60% of Reporting 
event words in the TimeBank. The word said is 
relatively easy to get right because it comes with 
by far the most training data10, and because it is 
almost always an event: 98% of the time in the 
TimeBank, and 100% of the time in our test data. 

To determine how much each of the feature 
sets contributed to our models we also performed 
a pair of ablation studies. In each ablation study, 
we trained a series of models on successively 
fewer feature sets, removing the least important 
feature set each time. The least important feature 
set was determined by finding out which feature 
set’s removal caused the smallest drop in F-
measure. The result of this process was a list of 
our feature sets, ordered by importance. These 
lists are given for both tasks in Table 6, along 
with the precision, recall and F-measures of the 
various corresponding models.  Each row in 
Table 6 corresponds to a model trained on the 
feature sets named in that row and all the rows 
below it.  Thus, on the top row, no feature sets 
have been removed, and on the bottom row only 
one feature set remains. 

                                                 
10 The word “said” has over 600 instances in TimeBank. 
The word with the next most instances has just over 200 

 Event Identification Event and Class Identification 
Model Precision Recall F Precision Recall F  
Memorize 0.806 0.557 0.658 0.640 0.413 0.502  
Sim-Evita 0.812 0.659 0.727 0.571 0.459 0.509  
STEP 0.820 0.706 0.759 0.667 0.512 0.579  

Table 3: Overall results for both tasks 

 Event Identification Event and Class Identification 
 % Precision Recall F % Precision Recall F 
Verbs 59 0.864 0.903 0.883 59 0.714 0.701 0.707 
Nouns 28 0.729 0.432 0.543 28 0.473 0.261 0.337 

Table 4: Results by word class for both tasks 

 % Precision Recall F 
B 92 0.827 0.737 0.779 
I 8 0.679 0.339 0.452 
B Occurrence 44 0.633 0.727 0.677 
B State 14 0.519 0.136 0.215 
B Reporting 11 0.909 0.779 0.839 
B Istate 10 0.737 0.378 0.500 
B Iaction 10 0.480 0.174 0.255 
I State 7 0.818 0.173 0.286 
B Aspectual 3 0.684 0.684 0.684 

Table 5: Results by label 
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So, for example, in the simple event identifica-
tion task, we see that the Governing, Negation, 
Affix and WordNet features are hurting the clas-
sifier somewhat – a model trained without these 
features performs at an F-measure of 0.772, more 
than 1% better than a model including these fea-
tures. In contrast, we can see that for the event 
and semantic class identification task, the Word-
Net and Affix features are actually among the 
most important, with only the Word class fea-
tures accompanying them in the top three. These 
ablation results suggest that word class, textual, 
morphological and temporal information is most 
useful for simple event identification, and affix, 
WordNet and negation information is only really 
needed when the semantic class of an event must 
also be identified. 

The last thing we investigated was the effect 
of additional training data. To do so, we trained 
the model on increasing fractions of the training 
data, and measured the classification accuracy on 

the testing data of each of the models thus 
trained. The resulting graph is shown in Figure 1. 
The Majority line indicates the classifier accu-
racy when the classifier always guesses majority 
class, that is, (O)utside of an event. We can see 
from the two learning curves that even with only 
the small amount of data available in the 
TimeBank, our models are already reaching the 
level part of the learning curve at somewhere 
around 20% of the data. This suggests that, 
though additional data may help somewhat in the 
data sparseness problem, substantial further pro-
gress on this task will require new, more descrip-
tive features. 

9 Conclusions 

In this paper, we showed that statistical machine 
learning techniques can be successfully applied 
to the problem of identifying fine-grained events 
in a text. We formulated this task as a statistical 
classification task using a word-chunking para-
digm, where words are labeled as beginning, in-
side or outside of an event. We introduced a va-
riety of relevant linguistically-motivated fea-
tures, and showed that models trained in this way 
could perform quite well on the task, with a pre-
cision of 82% and a recall of 71%. This method 
extended to the task of identifying the semantic 
class of an event with a precision of 67% and a 
recall of 51%. Our analysis of these models indi-
cates that while the simple event identification 
task can be approached with mostly simple text 
and word-class based features, identifying the 
semantic class of an event requires features that 
encode more of the semantic context of the 
words. Finally, our training curves suggest that 
future research in this area should focus primar-
ily on identifying more discriminative features. 

Event Identification  Event and Class Identification 
Feature set Precision Recall F  Feature set Precision Recall F 
Governing 0.820 0.706 0.759  Governing 0.667 0.512 0.579 
Negation 0.824 0.713 0.765  Temporal 0.675 0.513 0.583 
Affix 0.826 0.715 0.766  Negation 0.672 0.510 0.580 
WordNet 0.818 0.723 0.768  Morphological 0.670 0.509 0.579 
Temporal 0.820 0.729 0.772  Text 0.671 0.505 0.576 
Morphological 0.816 0.727 0.769  WordNet 0.679 0.497 0.574 
Text 0.816 0.697 0.752  Word class 0.682 0.474 0.559 
Word class 0.719 0.677 0.697  Affix 0.720 0.421 0.531 

Table 6: Ablations for both tasks. For each task, the least important feature sets appear at the top of the 
table, and most important feature sets appear at the bottom. For each row, the precision, recall and F-
measure indicate the scores of a model trained with only the feature sets named in that row and the 
rows below it. 
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