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Abstract We define a phrasetable as a set of source
phrases (ngrams) and their translations, along
We discuss different strategies for smooth-  ith associated translation probabilitie&s|) and
ing the phrasetable in Statistical MT, and  ;(7|3). These conditional distributions are derived
give results over a range of translation set-  from the joint frequencies(s, #) of source/target

tings. We show that any type of smooth-  phrase pairs observed in a word-aligned parallel
ing is a better idea than the relative-  corpus.

frequency estimates that are often used.
The best smoothing techniques yield con-
sistent gains of approximately 1% (abso-
lute) according to the BLEU metric.

Traditionally, maximume-likelihood estimation
from relative frequencies is used to obtain con-
ditional probabilities (Koehn et al., 2003), eg,
p(3lt) = ¢(5,1)/ >z c(5,1) (since the estimation
problems forp(3|t) and p(t|3) are symmetrical,
we will usually refer only top(3|t) for brevity).
Smoothing is an important technique in statisticalThe most obvious example of the overfitting this
NLP, used to deal with perennial data sparsenessauses can be seen in phrase pairs whose con-
and empirical distributions that overfit the training stituent phrases occur only once in the corpus.
corpus. Surprisingly, however, it is rarely men-These are assigned conditional probabilities of 1,
tioned in statistical Machine Translation. In par- higher than the estimated probabilities of pairs for
ticular, state-of-the-art phrase-based SMT reliesvhich much more evidence exists, in the typical
on aphrasetable—a large set of ngram pairs over case where the latter have constituents that co-
the source and target languages, along with theinccur occasionally with other phrases. During de-
translation probabilities. This table, which may coding, overlapping phrase pairs are in direct com-
contain tens of millions of entries, and phrases opetition, so estimation biases such as this one in
up to ten words or more, is an excellent candidatdavour of infrequent pairs have the potential to sig-
for smoothing. Yet very few publications describe nificantly degrade translation quality.
phrasetable smoothing techniques in detalil. An excellent discussion of smoothing tech-

In this paper, we provide the first system-njques developed for ngram language models
atic study of smoothing methods for phrase-baseg| \ms) may be found in (Chen and Goodman,
SMT. Although we introduce a few new ideas, 1998: Goodman, 2001). Phrasetable smoothing
most methods described here were devised by othyiffers from ngram LM smoothing in the follow-
ers; the main purpose of this paper is not to injng ways:
vent new methods, but to compare methods. In
experiments over many language pairs, we show
that smoothing yields small but consistent gainsin e Probabilities of individual unseen events are
translation performance. We feel that this paper  not important. Because the decoder only
only scratches the surface: many other combina-  proposes phrase translations that are in the
tions of phrasetable smoothing techniques remain  phrasetable (ie, that have non-zero count), it
to be tested. never requires estimates for pairs having
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c(3,t) = 0.1 However, probability mass is  To modelp(t, a|s), we use a standard loglinear
reserved for theset of unseen translations, approach:
implying that probability mass is subtracted

from the seen translations. p(t, als) o< exp [Z \ifils, b, a)]
7

e There is no obvious lower-order distribution
for backoff. One of the most important tech- where eachf;(s,t,a) is a feature function, and
niques in ngram LM smoothing is to com- Weights A; are set using Och's algorithm (Och,
bine estimates made using the previaus1 ~ 2003) to maximize the system's BLEU score (Pa-
words with those using only the previous-;  Pineni et al., 2001) on a development corpus. The
words, fori = 2...n. This relies on the features used in this study are: the lengthtpf
fact that closer words are more informative,@ single-parameter distortion penalty on phrase

which has no direct analog in phrasetablereordering ina, as described in (Koehn et al.,
smoothing. 2003); phrase translation model probabilities; and

trigram language model probabilitiésg p(t), us-

e The predicted objects are word sequencedg Kneser-Ney smoothing as implemented in the
(in another language). This contrasts to LMSRILM toolkit (Stolcke, 2002).
smoothing where they are single words, and Phrase translation model probabilities are fea-
are thus less amenable to decomposition fofures of the form:
smoothing purposes. K
_ _ _ log p(slt,a) ~ Zlogp(ék\fk)
We propose various ways of dealing with these =1
special features of the phrasetable smoothin

problem, and give evaluations of their perfor- ” ,
mance within a phrase-based SMT system are conditionally independent, and depend only on
) their aligned phrases,. The “forward” phrase

The paper is structured as follows: section 2

gives a brief description of our phrase-based SM1prObab|“t'eSp (t]5) are not used as features, but

) . . only as a filter on the set of possible translations:
system; section 3 presents the smoothing tech- -

; i . : : , or each source phraseghat matches some ngram
niques used; section 4 reviews previous work; sec-

. . i i . dn s, only the 30 top-ranked translationsccord-
tion 5 gives experimental results; and section ~ .
Ing top(t|s) are retained.

ncl nd di future work. . " - ,
concludes and discusses future wo To derive the joint countg(s,¢) from which
p(3|t) andp(t|3) are estimated, we use the phrase

2 Phrase-based Siatistical MT induction algorithm described in (Koehn et al.,
Given a source sentenseour phrase-based SMT 2003), ‘_’Vith symmetrized word alignments gener-
system tries to find the target sentericéhat is ~ &ted using IBM model 2 (Brown et al., 1993).

the most likely translation of. To make search

more efficient, we use the Viterbi approximation
and seek the most likely combination ofind its  Smoothing involves some recipe for modifying
alignmenta with s, rather than just the most likely conditional distributions away from pure relative-

9e, we assume that the phrasgsspecified bya

Smoothing Techniques

t: frequency estimates made from joint counts, in or-
der to compensate for data sparsity. In the spirit of

t = argmax p(t|s) ~ argmax p(t, als), ((Hastie et al., 2001), figure 2.11, pg. 38) smooth-

t ta ing can be seen as a way of combining the relative-

o o frequency estimate, which is a model with high
wherea = (51,t1, 1), ... 5k, tx, ji )i tr @r€ - complexity, high variance, and low bias, with an-
get phrases such thét= 1, ... t; 5; are source  other model with lower complexity, lower vari-
phrases such that = 5;, ...5;,; and sy is the  ance, and high bias, in the hope of obtaining bet-
translation of the:th target phrase;. ter performance on new data. There are two main
— o _ _ ingredients in all such recipes: some probability

This is a first approximation; exceptions occur when dif- . tribution that i ther th lative f
ferent phrasetables are used in parallel, and when rules at%_'s ribution thatis smoother than refative frequen-
used to translate certain classes of entities. cies (ie, that has fewer parameters and is thus less
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complex) and some technique for combining that,(5|t) is a smooth backoff distribution, andis
distribution with relative frequency estimates. Wea threshold above which counts are considered re-
will now discuss both these choices: the distribu-iable. Typically, = 1 andpy,(5|t) is version of
tion for carrying out smoothing and the combina-5(3|f) modified to reserve some probability mass
tion technique. In this discussion, we us@ to  for unseen events.

denote relative frequency distributions. Interpolation schemes have the general form:
Choice of Smoothing Distribution p(3lt) = a(3,8)p(3[t) + B3, H)pe(3lE), (1)

One can distinguish between two approaches tqhere o and 8 are combining coefficients. As
smoothing phrase tableBlack-box techniques do  noted in (Chen and Goodman, 1998), a key
not look inside phrases but instead treat them agjfference between interpolation and backoff is
atomic c_)bjecfs~: that is, both theand thet in the  ha¢ the former approach uses information from
expressiorp(s|t) are treated as units about which e smoothing distribution to modify(|f) for

nothing is known except their counts. In contrasthigher-frequency events, whereas the latter uses
glass-box methods break phrases down into theiryy only for low-frequency events (most often O-
component words. frequency events). Since for phrasetable smooth-
The Dblack-box approach, which is the sim-jng  petter prediction of unseen (zero-count)
pler of the two, has received little attention in o ents has no direct impact—only seen events are
the SMT literature. An interesting aspect of represented in the phrasetable, and thus hypoth-

this approach is that it allows one to implementesjzed during decoding—interpolation seemed a
phrasetable smoothing techniques that are analgnore suitable approach.

gous to LM smoothing techniques, by treating the  por combining  relative-frequency  estimates
problem of estimating(s|t) as if it were the prob- yith glass-box smoothing distributions, we em-
lem of estimating a bigram conditional probabil- yoved loglinear interpolation. This is the tradi-
ity. In this paper, we give experimental resultStjona| approach for glass-box smoothing (Koehn
for phrasetable smoothing techniques analogoug; g 2003; Zens and Ney, 2004). To illustrate the
to Good-Turing, Fixed-Discount, Kneser-Ney, andgjfference between linear and loglinear interpola-

Modified Kneser-Ney LM smoothing. ~ tion, consider combining two Bernoulli distribu-
Glass-box methods for phrasetable smoothingions . () andp,(z) using each method:

have been described by other authors: see sec-

tion 3.3. These authors decompqsé|i) into a  Plincar(®) = api(z) + (1 — a)pa(z)
set of lexical distributiong(s|t) by making inde- o

. L ‘ p1(x)*p2(x)
pendence assumptions about the wardss. The Ploglin(T)

other possibility, which is similar in spirit to ngram Pi(@)?pa(7) + q1(2)*a2()

LM lower-order estimates, is to combine estimatesvhereg;(x) = 1 — p;(x). Settingpa(z) = 0.5
made by replacing words ihwith wildcards, as to simulate uniform smoothing gives,g, (z) =
proposed in section 3.4. p1(x)*/(p1(2)® + qi(z)*). This is actuallyless
smooth than the original distributign (z): it pre-
serves extreme values 0 and 1, and makes inter-
Although we explored a variety of black-box and mediate values more extreme. On the other hand,
glass-box smoothing distributions, we only triedp;;,c(z) = api(z) + (1 — «)/2, which has the
two combination techniques: linear interpolation,opposite properties: it moderates extreme values
which we used for black-box smoothing, and log-and tends to preserve intermediate values.
linear interpolation, which we used for glass-box An advantage of loglinear interpolation is that
smoothing. we can tune loglinear weights so as to maximize
For black-box smoothing, we could have used &he true objective function, for instance BLEU; re-
backoff scheme or an interpolation scheme. Backeall that our translation model is itself loglinear,

Choice of Combination Technique

off schemes have the form: with weights set to minimize errors. In fact, a lim-
~ pn(3l), cG,H)>T itation of the experiments described in this paper
p(3[t) { pb(§|f)7 olse is that the loglinear weights for the glass-box tech-

niques were optimized for BLEU using Och’s al-
where p,(3|t) is a higher-order distribution, gorithm (Och, 2003), while the linear weights for
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black-box techniques were set heuristically. Ob-and Gale, 1991). We first take the log of the ob-
viously, this gives the glass-box techniques an adserved(c, n.) values, and then use a linear least
vantage when the different smoothing techniquesquares fit tdog n. as a function ofog c. To en-
are compared using BLEU! Implementing an al-sure that the result stays close to the reliable values
gorithm for optimizing linear weights according to of n. for largec, error terms are weighted lay ie:
BLEU is high on our list of priorities. c(logn. —logn’)?, wheren/, are the fitted values.
The preceding discussion implicitly assumes a Our implementation pools all count$s, t) to-
single set of counts(3, ) from which conditional gether to obtaim/. (we have not yet tried separate
distributions are derived. But, as phrases of differcounts based on length bés discussed above). It
ent lengths are likely to have different statisticalfollows directly from (2) that the total count mass
properties, it might be worthwhile to break down assigned to unseen phrase pairg,i®)ny = ni,
the global phrasetable into separate phrasetableghich we approximate by). This mass is dis-
for each value oft| for the purposes of smooth- tributed among contexts in proportion toc(),
ing. Any similar strategy that does not split up giving final estimates:
{3|c(5,t) > 0} for any fixedt can be applied to
any smoothing scheme. This is another idea we p(3[F) = Cg(fﬂf) _
are eager to try soon. Socg(8,8) +p(t)n)’
We now describe the individual smoothing ~ ~ _
schemes we have implemented. Four of thenyherep(t) = c(t)/ > 7 c(t).
are bla_ck—box technlques. qud—Tu_rlng and_thre%l2 Fixed-Discount Methods
fixed-discount techniques (fixed-discount inter-
polated with unigram distribution, Kneser-Ney Fixed-discount methods subtract a fixed discount
fixed-discount, and modified Kneser-Ney fixed-D from all non-zero counts, and distribute the re-
discount). Two of them are glass-box techniquessulting probability mass according to a smoothing
Zens-Ney “noisy-or” and Koehn-Och-Marcu IBM distribution (Kneser and Ney, 1995). We use an
smoothing. Our experiments tested not only thesénterpolated version of fixed-discount proposed by
individual schemes, but also some loglinear com{Chen and Goodman, 1998) rather than the origi-
binations of a black-box technique with a glass-nal backoff version. For phrase pairs with non-

box technique. zero counts, this distribution has the general form:
3.1 Good-Turin = c(3,t)—D -

e p(al) = CO L s, @
Good-Turing smoothing is a well-known tech- >osc(8,1)

nique (Church and Gale, 1991) in which observed e ) o
countsc are modified according to the formula: wherepy(5]t) is the smoothing distribution. Nor-
malization constraints fix the value aft):

cg = (c+ )net1/ne 2) - - -

o) = Dy (+,8)/ > e(3,9),
wherec, is a modified count value used to replace 8
c in subsequent relative-frequency estimates, and . _
n. is the number of events having count An Wh_erenlfg*’t) is the number of phrases for
intuitive motivation for this formula is that it ap- wt:/\u;h c(8,t) > 0. 4 with hoices for th
proximates relative-frequency estimates made by € e_xper_lmgnte_ W't~ _two ¢ loices for _t €
successively leaving out each event in the Corpuss:moothlng distribution (]¢). The first is a plain
and then averaging the results (Nadas, 1985). unigramp(s), and the second is the Kneser-Ney
A practical difficulty in implementing Good- lower-order distribution:

Turing smoothing is that the. are noisy for large o - -
c. For instance, there may be only one phrase Po(3) = n”(s’*)/zg:n”(s’*)’
pair that occurs exactly = 347,623 times in a
large corpus, and no pair that occurs- 347,624  ie, the proportion of unique target phrases thist
times, leading ta,(347,623) = 0, clearly not associated with, where,, (3, x) is defined anal-
what is intended. Our solution to this problem ogously ton (*,%). Intuitively, the idea is that
is based on the technique described in (Churckource phrases that co-occur with many different
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target phrases are more likely to appear in nevd.4 Lower-Order Combinations

contexts. _ ~ We mentioned earlier that LM ngrams have a

_For both unigram and Kneser-Ney smoothingnatyrally-ordered sequence of smoothing distribu-
oiistributions, we used a discounting cpefﬁment deTions, obtained by successively dropping the last
rived by (Ney et al., 1994) on the basis of a leaveyyorq in the context. For phrasetable smoothing,

one-out analysis:D = n1/(n1 + 2nz). Forthe  pecause no word i is a priori less informative
Kneser-Ney smoothing distribution, we also testeqnan any others, there is no exact parallel to this
the "Modified Kneser-Ney” extension suggestediachnique. However, itis clear that estimates made
in (Chen and Goodman, 1998), in which specificyy replacing particular target (conditioning) words
coefficients D, are used for small count values yth wildcards will be smoother than the original

¢ up to a maximum of three (i@ is used for rg|ative frequencies. A simple scheme for combin-
¢ > 3). Forc = 2 andc = 3, we used formu- ing them is just to average:

las given in that paper.
o ci(s,t) -

3.3 Lexical Decomposition p(3lE) =) m/f

The two glass-box techniques that we considered =1

involve decomposing source phrases with indewhere:

pendence assumptions. The simplest approach as- “(5 7 20(57751 ot

sumes that all source words are conditionally in- G
dependent, so that:

.. tf).
t;
; One might also consider progressively replacing
i ~ the least informative remaining word in the target
p(slt) = Hp(sj‘t) phrase (using tf-idf or a similar measure).
7=t R The same idea could be applied in reverse, by
We implemented two variants fqi(s;|t) that  replacing particular source (conditioned) words
are described in previous work. (Zens and Neywith wildcards. We have not yet implemented
2004) describe a “noisy-or” combination: this new glass-box smoothing technique, but it has
p(silH) = 1—p(sh) congid(,erable appeal. The ideais sir_n.ilar in spirit to
7 Collins’ backoff method for prepositional phrase
attachment (Collins and Brooks, 1995).

1- H(l —p(s;lti)
i=1 4 Related Work

where s; is the probability thats; is not in the _ _

translation off, and p(s;|t;) is a lexical proba- As mentioned previously, (Chen and Goodman,

bility. (Zens and Ney, 2004) obtain(s;¢;) from i998) give a c_omprehensive survey and evalua-
smoothed relative-frequency estimates in a wordtion of smoothing techniques for language mod-
aligned corpus. Our implementation simply use<!iNg-  As also mentioned previously, there is

IBM1 probabilities, which obviate further smooth- relatively little published work on smoothing for
ing. statistical MT. For the IBM models, alignment

The noisy-or combination stipulates  thag probabilities need to be smooth_e.d for combina-
should not appear i if it is not the translation {10NS Of sentence lengths and positions not encoun-
of any of the words iri. The complement of this, tered in training data (Garcia-Varea et_ al., 1998).
proposed in (Koehn et al., 2005), to say that Moore (200_4) has found tha_lt smoothin_g _to cor-
should appear ir§ if it is the translation of at least rect overestimated IBM1 lexical probabilities for

Q

one of the words iff: rare words can improve word-alignment perfor-
. mance. Langlais (2005) reports negative results

p(sjlt) = Z p(s;lti) /14 for synonym-based smoothing of IBM2 lexical
i€4; probabilities prior to extracting phrases for phrase-

whereA; is a set of likely alignment connections based SMT.
for s;. In our implementation of this method, For phrase-based SMT, the use of smoothing to

we assumed that; = {1,... ,I}, ie the set of avoid zero probabilities during phrase induction is
all connections, and used IBM1 probabilities forreported in (Marcu and Wong, 2002), but no de-
p(slt). tails are given. As described above, (Zens and
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Ney, 2004) and (Koehn et al., 2005) use two dif-sets for tuning loglinear parameters, and tested on
ferent variants of glass-box smoothing (which theythe 3064-sentence test sets.

call “lexical smoothing”) over the phrasetable, and Results are shown in table 1 for relative-
combine the resulting estimates with pure relativefrequency (RF), Good-Turing (GT), Kneser-Ney
frequency ones in a loglinear model. Finally, (Cet-with 1 (KN1) and 3 (KN3) discount coefficients;
tollo et al., 2005) describes the use of Witten-Belland loglinear combinations of both RF and KN3
smoothing (a black-box technique) for phrasetablephrasetables with Zens-Ney-IBM1 (ZN-IBM1)
counts, but does not give a comparison to othesmoothed phrasetables (these combinations are
methods. As Witten-Bell is reported by (Chen anddenoted RF+ZN-IBM1 and KN3+ZN-IBM1).
Goodman, 1998) to be significantly worse than |t is apparent from table 1 that any kind of
Kneser-Ney smoothing, we have not yet tested thiphrase table smoothing is better than using none;

method. the minimum improvement is 0.45 BLEU, and
_ the difference between RF and all other meth-
S Experiments ods is statistically significant. Also, Kneser-

We carried out experiments in two different set-Ney smoothing gives a statls_,tlcally_S|gn|f|c_a_nt m-
rovement over GT smoothing, with a minimum

tings: broad—_coverqge Ones across six Europeahg1ain of 0.30 BLEU. Using more discounting co-
language pairs using selected smoothing tech=

: . o _ efficients does not appear to help. Smoothing
niques and relatively small training corpora; and . . . .
. . . . ._relative frequencies with an additional Zens-Ney
Chinese to English experiments using all im-

plemented smoothing techniques and large trainphrasetable gives about the same gain as Kneser-

ing corpora.  For the black-box techniques Ney smoothing on its own. However, combining

the smoothed phrase table replaced the originallmeser"\Iey with Zens-Ney gives a clear gain over

relative-frequency (RF) phrase table. For th any other method (statistically significant for all

glass-box techniques, a phrase table (either thsé;?aq[lijnag'?hz?l[rhseizczpt;e()raesha;nsdaizﬁg(?r)nd?emmoenr;tar
original RF phrase table or its replacement after g P P Y-

black-qu sm_oothing) was i_nterpolated in !og!in- 52 Chinese-English Experiments

ear fashion with the smoothing glass-box distribu- . )

tion, with weights set to maximize BLEU on a de- 10 test the effects of smoothing with larger

velopment corpus. corpora, we ran a set of experiments for
To estimate the significance of the results acros§hinese-English translation using the corpora

different methods, we used 1000-fold pairwisedistributed for the NIST MTO5 evaluation

bootstrap resampling at the 95% confidence level(WWW.nist.gov/speech/tests/mt). These are sum-
marized in table 2. Due to the large size of

5.1 Broad-Coverage Experiments the out-of-domain UN corpus, we trained one

In order to measure the benefit of hrasetablghrasetable on it, and another on all other parallel
. . P corpora (smoothing was applied to both). We also
smoothing for relatively small corpora, we used

: f the English Gi
the data made available for the WMTO06 shared; zgeggq:nﬁg:elfl\ﬁ t:aiiingggr:Zterci;;?aword corpus to
task (WMT, 2006). This exercise is conducted '

openly with access to all needed resources anjcOrpus use sentences
is thus ideal for benchmarking statistical phrase- non-UN phrasetablel + LM 3,164,180
ba_sed translation systems on a number of IanguageUN phrasetable2 + LM 4,979,345
pairs. _ Gigaword LM 11,681,852
The WMTO6 corpus is based on sentences exj muli-p3  dev 993
tracted from the proceedings of the European Par; o\a1.04 test 1788
liament. Separate sentence-aligned parallel cor-
pora of about 700,000 sentences (about 150MB) Table 2: Chinese-English Corpora

are provided for the three language pairs hav-

ing one of French, Spanish and German with En- Table 3 contains results for the Chinese-English
glish. SRILM language models based on the samexperiments, including fixed-discount with uni-

source are also provided for each of the four langram smoothing (FDU), and Koehn-Och-Marcu

guages. We used the provided 2000-sentence desmoothing with the IBM1 model (KOM-IBM1)
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smoothing method fr —en es—en de—en en—fr en—es en—de
RF 25.35 27.25 20.46 27.20 27.18 14.60
GT 25.95 28.07 21.06 27.85 27.96 15.05
KN1 26.83 28.66 21.36 28.62 28.71 15.42
KN3 26.84 28.69 21.53 28.64 28.70 15.40
RF+ZN-IBM1 26.84 28.63 21.32 28.84 28.45 15.44
KN3+ZN-1BM1 27.25 29.30 21.77 29.00 28.86 15.49

Table 1: Broad-coverage results

as described in section 3.3. As with theto apply KN3 smoothing to the phrasetable that
broad-coverage experiments, all of the black-boxgets combined with the best glass-box phrasetable
smoothing techniques do significantly better than(ZN), whereas in the latter setting it does not. To
the RF baseline. However, GT appears to workest whether this was due to corpus size (as the
better in the large-corpus setting: it is statisticallybroad-coverage corpora are around 10% of those
indistinguishable from KN3, and both these methfor Chinese-English), we calculated Chinese-
ods are significantly better than all other fixed-English learning curves for the RF+ZN-IBM1 and
discount variants, among which there is little dif- KN3-ZN-IBM1 methods, shown in figure 1. The
ference. results are somewhat inconclusive: although the
Not surprisingly, the two glass-box methods, KN3+ZN-IBM1 curve is perhaps slightly flatter,
ZN-IBM1 and KOM-IBM1, do poorly when used the most obvious characteristic is that this method
on their own. However, in combination with an- appears to be highly sensitive to the particular cor-
other phrasetable, they yield the best results, obpus sample used.
tained by RF+ZN-IBM1 and GT+KOM-IBM1,
which are statistically indistinguishable. In con- Learning curves for smoothing methods
strast to the situation in the broad-coverage set- " ) ) ) )
ting, these are not significantly better than the oz}
best black-box method (GT) on its own, although 5|
RF+ZN-IBM1 is better than all other glass-box
combinations.

0.285

028 /

smoothing method BLEU score SR |
RF 29.85 B
GT 30.66 ol |
FDU 30.23 0265
KN1 30.29 ok
KN2 30.13
KN3 30.54 el | RF+ZN-IBM1 —+— ]
ZN-1BM1 29.55 0.25 it " . . KNa2N- B
0 10 20 30 40 50 60 70 80
KO M - | B M 1 28 . 09 proportion of corpus
RF+ZN-IBM1 30.95
RE+KOM-IBM1 30.10 Figure 1: Learning curves for two glass-box com-
GT+ZN-IBM1 30.45 binations.
GT+KOM-IBM1 30.81
KN3+ZN-1BM1 30.66 6 Conclusion and Future Work
Table 3: Chinese-English Results We tested different phrasetable smoothing tech-

niques in two different translation settings: Eu-

A striking difference between the broad- ropean language pairs with relatively small cor-
coverage setting and the Chinese-English settingora, and Chinese to English translation with large
is that in the former it appears to be beneficialcorpora. The smoothing techniques fall into two
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