
Proceedings of the Fourth International Natural Language Generation Conference, pages 95–102,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Generic Querying of Relational Databases using Natural Language
Generation Techniques

Catalina Hallett
Center for Research in Computing

The Open University
Walton Hall, Milton Keynes

United Kingdom
c.hallett@open.ac.uk

Abstract

This paper presents a method of querying
databases by means of a natural language-
like interface which offers the advantage
of minimal configuration necessary for
porting the system. The method allows
us to first automatically infer the set of
possible queries that can apply to a given
database, automatically generate a lexicon
and grammar rules for expressing these
queries, and then provide users with an
interface that allows them to pose these
queries in natural language without the
well-known limitations of most natural
language interfaces to databases. The way
the queries are inferred and constructed
means that semantic translation is per-
formed with perfect reliability.

1 Introduction

Natural Language interfaces to databases (here-
after NLIDBs ) have long held an appeal to both
the databases and NLP communities. However,
difficulties associated with text processing, seman-
tic encoding, translation to database querying lan-
guages and, above all, portability, have meant that,
despite recent advances in the field, NLIDBs are
still more a research topic than a commercial solu-
tion.

Broadly, research in NLIDBs has focused
on addressing the following fundamental, inter-
dependent issues1:

• domain knowledge aquisition (Frank et al.,
2005);

1The extent of NLIDB research is such that it is beyond
the scope of this paper to reference a comprehensive list of
projects in this area. For reviews on various NLIDBs , the
reader is referred to (Androutsopoulos et al., 1995).

• interpretation of the input query, including
parsing and semantic disambiguation, se-
mantic interpretation and transformation of
the query to an intermediary logical form
(Hendrix et al., 1978; Zhang et al., 1999;
Tang and Mooney, 2001; Popescu et al.,
2003; Kate et al., 2005);

• translation to a database query language
(Lowden et al., 1991; Androutsopoulos,
1992);

• portability (Templeton and Burger, 1983; Ka-
plan, 1984; Hafner and Godden, 1985; An-
droutsopoulos et al., 1993; Popescu et al.,
2003)

In order to recover from errors in any either of
these steps, most advanced NLIDB systems will
also incorporate some sort of cooperative user
feedback module that will inform the user of the
inability of the system to construct their query and
ask for clarification.

We report here on a generic method we have
developed to automatically infer the set of possi-
ble queries that can apply to a given database, and
an interface that allows users to pose these ques-
tions in natural language but without the previ-
ously mentioned drawbacks of most NLIDBs . Our
work is substantially different from previous re-
search in that it does not require the user to input
free text queries, but it assists the user in com-
posing query through a natural language-like in-
terface. Consequently, the necessity for syntactic
parsing and semantic interpretation is eliminated.
Also, since users are in control of the meaning of
the query they compose, ambiguity is not an issue.

Our work builds primarily on two directions
of research: conceptual authoring of queries via

95



WYSIWYM interfaces, as described in section 2,
and NLIDB portability research. From the perspec-
tive of the query composing technique, our sys-
tem resembles early menu-based techniques, such
as Mueckstein (1985), NL-Menu (Tennant et al.,
1983) and its more recent re-development Lingo-
Logic (Thompson et al., 2005). This resemblance
is however only superficial. Our query editing in-
terface employs natural language generation tech-
niques for rendering queries in fluent language; it
also allows the editing of the semantic content of
a query rather than its surface form, which allows
seamless translation to SQL .

As in (Zhang et al., 1999), our system makes
use of a semantic graph as a mean of representing
the database model. However, whilst Zhang et al
(1999) use the Semantic Graph as a resource for
providing and interpreting keywords in the input
query, we use this information as the main means
of automatically generating query frames.

2 WYSIWYM interfaces for database
querying

Conceptual authoring through WYSIWYM editing
alleviates the need for expensive syntactic and se-
mantic processing of the queries by providing the
users with an interface for editing the conceptual
meaning of a query instead of the surface text
(Power and Scott, 1998).

The WYSIWYM interface presents the contents
of a knowledge base to the user in the form of
a natural language feedback text. In the case of
query editing, the content of the knowledge base is
a yet to be completed formal representation of the
users query. The interface presents the user with
a natural language text that corresponds to the in-
complete query and guides them towards editing
a semantically consistent and complete query. In
this way, the users are able to control the interpre-
tation that the system gives to their queries. The
user starts by editing a basic query frame, where
concepts to be instantiated (anchors) are clickable
spans of text with associated pop-up menus con-
taining options for expanding the query.

Previously, WYSIWYM interfaces have proved
valid solutions to querying databases of legal doc-
uments and medical records (Piwek et al., 2000),
(Piwek, 2002), (Hallett et al., 2005).

As a query-formulation method, WYSIWYM

provides most of the advantages of NLIDBs , but
overcomes the problems associated with natural

language interpretation and of users attempting to
pose questions that are beyond the capability of
the system or, conversely, refraining from asking
useful questions that are in fact within the sys-
tem’s capability. However, one of the disadvan-
tages of the WYSIWYM method is the fact that do-
main knowledge has to be manually encoded. In
order to construct a querying interface for a new
database, one has to analyse the database and man-
ually model the queries that can be posed, then
implement grammar rules for the construction of
these queries. Also, the process of transforming
WYSIWYM queries into SQL or another database
querying language has previously been database-
specific. These issues have made it expensive to
port the interface to new databases and new do-
mains.

The research reported here addresses both these
shortcomings by providing a way of automatically
inferring the type of possible queries from a graph
representation of the database model and by devel-
oping a generic way of translating internal repre-
sentations of WYSIWYM constructed queries into
SQL .

3 Current approach

In the rest of the paper, we will use the following
terms: a query frame refers to a system-generated
query that has not been yet edited by the user,
therefore containing only unfilled WYSIWYM an-
chors. An anchor is part of the WYSIWYM ter-
minology and means a span of text in a partially
formulated query, that can be edited by the user to
expand a concept. Anchors are displayed in square
brackets (see examples in section 3.3).

To exemplify the system behaviour, we will use
as a case study the MEDIGAP database, which
is a freely downloadable repository of informa-
tion concerning medical insurance companies in
the United States. We have chosen this particu-
lar database because it contains a relatively wide
range of entity and relation types and can yield a
large number of types of queries. In practice we
have often noticed that large databases tend to be
far less complex.

3.1 System architecture

Figure 1 shows the architecture of the query-
ing system. It receives as input a model of
the database semantics (the semantic graph) and
it automatically generates some of the compo-

96



Semantic graph

User
interface

Wysiwym
components

T-box

Grammar
rules

Text
generator

Query SQL
Query

LexiconDatabase

Figure 1: System architecture

nents and resources (highlighted in grey) that in
previous WYSIWYM querying systems were con-
structed manually. Finally, it implements a mod-
ule that translates the user-composed query into
SQL .

The components highlighted in grey are those
that are constructed by the current system.

The T-box describes the high-level components
of the queries. It is represented in Profit notation
(Erbach, 1995) and describes the composition of
the query frames (the elements that contribute to a
query and their type) . A fragment of the semantic
graph displayed in 2 will generate the following
fragment of t-box:
query > [about_company, about_state,
about_phone, about_ext].
about_company > [company_state, company_phone,
company_ext].
company_state intro [company:company_desc].
company_desc intro [comp:comp_desc, phone:phone_desc,
ext:ext_desc].
state_desc > external(’dbo_vwOrgsByState_StateName’).
comp_desc > external(’dbo_vwOrgsByState_org_name’).
phone_desc > external(’dbo_vwOrgsByState_org_phone’).
ext_desc > external(’dbo_vwOrgsByState_org_ext’).

The grammar rules are also expressed in
Profit, and they describe the query formulation
procedure. For example, the following rule will be
generated automatically to represent the construc-
tion procedure for the query in Example (1.1):
rule(english, company_state,

meaning!(<description &
predicate!company_state &
properties![attribute!comp & value!Comp]) &

layout!level!question &
cset![meaning!in &

syntax!category!prep &
layout!level!word,

meaning!which &
syntax!category!int &
layout!level!word,

meaning!state &
syntax!category!np &
layout!level!word,

meaning!be &
syntax!(category!vb & form!pres),
layout!level!word,

meaning!Comp &
syntax!category!np &
layout!level!phrase,

meaning!locate &
syntax!(category!vb & form!part),
layout!level!word]).

In addition to the grammar rules automatically
generated by the system, the WYSIWYM pack-
age also contains a set of English grammar rules
(for example, rules for the construction of defi-
nite noun phrases or attachment of prepositional
phrases). These rules are domain independent, and
therefore a constant resource for the system.

The lexicon consists of a list of concepts to-
gether with their lexical form and syntactic cate-
gory. For example, the lexicon entry for insurance
company will look like:
word(english, meaning!company &
syntax!(category!noun & form!name) &
cset!’insurance company’)).

3.2 Semantic graph

The semantics of a relational database is specified
as a directed graph where the nodes represent el-
ements and the edges represent relations between
elements. Each table in the database can be seen
as a subgraph, with edges between subgraphs rep-
resenting a special type of join relation.

Each node has to be described in terms of its se-
mantics and, at least for the present, in terms of its
linguistic realisation. The semantic type of a node
is restricted by the data type of the correspond-
ing entity in the database. A database entity of
type String can belong to one of the following se-
mantic categories: person, organization, location
(town, country), address (street or complete ad-
dress), telephone number, other name, other ob-
ject. Similarly, numerical entities can have the se-
mantic type: age, time (year, month, hour), length,

97



OrgName
Sem: organisation
Lex: insurance company
Morph: proper noun

Phone#
…

Extension
…

StateName
Sem: location
Lex: state
Morph: proper noun

Type: descriptive
Arity: n to 1
Sem: location
Lex: be located in
Frame: NP-VB-NP

Table 1

Type: attributive
Sem: possession
Lex: have
Frame: NP-VB-NP

Type: attributive
Sem: possession
Lex: have
Frame: NP-VB-NP

Table 2

Figure 2: Example of a semantic graph

weight, value, height. The data type date has only
one possible semantic type, which is date. These
semantic types have proved sufficient in our exper-
iments, however this list can be expanded if nec-
essary.

Apart from the semantic type, each node must
specify the linguistic form used to express that
node in a query. For example, in our case study,
the field StateName will be realised as state, with
the semantic category location. Additionally, each
node will contain the name of the table it belongs
to and the name of the column it describes.

Relations in the semantic graph are also de-
scribed in terms of their semantic type. Since re-
lations are always realised as verbs, their seman-
tic type also defines the subcategorisation frame
associated with that verb. For the moment, sub-
categorisation frames are imported from a locally
compiled dictionary of 50 frequent verbs. The user
only needs to specify the semantic type of the verb
and, optionally, the verb to use. The system au-
tomatically retrieves from the dictionary the ap-
propriate subcategorisation frame. The dictionary
has the disadvantage of being rather restricted in
coverage, however it alleviates the need for the
user to enter subcategorisation frames manually,
a task which may prove tedious for a user with-
out the necessary linguistic knowledge. However,
we allow users to enter new frames in the dictio-
nary, should their verb or category of choice not
be present. A relation must also specify its arity.

This model of the database semantics is par-
tially constructed automatically by extracting
database metadata information such as data types
and value ranges and foreign keys. The manual

effort involved in creating the semantic graph is
reduced to the input of semantic and linguistic in-
formation.

3.3 Constructing queries

We focus our attention in this paper to the con-
struction of the most difficult type of queries:
complex wh-queries over multiple database tables
and containing logical operators. The only restric-
tion on the range of wh-queries we currently con-
struct is that we omit queries that require infer-
ences over numerical and date types.

Each node in the semantic graph can be used
to generate a number of query frames equal to the
number of nodes it is connected to in the graph.
Each query frame is constructed by pairing the
current node with each other of the nodes it is
linked to. By generation of query frames we desig-
nate the process of automatically generating Profit
code for the grammar rule or set of rules used by
WYSIWYM , together with the T-box entries re-
quired by that particular rule.

If we consider the graph presented in Fig.2,
and focus on the node orgName, the system will
construct the query frames:
Example (1):

1. In which state is [some insurance

company] located?

2. What phone number does [some

insurance company] have?

3. What extension does [some insurance

company] have?

If we consider the first query in the example
above, the user can further specify details about

98



the company by selecting the [some insurance
company] anchor and choosing one of the options
available (which themselves are automatically
generated from the database in question). This
information may come from one or more tables.
For example, one table in our database contains
information about the insurance companies con-
tact details, whilst another describes the services
provided by the insurance companies. Therefore,
the user can choose between three options:
contact details, services and all. Each selection
triggers a text regeneration process, where the
feedback text is transformed to reflect the user
selection, as in the example below:
Example (2):

1. In which state is [some insurance

company] that has [some phone number]

and [some extension] located?

2. In which state is [some insurance

company] that offers [some medical

insurance plan] and [is available] to

people over 65 located?

3. In which state is the insurance

company with the following features

located:

• It has [some phone number] and [some

extension]

and

• It offers [some medical insurance

plan] and [is available] to people over

65

Figure 3 shows a snapshot of the query editing
interface where query (2.1) is being composed.

Each query frame is syntactically realised by
using specially designed grammar rules. The
generation of high level queries such as those
in Example (1.1) relies on basic query syntax
rules. The semantic type of each linked element
determines the type of wh-question that will be
constructed. For example, if the element has the
semantic type location, we will construct where
questions, whilst a node with the semantic type
PERSON will give rise to a who-question. In
order to avoid ambiguities, we impose further
restrictions on the realisation of the query frames.
If there is more than one location-type element
linked to a node, the system will not generate two
where query frames, which would be ambiguous,
but more specific which queries. For example,
our database contains two nodes of semantic type
location linked to the node OrgName. The first

describes the state where an insurance company is
located, the second its address. The query frames
generated will be:
Example (3):

1. In which states is some insurance

company located?

2. At what addresses is some insurance

company located?

The basic grammar rule pattern for queries
based on one table only states that elements linked
to a particular node will be realised in relative
clauses modifying that node. For example, in Ex-
ample (2.1), the nodes phones and ext are accessi-
ble from the node orgName, therefore will be re-
alised in a relative clause that modifies insurance
company.
In the case where the information comes from
more than one table, it is necessary to introduce
more complex layout features in order to make the
query readable. For each table that provides in-
formation about the focused element we generate
bulleted lines as in Example (2.3).

Each question frame consists of a bound ele-
ment2, i.e., the user cannot edit any values for that
particular element. This corresponds to the infor-
mation that represents the answer to the questions.
In example (2), the bound element is state. All
other nodes will be realised in the feedback text
as anchors, that are editable by users. One ex-
ception is represented by nodes that correspond to
database elements of boolean type. In this case,
the anchor will not be associated to a node, but to
a relation, as in Example (2.3) (the availability of
an insurance plan is a boolean value). This is to
allow the verb to take negative form - in our ex-
ample, one can have is available to people over 65
or is not available to people over 65.

Since not all anchors have to be filled in, one
query frame can in fact represent more than
one real-life question. In example (4), one can
edit the query to compose any of the following
corresponding natural language questions:
Example (4):

1. In which state is the insurance

company with the phone number 8008474836

located?

2. In which state is the insurance

2In fact, a single element can be replaced of any number
of elements of the same type linked by conjunctions or dis-
junctions. However, we will refer to a single element by way
of simplification. The process of inferring queries remains
esentially the same.

99



Figure 3: Query editing interface snapshot

company Thrivent Financial for Lutherans

with the phone number 8008474836

located?

3. In which state is the insurance

company Thrivent Financial for Lutherans

with the phone number 8008474836 and

extension 8469 located?

The actual values of anchors are extracted from
the database and transformed into correct lexicon
entries on a per-need basis. The strings associated
with a value (e.g. Thrivent Financial for Luther-
ans) are retrieved from the database table and col-
umn indicated in the description of the node that
was used for generating the anchor (e.g. orgName)
and the syntactic role (e.g. proper noun) is given
by the syntactic information associated with the
node.

3.4 Query translation module

Once a query has been constructed, it is rep-
resented internally as a directed acyclic graph.
Moreover, each node in the graph can be mapped
into a node in the semantic graph of the database.
The translation module transforms a contructed
query to an SQL statement by parsing the query
graph and combining it with the corresponding el-
ements in the semantic graph.

The SELECT portion of the statement contains
the focused element. The WHERE portion con-
tains those nodes in the question graph that cor-
respond to edited anchors. For constructing the
FROM portion of the statement, we extract, from
the semantic graph, for each SELECTED element
information about their corresponding database ta-
ble.

For example, if we assume that in Example (2.1)

the user has specified the name of the company
and its phone number, the SQL statement gener-
ated will be:
SELECT dbo_vwOrgsByState.StateName
FROM dbo_vwOrgsByState
WHERE org_name="Thrivent Financial for

Lutherans"
And org_phone="8008474836";

4 Evaluation

4.1 Usability

A recent study of the usability of a WYSIWYM type
of interface for querying databases (Hallett et al.,
2006) has shown that users can learn how to use
the interface after a very brief training and suc-
ceed in composing queries of quite a high level of
complexity. They achieve near-perfect query con-
struction after the first query they compose. The
study also showed that the queries as they appear
in the WYSIWYM feedback text are unambiguous
— not only to the back-end system — but also to
the user, i.e., users are not misled into constructing
queries that may have a different meaning than the
one intended. Additionally, it appears that expert
users of SQL , with expert knowledge of the un-
derlying database, find the query interface easier
to use than querying the database directly in SQL

. We consider that most of the conclusions drawn
in (Hallett et al., 2006) apply to the current sys-
tem. The only difference may appear in assess-
ing the ambiguity of the feedback text. Since the
query construction rules used for our system are
generated automatically, it is likely that the feed-
back text may be less fluent and, potentially, more
ambiguous than a feedback text generated using
manually constructed rules, as in (Hallett et al.,
2006). We have not yet addressed this issue in a
formal evaluation of the current system.

100



4.2 Coverage

We have assessed the coverage of the system us-
ing as our test set a set of English questions
posed over a database of geographical information
GEOBASE, as in (Tang and Mooney, 2001) and
(Popescu et al., 2003). Our first step was to convert
the original Prolog database (containing about 800
facts) into a relational database. Then we tested
how many of the 250 human produced questions
in the test set can be constructed using our system.

There are several issues in using this particu-
lar dataset for testing. Since we do not provide
a pure natural language interface, the queries our
system can construct are not necessarily expressed
in the same way or using the same words as the
questions in the test set. For example, the ques-
tion ”How high is Mount McKinley?” in the test
set is equivalent to ”What is the height of Mount
McKinley?” produced by our system. Similarly,
”Name all the rivers in Colorado.” is equivalent
to ”Which rivers flow through Colorado?”. Also,
since the above test set was designed for testing
and evaluating natural language interfaces, many
of the questions have equivalent semantic content.
For example, ”How many people live in Califor-
nia?” is semantically equivalent to ”What is the
population of California?”. Similarly, there is no
difference in composing and analysing ”What is
the population of Utah?” and ”What is the popu-
lation of New York City?”.

Out of 250 test questions, 100 had duplicate se-
mantic content and the remaining 150 had original
content. On the whole test set of 250 questions,
our system was able to generate query frames that
allow the construction of 145 questions, therefore
58%. The remaining 42% of questions belong to
a single type of questions that our current imple-
mentation cannot handle, which is questions that
require inferences over numerical types, such as
Which is the highest point in Alaska? or What is
the combined area of all 50 states?.

Similar results are achieved when testing the
system on the 150 relevant questions only: 60%
of the questions can be formulated, while the re-
maining 40% cannot.

4.3 Correctness

The correctness of the SQL generated queries was
assessed on the subset of queries that our system
can formulate out of the total number of queries
in the test set. We found that the correct SQL was

produced for all the generated WYSIWYM queries
produced.

5 Conclusions & Further work

Our method presents three main advantages over
other natural language interfaces to databases:
1. It is easily customizable for new domains and
databases.
2. It eliminates errors in parsing and query-to-SQL

translation.
3. It makes clear to the user the full range of
possible queries that can be posed to any given
database.

From a user’s point of view, one could argue
that our method is less natural to use than one that
allows unconstrained (or less constrained) natural
language input. It could also be said that while
syntactically correct, the queries as presented to
the user may not be as fluent as human-authored
questions. These possible disadvantages are, in
our opinion, outweighed by the clarity of the query
composition process, since the user is fully in con-
trol of the semantic content of the query she com-
poses; they are unambiguous to both the user and
the back-end system.

We are currently extending this work to cover
more complex queries that require inferences and
ones that contain elements linked through tempo-
ral relations. We will also refine the query layout
procedures to allow complex queries to be pre-
sented in a more intuitive way. Additionally, we
are about to begin work on automating the the con-
struction of the semantic graph. We expect that
some of the semantic and syntactic information
that, at the moment, has to be manually entered
in the description of the semantic graph can be in-
ferred automatically from the database content.

Acknowledgement

The work described in this paper is part of the
Clinical E-Science Framework (CLEF) project,
funded by the Medical Research Council grant
G0100852 under the E-Science Initiative. We
gratefully acknowledge the contribution of our
clinical collaborators at the Royal Marsden and
Royal Free hospitals, colleagues at the National
Cancer Research Institute (NCRI) and NTRAC
and to the CLEF industrial collaborators.

101



References

I. Androutsopoulos, G.Ritchie, and P.Thanitsch. 1993.
An effcient and portable natural language query in-
terface for relational databases. In Proceedings of
the 6th International Conference on Industrial En-
gineering Applications of Artificial Intelligence and
Expert Systems Edinburgh, pages 327–330.

I. Androutsopoulos, G.D. Ritchie, and P.Thanisch.
1995. Natural language interfaces to databases -
an introduction. Natural Language Engineering,
2(1):29–81.

I. Androutsopoulos. 1992. Interfacing a natural lan-
guage front end to a relational database. Master’s
thesis, Department of Artificial Intelligence Univer-
sity of Edinburgh.

Gregor Erbach. 1995. ProFIT – prolog with features,
inheritance, and templates. In Proceedings of the
7th Conference of the European Chapter of the Ass-
cociation for Computational Linguistics, EACL-95,
Dublin, Ireland.

A. Frank, Hans-Ulrich Krieger, Feiyu Xu, Hans Uszko-
reit, Berthold Crysmann, Brigitte Jorg, and Ulrich
Schafer. 2005. Querying structured knowledge
sources. In AAAI-05 Workshop on Question Answer-
ing in Restricted Domains, Pittsburgh, Pennsylva-
nia.

Carole D. Hafner and Kurt Godden. 1985. Portability
of syntax and semantics in datalog. ACM Trans. Inf.
Syst., 3(2):141–164.

C. Hallett, D. Scott, and R.Power. 2005. Intuitive
querying of ehealth data repositories. In Proceed-
ings of the UK E-Science All-Hands Meeting, Not-
tingham, UK.

C. Hallett, D. Scott, and R.Power. 2006. Evaluation of
the clef query interface. Technical Report 2006/01,
Department of Computing, The Open University.

Gary G. Hendrix, Earl D. Sacerdoti, Daniel Sagalow-
icz, and Jonathan Slocum. 1978. Developing a natu-
ral language interface to complex data. ACM Trans.
Database Syst., 3(2):105–147.

S. Jerrold Kaplan. 1984. Designing a portable nat-
ural language database query system. ACM Trans.
Database Syst., 9(1):1–19.

R.J. Kate, Y.W. Wong, and R.J. Mooney. 2005. Learn-
ing to transform natural to formal languages. In Pro-
ceedings of the Twentieth National Conference on
Artificial Intelligence (AAAI-05), pages 1062–1068,
Pittsburgh, PA.

B.G.T. Lowden, B.R. Walls, A. De Roeck, C.J. Fox,
and R. Turner. 1991. A formal approach to translat-
ing english into sql. In Jackson and Robinson, edi-
tors, Proceedings of the 9th British National Confer-
ence on Databases.

Eva-Martin Mueckstein. 1985. Controlled natural
language interfaces (extended abstract): the best of
three worlds. In CSC ’85: Proceedings of the 1985
ACM thirteenth annual conference on Computer Sci-
ence, pages 176–178, New York, NY, USA. ACM
Press.

P. Piwek, R. Evans, L. Cahill, and N. Tipper. 2000.
Natural language generation in the mile system. In
Proceedings of the IMPACTS in NLG Workshop,
Schloss Dagstuhl, Germany.

P. Piwek. 2002. Requirements definition, validation,
verification and evaluation of the clime interface and
language processing technology. Technical Report
ITRI-02-03, ITRI, University of Brighton.

Ana-Maria Popescu, Oren Etzioni, and Henry Kautz.
2003. Towards a theory of natural language in-
terfaces to databases. In IUI ’03: Proceedings of
the 8th international conference on Intelligent user
interfaces, pages 149–157, New York, NY, USA.
ACM Press.

Richard Power and Donia Scott. 1998. Multilin-
gual authoring using feedback texts. In Proceedings
of 17th International Conference on Computational
Linguistics and 36th Annual Meeting of the Associ-
ation for Computational Linguistics (COLING-ACL
98), pages 1053–1059, Montreal, Canada.

Lappoon R. Tang and Raymond J. Mooney. 2001. Us-
ing multiple clause constructors in inductive logic
programming for semantic parsing. In EMCL ’01:
Proceedings of the 12th European Conference on
Machine Learning, pages 466–477, London, UK.
Springer-Verlag.

Marjorie Templeton and John Burger. 1983. Problems
in natural-language interface to dbms with examples
from eufid. In Proceedings of the first conference
on Applied natural language processing, pages 3–
16, Morristown, NJ, USA. Association for Compu-
tational Linguistics.

Harry R. Tennant, Kenneth M. Ross, and Craig W.
Thompson. 1983. Usable natural language inter-
faces through menu-based natural language under-
standing. In CHI ’83: Proceedings of the SIGCHI
conference on Human Factors in Computing Sys-
tems, pages 154–160, New York, NY, USA. ACM
Press.

C. Thompson, P. Pazandak, and H. Tennant. 2005.
Talk to your semantic web. IEEE Internet Comput-
ing, 9:75–78.

Guogen Zhang, Wesley W. Chu, Frank Meng, and
Gladys Kong. 1999. Query formulation from high-
level concepts for relational databases. In UIDIS
’99: Proceedings of the 1999 User Interfaces to
Data Intensive Systems, page 64, Washington, DC,
USA. IEEE Computer Society.

102


