
Proceedings of the Fourth International Natural Language Generation Conference, pages 47–54,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Generating References to Parts of Recursively Structured Objects

Helmut Horacek
Universität des Saarlandes

FB 6.2 Informatik
 horacek@cs.uni-sb.de

Abstract

Algorithms that generate expressions to
identify a referent are mostly tailored
towards objects which are in some sense
conceived as holistic entities, describing
them in terms of their properties and
relations to other objects. This approach
may prove not fully adequate when
referring to components of structured
objects, specifically for abstract objects
in formal domains, where scope and
relative positions are essential features.
In this paper, we adapt the standard Dale
and Reiter algorithm to specifics of such
references as observed in a corpus about
mathematical proofs. Extensions incor-
porated include an incremental speciali-
zation of property values for metonymic
references, local and global positions
reflecting group formations and impli-
cature-based scope preferences to justify
unique identification of the intended
referent. The approach is primarily
relevant for domains where abstract
formal objects are prominent, but some
of its features are also useful to extend
the expressive repertoire of reference
generation algorithms in other domains.

1 Introduction

Over the past two decades, a number of algo-
rithms for generating referring expressions
have been proposed. Almost all of these
algorithms conceive objects in some sense as
holistic entities, describing them in terms of
their properties and relations to other objects,
but not treating components of an object as
objects in their own rights. This approach may
yield inadequate results for references to
components of recursively structured objects.

Consider, for instance, a Rubic's cube where
one side is currently visible, and reference is
intended to a square consisting of the visible
squares of four white subcubes, which are the
only white elements on the visible side. The
best way to refer to this composed structure is
the concise “the white square”, which exploits
a preference for maximum scope objects,
typical for such recursive structures. However,
most reference generation algorithms would
attempt to disambiguate the intended referent
from its four components, producing an unne-
cessarily long expression, such as “the big
white square” or “the white square which is
composed of four squares”. These expressions
are not really bad, especially the first one, but
things might turn out really awkward for more
complex structural compositions, where the
maximum scope preference often allows the
identification in a surprisingly concise form.

In this paper, we address this problem by
examining referring expressions produced by
humans in domains with recursively structured
objects playing a prominent role. Specifically,
we have studied referring expressions in a
corpus of simulated human-computer dialogs
about tutoring mathematical problem-solving
(Wolska et al. 2004, with recent additions in
this paper). We express the criteria and prefer-
ences observed in a way compatible with the
incremental reference generation algorithm of
Dale and Reiter (1995), and we extend their
algorithm by adapting the property selection
and discrimination testing criteria accordingly.

This paper is organized as follows. First, we
motivate our approach. Then we describe our
corpus and the relevant phenomena observed
in it. Next, we present extensions to the incre-
mental algorithm that allow the generation of
this kind of referring expressions. Finally, we
illustrate how some examples from the corpus
are handled and discuss our achievements.

47

2 Previous Work

Within this paper, we adopt Dale's terminology
(1988). A referential description (Donellan
1966) serves the purpose of letting the hearer
or reader identify a particular object or set of
objects in a situation. Referring expressions to
be generated are required to be distinguishing
descriptions, that is, descriptions of the entities
being referred to, but not to any other object in
the context set. A context set is defined as the
set of the entities the addressee is currently
assumed to be attending to – this is similar to
the concept of focus spaces of the discourse
focus stack in Grosz' & Sidner's (1986) theory
of discourse structure. Moreover, the contrast
set (the set of potential distractors (McDonald
1981)) is defined to entail all elements of the
context set except the intended referents.

Generating referring expressions is pursued
since the eighties (e.g., (Appelt 1985), among
several others). Subsequent years were charac-
terized by a debate about computational effi-
ciency versus minimality of the elements
appearing in the resulting referring expression
(Dale 1988, Reiter 1990, and several others). In
the mid-nineties, this debate seemed to be
settled in favor of the incremental approach
(Dale and Reiter 1995) – motivated by results
of psychological experiments (e.g., Levelt
1989), certain non-minimal expressions are
tolerated in favor of adopting the fast strategy
of incrementally selecting ambiguity-reducing
attributes from a domain-dependent preference
list. Complementary activities include the
generation of vague descriptions (van Deemter,
2000) and extensions to multimodal
expressions (Van der Sluis 2005). Recently,
algorithms have also been developed to the
identification of sets of objects rather than
individuals (Bateman 1999, Stone 2000,
Krahmer, v. Erk, and Verweg 2001), and the
repertoire of descriptions has been extended to
boolean combinations of attributes, including
negations (van Deemter 2002). To avoid the
generation of redundant descriptions what
incremental approaches typically do, Gardent
(2002) and Horacek (2003) proposed exhaust-
ive resp. best-first searches.

All these procedures more or less share the
design of the knowledge base which bears
influence on the descriptor selection. Objects
are conceived as atomic entities, which can be
described in terms of sets of attributes and

relations to other objects. In such a setting, a
structured object can be represented, among
others, by a set of relations to its components,
which are themselves conceived as objects. An
exception to this method is the work by Para-
boni and van Deemter (2002) who use hierar-
chical object representations to refer to parts of
a book (figures, sections., etc.). Reference to
such a component is made identifiable by iter-
atively adding a description of embedding
structures until obtaining uniqueness. There
are, however, no approaches addressing identi-
fication of objects or their components when
the structures in these objects are of a recursive
nature. Objects of this kind are mostly abstract
ones, such as formulas, but also some sorts of
geometric objects. Typical applications where
such objects are prominent include scientific-
technical documentation and tutoring systems.
As we will see in the next section, naturally
observed references to such objects have a
number of particularities which are not
addressed by existing generation algorithms.

3 A Corpus with References to Formulas

In this paper, we analyze some phenomena in
the context of references to mathematical
formulas and their components, as observed in
a corpus on simulated man-machine tutoring
dialogs (Wolska et al., 2004). These dialogs
constitute the result of Wizard-of-Oz exper-
iments in teaching students mathematical
theorem proving in naive set theory resp.
mathematical relations. In these experiments, a
human wizard took the role of the tutor, with
constraints on tutoring strategy and on use of
natural language, although the constraints on
natural language use were relaxed to encour-
age natural behavior on behalf of the student.

In the corpus obtained this way, a number
of quite particular expressions referring to
components of recursively structured objects –
the formulas – showed up. Consequently, it is
our goal to automate the production of these
kinds of referring expressions in a more elab-
orate version of the simulated tutoring system,
with full-fledged natural language generation.

Representative examples originating from
our corpus appear in Figure 1. Each example
consists of two parts: 1. a student utterance,
mostly a formula, labeled by (#a), which is the
context for interpreting subsequent referring
expressions, the intended referent appearing in

48

1. Reference to the typographic order

(1a) (R°S)-1 = {(x,y) | (y,x) ∈ R°S} = {(x,y) | ∃z (z ∈ M ^ (x,z) ∈ R-1 ^ (z,y) ∈ S-1)} = R-1°S-1

(1b) Das geht ein wenig schnell. Woher nehmen Sie die zweite Gleichheit?
(That was a little too fast. How did you find the second equality?)

(2a) Nach 9 ⇒ ((y,z) ∈ R ^ (z,y) ∈ S)
(2b) Fast korrekt. Das zweite Vorkommen von y muß durch x ersetzt werden.

Almost correct. The second occurrence of y must be replaced by x.
(3a) (R ∪ S)°T ist dann {(x,y) | ∃z (z ∈ M ^ ((x,y) ∈ R ∨ (x,y) ∈ S) ^ (y,z) ∈ T)}
(3b) Nicht korrekt. Vermutlich liegt der Fehler nach der letzten ‘und‘-Verknüpfung

Not correct. The mistake is probably located after the last ‘and‘-operation

2. Reference by exploiting default scope and metonymic relations

(4a) (R°S)-1 = {(x,y) | ∃z (z ∈ M ^ (y,z) ∈ R-1 ^ (z,x) ∈ S-1)} ⊇ S-1°R -1

(4b) Nein, das ist nicht richtig! Vergleichen Sie den zweiten Term mit Ihrer vorhergehenden
Aussage!
No, this is not correct! Compare the second term with your previous assertion!

(5a) {(x,y) | (y,x) ∈ (R°S)} = {(x,y) | (x,y) ∈ {(a,b) | ∃z (z ∈ M) ^ (a,z) ∈ R ^ (z,b) ∈ S}}
(5b) Das stimmt so nicht. Die rechte Seite wäre identisch mit R°S.

This is not correct. The right side would be identical to R°S.
(6a) {(x,y) | ∃z (z ∈ M) ^ ((x,z) ∈ R ∨ (x,z) ∈ S) ^ (z,y) ∈ S} =

{(x,y) | ∃z (z ∈ M) ^ (z,y) ∈ S ^ ((x,z) ∈ R ∨ (x,z) ∈ S)} ⇔ ((y,z) ∈ S ^ (z,y) ∈ S)
(6b) Auf der rechten Seite ist z nicht spezifiziert

On the right side, z is not specified
(7a) {(x,y) | ∃z (z ∈ M) ^ ((x,z) ∈ R ∨ (x,z) ∈ S) ^ (z,y) ∈ S} = {(x,y) | ∃z (z ∈ M) ^

(z,y) ∈ S ^ ((x,z) ∈ R ∨ (x,z) ∈ S)} ⇔ ∃z (z ∈ M ^ ((y,z) ∈ S ^ (z,y) ∈ S))
(7b) Diese Aussagen scheinen nicht gleichwertig zu sein. Ein z, das die Bedingung der rechten

Aussage erfüllt, muß nicht die Bedingung der linken Menge erfüllen.
These assertions do not seem to be of equal range. A z which fulfills the condition of the
right assertion does not necessarily fulfill the condition of the left set.

3. Reference by exploiting default scope for building groups of objects

(8a) K((A ∪ B) ∩ (C ∪ D)) = K(A ∪ B) ∪ K(C ∪ D)
(8b) De Morgan Regel 2 auf beide Komplemente angewendet.

De Morgan Rule 2, applied to both complements.

(9a) (T-1°S-1)-1 ∪ (T-1°R-1)-1 = {(x,y) | (y,x) ∈ (T-1°S-1) ^ (y,x) ∈ (T-1°R-1)}
(9b) Dies würde dem Schnitt der beiden Mengen entsprechen.

This would correspond to the intersection of both sets.

4. Reference to regions by expressions involving vagueness

(10a) Also ist (R ∪ S)°T = {(x,z) | ∃v (((x,v) ∈ R ∨ (x,v) ∈ S) ^ (z,v) ∈ T)}
(10b) Fast richtig. Am Ende der Formel ist ein Fehler.

Almost correct. At the end of the formula, there is a mistake.
(11a) Wegen der Formel für die Komposition folgt (R ∪ T)°(S ∪ T) =

{(x,z) | ∃z ((x,z) ∈ R ^ (z,y) ∈ T) ∨ ∃z ((x,z) ∈ R ^ (z,y) ∈ T)}
(11b) Fast richtig. In der zweiten Hälfte der Formel ist ein Fehler.

Almost correct. In the second half of the formula, there is a mistake.

Figure 1: References to components of mathematical objects in dialog fragments of our corpus

49

bold, and 2. a tutor response labeled by (#b),
with at least one referring expression, in italics.
Texts are given in the original German version,
accompanied by a translation into English.

The examples are partitioned into four cate-
gories. The first one, (examples 1 to 3), illus-
trate references by the typographical position,
from left to right. Items referred to in this
manner are qualified by their formal category.
(1) refers to an equality – two terms joined by
an equal sign – in a sequence of three equa-
lities. (2) refers to an instance of a variable, y,
which must be further qualified by its position
to distinguish it from another occurrence. (3)
refers to the last occurrence of the and oper-
ator. Distinct surface forms are used for objects
referred to by category (“second equality”)
resp. by name (“second occurrence of y”).

The second category, the only one specific
to recursively structured objects, comprises
references which look similar to the previous
ones, but they do not reflect the typographical
position but structural embeddings. Objects
referred to by this kind of expressions are
found on the top level of the embedding object
or close to it. In most cases, references to the
embedding level where the intended referent is
to be found are left unexpressed, which carries
the implicit meaning that the referent appears
at the top most level in which the referred cate-
gory can be found. In (4), for example, the
entire formula contains many terms as its
components, in various levels of embedding, so
that orientation on typographic positions is not
clear. However, on top level of the inequation
chain, there are only three terms and the order
among these is perfectly clear. (5) and (6)
illustrate the role of incompleteness – only
“right side” is mentioned, leaving the object
whose right side is meant implicit. Conse-
quently, this must be the right side of the whole
formula. The last example in this category, (7)
shows the reference to different levels of
embedding in one sentence. While “right
assertion” refers to the expression on the right
side of the equivalence on top level, “left set”
refers to the left of the two sets in the equation
on the left side of that equivalence.

The third category, which features the refer-
ence to sets of objects, shows the interpretation
of the embedding level in which the intended
referent is to be found on the basis of number
constraints. In precise terms, this is an instance

of implicature (Grice 1975): if the number of
objects that are on top level of the embedding
object and satisfy the description, exceeds the
cardinality specified, identification of the
intended referents is transferred to one of the
embedded substructures. In (8), three subex-
pressions satisfy the metonymic description
“complement”, but the expression refers only
to two. Consequently, the intended referents
must be found in one of the substructures
where a precise cardinality match is present –
here, the right side of the equation. Due to the
implicature, expressing this additional qualifi-
cation is not required. An additional compli-
cation arises in the context of interference
across referring expressions in one sentence. In
(9), “both sets” would be resolved to the two
sides of the equation, without the context of the
whole sentence. However, since “this” refers
to the result of the preceeding assertion, that is,
the right side of the equation, this part is in
some sense excluded from the context for
resolving the next referring expressions.
Hence, the left side of the equation yields the
two sets on top level as interpretation.

The fourth category comprises examples of
references which are in some sense associated
with vagueness. In references to formulas, we
consider the end (example (10)) – which
means the region towards the end, as a vague
expression, but also the second half (example
(11)), since it is not entirely clear whether this
expression must be interpreted structurally or
typographically, and a precise interpretation of
“half” in the typographical sense is pointless.

In the following, we present methods for the
automated generation of referring expressions
of the kind illustrated in Figure 1 – concise
ones. We address the following phenomena:

• Implicit scope interpretation

• Incomplete or metonymic expressions

• Implicatures of category and cardinality

We do, however, restrict our task to the
generation of single referring expressions with
precise references. Hence, we do not address
vagueness issues, since the meaning of
expressions as occurring in (10) and (11) is
not fully clear. Moreover, we do not accom-
modate the context due to previously gener-
ated referring expressions as in (9), which we
assume to be done by the embedding process.

50

3 Operationalization

In this section, we describe an operationali-
zation of generating referring expressions of
the kind discussed in the previous section. This
operationalization is realized in terms of
extensions to the algorithm by Dale and Reiter
(1995). This algorithm assumes an envir-
onment with three interface functions: Basic-
LevelValue, accessing basic level categories of
objects (Rosch 1978), MoreSpecificValue for
accessing incrementally specialized attribute
values according to a taxonomic hierarchy, and
UserKnows for judging whether the user is
familiar with the attribute value of an object. In
a nutshell, MakeReferringExpression (Figure 2,
including our extensions) iterates over the attri-
butes P of an intended referent r (or a set of
referents). In FindBestValue, a value is chosen
that is known to the user and maximizes discri-
mination (RulesOut) – this value describes the
intended referent and rules out at least one
potential distractor in C. If existing, such values
are iteratively collected in L, until P is empty or
a distinguishing description is found. The
value V of an attribute A is chosen within an
embedded iteration, starting with the basic level
value attributed to r , after which more specific
values also attributed to r and assumed to be
known to the user are tested for their discri-
minatory power. Finally, the least specific value
that excludes the largest number of potential
distractors and is known to the user is chosen.

The extensions to handle particularities for
our concerns comprise several components:

• The knowledge representation of objects
is enhanced by properties expressing
positions in some context and by a meta-
property about the use of descriptors –
metonymic use of a descriptor when
standing in relation to another one.

• The value selection for context-dependent
descriptors requires special treatment;
moreover, metonymic expressions are
built in some sort of a two-step process.

• The discriminatory power in the subpro-
cedure RulesOut is interpreted in local
contexts for attributes expressing position.

• Termination criteria include a test whether
a cardinality or position-based impli-
cature establishes a unique preference.

Group(x) ::=
G ≡ {y | ∃z (∀y dominates(z,y))} ^ G ⊇ x

T-group-items :: =
{x | ∃y (¬∃z dominates(z,y) ^ ∀x dominates(y,x))}

L1-items :: =
{x | ∃y (y ∈ T-group-items ^ dominates(y,x))}

Group-pref(Group,N,V) :: =
 |(r ∪ C) ∩ Group| = N ^
∀x ∈ ((r ∪ C) ∩ Group): Position(x,Group,N) = V

T-group-pref(N,V) ::=
Group-pref(T-group-items,N,V)

L1-group-pref(x,N,V) ::= ¬T-Group-pref(N,V) ^
L1-items ⊇ Group(x) ^ Group-pref(x,N,V) ^
(∀y (Group(y) ^ L1-items ⊇ Group(y)):

 (x≠y → ¬Group-pref(y,N,V)))

Figure 2: Definitions with group components

In order to precisely define the extensions,
we introduce some predicates and formal defi-
nitions for them (Figure 2). Composition in
recursively structured objects is built on domi-
nates(x,y), expressing that component y is part
of component x; chained compositions of
dominates are acyclic. On that basis, groups of
items are built according to local contexts. A
Group which some items x belong to is the set
of items dominated by one same item, if
existing. Otherwise, Group is empty. A special
group is the set of items on top level, T-group-
items, which are all dominated by the entire
structure, the root item, which is not domi-
nated by any item. These items also build a
group. In contrast, L1-items, which comprise
the items one level below the T-group-items,
are not all in one group. Intersection with the
Group predicate yields subsets, where each
element in these sets is dominated by one and
the same T-group-item (see the definition of
L1-group-pref). A central definition is Group-
pref (group preference), used for testing the
effect of implicatures. It is defined for the set
of relevant items to be used within the algo-
rithm (r ∪ C), that is, the intended referents
and still existing distractors, in relation to a
Group, in the context of cardinality N and
position V, which apply to the set of items. For
that group to be preferred, the relevant items
falling into that group must match the given
cardinality and the position description (see
the definition of Position in the next para-
graph). On that basis, T-group-pref expresses

51

MakeReferringExpression (r,C,P)
L ← {}, Ctotal ← C [1]
for each member Ai of list P do
case Ai of [2]
cardinality: V ← |r| [3]
global-position: V ← Position(r,Ctotal,|r |) [4]
local-position: V ← Position(r,Group(r),|r |) [5]
other: V = FindBestValue(r,Ai,BasicLevelValue(r,Ai))

end case
if RulesOut(<Ai,V>,C) ≠ nil then
if metonymic(Ai,X) and <type,X> ∈ L for some X [6]

 and RulesOut(<Ai,V>,Ctotal) ⊇ [7]
 RulesOut(<type,X>,Ctotal) [8]

then L ← L \ {<type,X>} ∪ {<type,V>} [9]
else L ← L ∪ {<Ai,V>} end if

C ← C - RulesOut(<Ai,V>,C) [10]
end if
if C = {} or Preference-by-Implicature then [11]
if <type,X> ∈ L for some X

then return L (an identifying description)
else return L ∪ {<type,BasicLevelValue(r,type)>}

end if end if
end for
return L (a non-identifying description)

FindBestValue (r,A,initial-value)
if UserKnows(r,<A,initial-value>) = true
then value ← initial-value
else value ← no-value end if
if (spec-value ← MoreSpecificValue(r,A,value)) ≠ nil ^
(new-value ← FindBestValue(r,A,spec-value)) ≠ nil ^
(|RulesOut(<A,new-value>,C)| >
|RulesOut(<A,value>,C)|) [12]

then value ← new-value end if
return value

RulesOut (<A,V>,C) [13]
if V = no-value then return nil
else case Ai of [14]
cardinality: return C ∩ ∪ Group(c) c ∈ C,

 where |Group(c) ∩ C | < V [15]
global-position: return {x : x ∈ C ^ Position(x,Ctotal,|r|) ≠ V [16]
local-position: return {x : x ∈ C ^ Position(x,Group(x),|r|) ≠ V
other: return {x: x ∈ C ^ UserKnows(x,<A,V>) = false}

end case end if
 Preference-by-Implicature [17]

V ← any, N ← any
 if <global-position,V> ∈ L ∨ <local-position,V> ∈ L ∨
 <cardinality,N> ∈ L then [18]
 return (T-group-pref(|r|,V) ^ T-group-items ⊇ r) ∨

 (L1-items ⊇ r ^ L1-group-pref(r,|r|,V)) [19]
else return false end if

Figure 3: The algorithm in pseudo-code

preference for top-group items, when bound
to Group, and L1-group-pref expresses prefer-
ence for such a group with x one level below.

The knowledge representation of objects is
enriched by some properties which are not
intrinsic to an object itself. These properties
comprise descriptors cardinality, position, and
the meta-property metonymic. The predicate
metonymic(x,y) expresses the acceptability of
a metonymic reference of a descriptor x for a
category y (e.g., an operator for a formula, in
mathematical domains). The descriptor cardi-
nality easily fits in the standard schema of the
procedure. However, it only contributes to the
discrimination from potential distractors in the
context of effects of implicature. The most
complex addition is the descriptor position,
which expresses some sort of relative position
of an object considered within the context of a
set of comparable objects (e.g., first, second).
There are two dimensions along which such
descriptors are meaningful in the domain of
mathematical formulas and in similar domains
with recursively structured objects: (1) the
typographical position within the entire object,
referred to by the descriptor global-position,
and (2) the position within the structural level
where the object in question resides, referred
to by the descriptor local-position. Moreover,
that position also depends on the number of
objects considered, if subgroups of objects are
built prior to checking their position within
the entire group (e.g,: the first two items). This
information is encapsulated in the function
Position(x,y,n), where x denotes the object or
set of objects whose position within group y is
the value of that function, where subgroups of
n objects are formed. In order to yield a
proper result, x must be a subset of y and the
position value within y must be the same for
all elements of x. Otherwise, the value is unde-
fined. For example, for a group G=<1,2,3,4,
5,6>, Position({3},G,1) = 3, Position({3},G,2)
= 2, and Position({2,3},G,2) = undefined. In
some sense, this handling of positions is a
generalization of the ordering for vague
descriptors in (van Deemter 2006). Also in
accordance with van Deemter, we separate
descriptor selection from surface form deter-
mination, yielding, for example, “left set” for
{<type,set>, <local-position,first>}, the first
part of an equation, and “second occurrence
of x” for {<type,x>, <local-position,second>}.

52

In order to process these enhanced represen-
tations adequately, we have incorporated
appropriate modifications in the procedure
MakeReferringExpression (labeled by [#] in
Figure 3). First, the original set of potential
distractors is stored for computations within a
global context [1]. Then the value selection
for the attribute currently considered is done
[2], which is different from the usual call to
FindBestValue for cardinality [3], global-
position [4], and local-position [5]; the latter
two are realized by the function Position, with
appropriate instantiations for the group para-
meter. Next, the treatment for the inclusion of
metonymic properties in the description is
addressed. If the metonymic descriptor fits to
the object category [6], and its discriminatory
power [7] dominates that associated with the
type descriptor [8], the descriptor values are
conflated by overwriting the type value by
that of the metonymic descriptor [9]. The two
calls to RulesOut involved in the above test
([7] and [8]) are the only references to Rules
Out where effects on the original, entire set of
distractors are tested. Therefore, the parameter
C is added in the definition of RulesOut [13]
and in all other places where that procedure is
called [10], [12]. Similarly to the inclusion of
attribute-value pairs in the description, the
exclusion tests in RulesOut are specific for
non-intrinsic attributes [14]. For cardinality,
those distractors are excluded which belong to
a group where the number of still relevant
distractors (those consistent with the partial
description built so far) is below that cardina-
lity [15]. Similarly, for testing position values,
those distractors are picked for which the
values returned by the function Position, in
dependency of the relevant scope – the group
the intended referent(s) belong to, are not
consistent with value of the attribute consi-
dered (global-position resp. local-position)
[16]. Finally, the termination criterion [11] is
enhanced, by taking into account the effect of
implicatures through cardinality and position
descriptors, by the function Preference-by-
implicature [17]. In this function, the values
of cardinality and global-position or local-
position are instantiated, provided they appear
in the description L [18]. The return value is
the result of a test whether there exists prefer-
ence for the top-level, or for that level 1 group
which contains the intended referents [19].

4 Examples

In this section, we illustrate how particularities
of our application domain are modeled and
how the procedure behaves in generating the
referring expressions observed in our corpus.
The ordered list of attributes, P, consists of
<type, form, cardinality, global-order, local-
order> for atomic items and of <type, oper-
ator, cardinality, local-order, dominated-by>
for the composed expressions – dominated-by
is the inverse of dominates. The meta-predi-
cate metonymic is instantiated for pairs <vari-
able, form>, <expression, local-order>, and
<term, operator> for producing expressions
such as “x” referring to variable x, “left
side” referring to the left part of an assertion
or equation, and “complement” referring to
a term with complement as top level operator.

We show the generation of two examples.
1. example: “Left set” in (7) in Figure 1.

It is generated by choosing “set” as the type,
followed by unsuccessful attempts to pick an
operator attribute (there is none defined for
that set), and a cardinality (which yields no
discrimination). Then “first” is chosen for
local-ordering, yielding unique identification
(the embedding is left implicit), and this value
is expressed by “left” on the surface.

2. example: “both complements” in (8).
It is generated by choosing “term” as the
type, followed by “complement” as the oper-
ator, which overwrites “term” due to its
specification as metonymic with respect to that
category. Then “2” is chosen for cardinality,
which yields unique identification since a
subgroup preference for level one is present.

Altogether, the algorithm is able to gener-
ate the expressions occurring in our corpus, or
quite similar ones, assisted by the application-
specific tailored list P. Exceptions constitute
reference to regions related to some formula
component, such as (3) in Figure 1, effects of
interference of scope across several referring
expressions, such as (9), and expressions
involving vague region descriptors, such as
(10) and (11). While the last set of examples
comprises more than referring expressions,
the first two can be handled, but the generated
expressions are typically a bit cumbersome,
such as “the third term in the condition of the
set” instead of “after the last ‘and‘-oper-
ation” in (3) and “both sets on the left side”
instead of simply “both sets” in (9).

53

5 Conclusion and Discussion

In this paper, we have presented an approach to
generating referring expressions that identify
components of recursively structured objects.
Known techniques are enhanced by measures
building metonymic expressions, descriptors
expressing positions relative to some subgroup
of object components, and exploiting the effect
of implicatures due to cardinality and position
descriptors. Concise expressions can be gener-
ated, in accordance with those in our corpus.

While our elaborations are domain-specific
to a certain extent, several parts of our method
are also much broader applicable. Metonymic
expressions are quite common, and we think
that building them within the task of reference
generation is superior to doing this in a process
thereafter, because this enables an easy compu-
tation of the discrminatory power of both alter-
natives, the implicit and the explicit one.
Another aspect of broader relevance concerns
the effect of implicatures in connection with
object subgroups. While the group building
itself, which is based on compositions of the
relation dominates, is specific to our envir-
onment, the techniques to establish preferences
among groups and deriving identification from
that pertain to other environments. For
instance, when a subgroup of two items of
some kind is visually identifiable in the context
of a few other subgroups with different cardi-
nalities, “the two X's” would lead to the identi-
fication of the subgroup in focus, through the
effect of implicature, the group formation
being based on local proximity. Thus, only the
group formation schema needs to be changed.

References

Appelt, D. 1985. Planning English Referring
Expressions. Artificial Intelligence 26, pp. 1-33.

Bateman, J. 1999. Using Aggregation for Selecting
Content when Generating Referring Expressions.
In Proc. of the 37th Annual Meeting of the Asso-
ciation for Computational Linguistics (ACL-99),
pp. 127-134, University of Maryland.

Dale, R. 1988. Generating Referring Expressions in a
Domain of Objects and Processes. PhD Thesis,
Centre for Cognitive Science, Univ. of Edinburgh.

Dale, R., and Reiter, E. 1995. Computational Inter-
pretations of the Gricean Maxims in the Gener-
ation of Referring Expressions. Cognitive Science
18, pp. 233-263.

Donellan, K. 1966. Reference and Definite Descrip-
tion. Philosophical Review 75, pp. 281-304.

Gardent, C. 2002. Generating Minimal Definite Des-
criptions. In Proc. of the 40th Annual Meeting of
the Association for Computational Linguistics
(ACL-2002), pp. 96-103, Philadelphia, Pennsylvania.

Grice, H. 1975. Logic and Conversation. In Syntax
and Semantics: Vol. 3, Speech Acts, pp. 43-58,
Academic Press.

Grosz, B., and Sidner, C. 1986. Attention, Intention,
and the Structure of Discourse. Computational
Linguistics 12, pp. 175-206.

Horacek, H. 2003. A Best-First Search Algorithm for
Generating Referring Expressions. In Proc. of the
10th Conference of the European Chapter of the
Associat ion for Computa t iona l Linguistics
(EACL-2003), Conference Companion (short
paper), pp. 103-106, Budapest, Hungary.

Krahmer, E., v. Erk, S., and Verleg, A. 2001. A
Meta-Algorithm for the Generation of Referring
Expressions. In Proc. of the 8th European
Workshop on Natural Language Generation
(EWNLG-2001), pp. 29-39, Toulouse, France.

Levelt, W. 1989. Speaking: From Intention to Articu-
lation. MIT Press.

McDonald, D. 1981. Natural Language Generation as
a Process of Decision Making under Constraints.
PhD thesis, MIT.

Reiter, E. 1990. The Computational Complexity of
Avoiding Conversational Implicatures. In Proc. of
the 28th Annual Meeting of the Association for
Computational Linguistics (ACL-90), pp. 97-104,
Pittsburgh, Pennsylvania.

Rosch, E. 1978. Principles of Categorization . In E.
Rosch and B. Llyod (eds.) Cognition and Catego-
rization, pp. 27-48, Hillsdale, NJ: Lawrence Erlbaum.

Stone, M. 2000. On Identifying Sets. In Proc. of the
First International Conference on Natural Langu-
age Generation (INLG-2000), pp. 116-123,
Mitzpe Ramon, Israel.

van Deemter, K. 2000. Generating Vague Descrip-
tions. In Proc. of the First International Natural
Language Generation Conference (INLG-2000),
pp. 179-185, Mitzpe Ramon, Israel.

Paraboni, I., and van Deemter, K. 2002. Generating
Easy References: the Case of Document Deixis. In
Proc. of the Second International Natural Langu-
age Generation Conference (INLG-2002), pp.
113-119, Harriman, NY, USA.

van Deemter, K. 2002. Generating Referring Expressi-
ons: Boolean Extensions of the Incremental Algo-
rithm. Computational Linguistics, 28(1), pp. 37-52.

van Deemter, K. 2006. Generating Referring
Expressions that Involve Gradable Properties.
Computational Linguistics, to appear.

van der Sluis, I. 2005. Multimodal Reference. Disser-
tation, Tilburg University.

Wolska, M., Vo, B., Tsovaltzi, D., Kruijff-Korbayo-
vá, I., Karagjosova, E., Horacek, H., Gabsdil, M.,
Fiedler, A., and Benzmüller, C. 2004. An Anno-
tated Corpus of Tutorial Dialogs on Mathematical
Theorem Proving. In Proc. of the 4th Inter-
national Conference on Language Resources and
Evaluation, pp. 1007-1010, Lisbon, Portugal.

54

