
Proceedings of the Fourth International Natural Language Generation Conference, pages 12–19,
Sydney, July 2006.c©2006 Association for Computational Linguistics

CCG Chart Realization from Disjunctive Inputs

Michael White
Department of Linguistics
The Ohio State University

Columbus, OH 43210 USA
http://www.ling.ohio-state.edu/∼mwhite/

Abstract
This paper presents a novel algorithm
for efficiently generating paraphrases from
disjunctive logical forms. The algorithm
is couched in the framework of Combina-
tory Categorial Grammar (CCG) and has
been implemented as an extension to the
OpenCCG surface realizer. The algorithm
makes use of packed representations sim-
ilar to those initially proposed by Shem-
tov (1997), generalizing the approach in a
more straightforward way than in the algo-
rithm ultimately adopted therein.

1 Introduction

In recent years, the generate-and-select paradigm
of natural language generation has attracted in-
creasing attention, particularly for the task of sur-
face realization. In this paradigm, symbolic meth-
ods are used to generate a space of possible phras-
ings, and statistical methods are used to select
one or more outputs from this space. To spec-
ify the desired paraphrase space, one may either
provide an input logical form that underspecifies
certain realization choices, or include explicit dis-
junctions in the input LF (or both). Our experi-
ence suggests that disjunctive LFs are an impor-
tant capability, especially as one seeks to make
grammars reusable across applications, and to em-
ploy domain-specific, sentence-level paraphrases
(Barzilay and Lee, 2003).

Prominent examples of surface realizers in
the generate-and-select paradigm include Nitro-
gen/Halogen (Langkilde, 2000; Langkilde-Geary,
2002) and Fergus (Bangalore and Rambow, 2000).
More recently, generate-and-select realizers in the
chart realization tradition (Kay, 1996) have ap-
peared, including the OpenCCG (White, 2004)

and LinGO (Carroll and Oepen, 2005) realizers.
Chart realizers make it possible to use the same
reversible grammar for both parsing and realiza-
tion, and employ well-defined methods of seman-
tic composition to construct semantic representa-
tions that can properly represent the scope of log-
ical operators.

In the chart realization tradition, previous work
has not generally supported disjunctive logical
forms, with (Shemtov, 1997) as the only published
exception (to the author’s knowledge). Arguably,
part of the reason that disjunctive LFs have not
yet been embraced more broadly by those work-
ing on chart realization is that Shemtov’s solution,
while ingenious, is dauntingly complex. Look-
ing beyond chart realizers, both Nitrogen/Halogen
and Fergus support some forms of disjunctive in-
put; however, in comparison to Shemtov’s inputs,
theirs are less expressive, in that they do not al-
low disjunctions across different levels of the input
structure.

As an alternative to Shemtov’s method, this pa-
per presents a chart realization algorithm for gen-
erating paraphrases from disjunctive logical forms
that is more straightforward to implement, to-
gether with an initial case study of the algorithm’s
efficiency. As discussed in Section 5, the algo-
rithm makes use of packed representations similar
to those initially proposed by Shemtov, generaliz-
ing the approach in a way that avoids the prob-
lems that led Shemtov to reject his preliminary
method. The algorithm is couched in the frame-
work of Steedman’s (2000) Combinatory Catego-
rial Grammar (CCG) and has been implemented
as an extension to the OpenCCG surface realizer.
Though the algorithm is well suited to CCG, it is
expected to be applicable to other constraint-based
grammatical frameworks as well.

12

be<TENSE>pres,<MOOD>dcl e

<ARG> <PROP>

based_on <DET>the,<NUM>sgdesign d p

<SOURCE>
<ARTIFACT>

collection<DET>the,<NUM>sg c

<HASPROP> <CREATOR>

Funny_Day f v Villeroy_and_Boch

(a) Semantic dependency graph for The design (is|’s)
based on the Funny Day collection by Villeroy and
Boch.

be<TENSE>pres,<MOOD>dcl e

<ARG> <PROP>

based_on <DET>the,<NUM>sgdesign d p

<SOURCE>
<ARTIFACT>

series<NUM>sg c

<HASPROP> <GENOWNER>

Funny_Day f v Villeroy_and_Boch

(b) Semantic dependency graph for The design (is|’s)
based on Villeroy and Boch’s Funny Day series.

be<TENSE>pres,<MOOD>dcl e

<ARG> <PROP>

based_on <DET>the,<NUM>sgdesign d p

<SOURCE>
<ARTIFACT>

collection|series(<DET>the)?,<NUM>sg c

<HASPROP> <GENOWNER>

Funny_Day f v Villeroy_and_Boch

<CREATOR>

(c) Disjunctive semantic dependency graph covering (a)-
(b), i.e. The design (is|’s) based on (the Funny Day
(collection|series) by Villeroy and Boch | Villeroy and
Boch’s Funny Day (collection|series)).

Figure 1: Example semantic dependency graphs
from the COMIC dialogue system.

@e(be ∧ 〈TENSE〉pres ∧ 〈MOOD〉dcl ∧

〈ARG〉(d ∧ design ∧ 〈DET〉the ∧ 〈NUM〉sg) ∧

〈PROP〉(p ∧ based on ∧

〈ARTIFACT〉d ∧

〈SOURCE〉(c ∧ collection ∧ 〈DET〉the ∧ 〈NUM〉sg ∧

〈HASPROP〉(f ∧ Funny Day) ∧

〈CREATOR〉(v ∧ V&B))))

(a)
...

@e(be ∧ 〈TENSE〉pres ∧ 〈MOOD〉dcl ∧

〈ARG〉(d ∧ design ∧ 〈DET〉the ∧ 〈NUM〉sg) ∧

〈PROP〉(p ∧ based on ∧

〈ARTIFACT〉d ∧

〈SOURCE〉(c ∧ 〈NUM〉sg ∧ (〈DET〉the)? ∧

(collection ∨ series) ∧

〈HASPROP〉(f ∧ Funny Day) ∧

(〈CREATOR〉v ∨ 〈GENOWNER〉v))))

∧ @v(Villeroy and Boch)

(c)

Figure 2: HLDS for examples in Figure 1.

2 Disjunctive Logical Forms

As an illustration of disjunctive logical forms,
consider the semantic dependency graphs in Fig-
ure 1, which are taken from the COMIC1 mul-
timodal dialogue system.2 Graphs such as these
constitute the input to the OpenCCG realizer.
Each node has a lexical predication (e.g. design)
and a set of semantic features (e.g. 〈NUM〉sg);
nodes are connected via dependency relations (e.g.
〈ARTIFACT〉).

Given the lexical categories in the COMIC
grammar, the graphs in Figure 1(a) and (b) fully
specify their respective realizations, with the ex-
ception of the choice of the full or contracted
form of the copula. To generalize over these al-
ternatives, the disjunctive graph in (c) may be
employed. This graph allows a free choice be-
tween the domain synonyms collection and se-
ries, as indicated by the vertical bar between
their respective predications. The graph also al-
lows a free choice between the 〈CREATOR〉 and
〈GENOWNER〉 relations—lexicalized via by and
the possessive, respectively—connecting the head
c (collection or series) with the dependent v (for

1http://www.hcrc.ed.ac.uk/comic/
2To simplify the exposition, the features specifying infor-

mation structure and deictic gestures have been omitted, as
have the semantic sorts of the discourse referents.

13

@e(see ∧ 〈ARG0〉(m ∧ man) ∧ 〈ARG1〉(g ∧ girl) ∧

@o(on∧〈ARG1〉(h∧hill))∧@w(with∧〈ARG1〉(t∧ telescope))∧

((〈MOD〉o ∧ @h(〈MOD〉w)) ∨

(@g(〈MOD〉o) ∧ (@g(〈MOD〉w) ∨@h(〈MOD〉w))) ∨

(〈MOD〉w ∧ (〈MOD〉o ∨@g(〈MOD〉o)))))

Figure 3: Disjunctive LF for 5-way ambiguity in
A man saw a girl on the hill with a telescope.

Villeroy and Boch); this choice is indicated by an
arc between the two dependency relations. Finally,
the determiner feature (〈DET〉the) on c is indicated
as optional, via the question mark.

It is worth pausing at this point to observe
that in designing the COMIC grammar, the differ-
ences between (a) and (b) could perhaps have been
collapsed. However, such a move would make
it more difficult to reuse the grammar in other
applications—and indeed, the core of the gram-
mar is shared with the FLIGHTS system (Moore et
al., 2004)—as it would presuppose that these para-
phrases should always available in the same con-
texts. An example of a sentence-level paraphrase,
whose context of applicability is more clearly lim-
ited, appears in (1):

(1) (This design | This one | This) (is|’s) (clas-
sic | in the classic style) | Here we have
a (classic design | design in the classic
style).

This example shows some of the phrasings that
may be used in COMIC to describe the style of
a design that has not been discussed previously.
The example includes a top-level disjunction be-
tween the use of a deictic NP this design | this one
| this (with an accompanying pointing gesture) fol-
lowed by the copula, or the use of the phrase here
we have to introduce the design. While these al-
ternatives can function as paraphrases in this con-
text, it is difficult to see how one might specify
them in a single underspecified (and application-
neutral) logical form.

Graphs such as those in Figure 1 are repre-
sented internally using Hybrid Logic Dependency
Semantics (HLDS), as in Figure 2. HLDS is a
dependency-based approach to representing lin-
guistic meaning developed by Baldridge and Krui-
jff (2002). In HLDS, hybrid logic (Blackburn,
2000) terms3 are used to describe dependency

3Hybrid logic extends modal logic with nominals, a new
sort of basic formula that explicitly names states/nodes. Like
propositions, nominals are first-class citizens of the object

graphs. These graphs have been suggested as rep-
resentations for discourse structure, and have their
own underlying semantics (White, 2006).

In HLDS, as can be seen in Figure 2(a), each
semantic head is associated with a nominal that
identifies its discourse referent, and heads are con-
nected to their dependents via dependency re-
lations, which are modeled as modal relations.
Modal relations are also used to represent seman-
tic features. In (c), two new operators are in-
troduced to represent periphrastic alternatives and
optional parts of the meaning, namely ∨ and (·)?,
for exclusive-or and optionality, respectively. To
indicate that a nominal represents a reference to a
node that is considered a shared part of multiple
alternatives, the nominal is annotated with a box,
as exemplified by v . As will be discussed in Sec-
tion 3.1, this notion of shared references is needed
during the logical form flattening stage of the al-
gorithm in order to determine which elementary
predications are part of each alternative.

As mentioned earlier, disjunctive LFs may con-
tain alternations that are not at the same level.
To illustrate, Figure 3 shows the representation
(minus semantic features) for the 5-way ambigu-
ity in A man saw a girl on the hill with a tele-
scope (Shemtov, 1997, p. 45); in the figure, the
nominal o (for on) can be a dependent of e (for
see) or g (for girl), for example. As Shemtov ex-
plains, such packed representations can be useful
in machine translation for generating ambiguity-
preserving target language sentences. In a straight
generation context, disjunctions that span levels
enable one to compactly represent alternatives that
differ in their head-dependent assumptions; for in-
stance, to express contrast, one might employ the
coordinate conjunction but as the sentence head,
or the subordinate conjunction although as a de-
pendent of the main clause head.

3 The Algorithm

As with the other chart realizers cited in the in-
troduction, the OpenCCG realizer makes use of a
chart and an agenda to perform a bottom-up dy-
namic programming search for signs whose LFs

language, and thus formulas can be formed using propo-
sitions, nominals, and standard boolean operators. They
may also employ the satisfaction operator, @. A formula
@i(p∧〈F〉(j∧q)) indicates that the formulas p and 〈F〉(j∧q)
hold at the state named by i, and that the state j, where q
holds, is reachable via the modal relation F; equivalently, it
states that node i is labeled by p, and that node j, labeled by
q, is reachable from i via an arc labeled F.

14

completely cover the elementary predications in
the input logical form. The search for complete
realizations proceeds in one of two modes, any-
time or two-stage packing/unpacking. This sec-
tion focuses on how the two-stage mode has been
extended to efficiently generate paraphrases from
disjunctive logical forms.

3.1 LF Flattening
In a preprocessing stage, the input logical form
is flattened to an array of elementary predications
(EPs), one for each lexical predication, semantic
feature or dependency relation. When the input
LF contains no exclusive-or or optionality oper-
ators, the list of EPs, when conjoined, yields a
graph description that is equivalent to the origi-
nal one. With disjunctive logical forms, however,
more needs to be said. Our strategy is to keep track
of the elementary predications that make up the al-
ternatives and optional parts of the LF, as specified
by the exclusive-or or optionality operators, and
use these to enforce constraints on the elementary
predications that may appear in any given realiza-
tion. These constraints ensure that only combina-
tions of EPs that describe a graph that is also de-
scribed by the original LF are allowed.

To illustrate, the results of flattening the LF in
Figure 2(c) are given below:

(2) 0: @e(be), 1: @e(〈TENSE〉pres),

2: @e(〈MOOD〉dcl), 3: @e(〈ARG〉d),

4: @d(design), 5: @d(〈DET〉the),

6: @d(〈NUM〉sg),

7: @e(〈PROP〉p), 8: @p(based on),

9: @p(〈ARTIFACT〉d), 10: @p(〈SOURCE〉c),
11: @c(〈NUM〉sg), 12: @c(〈DET〉the),

13: @c(collection), 14: @c(series),
15: @c(〈HASPROP〉f), 16: @f (Funny Day),

17: @c(〈CREATOR〉v), 18: @c(〈GENOWNER〉v),

19: @v(Villeroy and Boch)

(3) alt0,0 = {13}; alt0,1 = {14}
alt1,0 = {17, 19}; alt1,1 = {18, 19}
opt0 = {12}

In (2), the EPs are shown together with their array
positions. Since the EPs are tracked positionally, it
is possible to use bit vectors to represent the alter-
natives and optional parts of the LF. In (3), the first
line shows the bit vectors4 for the choice between
collection (EP 13) and series (EP 14), as alterna-
tives 0 and 1 in alternative group 0. On the sec-

4Only the positive bits are shown, via their indices.

ond line, the bit vectors for the 〈CREATOR〉 (EP
17) and 〈GENOWNER〉 (EP 18) alternatives ap-
pear; note that both of these options also involve
the shared EP 19. The bit vector for the optional
determiner (EP 12) is shown on the third line.

The constraint associated with each group of al-
ternatives is that in order to be valid, a collection
of EPs must not intersect with the non-overlapping
parts of more than one alternative. For example,
for the second group of alternatives in (3), a valid
collection could include EPs 17 and 19, or EPs 18
and 19, but it could not include EPs 17 and 18 to-
gether.

Flattening an LF to obtain the array of EPs,
as in (2), just requires a relatively straightforward
traversal of the HLDS formula. Obtaining the al-
ternatives and optional parts of the LF is a bit
more involved. To do so, during the traversal,
the exclusive-or and optionality operators are han-
dled by introducing a new alternative group or op-
tional part, and then keeping track of which ele-
mentary predications fall under each alternative or
under the optional part. Subsequently, the alterna-
tives and optional parts are recursively propagated
through any nominals marked as shared, collecting
any further EPs that turn up along the way.5 For
example, with the second alternative group (sec-
ond line) of (3), the initial traversal creates EPs
17 and 18 under alts alt1,0 and alt1,1, respectively.
Since EPs 17 and 18 both include a nominal de-
pendent v marked as shared in Figure 2(c), both
alternatives are propagated through this reference,
and thus EP 19 ends up as part of both alt1,0 and
alt1,1. Determining which EPs have shared mem-
bership in multiple alternatives is essential for ac-
curately tracking an edge’s coverage of the input
LF, a topic which will be considered next.

3.2 Edges
In the OpenCCG realizer, an edge is a data struc-
ture that wraps a CCG sign, which itself consists
of a word sequence paired with a category (syn-
tactic category plus logical form). An edge has
bit vectors to record its coverage of the input LF
and its indices, i.e. syntactically available nomi-
nals. In packing mode, a representative edge also
maintains a list of alternative edges whose signs
have equivalent categories (but different word se-
quences), so that a representative edge may effec-

5Though space precludes discussion, it is worth noting
that the same propagation of membership applies to the LF
chunks described in (White, 2006).

15

tively stand in for the others during chart construc-
tion.

To handle disjunctive inputs, an edge addition-
ally maintains a list of active (i.e., partially com-
pleted) LF alternatives. It also makes use of a
revised notion of input coverage and a revised
equivalence relation. As in Shemtov’s (1997, Sec-
tion 3.3.2) preliminary algorithm, an edge is con-
sidered to cover an entire disjunction (alternative
group) if it covers all the EPs of one of its alter-
natives. With optional parts of an LF, an edge that
does not cover any EPs in the optional part can be
extended to a new edge (using the same sign) that
is additionally considered to cover all the EPs in
the optional part. In this way, an edge can be de-
fined to be complete with respect to the input LF
if it covers all its EPs. For example, an edge for
the sentence in Figure 1(b) would be considered
complete, since (i) it would cover all the EPs in
(2) except for 12, 13 and 17; (ii) 12 is optional;
(iii) 14 completes alt0,1, and thus counts as cover-
ing 13, the other EP in the group; and (iv) 18 and
19 complete alt1,1, and thus count as covering EP
17.

As Shemtov points out, this extended notion
of input coverage provides an appropriate way to
form edge equivalence classes, as it can gather
edges together that realize different alternatives in
the same group. Thus, in OpenCCG, edge equiva-
lence classes have been modified to include edges
with the same syntactic category and coverage bit
vector, but different word sequences and/or logical
forms (as the latter varies according to which al-
ternative is realized). The appropriate equivalence
checks are efficiently carried out using a hash map
with a custom hash function and equals method.

3.3 Lexical Instantiation
Once the input LF has been flattened, and the alter-
natives and optional parts have been identified, the
next step is to access and instantiate lexical items.
For each elementary predication, all lexical items
indexed by the EP’s lexical predicate or relation
are retrieved from the lexicon.6 Each such lexi-
cal item is then instantiated against the input EPs,
starting with the one that triggered its retrieval,
and incrementally extending successful instantia-
tions until all the lexical item’s EPs have been in-
stantiated (otherwise failing). The lexical instanti-

6See (White, 2004; White, 2006) for discussion of how
semantically null lexical items and unary type changing rules
are handled.

ation routine returns all instantiations that satisfy
the alternative exclusion constraints. Associated
with each instantiation is a bit vector that encodes
the coverage of the input EPs. From each bit vec-
tor, the active (partially completed) LF alternatives
are determined, and the bit vector is updated to in-
clude the EPs in any completed disjunctions. Fi-
nally, edges are created for the instantiated lexical
items, which include the active alternatives and the
updated coverage vector.

Continuing with example (2)-(3), the selected
lexical edges in (4) below illustrate how lexical in-
stantiation interacts with disjunctions:

(4) a. {11,13,14} collection ` nc :
@c(collection) ∧ @c(〈NUM〉sg)

b. {11,13,14} series ` nc :
@c(series) ∧ @c(〈NUM〉sg)

c. {17} alt1,0 by ` nc\nc/npv :
@c(〈CREATOR〉v)

d. {18} alt1,1 ’s ` npc/nc\npv :
@c(〈GENOWNER〉v)

e. {19} alt1,0; alt1,1 Villeroy and Boch ` npv

: @v (V&B)

The nouns in (a) and (b) complete alt0,0 and alt0,1,
respectively, and thus they each count as cover-
ing EPs 11, 13 and 14. In (c) and (d), by and ’s
partially cover alt1,0 and alt1,1, respectively, and
thus these alternatives are active for their respec-
tive edges. In (e), V&B partially covers both alt1,0

and alt1,1, and thus both alternatives are active.

3.4 Derivation
Following lexical instantiation, the lexical edges
are added to the agenda, as is usual practice with
chart algorithms, and the main loop is initiated.
During each iteration of the main loop, an edge
is moved from the agenda to the chart. If the edge
is in the same equivalence class as an edge already
in the chart, it is added as an alternative to the ex-
isting representative edge. Otherwise, it is com-
bined with all applicable edges in the chart (via the
grammar’s combinatory rules), as well as with the
grammar’s unary rules, where any newly created
edges are added to the agenda. The loop termi-
nates when no edges remain on the agenda.

Before edge combinations are attempted, a
number of constraints are checked, as detailed in
(White, 2006). In particular, the edges’ coverage
bit vectors are required to not intersect, which en-
sures that they cover disjoint parts of the input LF.
Since the coverage vectors are updated to cover all
the EPs in a disjunction when one of the alterna-
tives is completed, this check also ensures that the

16

1. {8-10} based on ` sp\npd/npc

2. {12} the ` npc/nc

3. {15, 16} Funny Day ` nc/nc

4. {11, 13, 14} collection ` nc

{11, 13, 14} series ` nc

5. {17} alt1,0 by ` nc\nc/npv

6. {18} alt1,1 ’s ` npc/nc\npv

7. {19} alt1,0; alt1,1 Villeroy and Boch ` npv

8. {11, 13-16} FD [collection] ` nc (3 4 >)

9. {17-19} by V&B ` nc\nc (5 7 >)

10. {17-19} V&B ’s ` npc/nc (7 6 <)

11. {11, 13-19} FD [coll.] by V&B ` nc (8 9 <)

12. {11, 13-19} V&B ’s FD [coll.] ` npc (10 8 >)

13. {11-19} the FD [coll.] by V&B ` npc (2 11 >)
{11-19} V&B ’s FD [coll.] ` npc (12 optC)

14. {8-19} b. on [the FD [coll.] . . .] ` sp\npd (1 13 >)

Figure 4: Part of realization chart for Figure 1(c).

exclusion constraints for the disjunction continue
to be enforced. Thus, for example, no attempt will
be made to combine the edges for collection and
series in (4a) and (4b), since they both express EP
11 and since they contribute to different alterna-
tives in group 0.

To enforce the constraints associated with active
alternatives, a compatibility check is made to en-
sure that if the input edges have active alternatives
in the same group, the intersection of these alter-
natives is non-empty. To illustrate, consider the
edges for by and the possessive ’s in (4c) and (4d).
Since these edges have different alternatives active
within group 1, the compatibility check fails, and
thus their combination is not attempted. By con-
trast, the edge for Villeroy and Boch in (4e) will
pass the compatibility check with both (4c) and
(4d), as it shares an active alternative in common
with each of these. When two edges succeed in
combining, a new edge is constructed from the re-
sulting sign by taking the union of the coverage bit
vectors, determining the active alternatives, and
updating the coverage vector to include the EPs
in any completed disjunctions.

When the grammar’s unary rules are applied to
an edge, an operation is also invoked for creat-
ing an edge (for the same sign) with one or more
optional parts marked as completed. This oper-
ation is invoked when it would complete the in-

put LF, complete an alternative, or complete an LF
chunk.7 A constraint on its application is that the
optional parts must be wholly missing from the in-
put edge; additionally, in the case of completing an
alternative or LF chunk, the optional parts must be
part of the alternative or chunk in question.

Figure 4 demonstrates how the lexical edges in
(4) are combined in the chart.8 These lexical edges
appear on lines 4-7. Note that the edge for series
is added as an alternative edge to the one for col-
lection, which acts as a representative for both; to
highlight its role as a representative, collection is
shown in square brackets from line 8 onwards. At
the end of each line, the derivation of each (non-
lexical) edge is shown in parentheses, in terms of
its input edges and combinatory rule. On line 13,
observe that the NP using the possessive is added
as an alternative to the one using the by-phrase;
the possessive version becomes part of the same
equivalence class when the optional determiner is
marked as covered, via the optional part comple-
tion operation.

3.5 Unpacking

Once chart construction has finished, the complete
realizations are recursively unpacked bottom-up in
a way that generalizes the approach of (Langkilde,
2000). Unpacking proceeds by multiplying out the
alternative edges stored with the representative in-
put edges; filtering out any duplicate edges result-
ing from spurious ambiguities; scoring the new
edges with the scoring method configured via the
API; and pruning the results with the configured
pruning strategy. Note that since there is no need
for checking grammatical or other constraints dur-
ing the unpacking stage, new edges can be quickly
and cheaply constructed using structure sharing.

To briefly illustrate the process, consider how
the Funny Day collection edge in line 8 of Fig-
ure 4 is unpacked. While the Funny Day input
edge has no alternative edges, the collection input
edge has the series edge as an alternative, and thus
a new Funny Day series edge will be created and
scored; as long as the pruning strategy keeps more
than the single-best option, this edge will be added
as an alternative, and both combinations will be
propagated upwards through the edges in lines 11

7LF chunks serve to avoid propagating semantically in-
complete phrases; see (White, 2006) for discussion.

8To save space, the figure only shows part of the normal
form derivation, and the logical forms for the categories have
been suppressed.

17

10-best two-stage 1-best anytime
time edges time edges

disjunctive 1.1 602 0.5 281
sequential 5.6 3550 4.1 2854

Table 1: Comparison of average run times (in sec-
onds) and edges created vs. sequential realization

and 12.

4 Case Study

To examine the potential of the algorithm to effi-
ciently generate paraphrases, this section presents
a case study of its run times versus sequential real-
ization of the equivalent top-level LF alternatives
in disjunctive normal form. The study used the
COMIC grammar, a small but not trivial grammar
that suffices for the purposes of the system. In
this grammar, there are relatively few categories
per lexeme on average, but the boundary tone cat-
egories engender a great deal of non-determinism.
With other grammars, run times can be expected
to vary.

In anticipation of the present work, Foster and
White (2004) generated disjunctive logical forms
during sentence planning, then (as a stopgap mea-
sure) multiplied out the disjunctions and sequen-
tially realized the top-level alternatives until an
overall time limit was reached. Taking the pre-
vious logical forms as a starting point, 104 sen-
tences from the evaluation in (Foster and White,
2005) were selected, and their LFs were manu-
ally augmented to cover a greater range of para-
phrases allowed by the grammar.9 To obtain the
corresponding top-level LF alternatives, 100-best
realization was performed, and the unique LFs
appearing in the top 100 realizations were gath-
ered; on average, there were 29 such unique LFs.
We then compared the present algorithm’s per-
formance against sequential realization in produc-
ing 10-best outputs and single-best outputs. In
the 10-best case, we used the two-stage pack-
ing/unpacking mode; for the single-best case, we
used the anytime mode with 3-best pruning. With
both cases, the run times include scoring with a
trigram language model, and were measured on a
2.8GHz Linux PC. Realization quality was not as-
sessed as part of the study, though manual inspec-
tion indicated that it was very high.

Table 1 shows the results of the comparison.
9Extending the COMIC sentence planner to produce these

augmented LFs is left for future work.

The average run times of the present algorithm,
with disjunctive LFs as input, appear on the first
line, along with the average number of edges cre-
ated; on the second line are the average aggregate
run times and num. edges created of sequentially
realizing the top-level alternatives (not including
the time taken to produce these alternatives). As
can be seen, realization from disjunctive inputs
yields a 5-fold and 8-fold speedup over the se-
quential approach in the two cases, with corre-
sponding reductions in the number of edges cre-
ated. Additionally, the run times appear to be ad-
equate for use in interactive dialogue systems (es-
pecially in the anytime, single-best case).

5 Comparison to Shemtov (1997)

The present approach differs from Shemtov’s in
two main ways. First, since Shemtov developed
his approach with the task of ambiguity preserv-
ing translation in mind, he framed the problem as
one of generating from ambiguous semantic rep-
resentations, such as one might find in a parse
chart with unresolved ambiguities. Consequently,
he devised a method for converting the meanings
in a packed parse chart into an encoding where
each fact (here, EP) appears exactly once, together
with an indication of the meaning alternatives it
belongs to, expressed as propositional formulas.
While this contexted facts encoding may be suit-
able for MT, it is not very convenient as an input
representation for systems which generate from
non-linguistic data, as the formulas representing
the contexts only make sense in reference to a
parse chart. By contrast, the present approach
takes as input disjunctive logical forms that should
be reasonably intuitive to construct in dialogue
systems or other NLG applications, since they are
straightforwardly related to their non-disjunctive
counterparts.

The second way in which the approach differs
concerns the relative simplicity of the algorithms
ultimately adopted. As part of his preliminary al-
gorithm (Shemtov, 1997, Section 3.3.2), Shemtov
proposed the extended use of coverage bit vectors
that we embraced in Section 3.2. He then de-
veloped a refined version to handle disjunctions
with intersecting predicates. However, he con-
cluded that this refined version was arc-consistent
but not path-consistent (p. 65, fn. 10), given that it
checked combinations of contexted facts pairwise,
without keeping track of which alternations such

18

combinations were committed to. By contrast, the
present approach does not suffer from this defect,
because it checks the alternative exclusion con-
straints on all of a lexical edge’s EPs at once (us-
ing bit vectors for both edge coverage and alter-
native membership), and also ensures that the ac-
tive alternatives are compatible before combining
edges during derivations. Shemtov does not ap-
pear to have considered a solution along the lines
proposed here; instead, he went on to develop a
sound but considerably more complex algorithm
(his Section 3.4), where an edge’s coverage bit
vector is replaced with a contexted coverage array
(an array of boolean conditions). With these ar-
rays, it is no longer easy to group edges into equiv-
alence classes, and thus during chart construc-
tion Shemtov is forced to group together edges
which are not derivationally equivalent. Conse-
quently, to prevent overgeneration, his algorithm
has to solve during the enumeration phase a sys-
tem of constraints (potentially exponential in size)
formed from the conditions in the contexted cov-
erage arrays—a process which is far from straight-
forward.

6 Conclusions

This paper has presented a new chart realization
algorithm for efficiently generating surface real-
izations from disjunctive logical forms, and has
argued that the approach represents an improve-
ment over that of (Shemtov, 1997) in terms of both
usability and simplicity. The algorithm has been
implemented as an extension to the OpenCCG hy-
brid symbolic/statistical realizer, and has recently
been employed to generate n-best realization lists
for reranking according to their predicted synthe-
sis quality (Nakatsu and White, 2006), as well as
to generate dialogues exhibiting individuality and
alignment(Brockmann et al., 2005; Isard et al.,
2005). An initial case study has shown that the
algorithm works many times faster than sequential
realization, with run times suitable for use in dia-
logue systems; a more comprehensive study of the
algorithm’s efficiency is planned for future work.

Acknowledgements

The author thanks Mary Ellen Foster, Amy Isard,
Johanna Moore, Mark Steedman and the anony-
mous reviewers for helpful feedback and discus-
sion, and the University of Edinburgh’s Institute
for Communicating and Collaborative Systems for

partially supporting this work.

References
Jason Baldridge and Geert-Jan Kruijff. 2002. Coupling CCG

and Hybrid Logic Dependency Semantics. In Proc. ACL-
02.

Srinivas Bangalore and Owen Rambow. 2000. Exploiting a
probabilistic hierarchical model for generation. In Proc.
COLING-00.

Regina Barzilay and Lillian Lee. 2003. Learning to
paraphrase: An unsupervised approach using multiple-
sequence alignment. In Proc. of NAACL-HLT.

Patrick Blackburn. 2000. Representation, reasoning, and re-
lational structures: a hybrid logic manifesto. Logic Jour-
nal of the IGPL, 8(3):339–625.

Carsten Brockmann, Amy Isard, Jon Oberlander, and
Michael White. 2005. Modelling alignment for affec-
tive dialogue. In Proc. UM-05 Workshop on Adapting the
Interaction Style to Affective Factors.

John Carroll and Stefan Oepen. 2005. High efficiency real-
ization for a wide-coverage unification grammar. In Proc.
IJCNLP-05.

Mary Ellen Foster and Michael White. 2004. Techniques for
Text Planning with XSLT. In Proc. 4th NLPXML Work-
shop.

Mary Ellen Foster and Michael White. 2005. Assessing the
impact of adaptive generation in the COMIC multimodal
dialogue system. In Proc. IJCAI-05 Workshop on Knowl-
edge and Representation in Practical Dialogue Systems.

Amy Isard, Carsten Brockmann, and Jon Oberlander. 2005.
Individuality and alignment in generated dialogues. In
Proc. INLG-06. To appear.

Martin Kay. 1996. Chart generation. In Proc. ACL-96.

Irene Langkilde-Geary. 2002. An empirical verification of
coverage and correctness for a general-purpose sentence
generator. In Proc. INLG-02.

Irene Langkilde. 2000. Forest-based statistical sentence gen-
eration. In Proc. NAACL-00.

Johanna Moore, Mary Ellen Foster, Oliver Lemon, and
Michael White. 2004. Generating tailored, comparative
descriptions in spoken dialogue. In Proc. FLAIRS-04.

Crystal Nakatsu and Michael White. 2006. Learning to say it
well: Reranking realizations by predicted synthesis qual-
ity. In Proc. of COLING-ACL-06. To appear.

Hadar Shemtov. 1997. Ambiguity Management in Natural
Language Generation. Ph.D. thesis, Stanford University.

Mark Steedman. 2000. The Syntactic Process. MIT Press.

Michael White. 2004. Reining in CCG Chart Realization. In
Proc. INLG-04.

Michael White. 2006. Efficient Realization of Coordinate
Structures in Combinatory Categorial Grammar. Research
on Language & Computation, on-line first, March.

19

