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Abstract

We present a probabilistic approach for the
interpretation of arguments that casts the
selection of an interpretation as a model
selection task. In selecting the best model,
our formalism balances conflicting fac-
tors: model complexity against data fit,
and structure complexity against belief
reasonableness. We first describe our ba-
sic formalism, which considers interpreta-
tions comprising inferential relations, and
then show how our formalism is extended
to suppositions that account for the beliefs
in an argument, and justifications that ac-
count for the inferences in an interpreta-
tion. Our evaluations with users show that
the interpretations produced by our system
are acceptable, and that there is strong sup-
port for the postulated suppositions and
justifications.

1 Introduction

The source-channel approach has been often used
for word-based language tasks, such as speech
recognition and machine translation (Epstein,
1996; Och and Ney, 2002). According to this ap-
proach, an addressee receives a noisy channel (lan-
guage or speech wave), and decodes this channel
to derive the source (idea). The selected source is
that with the maximum posterior probability.

In this paper, we apply the source-channel ap-
proach to the interpretation of arguments. This
approach enables us to cast argument interpreta-
tion as a trade-off between conflicting factors, viz
model complexity against data fit, and structure
complexity against belief reasonableness. This
trade-off is inspired by the Minimum Message
Length (MML) Criterion — a model selection
method that is the basis for several machine learn-
ing techniques (Wallace, 2005). According to this

trade-off, a more complex model might fit the data
better, but the plausibility (priors) of the model
must be taken into account to avoid over-fitting. '

Our argument interpretation mechanism has
been implemented in a system called BIAS
(Bayesian Interactive Argumentation System).
BIAS presents to a user a set of facts about the
world (evidence), and the user constructs an argu-
ment about a particular goal proposition in light
of this evidence. BIAS then generates an interpre-
tation of the user’s argument, i.e., it tries to un-
derstand the argument. When people try to under-
stand an interlocutor’s discourse, their interpreta-
tion is in terms of their own beliefs and inference
patterns. Likewise, our system’s interpretations
are in terms of its underlying knowledge repre-
sentation — a Bayesian network (BN). The inter-
pretations generated by BIAS include inferences
that connect the propositions in a user’s argument,
suppositions that postulate a user’s beliefs that are
necessary to make sense of the argument, and ex-
planatory extensions that justify the inferences in
the interpretation (and in the argument). BIAS
does not generate its own arguments, rather, it in-
tegrates these components to make sense of the
user’s argument.

In this paper, we first describe our basic for-
malism, which is used to calculate the probability
of interpretations that include only inferences, and
then show how progressive enhancements of this
formalism are used for more informative interpre-
tations.

In Section 2, we explain what is an argument
interpretation, and describe briefly the interpreta-
tion process. Next, we discuss our probabilistic
formalism for selecting an interpretation, which is
the focus of this paper. In Section 4, we present

LOther model selection criteria such as Akaike Informa-
tion Criterion (AIC) and Bayes Information Criterion (BIC)
(Box et al., 1994) also argue for model parsimony, but they
do so by penalizing models with more free parameters.
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the results of our evaluations, followed by a dis-
cussion of related work, and concluding remarks.

2 Argument interpretation

We define an interpretation of a user’s argument as
the tuple {SC, IG, EE}, where SC' is a supposi-
tion configuration, IG is an interpretation graph,
and F'E are explanatory extensions.

e A Supposition Configuration is a set of sup-
positions attributed to the user (in addition to
or instead of shared beliefs) to account for the
beliefs in his or her argument.

e An Interpretation Graph is a domain struc-
ture, in our case a subnet of the domain BN,
that connects the nodes mentioned in the argu-
ment. The nodes and arcs that are included in
an interpretation graph but were not mentioned
by the user fill in additional detail from the BN,
bridging inferential leaps in the argument.

e Explanatory Extensions are domain struc-
tures (subnets of the domain BN) that are added
to an interpretation graph to justify an infer-
ence. Contrary to suppositions, these explana-
tions contain propositions believed by the user
and the system. The presentation of these ex-
planations is motivated by the results of our
early trials, where people objected to belief dis-
continuities between the antecedents and the
consequent of inferences, i.e., increases in cer-
tainty or large changes in certainty (Zukerman
and George, 2005).

To illustrate these components, consider the ex-
ample in Figure 1. The top segment contains
a short argument, and the bottom segment con-
tains its interpretation. The middle segment con-
tains an excerpt of the domain BN which in-
cludes the interpretation; the probabilities of some
nodes are indicated with linguistic terms.> The in-
terpretation graph, which appears inside a light
gray bubble in the BN excerpt, includes the ex-
tra node GreenlnGardenAtTimeOfDeath (boxed).
Note that the propagated beliefs in this interpre-
tation graph do not match those in the argument.
To address this problem, the system supposes that
the user believes that TimeOfDeathl I=TRUE, in-
stead of the BN belief of Probably (boldfaced and

2We use the terms Very Probable, Probable, Possible and
their negations, and Even Chance. These terms, which are
similar to those used in (Elsaesser, 1987), are most consis-
tently understood by people according to our user surveys.

ARGUMENT

Mr Green probably being in the garden at 11 implies that
he possibly had the opportunity to kill Mr Body, but
he possibly did not murder Mr Body.

EXCERPT OF DOMAIN BN
GreenHadMeans GreenMurderedBody —~—— GreenHadMotive

ProbablyNot ProbablyNot EvenChance
. GreenVisitBody
GreenHadOpportunity :
. ProbablyNot LastNight
* GreenInGardenAt |  NbourHeardGreen&Body
dﬁ/ TimeOfDeath ArgueLastNight
GreenLadder
AtWindow / \ /
TimeOfDeath11 GreenInGardenAt11
Probably Probably
INTERPRETATION

Mr Green probably being in the garden at 11, and
supposing that the time of death is 11 implies that

Mr Green probably was in the garden at the time of death.
Hence, he possibly had the opportunity to kill Mr Body, but
Mr Green probably did not have the means.

Therefore, he possibly did not murder Mr Body.

Figure 1: Sample argument, BN excerpt and inter-
pretation

gray-boxed). This fixes the mismatch between the
probabilities in the argument and those in the in-
terpretation, but one problem remains: in early tri-
als we found that people objected to belief discon-
tinuities, such as the “jump in belief” from pos-
sibly having opportunity to possibly not murder-
ing Mr Body (this jump appears both in the origi-
nal argument and in the interpretation, whose be-
liefs now match those in the argument as a re-
sult of the supposition). This prompts the gen-
eration of the explanatory extension GreenHad-
Means[ProbablyNot] (white boldfaced and dark-
gray boxed). The three elements added during the
interpretation process — the extra node in the inter-
pretation graph, the supposition and the explana-
tory extension — appear in boldface italics in the
interpretation at the bottom of the figure.

2.1 Proposing Interpretations

The problem of finding the best interpretation is
exponential. In previous work, we proposed an
anytime algorithm to propose interpretation graphs
and supposition configurations until time runs out
(George et al., 2004). Here we apply our algorithm
to generate interpretations comprising supposition
configurations (SC), interpretation graphs (/G)
and explanatory extensions (F E) (Figure 2).
Supposition configurations are proposed first, as
instantiated beliefs affect the plausibility of inter-
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Algorithm Generatelnterpretations(Arg)

while {there is time}
{
1. Propose a supposition configuration SC' that
accounts for the beliefs stated in the argument.

2. Propose an interpretation graph IG that con-
nects the nodes in Arg under supposition con-
figuration SC.

3. Propose explanatory extensions E'F for inter-
pretation graph /G under supposition config-
uration SC' if necessary.

4. Calculate the probability of interpretation
{SC,IG,EFE}.
5. Retain the top N (=6) most probable interpre-
tations.
}

Figure 2: Anytime algorithm for generating inter-
pretations

pretation graphs, which in turn affect the need for
explanatory extensions. The proposal of supposi-
tion configurations, interpretation graphs and ex-
planatory extensions is driven by the probability
of these components. In each iteration, we gener-
ate candidates for a component, calculate the prob-
ability of these candidates in the context of the
selections made in the previous steps, and proba-
bilistically select one of these candidates. That is,
higher probability candidates have a better chance
of being selected than lower probability ones (our
selection procedures are described in George et al.,
2004). For example, say that in Step 1, we selected
supposition configuration SC\,. Next, in Step 2,
the probability of candidate /G’ is calculated in
the context of the domain BN and SC, and one
of the IGs is probabilistically selected, say Gy,
Similarly, in Step 3, one of the candidate EE's is
selected in the context of SC, and IGYy. In the next
iteration, we probabilistically select an SC' (which
could be a previously chosen one), and so on. To
generate diverse interpretations, if SC|, is selected
again, a different /G will be chosen.

3 Probabilistic formalism

Following (Wallace, 2005), our approach requires
the specification of three elements: background
knowledge, model and data. Background knowl-
edge is everything known to the system prior to in-
terpreting a user’s argument, e.g., domain knowl-
edge, shared beliefs with the user, and dialogue

history; the data is the argument; and the model
is the interpretation.

We posit that the best interpretation is that with
the highest posterior probability.

.....

where ¢ is the number of interpretations.

After applying Bayes rule, this probability is
represented as follows.>

a PI‘(SCZ‘, IGZ, EEZ) X PI‘(A}"g|SCZ‘, IGZ, EEZ)
where « is a normalizing constant that ensures that
the probabilities of the interpretations sum to 1

— 1
a= Z;zlpr(SCj,IGj,EEj)xPr(Arg|SCj,IGj,EE]-) ) '

The first factor represents model complexity,
and the second factor represents data fit.

e Model complexity measures how difficult it is
to produce the model (interpretation) from the
background knowledge. The higher/lower the
complexity of a model, the lower/higher its
probability.

e Data fit measures how well the data (argument)
matches the model (interpretation). The bet-
ter/worse the match between the argument and
an interpretation, the higher/lower the proba-
bility that the speaker intended this interpreta-
tion when he or she uttered the argument.

Model Complexity

Model complexity is a function {8, M}—[0,1]
that represents the prior probability of the model
M (i.e., the interpretation) in terms of the back-
ground knowledge B. The calculation of model
complexity depends on the type of the model: nu-
merical or structural.

The probability of a numerical model depends
on the similarity between the numerical values (or
distributions) in the model and those in the back-
ground knowledge. The higher/lower this similar-
ity, the higher/lower the probability of the model.
For instance, a supposition configuration SC' com-
prising beliefs that differ significantly from those
in the background knowledge will lower the prob-
ability of an interpretation. One of the functions
we have used to calculate belief probabilities is the
Zipf distribution, where the parameter is the differ-
ence between beliefs, e.g., between the supposed

3In principle, Pr(SC;, IG;, EE;|Arg) can be calculated

directly. However, it is not clear how to incorporate the priors
of an interpretation in the direct calculation.
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beliefs and the corresponding beliefs in the back-
ground knowledge (Zukerman and George, 2005).
That is, the probability of a supposed belief in
proposition P according to model M (bel 57 (P)),
in light of the belief in P according to background
knowledge B (bel g(P)), is

0
~ |bel 37 (P)—bel g(P)|Y

Pr(bel 57 (P)|bel g(P))

where 0 is a normalizing constant, and v deter-
mines the penalty assigned to the discrepancy be-
tween the beliefs in P. For example,

Pr(bel ;(P) =TRUE|bel g(P) = Probable) >
Pr(bel 5;(P)=TRUE|bel g(P)=EvenChance)

as TRUE is closer to Probable than to EvenChance.

The probability of a structural model (e.g., an
interpretation graph) is obtained from the proba-
bilities of the elements in the structure (e.g., nodes
and arcs) in light of the background knowledge.
The simplest calculation assumes that the proba-
bility of including nodes and arcs in an interpreta-
tion graph is uniform. That is, the probability of
an interpretation graph comprising n nodes and a
arcs is a function of

e the probability of n,

o the probability of selecting n particular nodes
from N nodes in the domain BN: (]X ) _1,

e the probability of a, and

e the probability of selecting a particular arcs
from the arcs that connect the n selected nodes.

This calculation generally prefers small models
to larger models.*

Data fit

Data fit is a function {M, D} — [0, 1] that rep-
resents the probability of the data D (argument)
given the model M (interpretation). This proba-
bility hinges on the similarity between the model
and the data — the closer the data is to the model,
the higher is the probability of the data.

The calculation of the similarity between nu-
merical data and a numerical model is the same
as the calculation of the similarity between a nu-
merical model and background knowledge.

The similarity between structural data and a
structural model is a function of the number and
type of operations required to convert the model
into the data, e.g., node and arc insertions and

“In the rare cases where n > N /2, smaller models do not
yield lower probabilities.

deletions. For the example in Figure 1, to con-
vert the interpretation graph into the argument, we
must delete one node (GreenlnGardenAtTimeOf-
Death) and its incident arcs. The more operations
need to be performed, the lower the similarity be-
tween the data and the model, and the lower the
probability of the data given the model.

We now discuss our basic probabilistic formal-
ism, which accounts for interpretation graphs, fol-
lowed by two enhancements: (1) a more complex
model that accounts for suppositions; and (2) in-
creases in background knowledge that yield a pref-
erence for larger interpretation graphs under cer-
tain circumstances, and account for explanatory
extensions.

3.1 Basic formalism: Interpretation graphs

In the basic formalism, the model contains only an
interpretation graph. Thus, Equation 1 is simply

Pr(IG;|Arg) = aPr(IG;) x Pr(Arg|IG;) (2)

The difference in the calculations of model
complexity and data fit for numerical and struc-
tural information warrants the separation of struc-
ture and belief, which yields

Pr(1G;|Arg) = aPr(bel IG;, struc IG;) X
Pr(bel Arg, struc Arg|bel IG;, struc IG;)

After applying the chain rule of probability

Pr(IG;|Arg) =
aPr(bel IG;|struc IG;) x Pr(struc IG;) x
Pr(bel Arg|struc Arg,bel IG;, struc IG;) %
Pr(struc Arg|bel IG;, struc I1G;)

Note that Pr(bel IG;|struc IG;) does not cal-
culate the probability of (or belief in) the nodes
in IG;. Rather, it calculates how probable are
these beliefs in light of the structure of IG;
and the expectations from the background knowl-
edge. For instance, if the belief in a node is p,
it calculates the probability of p. This proba-
bility depends on the closeness between the be-
liefs in IG; and the expected ones. Since the
beliefs in /G, are obtained algorithmically by
means of Bayesian propagation from the back-
ground knowledge, they match precisely the ex-
pectations. Hence, Pr(bel IG;|struc IG;) = 1.

We also make the following simplifying as-
sumptions for situations where the interpretation
is known (given): (1) the probability of the beliefs
in the argument depends only on the beliefs in the
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Table 1: Probability — Basic formalism

Table 2: Probability — More informed model

Model complexity (against background)
1 Pr(struc IG;) T structural complexity
(model size)

Model complexity (against background)
Pr(struc IG;|SC;) structural complexity
LPr(SC;y) Tnumerical discrepancy

Data fit with model
T Pr(struc Arg|struc IG;) | structural discrepancy
Pr(bel Arg|bel IG;) numerical discrepancy

Data fit with model
Pr(struc Arg|struc IG;) structural discrepancy
T Pr(bel Arg|SCj,bel IG;) |numerical discrepancy

interpretation (and not on its structure or the ar-
gument’s structure), and (2) the probability of the
argument structure depends only on the interpreta-
tion structure (and not on its beliefs). This yields

Pr(IG;|Arg) = aPr(struc IG;)x 3)
Pr(bel Arg|bel IG;) x Pr(struc Arglstruc IG;)

Table 1 summarizes the calculation of these
probabilities separated according to model com-
plexity and data fit. It also shows the trade-off
between structural model complexity and struc-
tural data fit. As seen at the start of Section 3,
smaller structures generally have a lower model
complexity than larger ones. However, an increase
in structural model complexity (indicated by the T
next to the structural complexity and the | next
to the resultant probability of the model) may re-
duce the structural discrepancy between the argu-
ment structure and the structure of the interpreta-
tion graph (indicated by the | next to the structural
discrepancy and the T next to the probability of the
structural data-fit). For instance, the smallest pos-
sible interpretation for the argument in Figure 1
consists of a single node, but this interpretation has
a very poor data fit with the argument.

3.2 A more informed model

In order to postulate suppositions that account for
the beliefs in an argument, we expand the basic
model to include supposition configurations (be-
liefs attributed to the user in addition to or instead
of the beliefs shared with the system). Now the
model comprises the pair {SC;, IG;}, and Equa-
tion 2 becomes
aPr(SC;, IG;) x Pr(Arg|SC;, IG;)

Similar probabilistic manipulations to those
performed in Section 3.1 yield
PI'(SC”IGZ‘AI‘g) == (5)
aPr(struc 1G;|SC;) xPr(SC;) x
Pr(bel Arg|SC;,bel IG;) x Pr(struc Arg|struc IG;)

(Recall that suppositions pertain to beliefs only,
i.e., they don’t have a structural component.)

Table 2 summarizes the calculation of these
probabilities separated according to model com-
plexity and data fit (the elements that differ from
the basic model are boldfaced). It also shows the
trade-off between belief model complexity and be-
lief data fit. Making suppositions has a higher
model complexity (lower probability) than not
making suppositions (where SC; matches the be-
liefs in the domain BN). However, as seen in the
example in Figure 1, making a supposition that re-
duces or eliminates the discrepancy between the
beliefs in the argument and those in the interpre-
tation increases the belief data-fit considerably, at
the expense of a more complex belief model.

3.3 Additional background knowledge

An increase in our background knowledge means
that we take into account additional factors about
the world. This extra knowledge in turn may
cause us to prefer interpretations that were pre-
viously discarded. We have considered two ad-
ditions to background knowledge: dialogue his-
tory, and users’ preferences regarding inference
patterns.

Dialogue history

Dialogue history influences the salience of a
node, and hence the probability that it was in-
cluded in a user’s argument. We have modeled
salience by means of an activation function that
decays with time (Anderson, 1983), and used this
function to moderate the probability of including
a node in an interpretation (instead of using a uni-
form distribution). We have experimented with
two activation functions: (1) a function where the
level of activation of a node is based on the fre-
quency and recency of the direct activation of this
node; and (2) a function where the level of activa-
tion of a node depends on its similarity with all the
(activated) nodes, together with the frequency and
recency of their activation (Zukerman and George,
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2005).

To illustrate the influence of salience, com-
pare the preferred interpretation graph in
Figure 1 (in the light gray bubble) with
an alternative path through NbourHeard-
Green&BodyArgueLastNight and  GreenVisit-
BodyLastNight. The preferred path has 4 nodes,
while the alternative one has 5 nodes, and hence
a lower probability. However, if the nodes in the
longer path had been recently mentioned, their
salience could overcome the size disadvantage.
Thus, although the chosen interpretation graph
may have a worse data fit than the smallest graph,
it still may have the best overall probability in
light of the additional background knowledge.

Inference patterns

In a formative evaluation of an earlier version
of our system, we found that people objected
to inferences that had increases in certainty or
large changes in certainty (Zukerman and George,
2005). An example of an increase in certainty is
A [Probably] implies B [VeryProbably].

A large change in certainty is illustrated by
A [VeryProbably] implies B [EvenChance].

We then conducted another survey to deter-
mine the types of inferences considered acceptable
by people (from the standpoint of the beliefs in
the antecedents and the consequent). The results
from our preliminary survey prompted us to dis-
tinguish between three types of inferences: Both-
Sides, SameSide and AlmostSame.

e BothSides inferences have antecedents with be-
liefs on both “sides” of the consequent (in
favour and against), e.g.,

A[VeryProbably] & B[ProbablyNot]| implies
C[EvenChance].

e All the antecedents in SameSide inferences
have beliefs on “one side” of the consequent,
but at least one antecedent has the same belief
level as the consequent, e.g.,

A[VeryProbably] & B[Possibly] implies
C[Possibly].

e All the antecedents in AlmostSame inferences
have beliefs on one side of the consequent, but
the closest antecedent is one level “up” from
the consequent, e.g.,

A[VeryProbably] & B[Possibly] implies
C[EvenChance].

Our survey contained six evaluation sets, which
were done by 50 people. Each set contained an ini-

tial statement (we varied the polarity of the state-
ment in the various sets), three alternative argu-
ments that explain this statement, and the option
to say that no argument is a good explanation. The
respondents were asked to rank these options in
order of preference.

All the evaluation sets contained one argument
that was objectionable according to our prelim-
inary survey (there was an increase in belief or
a large change in belief from the antecedent to
the consequent). The two other arguments, each
of which comprises a single inference, were dis-
tributed among the six evaluation sets as follows.

e Three sets had one BothSides inference and
one SameSide inference, each with two an-
tecedents.

e Two sets had one SameSide inference, and
one AlmostSame inference, each with two an-
tecedents.

e One set had one SameSide inference with two
antecedents, and one BothSides inference com-
prising three antecedents.

In order to reduce the effect of the respondents’
domain bias, we generated two versions of the sur-
vey, where for each evaluation set we swapped the
antecedent propositions in one of the inferences
with the antecedent propositions in the other.

Our survey showed that people prefer BothSides
inferences (which contain antecedents for and
against the consequent). They also prefer Same-
Side to AlmostSame for antecedents with beliefs
in the negative range (VeryProbNot, ProbNot and
PossNot); and they did not distinguish between
SameSide and AlmostSame for antecedents with
beliefs in the positive range. Further, BothSides in-
ferences with three antecedents were preferred to
SameSide inferences with two antecedents. This
indicates that persuasiveness carries more weight
than parsimony.

These general preferences are incorporated into
our background knowledge as expectations for
a range of acceptable beliefs in the consequents
of inferences in light of their antecedents. The
farther the actual beliefs in the consequents are
from the expectations, the lower the probability
of these beliefs. Hence, it is no longer true that
Pr(bel IG;|SC;, struc IG;) = 1 (Section 3.1), as
we now have a belief expectation that goes beyond
Bayesian propagation. As done at the start of Sec-
tion 3, the probability of the beliefs in an inter-
pretation is a function of the discrepancy between
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these beliefs and expected beliefs. We calculate
this probability using a variant of the Zipf distri-
bution adjusted for ranges of beliefs.

Explanatory extensions are added to an inter-
pretation in order to overcome these belief dis-
crepancies, yielding an expanded model that com-
prises the tuple {SC;, IG;, EE;}. Equation 2 now
becomes

« PI‘(SCi, IG“ EEJ X PI‘(AI"g‘SCi, IG“ EEJ

We make simplifying assumptions similar to
those made in Section 3.1, i.e., given the interpre-
tation graph and supposition configuration, the be-
liefs in the argument depend only on the beliefs in
the interpretation, and the argument structure de-
pends only on the interpretation structure. These
assumptions, together with probabilistic manipu-
lations similar to those performed in Section 3.1,
yield
aPr(struc 1G;|SC;) xPr(SC;) x
Pr(bel 1G;|SC;, struc IG;,bel EE;, struc EE;) X
Pr(struc EE;|SC;, struc IG;,bel EE;) x
Pr(bel EE;|SC;, struc IG;, struc EE;) x
Pr(bel Arg|SC;,bel IG;) x Pr(struc Arg|struc IG;)

The calculation of the probability of an ex-
planatory extension is the same as the calcu-
lation for structural model complexity at the
start of Section 3. However, the nodes in
an explanatory extension are selected from the
nodes directly connected to the interpretation
graph. In addition, as for the basic model (Sec-
tion 3.1), the beliefs in the nodes in explana-
tory extensions are obtained algorithmically by
means of Bayesian propagation. Hence, there
is no discrepancy with expected beliefs, i.e.,
Pr(bel EE;|SC;, struc IG;, struc EE;) = 1.

Table 3 summarizes the calculation of these
probabilities (the elements that differ from the ba-
sic model and the enhanced model are boldfaced).
It also shows the trade-off between structural and
belief model complexity. Presenting explana-
tory extensions has a higher structural complex-
ity (lower probability) than not presenting them.
However, explanatory extensions can reduce the
numerical discrepancy between the beliefs in an
interpretation and the beliefs expected from the
background knowledge, thereby increasing the be-
lief probability of the interpretation. For instance,

Table 3: Probability — Additional background
knowledge

Model complexity (against background)
Pr(struc IG;|SC;) structural complexity
Pr(SC;) numerical discrepancy

1 PI‘(StI‘llC EEi|SCi,

struc IGj, bel EE;) T structural complexity
T Pr(bel 1G;|SC;, struc IG;,

bel EE;, struc EE;) | numerical discrepancy

Data fit with model
Pr(struc Arg|struc IG;)  structural discrepancy
Pr(bel Arg|SC;, bel IG;) numerical discrepancy

Table 4: Summary of Trade-offs
| Pr model structure (/G) = T Pr struct. data fit

| Prmodel belief (SC') = T Pr belief data fit
| Pr model structure (F F)=- T Pr model belief

in the example in Figure 1, the added explanatory
extension eliminates the unacceptable jump in be-
lief.

Table 4 summarizes the trade-offs discussed in
this section.

4 Evaluation

We evaluated separately each component of an
interpretation — interpretation graph, supposition
configuration and explanatory extensions.

4.1 Interpretation graph

We prepared four evaluation sets, each of which
was done by about 20 people (Zukerman and
George, 2005). In three of the sets, the partici-
pants were given a simple argument and a few can-
didate interpretations (ranked highly by our sys-
tem). The fourth set featured a complex argument,
and only one interpretation (other candidates had
much lower probabilities). The participants were
asked to give each interpretation a score between
1 (Very UNreasonable) and 5 (Very reasonable).
Table 5 shows the results obtained for the inter-
pretation selected by our formalism for each set,
which was the top scoring interpretation. The first

Table 5: Evaluation results: Interpretation graph

Set # 1 2 3 4
Avg. score 3.38 3.68 3.35 4.00
Std. dev. 1.45 1.11 1.39 1.02
Stat. sig. (p) 0.08 0.15 0.07 NA
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row shows the average score given by our subjects
to this interpretation, the second row shows the
standard deviation, and the third row the statistical
significance, derived using a paired Z-test against
alternative options (no alternatives were presented
for the fourth set). Our results show that the inter-
pretations generated by our system were generally
acceptable, but that some people gave low scores.
Our subjects’ feedback indicated that these scores
were mainly due to mismatches between beliefs in
the argument and in its interpretation, and due to
belief discontinuities. This led to the addition of
suppositions and explanatory extensions.

4.2 Supposition configuration

We prepared four evaluation sets, each of which
was done by 34 people (George et al., 2005). Each
set consisted of a short argument, plus a list of sup-
position options as follows: (a) four suppositions
that had a reasonably high probability according
to our formalism, (b) the option to make a free-
form supposition in line with the domain BN, and
(c) the option to suppose nothing. We then asked
our subjects to indicate which of these options was
required for the argument to make sense. Specif-
ically, they had to rank their preferred options in
order of preference (but they did not have to rank
options they disliked). Overall, there was strong
support for the supposition preferred by our for-
malism. In three of the evaluation sets, it was
ranked first by most of the trial subjects (30/34,
19/34, 20/34), with no other option a clear second.
Only in the fourth set, the supposition preferred by
our formalism was equal-first with another option,
but still was ranked first 10 times (out of 34).

4.3 Explanatory extensions

We constructed two evaluation sets, each of which
was done by 20 people. Each set consisted of a
short argument and two alternative interpretations
(with and without explanatory extensions). There
was strong support for the explanatory extensions
proposed by our formalism, with 57.5% of our
trial subjects favouring the interpretations with ex-
planatory extensions, compared to 37.5% of the
subjects who preferred the interpretations without
such extensions, and 5% who were indifferent.

5 Related Research

An important aspect of discourse understanding
involves filling in information that was omitted by
the interlocutor. In this paper, we have presented

a probabilistic formalism that balances conflicting
factors when filling in three types of information
omitted from an argument. Interpretation graphs
fill in details in the argument’s inferences, sup-
position configurations make sense of the beliefs
in the argument, and explanatory extensions over-
come belief discontinuities.

Our approach resembles the work of Hobbs et
al. (1993) in several respects. They employed
an abductive approach where a model (interpre-
tation) is inferred from evidence (sentence); they
made assumptions as necessary; and used guid-
ing criteria pertaining to the model and the data
for choosing between candidate models. There are
also significant differences between our work and
theirs. Their interpretation focused on problems of
reference and disambiguation in single sentences,
while ours focuses on a longer discourse and the
relations between the propositions therein. This
distinction also determines the nature of the task,
as they try to find a concise model that explains
as much of the data as possible (e.g., one refer-
ent that fits many clues), while we try to find a
representation for a user’s argument. Additionally,
their domain knowledge is logic-based, while ours
is Bayesian; and they used weights to apply their
hypothesis selection criteria, while our criteria are
embodied in a probabilistic framework.

Plan recognition systems also generate one or
more interpretations of a user’s utterances, em-
ploying different resources to fill in information
omitted by the user, e.g., (Allen and Perrault,
1980; Litman and Allen, 1987; Carberry and Lam-
bert, 1999; Raskutti and Zukerman, 1991). These
plan recognition systems used a plan-based ap-
proach to propose interpretations. The first three
systems applied different types of heuristics to se-
lect an interpretation, while the fourth system used
a probabilistic approach moderated by heuristics
to select the interpretation with the highest prob-
ability. We use a probabilistic domain repre-
sentation in the form of a BN (rather than plan
libraries), and apply a probabilistic mechanism
that represents explicitly the contribution of back-
ground knowledge, model complexity and data fit
to the generation of an interpretation. Our mech-
anism, which can be applied to other domain rep-
resentations, balances different types of complex-
ities and discrepancies to select the interpretation
with the highest posterior probability.

Several researchers used maximum posterior
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probability as the criterion for selecting an inter-
pretation (Charniak and Goldman, 1993; Gertner
et al., 1998; Horvitz and Paek, 1999). They used
BN to represent a probability distribution over the
set of possible explanations for the observed facts,
and selected the explanation (a node in the BN or
a value of a node) with the highest probability. We
also use BNs as our domain representation, but our
“explanation” of the facts (the user’s argument) is
a Bayesian subnet (rather than a single node) sup-
plemented by suppositions. Additionally, we cal-
culate the probability of an interpretation on the
basis of the fit between the argument and the inter-
pretation, and the complexity of the interpretation
in light of the background knowledge.

Our work on positing suppositions is related to
research on presuppositions (Kaplan, 1982; Gur-
ney et al., 1997) — a type of supposition implied
by the wording of a statement. Like our sup-
positions, presuppositions are necessary to make
sense of what is being said, but they operate at
a different knowledge level than our suppositions.
This aspect of our work is also related to research
on the recognition of flawed plans (Quilici, 1989;
Pollack, 1990; Chu-Carroll and Carberry, 2000).
These researchers used a plan-based approach to
identify erroneous beliefs that account for a user’s
statements or plan, while we use a probabilistic ap-
proach. Our approach supports the consideration
of many possible options, and integrates supposi-
tions into a broader reasoning context.

Finally, the research reported in (Joshi et al.,
1984; van Beek, 1987; Zukerman and Mc-
Conachy, 2001) considers the addition of informa-
tion to planned discourse to prevent a user’s erro-
neous inferences from this discourse. Our mech-
anism adds explanatory extensions to an interpre-
tation to prevent inferences that are objectionable
due to discontinuities in belief. Since such non-
sequiturs may also be present in system-generated
arguments, the approach presented here may be in-
corporated into argument-generation systems.

6 Conclusion

We have offered a probabilistic approach to the in-
terpretation of arguments that casts the selection
of an interpretation as a model selection task. In
so doing, our formalism balances conflicting fac-
tors: model complexity against data fit, and struc-
ture complexity against belief reasonableness. We
have demonstrated the use of our basic formalism

for the selection of an interpretation graph, and
shown how a more complex model and additional
background knowledge account respectively for
the inclusion of suppositions and explanatory ex-
tensions in an interpretation. Our user evaluations
show that the interpretation graphs produced by
our formalism are generally acceptable, and that
there is strong support for the suppositions and ex-
planatory extensions it proposes.
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