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Abstract

In this paperwe considerthe problemof
identifying and classifying discourseco-
herencerelations. We report initial re-
sultsover the recentlyreleasediscourse
GraphBankKWolf andGibson,2005). Our
approachconsiders,and determinesthe
contrikutionsof, avariety of syntacticand
lexico-semantideatures We achieve 81%
accurag on the taskof discourseelation
type classificationand 70% accurag on
relationidentification.

1 Intr oduction

Theareaof modelingdiscourséhasarguablyseen
less succesghan other areasin NLP. Contritut-
ing to this is the fact that no consensusasbeen
reachedon the inventory of discourserelations
nor on the typesof formal restrictionsplacedon
discoursestructure. Furthermore modeling dis-
coursestructurerequiresaccessto considerable
prior linguistic analysisincluding syntax, lexical
and compositionalsemanticsas well asthe res-
olution of entity and event-level anaphoraall of
which arenon-trivial problemsthemseles.

Discourseprocessinghas beenusedin mary
text processingapplications, most notably text
summarizatiorand compressiontext generation,
and dialogueunderstanding.However, it is also
importantfor generaltext understandinginclud-
ing applicationssuch as information extraction
andquestiomanswering.

Recently Wolf and Gibson (2005) have pro-
poseda graph-base@pproacho representingn-
formational discourserelationst They demon-
stratethat tree representationare inadequatdor

Therelationsthey defineroughlyfollow Hobbs(1985).

modelingcoherenceelations andshav thatmary

discoursesggmentshave multiple parentgincom-

ing directedrelations)and mary of the relations
introducecrossingdependencies both of which

precludetreerepresentationsT heir annotationof

135 articleshasbeenreleasedasthe GraphBank
corpus.

In this paper we provide initial resultsfor the
following tasks: (1) automaticallyclassifyingthe
typeof discoursecoherenceelation;and(2) iden-
tifying whetherary discourserelation exists on
two text seggments. The experimentswe report
are basedon the annotatediatain the Discourse
GraphBankwherewe assumehat the discourse
unitshave alreadybeenidentified.

In contrasto ahighly structuredcompositional
approacho discourseparsing,we explore a sim-
ple, flat, feature-basedethodology Suchan ap-
proachhasthe adwantageof easilyaccommodat-
ing mary knowledge sources. This type of de-
tailed featureanalysiscansene to inform or aug-
ment more structured,compositionalapproaches
to discoursesuch as those basedon Segmented
DiscourseRepresentatioifheory (SDRT) (Asher
andLascarides2003)or the approacttaken with
the D-LTAG system(Forbesetal., 2001).

Using a comprehense set of linguistic fea-
turesasinput to a Maximum Entropy classifier
we achieve 81% accurag on classifyingthe cor
recttype of discoursecoherenceelationbetween
two segments.

2 PreviousWork

In the pastfew years,the tasksof discoursesey-
mentationand parsing have beentackled from
differentperspecties andwithin differentframe-
works. Within RhetoricalStructureTheory(RST),
Soricut and Marcu (2003) have developed two
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probabilistic modelsfor identifying clausal ele-

mentarydiscourseunits andgeneratingdiscourse
treesat the sentencdevel. Theseare built using
lexical and syntacticinformation obtainedfrom

mappingthe discourse-annotalesentences the

RST Corpus(Carlsonet al., 2003)to their corre-
spondingsyntactictreesin the PennTreebank.

Within SDRIT, Baldridge and Lascarides
(2005b) also take a data-drven approachto
the tasks of seggmentationand identification of
discourserelations. They createa probabilistic
discourseparsembasedndialoguedfrom theRed-
woodsTreebankannotatedvith SDRT rhetorical
relations(BaldridgeandLascarides2005a). The
parseris groundedon headedreerepresentations
and dialogue-basedeatures,such as turn-taking
anddomainspecificgoals.

In thePennDiscourselreeBankPDTB) (Web-
ber et al., 2005), the identification of discourse
structureis approachedndependenthof ary lin-
guistic theory by using discourse connecties
rather than abstractrhetorical relations. PDTB
assumesthat connectres are binary discourse-
level predicatesorveying a semantiaelationship
betweentwo abstractobject-denotingarguments.
The set of semanticrelationshipscan be estab-
lished at different levels of granularity depend-
ing on the application. Miltsakaki, et al. (2005)
proposea first stepat disambiguatinghe senseof
a small subsetof connecties (since while, and
when at the paragrapHevel. They aim at distin-
guishing betweenthe temporal,causal,and con-
trastive useof theconnectie, by meansof syntac-
tic featurederived from the PennTreebankanda
MaxEntmodel.

3 GraphBank

3.1 CoherenceRelations

For annotatinghediscourseaelationsin text, Wolf
and Gibson (2005) assumea clause-unit-based
definition of a discoursesggment. They define
four broadclasse®f coherenceelations:

(1) 1. Resemblance: similarity (par), con-
trast (contr), example (examp), generaliza-
tion (gen),elaborationelab);

2. Cause-dect: explanation(ce), violated
expectation(expv), condition(cond);

3. Temporal(temp): essentiallynarration;

4. Attribution (attr): reportingandevidential
contets.

Thetextual evidencecontrikuting to identifying
thevariousresemblanceelationss heterogeneous
atbestwhere for example, similarity andcontrast
areassociatewith specificsyntacticconstructions
anddevices.For eachrelationtype,therearewell-
known lexical andphrasalkues:

(2) a.similarity: and;
b. contrast by contrastput;
c. example for example;
d. elabomtion: also, furthermore,in addi-
tion, notethat;
e. geneglization in general.

However, just as often, the relation is encoded
throughlexical coherenceyia semanticassocia-
tion, sub/supertypingandaccommodatiorstrate-
gies(AsherandLascarides2003).

The cause-dect relationsinclude corventional
causationand explanationrelations(capturedas
thelabelce), suchas(3) below:

(3) cause: SEG1: crash-landedn New Hope,
Ga.,
effect: SEG2:andinjuring 23 others.

It alsoincludesconditionalsandviolatedexpecta-
tions suchas(4).

(4) cause:SEGL1:anEasternAirlines Lockheed
L-1011enroutefrom Miami to theBahamas
lost all threeof its engines,
effect: SEG2:andlandsafelybackin Miami.

The two last coherenceaelationsannotatedn
GraphBankare tempoal (temp) and attribution
(attr) relations.Thefirst correspondgenerallyto
the occasion(Hobbs, 1985) or narration (Asher
andLascarides2003)relation, while the latteris
ageneraknnotatiorover attribution of source?

3.2 Discussion

The difficulty of annotatingcoherencerelations
consistentlyhasbeenpreviously discussedn the
literature. In GraphBankasin ary corpus,there
are inconsistencieghat must be accommodated
for learningpurposes.As perhapsexpected,an-
notationof attribution andtemporakequenceela-
tionswasconsistenif notentirelycomplete.The
mostseriousconcernwe hadfrom working with

2Thereis onenon-rhetoricatelation,same which identi-
fiesdiscontiguousegments.
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the corpusderives from the conflationof diverse
and semanticallycontradictory relations among
the cause-déct annotations. For canonicalcau-
sation pairs (and their violations) such as those
above, (3) and(4), the annotatiorwasexpectedly
consistenandsemanticallyappropriate Problems
arise, however when examining the treatmentof

purposeclausesandrationaleclauses. Theseare
annotatedaccordingto the guidelines,as cause-
effect pairings.Considen(5) below.

(5) cause: SEGL1.: to upgradelab equipmentin
1987.
effect: SEG2:Theuniversity spent$ 30,000

Thisis bothcounterintuitive andtemporallyfalse.
Therationaleclauses annotatedisthecauseand
the matrix sentenceasthe effect. Thingsareeven
worsewith purposeclauseannotation. Consider
thefollowing examplediscourse®

(6) Johnpushedthe door to openit, but it was
locked.

This would have the following annotationin
GraphBank:

(7) cause:to openit
effect: Johnpushedhedoor

The guidelinereflectsthe appropriatentuition
that the intention expressedn the purposeor ra-
tionaleclausemustprecedgheimplementatiorof
the action carriedout in the matrix sentence.In
effect, this would be somethindike

(8) [INTENTION TO SEG1]CAUSESSEG2

The problem hereis that the cause-déct re-
lation conflatesreal event-causationwith telos
directedexplanations that is, action directedto-
wardsa goal by virtue of anintention. Giventhat
theseare semanticallydisjoint relations, which
arefurthermoretriggeredby distinctgrammatical
constructionsye believe this conflationshouldbe
undoneand characterizeds two separatecoher
encerelations.If therelationsjust discussedvere
annotatedistelic-causationthe featuresencoded
for subsequentraining of a machinelearningal-
gorithmcouldbenefitfrom distinctsyntacticervi-
ronments. We would like to automaticallygen-
eratetemporalorderingsfrom cause-déct rela-
tionsfrom theeventsdirectly annotatedn thetext.

3This specificexamplewas broughtto our attentionby
Alex Lascaridegp.c).

Splitting theseclassesvould presere the sound-
nessof such a procedure,while keepingthem
lumpedgeneratemconsistencies.

4 Data Preparation and Knowledge
Sources

In this sectionwe describethe variouslinguistic
processingomponentsisedfor classificatiorand
identificationof GraphBanldiscourseelations.

4.1 Pre-Processing

We performed tokenization, sentencetagging,
part-of-speechtagging, and shallav syntactic
parsing(chunking)overthe 135GraphBankdocu-
ments.Part-of-speechaggingandshallov parsing
werecarriedout usingthe Carafeimplementation
of ConditionalRandomFieldsfor NLP (Wellner
andVilain, 2006)trainedon variousstandardor
pora. In addition, full sentenceparseswere ob-
tained using the RASP parser(Briscoeand Car
roll, 2002). Grammaticalrelationsderived from
a singletop-ranked tree for eachsentencghead-
word, modifier, and relation type) were usedfor
featureconstruction.

4.2 Modal Parsing and Temporal Ordering
of Events

We performedboth modal parsing and tempo-
ral parsingover events Identification of events
was performedusing EVITA (Saur et al., 2006),
anopen-domaireventtaggerdevelopedunderthe
TARSQI researchframewvork (Verhagenet al.,
2005). EVITA locatesandtagsall event-referring
expressiondgn the input text that can be tempo-
rally ordered.In addition,it identifiesthosegram-
maticalfeaturesmplicatedin temporalandmodal
information of events; namely tense,aspectpo-
larity, modality aswell asthe eventclass. Event
annotationfollows version1.2.1 of the TimeML
specifications.

Modal parsingin the form of identifying sub-
ordinatingverb relationsand their type was per
formed using SIlinkET (Saur et al., 2006), an-
othercomponentf the TARSQI frameawvork. Slin-
KET identifies subordinationconstructionsntro-
ducing modality informationin text; essentially
infinitival and thatclausesembeddedby factive
predicategregref), reportingpredicategsay), and
predicategeferringto eventsof attempting(try),
volition (wanf, command(order), amongothers.

4Seehttp://wwwtimeml.og.
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SIinkET annotatesthese subordinationcontets
and classifiesthemaccordingto the modality in-
formationintroducedby the relationbetweenthe
embeddingand embeddedoredicateswhich can
beof ary of thefollowing types:

o factive: Theembeddedventis presupposed
or entailedas true (e.g., John manajed to
leavethe party).

e counter-factive: Theembeddeaventis pre-
supposedsentailedasfalse(e.g.,Johnwas
unableto leavethe party).

e evidential: The subordinationis introduced
by areportingor perceptiorevent(e.g.,Mary
saw/toldthat Johnleft the party).

e negative evidential: The subordinationis a
reporting event corveying negative polarity
(e.g.,Mary deniedthat Johnleft the party).

e modal: The subordinatiorcreatesan inten-
sionalcontext (e.g.,Johnwantedto leavethe

party).

Temporalorderingsbetweeneventswereiden-
tified usinga Maximum Entropy classifiertrained
on the TimeBank1.2 and Opinion 1.0acorpora.
These corpora provide annotatedevents along
with temporallinks betweenevents. The link
typesincluded: befoe (e; occursbeforees) , in-
cludes(e; occurssometimeaduringe; ), simultane-
ous(e; occursoverthesameantenal ases), begins
(e1 beginsatthesameime ases), ends(e; endsat
thesametime ase,).

4.3 Lexical SemanticTyping and Coherence

Lexical semantictypesas well as a measureof
lexical similarity or coherencebetweenwordsin
two discoursesggmentswould appearto be use-
ful for assigningan appropriatediscourserela-
tionship. Resemblanceelations,in particular re-
quire similar entitiesto be involved and lexical
similarity heresenesasanapproximatiorto defi-
nite nominalcoreferenceldentificationof lexical
relationshipsbetweenwords acrosssggmentsap-
pearsespeciallyuseful for cause-déct relations.
In example (3) abore, determininga (potential)
cause-déect relationshipbetweercrashandinjury
is necessaryo identify the discourseelation.

4.3.1 Corpus-basedLexical Similarity

Lexical similarity was computed using the
Word Sketch Engine (WSE) (Killgarrif et al.,
2004) similarity metric applied over British Na-
tional Corpus. The WSE similarity metricimple-
mentstheword similarity measurdasedn gram-
maticalrelationsasdefinedn (Lin, 1998)with mi-
nor modifications.

4.3.2 The Brandeis SemanticOntology

As a secondsourceof lexical coherencewe
used the Brandeis SemanticOntology or BSO
(Pustejosky etal.,2006). TheBSOis alexically-
basedontology in the Generatie Lexicon tradi-
tion (Pustejesky, 2001;Pustejosky, 1995).It fo-
cuseson contetualizing the meaningsof words
anddoesthis by arich systemof typesandqualia
structuresFor example,if onewereto look upthe
phraseRED WINE in the BSO, onewould find its
type is WINE andits type’s type is ALCOHOLIC
BEVERAGE. TheBSO containsontologicalqualia
information (shavn belaw). Usingthe BSO, one

wine

CONSTITUTIVE = Alcohol

HASELEMENT = Alcohol

MADE OF = Grapes

INDIRECT TELIC = drink activity

INDIRECT AGENTIVE = make alcoholic beverage

is ableto find out wherein the ontologicaltype
systemWINE is located,what RED WINE’S lexi-
cal neighborsare,andits full setof partof speech
and grammaticalattributes. Otherwords have a
differentconfigurationof annotatedattributesde-
pendingon thetypeof theword.

We usedthe BSOtyping informationto seman-
tically tag individual wordsin orderto compute
lexical pathsbetweenword pairs. Suchlexical as-
sociationsare invoked when constructingcause-
effect relationsand otherimplicatures(e.g. be-
tweencrashandinjure in Example3).

Thetypesystempathsprovide a measuref the
connectednessetweenwords. For every pair of
headwordsin a GraphBankdocumentthe short-
est path betweenthe two words within the BSO
is computed.Currently this metric only usesthe
typesystenrelations(i.e., inheritanceut prelim-
inary testsshav thatincluding qualiarelationsas
connectiongs promising. We also computedthe
earliesttcommonancestoof thetwo words. These
metricsare calculatedfor every possiblesenseof
theword within the BSO.
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Theuseof the BSOis adwantageousompared
to other framewvorks suchas Wordnetbecauset
focusentheconnectiorbetweerwordsandtheir
semanticrelationshipto otheritems. Thesecon-
nectionsarecapturedn thequaliainformationand
thetype system.In Wordnet,qualia-like informa-
tion is only presentin the glosses,and they do
not provide a definite semantigpathbetweenary
two lexical items. Although synorymousin some
ways,synsetmemberften behae differentlyin
mary situationsgrammaticabr otherwise.

5 ClassificationMethodology

This section describesin detail how we con-
structed features from the various knowledge
sourcesdescribedabore and how they were en-
codedin a Maximum Entropy model.

5.1 Maximum Entropy Classification

For our experimentsof classifyingrelationtypes,
we useda Maximum Entropy classifie? in order
to assignlabelsto eachpair of discoursesggments
connectedby somerelation.For eachinstancdi.e.

pair of sggments)the classifiermalesits decision
basedon a setof featues Eachfeaturecanquery
somearbitrarypropertyof thetwo segments pos-
sibly taking into accountexternalinformation or

knowledgesources.For example,a featurecould
query whetherthe two sggmentsare adjacentto

eachother whetherone segmentcontainsa dis-

courseconnectie, whetherthey both sharea par

ticular word, whethera particular syntacticcon-
structionor lexical associations presentgetc. We

make strong use of this ability to include very
mary, highly interdependenteature in our ex-

periments. Besidesbinary-\alued features,fea-
turevaluescanbereal-valuedandthuscapturetre-

gquenciessimilarity values,or otherscalarquanti-
ties.

5.2 Feature Classes

We groupedthe featurestogetherinto various
featue classesbasedroughly on the knowvledge
sourcefrom which they were derived. Table 1
describeghe variousfeatureclassesn detail and
provides someactualexamplefeaturesfrom each
classfor the sgmentpair describedn Exampleb
in Section3.2.

SWe usethe Maximum Entropy classifierincludedwith
Carafeavailableat http://sourcefage.net/projects/carafe

5The total maximumnumberof featuresoccurringin our
experimentds roughly 120,000.

6 Experimentsand Results

In this sectionwe provide the resultsof a set of

experimentfocusedon thetaskof discourseela-

tion classification We alsoreportinitial resultson

relationidentificationwith thesamesetof features
asusedfor classification.

6.1 DiscourseRelation Classification

The task of discourserelation classificationin-
volvesassigningthe correctlabel to a pair of dis-
coursesggments’ The pair of segmentsto assign
arelationto is provided (from theannotatediata).
In addition,we assumefor asymmetridinks, that
the nucleusandsatelliteareprovided (i.e., the di-
rectionof therelation). For the elaboation rela-
tions, we ignoredthe annotatedsubtypeqperson,
time, location,etc.). Experimentsverecarriedout
onthefull setof relationtypesaswell asthe sim-
pler setof coarse-grainedelation categyoriesde-
scribedin Section3.1.

The GraphBankcontainsa total of 8755 an-
notatedcoherencerelations. & For all the ex-
perimentsin this paper we used 8-fold cross-
validation with 12.5% of the datausedfor test-
ing and the remainderusedfor training for each
fold. Accuray numbersreportedarethe average
accuraciesver the 8 folds. Variancewasgener
ally low with a standardieviation typically in the
rangeof 1.5to 2.0. We note herealso that the
interannotatolagreementetweerthetwo Graph-
Bank annotatorswas 94.6% for relationswhen
they agreed on the presenceof a relation The
majority classbaselind(i.e., theaccurag achieed
by calling all relationselabomtion) is 45.7%(and
66.57%with the collapsedcateyories). Theseare
the upperand lower boundsagainstwhich these
resultsshouldbebased.

To ascertainthe utility of eachof the various
featureclasseswe considereceachfeatureclass
independenthyby usingonly featuresfrom a sin-
gle classin additionto the Proximity featureclass
which sene asa baseline. Table 2 illustratesthe
resultof this experiment.

We performed a secondset of experiments
shawvn in Table 3 thatis essentiallythe corverse
of the previous batch.We take the unionof all the

"Eachsegmentmayin factconsistof a sequencef sey-
ments. We will, however, usethe term sggmentlooselyto
referto sggmentsor sgmentsequences.

8All documentsare doublyannotatedywe usedthe anno-
tatorl annotations.
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Feature Description Example

Class

[} Words appearingat beginning and end of the two discoursesey- firstl-is+o; first2-is-The
ments- theseareoftenimportantdiscoursecuewords.

P Proximity and direction betweenthe two sggments(in termsof adjacent; dist-less-than-3; dist-less-
sgments)- binary featuressuchasdistancelessthan 3, distance than-5;direction-reerse;samesentence
greaterthan 10 wereusedin additionto the distancevalueitself;
the distancefrom beginning of the documentusing a similar bin-
ning approach

BSO Pathsin theBSOupto length10betweemon-functionwordsin the ResearchLab— EducationalActrity
two segments. — University

WSE WSE word-pair similarities betweenwords in the two sggments WSE-greatethan-0.05; WSE-
werebinnedas (> 0.05, > 0.1, > 0.2). We alsocomputedsen- sentence-sins 0.005417
tencesimilarity asthe sumof the word similarities divided by the
sumof their sentencéengths.

E Eventheadwordsandeventheadword pairsbetweersggmentsas eventl-isupgrade event2-isspent
identifiedby EVITA. event-pairupgradespent

SIinkET  Eventattributes,subordinatindinks andtheir typesbetweenevent segl-class-issccurience seg2-class-
pairsin thetwo segments is-occurrence seyl-tense-isnfinitive;

sey2-tense-ipast seg2-modatsegl

C-E Cuevordsof onesegmentpairedwith eventsin the other firstl-isto-event2-isspent  first2-is-

Theeventl-isupgrade

Syntax ~ Grammaticadependencrelationsbetweenwo segmentsasiden- gr-ncmod gr-ncmodheadlequipment
tified by the RASP parser We alsoconjoinedtherelationwith one  gr-ncmodhead-2spent etc.
or both of the headverdsassociateavith the grammaticalelation.

Tlink Temporallinks betweeneventsin the two sggments.We included seg2-befoe-seggl

both the link typesandthe numberof occurrence®f thosetypes

betweerthe sggments

Tablel: Featureclassestheir descriptionsandexamplefeatureinstancegor Example5 in Section3.2.

From the ablationresults, it is clear that overall
performanceis most impactedby the cue-wod
features(C) and proximity (P). Syntaxand Slin-

FeatureClass Accuray Coarse-graineécc. 6.2 An alysis
Proximity 60.08% 69.43%
P+C 76.77% 83.50%
P+BSO 62.92% 74.40%
P+WSE 62.20% 70.10%
P+E 63.84% 78.16%
P+SIinkET 69.00% 75.91%
P+CE 67.18% 78.63%
P+Syntax 70.30% 80.84%
P+Tlink 64.19% 72.30%

Table2: Classificatioraccurayg over standardand
coarse-grainedelation types with each feature
classaddedo Proximity featureclass.

featureclassesand performablationexperiments
by removing onefeatureclassatatime.

FeatureClass Accuray Coarse-grai\cc.

KET alsohave highimpactimproving accurag by
roughly 10 and 9 percentrespectiely as shavn
in Table2. From the ablationresultsin Table 3,
it is clearthat the utility of mostof the individ-
ual featuresclassess lessenedvhenall the other
featureclassesaretaken into account. This indi-
catesthat multiple featureclassesareresponsible
for providing evidenceary given discourserela-
tions. Remawing a single featureclassdegrades
performanceut only slightly, asthe otherscan

Overall precision,recall and F-measurgesults
for eachof the differentlink typesusingthe set
of all featureclassesareshowvn in Table4 with the
correspondingonfusionmatrixin TableA.1. Per

All Features 81.06% 87.51%
All-P 71.52% 84.88% compensate.
All-C 75.71% 84.69%
All-BSO 80.65% 87.04%
All-WSE 80.26% 87.14%
All-E 80.90% 86.92%
All-SIinkET 79.68%  86.89%
All-CE 80.41% 87.14%
All-Syntax 80.20% 86.89%
All-Tlink 80.30% 87.36%

Table 3: Classificationaccurag with eachfea-
ture classremoved from the union of all feature
classes.

formancecorrelatesoughlywith thefrequeng of
thevariousrelationtypes.We might thereforeex-
pectsomeimprovementin performancevith more
annotateddatafor thoserelationswith low fre-
gueng in the GraphBank.
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Relation Precision Recall F-measure Count
elab 88.72 95.31 91.90 512
attr 91.14 95.10 93.09 184
par 71.89 83.33 77.19 132
same 87.09 75.00 80.60 72
ce 78.78 41.26 54.16 63
contr 65.51 66.67 66.08 57
examp 78.94 48.39 60.00 31
temp 50.00 20.83 29.41 24
expv 33.33 16.67 22.22 12
cond 45.45 62.50 52.63 8
gen 0.0 0.0 0.0 0

Table4: PrecisionRecallandF-measureesults.

6.3 CoherenceRelation Identification

The task of identifying the presenceof a rela-
tion is complicatedby the factthat we mustcon-
sider all (7)) potential relationswhere n is the
number of segments. This presentsa trouble-
some, highly-skewed binary classificationprob-

lem with a high proportionof negative instances.

Furthermore,someof the relations, particularly
the resemblanceelations, are transitve in na-
ture (e.g. parallel(s;, sj) N parallel(s;,sg) —
parallel(s;, sg)). However, thesetransitive links
are not provided in the GraphBankannotation-
suchseggmentpairswill thereforebe presentedn-
correctlyasnegative instanceso thelearney mak-
ing this approachnfeasible.An initial experiment
consideringall sggmentpairs, in fact, resultedin
performancenly slightly abose themajority class
baseline.

Instead we considerthe taskof identifying the
presencef discourseelationsbetweensggments
within the samesentence.Using the sameset of
all featuresusedfor relationclassificationperfor
manceis at 70.04%accurag. Simultaneousden-
tification andclassificatiorresultedn anaccurayg
of 64.53%. For both tasksthe baselineaccurag
was58%.

6.4 Modeling Inter-relation Dependencies

Castingthe problem as a standardclassification
problem where eachinstanceis classifiedinde-
pendently aswe have done,is a potentialdraw-

back. In orderto gain insight into how collec-
tive, dependenimodeling might help, we intro-

ducedadditionalfeaturesthat model suchdepen-
dencies:For a pair of discoursesggments,s; and
sj, to classify the relation between,we included
featuredasedntheotherrelationsinvolvedwith

thetwo segments(from the gold standardannota-

tions): {R(s;, sg)|k # j} and{R(s;, s;)|l # i}.

Adding thesefeaturesmproved classificationac-
curay to 82.3%. This improvementis fairly sig-
nificant(a 6.3%reductionin error) giventhatthis
dependeng informationis only encodedweakly
as featuresand not in the form of model con-
straints.

7 Discussionand Futur e Work

We view the accurag of 81% on coherenceela-
tion classificatiorasa positive result,thoughroom
for improvementclearlyremains. An examination
of the errorsindicatesthat mary of the remain-
ing problemsrequiremaking complec lexical as-
sociations,the establishmenbf entity and event
anaphoridinks and, in somecasesthe exploita-
tion of complex world-knovledge. While impor
tant lexical connectionscan be gleanedfrom the
BSO,we hypothesizéhatthecurrentlack of word
sensedisambiguationsenes to lessenits utility
sincelexical pathsbetweerall word senseof two
wordsarecurrentlyused.Additional featureengi-
neering,particularlythe crafting of more specific
conjunctionsof existingfeatureds anothemvenue
to explorefurther- asareautomatidfeatureselec-
tion methods.

Differenttypesof relationsclearly benefitfrom
differentfeaturetypes. For example,resemblance
relationsrequiresimilar entitiesand/orevents,in-
dicating a needfor robust anaphoraresolution,
while cause-dect classrelations require richer
lexical andworld knowledge. One promisingap-
proachis a pipelinewhereaninitial classifieras-
signsa coarse-grainedateyory, followedby sepa-
ratelyengineeredlassifierddesignedo modelthe
finer-graineddistinctions.

An importantareaof future work involvesin-
corporating additional structue in two places.
First, asthe experimentdiscussedn Section6.4
shaws, classifyingdiscourseaelationscollectively
shaws potentialfor improved performance.Sec-
ondly, we believe that the tasksof: 1) identify-
ing which sggmentsare relatedand 2) identify-
ing the discoursesggmentsthemseles are prob-
ably bestapproachedy a parsingmodel of dis-
course.Thisview is broadlysympathetiavith the
approachn (Miltsakaki etal., 2005).

We furthermore believe an extensionto the
GraphBankannotationschemewith someminor
changesswe adwcatein Section3.2,layeredon
top of the PDTB would, in our view, sere asan
interestingresourceand model for informational
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discourse.
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A Appendix

A.1 Confusion Matrix

elab par attr ce temp contr same examp expv cond gen

elab 488 3 7 3 1 0 2 4 0 3 1
par 6 110 2 2 0 8 2 0 0 2 0
attr 4 0O 175 O 0 1 2 0 1 1 0
ce 18 9 3 26 3 2 2 0 0 0 0
temp 6 8 2 0 5 3 0 0 0 0 0
contr 4 12 0 0 0 38 0 0 3 0 0
same 3 9 2 2 0 2 54 0 0 0 0
examp 15 1 0 0 0 0 0 15 0 0 0
expv 3 1 1 0 1 4 0 0 2 0 0
cond 3 0 0 0 0 0 0 0 0 5 0
gen 0 0 0 0 0 0 0 0 0 0 0
A.2 SIinkET Example
S
/Nx\ | /Nx\ /NX\
DT NN VBD $ CD TO VB NN NN IN CD
Event Event
+Past +Infinitive
+Occurr +Occurr
The university $ 30,000 to lupgradet  lab equipment in 1987
+MODA
N - A
A.3 GraphBank Annotation Example - -~ _ - -~
The university spent $30,000
cause-—
effect
elaboration to upgrade lab equipment in 1987.

An estimated $60,000 to $70,000 was earmarked in 19¢
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