
Proceedings of the 7th SIGdial Workshop on Discourse and Dialogue, pages 60–67,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Tracing Actions Helps in Understanding Interactions

Bernd Ludwig
Chair for Artificial Intelligence, University of Erlangen-Nürnberg

Am Weichselgarten 9, D-91058 Erlangen
Bernd.Ludwig@informatik.uni-erlangen.de

Abstract
Integration of new utterances into context
is a central task in any model for ratio-
nal (human-machine) dialogues in natural
language. In this paper, a pragmatics-first
approach to specifying the meaning of ut-
terances in terms of plans is presented. A
rational dialogue is driven by the reaction
of dialogue participants on how they find
their expectations on changes in the en-
vironment satisfied by their observations
of the outcome of performed actions. We
present a computational model for this
view on dialogues and illustrate it with ex-
amples from a real-world application.

1 A Pragmatics-First View on Dialogues

Rational dialogues that are based on GRICE’s
maxims of conversation serve for jointly execut-
ing a task in the domain of discourse (called the
application domain) by following a plan that could
solve the task assigned to the participants of the di-
alogue. Therefore, the interpretation of new con-
tributions and their integration into a dialogue is
controlled by global factors (e.g. the assumption
that all dialogue participants behave in a coopera-
tive manner and work effectively towards the com-
pletion of a joint task) as well as by local factors
(e.g. how does the new contribution serve in com-
pleting the current shared plan?).

Ony if these factors are represented in an effec-
tive and efficient formal language, dialogue sys-
tems can be implemented. Examples of such mod-
els and their implementation are the information-
state-update approach (an implemented system is
described in (Larsson, 2002)), or – more linguisti-
cally oriented – approaches like the adjacency-pair
models or intentional models such as GROSZ and
SIDNER’s (see (Grosz and Sidner, 1986)).

Even if it has been noted often that discourse
structure and task structure are not isomorphic,

only a few contributions to dialogue research fo-
cus on the question of how both structures inter-
fere (see Sect. 2). In this paper, we emphasize
that it is important to distinguish between the dia-
logue situation and the application situation: The
former is modified whenever speech acts are per-
formed, whereas the latter changes according to
the effects of each action being executed. In this
section, we will use a MAPTASK dialogue to show
what the notions dialogue situation and applica-
tion situation intend to mean. After presenting re-
lated work in Sect. 2, we present our approach first
informally and then formally by explaining which
AI algorithms we apply in order to turn the infor-
mal model into a computationally tractable one.

1.1 Talking about Domain Situations

The main hypothesis of this paper is that modi-
fications of the dialogue situation are triggered by
changes of the application situation. As a response
to a speech act, dialogue participants perform a se-
ries of actions aiming at achieving some goal. If
these actions can be executed, the reaction can sig-
nal success. At this point, our understanding of the
role of shared plans exceeds that of (Grosz et al.,
1999): GROSZ and KRAUS define an action to be
resolved if it is assumed that an agent is able to
execute the action. However, in order to under-
stand coherence relations in complex dialogues, it
is important to know whether an action has actu-
ally been executed and what effect it has produced.
Consider the following excerpt from a MAPTASK

dialogue (MAP 9, quoted from (Carletta, 1992)):

R: ++ and ++ you are not quite horizontal you are taking
a slight curve up towards um the swamp ++ not obviously
going into it

G: well sorry I have not got a swamp
R: you have not got a swamp?
G: no
R: OK
G: start again from the palm beach

60



G has failed to find the swamp, which means G
has failed to perform the action necessary to per-
form the next one (take a slight curve).

In order to solve the current task, R has been
able to organize a solution for the task at hand
which may or may not involve the other dialogue
participant G. How can R put his solution into ac-
tion? First, he executes each step and, second, val-
idates after each step whether all expectations re-
lated to it are fulfilled.

1.2 Talking about Error and Failure

In the example above, R’s expectations are not met
because G does not find the swamp on the map.
However, this would be a precondition for R to
continue putting the solution into action that he
has organized. On the other hand, G understands
that finding the swamp is very important in the cur-
rent task, but he missed to reach that goal. In order
to share this information with R, G verbalizes his
failure diagnosis: “I have not got a swamp.”

This turn makes R realize that his solution does
not work. Obviously, R believed his solution to be
well elaborated because he tries to get a confirma-
tion of its failure by asking back “you have not got
a swamp?” G’s reacknowledgement is a clear in-
dication for R that it is necessary to reorganize his
solution for the current task. Being a collaborative
dialogue participant, he will try to recover from
that failure to explain the way to the destination.

1.3 Domain and Discourse Strategies

For the purpose of recovery, the dialogue partici-
pants try to apply a repair strategy that helps them
to reorganize the solution. Repair strategies are
complex domain dependent processes of modify-
ing tasks and solutions to them. Even being do-
main dependent in detail, there are some strate-
gies that are domain independent and are regularly
adapted to particular domains:

• Delay: Maybe it is the best decision to wait a
bit and try the failed step again.

• Delegation: Maybe someone else can per-
form better.

• Replanning: Another solution should be
found based on the current error diagnosis.

• Relaxation: Modify some parameters or
constraints of the task so that a tractable so-
lution can be found.

• New Tools: Maybe somehow the dialogue
participant can extend his capabilities in the
domain so that he can achieve the solution us-
ing other, more, or stronger tools and means.

• Negotiation: Try to retrieve new helpful in-
formation from the user or to come to an
agreement of how the task can be modified.

• Cancellation: Sometimes giving up to find a
solution is the only remaining possibility.

This list is necessarily incomplete as depending
on the particular domain and current situation in
which a dialogue participant has to act these strate-
gies appear in very different fashion. So, it is hard
to decide whether exception handling for a single
case is taking place or if a particular strategy is
being applied. In the example dialogue, G tries to
suggest a replanning by telling to R up to what
point he was able to understand R’s explanations.

According to his communication strategy, a di-
alogue participant tells his deliberations in more
or less detail, sometimes even not at all. This is
the case in the example dialogue above. In the last
turn, G does not tell that he wants R to reorganize
his solution. R must infer this from the content, in
particular from the request to restart the explana-
tion at a point that has been passed before the G
had failed to understand a step in R’s explanation.

This example shows that domain strategies and
communication strategies interfere in a dialogue
and that complicated reasoning is necessary to
identify them in order to react appropriately.

Our analysis shows that the notion of coher-
ence is strongly related with the execution of sin-
gle steps in a solution. Often, coherence cannot
be explained satisfactorily within a discourse, but
the current situation in which an utterance is made,
must be taken into consideration as well.

2 Related Work

There are several main research directions on dia-
logue understanding. The one closest to our ap-
proach is activity-based dialogue analysis (All-
wood, 1997; Allwood, 2000) contrasting BDI-
style approaches such as the one by (Cohen
and Levesque, 1995). This research shows how
speech acts are related to expectations expressed
by means of language and inspired our approach.
However, ALLWOOD does not work out in detail
how the pragmatics of the application domain can
be formalized in a tractable way. (Carletta, 1992)

61



shows in a corpus analysis that risk taking is a el-
ementary behavior of dialogue participants. (Bos
and Oka, 2002) uses first-order logic in a DRT en-
vironment to reason about the logical satisfiabil-
ity of a new utterance given a previous discourse.
For reasoning about action however, we think that
a first-order theorem prover or model builder is
not the ideal tool because it is too general. Ad-
ditionally, in dialogues about acting in an envi-
ronment, the primary interest of semantic eval-
uation is not whether a formula is true or false,
but how a goal or task can be solved. Therefore,
planning is more appropriate than proofing formu-
lae. Work on planning as part of dialogue under-
standing is reported in (Zinn, 2004). This paper
does not address selecting strategies for error re-
covery. Conflict resolution is addressed in (Chu-
Carroll and Carberry, 1996). However, the pre-
sented discourse model is not computationally ef-
fective. (Huber and Ludwig, 2002; Ludwig, 2004)
present an interactive system which uses planning,
(Yates et al., 2003) and recently (Lieberman and
Espinosa, 2006) reported on applying planning as
a vehicle for natural language interfaces, but none
of the papers discusses how a dialogue can be
continued when a failure in the application oc-
curs. In the WITAS system (see (Lemon et al.,
2002)), activities are modelled by activity mod-
els, one for each type of activity the system can
perform or analyse. A similiar recipe-based ap-
proach is implemented in COLLAGEN (Garland
et al., 2003). As activities are hard-coded in the
respective model, adaptation of the task and dia-
logue structure to the needs in a current situation
are harder to achieve than in our approach in which
only goals are specified and activities are selected
by a planner depending on the current state. In ad-
dition, executing plans by verifying preconditions
and effects of an activity that has been carried out
recently lies the basis for a framework of under-
standing the pragmatics of a dialogue that is not
implemented for a particular application, but tries
to be as generic as possible.

3 Problem and Discourse Organization

A computational approach that aims at analyzing
and generating rational – i.e. goal-oriented – dia-
logues in a given domain must address the issues
of organizing a solution in the application domain
as well as in the discourse domain. Furthermore, it
must provide an effective method to organize so-

1 2 3

Figure 1: Example data for a classification task.

lutions, classify current states in the discourse as
well as in the application situation (are they erro-
neous or not?) and select strategies that promise a
recovery in case of an error.

3.1 Expectations and Observations

To diagnose an error, a dialogue participant must
be able to determine whether his expectations on
how the environment changes due to an action
match his observations.

3.2 The Origin of Expectations

The expectations of a dialogue participant are de-
rived from his organization of a solution to the cur-
rent task. Each step herein has – after it has been
executed – a certain intended impact. It forms the
expectations that are assigned to a single step.

An expectation is met by a set of observations if
the observations are sufficient to infer the expecta-
tion from. The inference process that is employed
in this context may be as simple as a slot-filling
mechanism or as complicated as inference in a for-
mal logic. In the slot-filling case, the inference al-
gorithm is to determine whether the semantic type
of the answer given by the user match the type that
was expected by the dialogue system.

However, inference in the sense of this paper
may involve difficult computations: Expectations
are generated while a solution is organized. Each
step in a solution leads to certain changes in the
environment that are expected to happen when
the step is actually executed. Later in the paper,
we will demonstrate how planning algorithms can
generate such expectations. Additionally: – see
Fig. 1) – in order to verify expectations of the re-
quest “Fill coffee into the cup!” image data need
to be classified before it can be concluded that the
expectation (image 3) is satisfied.

4 Planning Solutions

In order to illustrate our approach how a natural
language dialogue system can organize solutions
for user requests, we discuss a natural language in-
terface for operating a transportation system. The

62



produce-coffee
:parameters (?c - cup ?j - jura)
:precondition
(and (under-spout ?c)

(not (service-request ?j)))
:effect (and (not (empty ?c)) (ready ?j))

Figure 2: Example of a plan operator in PDDL

system allows to control a model train installation
and electronic devices currently on the market.

4.1 Organizing a Solution
First of all, in order to specify the (pragmatic)
capabilities of the whole system, a formal model
of the system is needed that allows the necessary
computations for organizing solutions. For this
purpose, we model all functions provided by the
system in terms of plan operators in the PDDL
planning language. Fig. 2 shows an example.

This operator describes part of the functionality
of the automatic coffee machine that is integrated
into our system: the function produce-coffee
can be executed if there is a cup under the spout
of the machine and if it does not require service
(as such filling in water or beans). These are the
preconditions of the function. After coffee has
been produced, it is expected that the environment
is changed in the following way: the cup is not
empty any longer, and the machine is ready again.

In order to organize a solution, a task is needed
and knowledge about the current state of the envi-
ronment. The latter comes from interpreting sen-
sor data, while the former is computed from nat-
ural language user input. For the example request
“Fill in a cup of espresso!”, we assume the current
state in Fig. 3 to hold and use the formula in Fig.
4 as the description of the current task to solve.

The example in Fig. 3 assumes that the cup is
parked and empty, and the coffee machine and the
robot (used for moving cups) are ready. The task
is formalized as a future state of the environment
in which the cup is parked and the coffee machine
is in the mode one small cup (see Fig. 4).

To compute a solution, a planning algorithm
(we incorporated the FF planner (Hoffmann and
Nebel, 2001) in our system) uses the information

(and (parked cup) (empty cup)
(ready jura) (ready robo))

Figure 3: The current state of the environment for
the example in Sect. 4

about the current state and the intended future state
as input and computes a plan for a number of steps
to execute in order to solve the task (see Fig. 5).

In the following, we will consider such a plan as
in Fig. 5 as an organized solution for the task to be
solved. Expected changes of the environment are
defined by the effects of each step of the solution.
Fig. 6 shows which changes are expected if the
plan in Fig. 5 is eventually executed.

4.2 Executing a Solution

Given a plan for a task to be solved, our dialogue
system executes each step sequentially. Before a
step of the solution is performed, the system ver-
ifies each precondition necessary for the step to
be executable. If all tests succeed, actuators are
commanded to perform everything related to the
current step. Feedback is obtained by interpret-
ing sensor input which is used to control whether
the intended effects have been achieved. For the
function produce-coffee above, the follow-
ing procedure is executed:
produce-coffee (cup c, jura j) {
if test(under-spout,c)=false
signal_error;

else {
if test(service-request,j)=true
signal_error;

else do produce-coffee, c, j;
};
if test(empty,c)=true signal_error;
else {
if test(ready,j)=false signal_error;
else return;

};
}

In this procedure, each precondition of the func-
tion produce-coffee is verified. If the system
can infer from the sensor values that a precondi-
tion cannot be satisfied, it signals an error. The
same is done with all effects when the actuators
have finished to change the environment. As we
will discuss in Sect. 6, these error signals are the
basic information for continuing a dialogue when
unexpected changes have been observed.

5 Diagnosing Errors

How can the dialogue system react if a precondi-
tion or effect does not match the system’s expecta-
tions? The primary goal of a dialogue system is to

(and (parked cup) (mode-osc jura))

Figure 4: The task to be solved

63



put-cup-on-spout(cup,jura,robo)
draw-off-osc(cup,jura)
produce-coffee(cup,jura)
go-in-place(train)
take-cup-off-spout(cup,jura,robo)
load-cup-on-waggon(cup,jura,robo,train)
park-cup(cup,jura,robo,train)

Figure 5: A plan for the task in Fig. 4

Step # Action and expected changes
1 put-cup-on-spout(cup, jura, robo)

(under-spout ?c)
(not (robo-loaded ?r ?c))
(not (parked ?c))

2 draw-off-osc(cup, jura)
(not (ready ?j)) (mode-osc ?j)

3 produce-coffee(cup, jura)
(not (empty ?c)) (ready ?j)

4 go-in-place(train)
(in-place ?t)

5 take-cup-off-spout(cup, jura, robo)
(not (under-spout ?c))
(robo-loaded ?r ?c)

6 load-cup-on-waggon(cup, jura, robo, train)
(not (robo-loaded ?r ?c))
(train-loaded ?t ?c)

7 park-cup(cup, jura, robo, train)
(not (train-loaded ?t ?c))
(parked ?c)

Figure 6: Expected changes in the environment

meet principles of conversation such as GRICE’s
maxims. Often, however, it is not obvious to the
user how a particular constraint in a plan is re-
lated to the current task. Therefore, a plausible and
transparent explanation of an error brings the diag-
nosed mismatch in its context of the current action
and solution for the current task. At the core of
each explanation are the unexpected observations.
The context of the error is formed by all available
sensor values and the history of past actions which
are steps in the solution (see Fig. 5) for the current
task. The example in Fig. 7 shows the state of the
system after the first four steps of the solution in-
troduced in Sect. 4.1 have been carried out. Af-
ter executing take-cup-off-spout however,
the observed changes of the system state do not
match the expected ones: Analyzing the most re-
cent images and the robot’s weight sensor, the sys-
tem recognizes that the cup still is on the spout, but
not being carried away by the robot.

Given the situation in Fig. 7, what is the system
able to or should communicate to the user? With-
out any additional reasoning, the system could
only tell what it has observed:

User: Fill in a cup of espresso!

System: The cup is under the spout and
the robot is not loaded with the cup.

Such a response would not be very helpful for
the user (especially if he cannot see the situ-
ation or is unexperienced in handling the sys-
tem). Our approach to generating plausible expla-
nations for failures of the system is to compute
a diagnosis that takes the context of the failure
and the task to be solved into account. The ap-
proach relies on an explicit error model for each
function that the system provides in the sense
of (Balduccini and Gelfond, 2003): In the case
of take-cup-off-spout the following symp-
toms and causes lead to failure of the function:

Symptom Cause
(under-spout c) wrong position

robo lost cup
¬ (robo-loaded r c) arm motor off

arm not ok
didn’t hold cup

The approach of (Balduccini and Gelfond, 2003)
generates models in a formal logic of what could
be reasons for the failure of the system and in
which state the system would be in each case. If
more than one model is generated when an unex-
pected observation has been made, the system has
to find evidence for each model and compare how
reliable a diagnosis is (given the available sensor
values and their interpretation). For that purpose,
decision trees are trained on past cases of failure
and the confidence values for the computed inter-
pretations. (e.g. to which class does the image in
Fig. 1?). Applying such a decision tree on a given
system state and mismatched expectation results
in a unique model that is seen as an explanation
for the failure of the system’s function. In this way,
the dialogue system can explain better to the user
what it thinks has happened during the execution
of take-cup-off-spout:

User: Fill in a cup of espresso!

System: I could not carry the cup to the
train because I lost the cup on the way.

From the viewpoint of discourse analysis, we can
consider the mismatch between observations and
expectations as the main cause for the system re-
sponse. As a consequence, we can consider the
logical relation between the current task, the so-
lution organized by the system, and the computed
error diagnosis as sufficient conditions for any dis-
course relation to hold between the user and the

64



Actions up to now System state Expected state Error Diagnosis
after go-in-place

put-cup-on-spout (ready jura) none
draw-off-osc (ready robo) none
produce-coffee ¬(parked cup) none
go-in-place ¬(empty cup) none

¬(robo-loaded robo) none
(mode-osc jura) none
(in-place train) none
(under-spout cup) none

Last Action Observed state
take-cup-off-spout (under-spout cup) ¬(under-spout cup) robo could not

¬(robo-loaded robo) (robo-loaded robo) hold the cup

Figure 7: Context information for the diagnosis of an error

system utterance in the dialogue excerpt above: In
terms of TRAUM’s DU acts (Traum, 1994), coher-
ence between both utterances is established as a
reject relation as the purpose of the utterance
is to indicate failure of the task that has been initi-
ated by the user request. To explain the MAPTASK

dialogue cited in the introduction, another level of
pragmatic reasoning is required: As already men-
tioned in Sect. 1.3, the dialogue system is cooper-
ative and tries to find out a way in order to never-
theless solve the task as completely as possible.

6 Error Repair and Discourse Update

Such a way out consists in applying a strategy
that is appropriate for the current state of the sys-
tem and the interaction with the user. In the AI
(Mitchell, 1997) and robotics (Bekey, 2005) liter-
ature, algorithms for applying adaptive strategies
in different situations are all based on the current
state as input and an evaluation function that helps
selecting an optimal strategy.

6.1 Repair Strategies in the Application

A favorite algorithm for this kind of interactive
control problems is to select the optimal policy out
of a set of possibilities. Before that, an evaluation
function is trained by reinforcement learning to al-
ways select the action that maximizes the reward
obtainable in the current state. In (Henderson et
al., 2005), this machine learning approach was ap-
plied to selecting speech acts after training an eval-
uation function on a dialogue corpus in which each
utterance was labeled with a speech act.

Different from (Henderson et al., 2005), in our
approach the actions between whom the dialogue
system can choose are repair strategies instead of
speech acts. In our opinion, speech acts are a phe-
nomenon of another invisible process – text gen-

eration – but not objects of the decision at the
discourse planning level: the selection of a repair
strategy does not fix the type of a speech act nor
its content. The way a repair strategy works and –
as a consequence – has influence on the flow of a
dialogue is that, firstly, it modifies the current task
and, secondly, seeks a new solution that will be ex-
ecuted later on. Future speech acts then are a result
of performing single steps of the new solution.

To recover the take-cup-off-spout func-
tion, the system may have the option to fill an-
other cup and try to bring this one to its destina-
tion. It must be noted, however, that this option
depends to a large extent on the availability of an-
other empty cup, the readiness of the robot and the
coffee machine and sufficient resources like beans,
water, and time to complete the task. All these pa-
rameters influence the computation of the reward
and the risk to be assigned to this domain-specific
variant of a New Tools-strategy (see Sect. 1.3).

6.2 Effects on Discourse Update

The MAPTASK dialogue in Sect. 1.1 even is some-
what more complicated: G understands that he
does not have the capability to repair the misun-
derstanding as there is too much information miss-
ing. Therefore, he initiates a Negotiation-strategy
in which he switches the topic of the dialogue to
the domain of strategies for MAPTASK. G pro-
poses a new strategy with a slightly modified task
to R. It is exactly this logical relation that explains
the coherence between the turns in this dialogue.
In this case, the coherence cannot be established
by reasoning in one single domain.

In terms of the Conversation Acts Theory by
(Traum and Hinkelman, 1992) and (Poesio and
Traum, 1998; Traum, 1994), the discourse seg-
ment related to the solution for a task can be called

65



multiple discourse unit (MDU). Consequently, the
conversation acts for MDU are a trace of the di-
alogue participant’s decisions on which interac-
tions are needed to solve the task and how they
could be verbalized best. Argumentation is based
on the formal knowledge about the domain, the
current task, and a solution proposed for it. This
means that an analysis of the current state of the
system and the dialog provides facts that can be
used as conditions for the applicability of a speech
act. Equally, facts about the system are conditions
for the applicability of a system function at a cer-
tain point of time. It follows directly from this ob-
servation that planning argumentation acts can be
viewed as a special kind of classical planning in
AI. However, due to the interactive nature of such
a dialogue task, it must be possible to react flexibly
and directly on mismatches between expectations
and observations for speech acts and the intended
changes during the course of a dialogue.

Therefore, in this paper dialogue management
is seen as a special case of reactive planning. As
shown above, discourse relations are derived from
meta-information about the state of executing a
plan for the current task. The discourse relations
serve as preconditions for speech acts effectuating
the update of the dialogue state.

6.3 Diagnosing Linguistic Errors

Our model of relating pragmatics and interaction
can be extended to discourse pragmatics as well.
It is particularly helpful to understand grounding
acts in the utterance unit level (see (Traum
and Hinkelman, 1992)). In this case, the (“appli-
cation”) domain is that of understanding language.
The task to be solved is to extract words from a
speech signal and to construct meaning from those
words. Error diagnoses occur frequently and op-
tions caused by ambiguities of natural language
have to be tested whether they can help to repair
a diagnosed error automatically. If not, the di-
agnoses as symptoms of misunderstanding have
to be assigned to possible causes. Strategic de-
cisions have to be made how to communicate the
causes and possible suggestion for repairs to the
user. This reasoning results in grounding acts that
would be hard to analyze otherwise. This idea can
be applied to negotiating speech acts as well. The
difficult task, however, is to implement a diagnosis
algorithm for failure in syntax analysis, (composi-
tional) semantics, and speech act analysis.

7 Understanding User Utterances

There are implications of our approach for com-
putational semantics: In order to see whether a
user utterance meets the system’s expectations, it
is necessary to analyze which domain the utter-
ance refers to. For this purpose, expectations for
discourse and system state are maintained sepa-
rately. Each new contribution must satisfy the dis-
course expectations (e.g. an answer should follow
a question) and pragmatic expectations (the con-
tent of the contribution must extend without con-
tradictions what is known about the current solu-
tion. To test this, a model (in the sense of formal
logic) is computed for the conjunction of the new
content and the currently available information.

As discussed above, it may happen in dialogues
that the focus is switched to another topic, i.e.
another domain, and the coherence can be estab-
lished only when taking this domain shift into ac-
count. In order to be able to detect such a do-
main shift, we define the meaning of performative
words depending on whether they refer to the hid-
den reasoning processes that are part of our ap-
proach, the discourse control domain, or to states,
objects, and functions in the current applications
situation: In the MAPTASK example, the utterance
Start from the palm beach refers to the process of
strategy selection and organization of a solution,
but not to the domain of explanations in a map.

8 Conclusions

The presented approach allows dialogue under-
standing to take into account that the (human) di-
alogue participant the system is interacting with is
(at least) equally able to diagnose errors and mis-
matches between observations and expectations
and generates utterances intended to update the di-
alogue state according to these findings. There-
fore, for establishing the coherence of a user utter-
ance, there are always several options: firstly, the
user continues the current solution, secondly, he
diagnoses failure and reports about it, and thirdly,
he switches the focus to another domain including
discourse update and repair strategies.

For these options, our approach devises a com-
putational model able to explain dialogues in
which coherence of turns is difficult analyze. In
this way, more natural dialogues can be analyzed
and generated. As the approach incorporates a
model for how talking about actions is related to
acting in a formalized domain, it serves as a basis

66



for constructing natural language assistance sys-
tems, e.g. for a great range of electronic devices.

References
Jens Allwood. 1997. Notes on dialog and coopera-

tion. In Kristina Jokinen, David Sadek, and David
Traum, editors, Proceedings of the IJCAI 97 Work-
shop on Collaboration, Cooperation, and Conflict in
Dialogue Systems, Nagoya, August.

Jens Allwood. 2000. An activity based approach to
pragmatics. In Harry C. Bunt and B. Black, editors,
Abduction, Belief, and Context in Dialogue, Studies
in Computational Pragmatics. John Benjamins, Am-
sterdam.

Marcello Balduccini and Michael Gelfond. 2003. Di-
agnostic reasoning with a-prolog. Theory and Prac-
tice of Logic Programming, 3(4–5):425–461, July.

George A. Bekey. 2005. Autonomous Robots: From
Biological Inspiration to Implementation and Con-
trol. MIT Press.

Johan Bos and Tetsushi Oka. 2002. An inference-
based approach to dialogue system design. In Pro-
ceedings of the 19th International Conference on
Computational Linguistics, pages 113–119.

Jean Carletta. 1992. Risk-Taking and Recovery in
Task-Oriented Dialogue. Ph.D. thesis, University of
Edinburgh.

Jennifer Chu-Carroll and Sandra Carberry. 1996. Con-
flict detection and resolution in collaborative plan-
ning. In Intelligent Agents: Agent Theories, Archi-
tectures, and Languages, volume 2 of Lecture Notes
in Artificial Intelligence, pages 111–126. Springer
Verlag.

Phil R. Cohen and Hector J. Levesque. 1995. Commu-
nicative actions for artificial agents. In Proceedings
of the First International Conference on Multi-Agent
Systems, pages 65–72, San Francisco, CA, June.

Andrew Garland, Neal Lesh, and Charles Rich. 2003.
Responding to and recovering from mistakes during
collaboration. In Gheorghe Tecuci, David W. Aha,
Mihai Boicu, Michael T. Cox, George Ferguson, and
Austin Tate, editors, Proceedings of the IJCAI Work-
shop on Mixed-Initiative Intelligent Systems, pages
59–64, August.

Barbara J. Grosz and Candace L. Sidner. 1986. Atten-
tion, intentions, and the structure of discourse. Com-
putational Linguistics, 12(3):175–204.

Barbara J. Grosz, Luke Hunsberger, and Sarit Kraus.
1999. Planning and acting together. AI Magazine,
20(4):23–34.

James Henderson, Oliver Lemon, and Kallirroi
Georgila. 2005. Hybrid reinforcement/supervised
learning for dialogue policies from communicator

data. In Proc. IJCAI workshop on Knowledge and
Reasoning in Practical Dialogue Systems, Edin-
burgh (UK).

Jörg Hoffmann and Bernhard Nebel. 2001. The
ff planning system: Fast plan generation through
heuristic search. Journal of Artificial Intelligence
Research, 14:253–302.

Alexander Huber and Bernd Ludwig. 2002. A natural
language multi-agent system for controlling model
trains. In Proceedings AI, Simulation, and Planning
in High Autonomy Systems (AIS 2002), pages 145–
149, Lissabon.

Staffan Larsson. 2002. Issue-based Dialogue Man-
agement. Ph.D. thesis, Department of Linguistics,
Göteborg University, Göteborg, Sweden.

Oliver Lemon, Alexander Gruenstein, Alexis Battle,
and Stanley Peters. 2002. Multi-tasking and collab-
orative activities in dialogue systems. In Proceed-
ings of the 3rd SIGdial Workshop on Discourse and
Dialogue, pages 113–124, Philadelphia.

Henry Lieberman and José Espinosa. 2006. A
goal-oriented interface to consumer electronics us-
ing planning and commonsene reasoning. In Pro-
ceedings of the 11th International Conference on In-
telligent User Interfaces. ACM, ACM Press.

Bernd Ludwig. 2004. A pragmatics-first approach to
the analysis and generation of dialogues. In Susanne
Biundo, Rhom Frühwirth, and Günther Palm, edi-
tors, Proc. KI-2004 (27th Annual German Confer-
ence on AI (KI-2004), pages 82–96, Berlin. Springer.

Tom M. Mitchell. 1997. Machine Learning. McGraw-
Hill.

Massimo Poesio and David Traum. 1998. Towards
an axiomatisation of dialogue acts. In J. Hulstijn
and A. Nijholt, editors, Proceedings of the Twente
Workshop on the Formal Semantics and Pragmatics
of Dialogues, pages 207–222, Enschede.

David R. Traum and Elizabeth A. Hinkelman. 1992.
Conversation acts in task-oriented spoken dialogue.
Computational Intelligence, 8(3):575–592.

David Traum. 1994. A Computational Theory
of Grounding in Natural Language Conversation.
Ph.D. thesis, Computer Science Department, Uni-
versity of Rochester.

Alexander Yates, Oren Etzioni, and Daniel Weld.
2003. A reliable natural language interface to house-
hold appliances. In Proceedings of the 8th Inter-
national Conference on Intelligent User Interfaces,
pages 189–196. ACM, ACM Press.

Claus Zinn. 2004. Flexible dialogue management
in natural-language enhanced tutoring. In Kon-
vens 2004 Workshop on Advanced Topics in Model-
ing Natural Language Dialog, pages 28–35, Viena,
September.

67


