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Preface

This is the proceedings of the Seventh SIGdial Workshop on Discourse and Dialogue. It is organized
by SIGDial which is jointly sponsored by ACL and ISCA. The seventh workshop continues a series of
successful workshops held in Hong Kong, Aalborg, Philadelphia, Sapporo, Boston and Lisbon. These
workshops attract a wide range of participants, both within the dialogue community and beyond.

For this workshop, we received a total of 45 submissions of which we accepted 21. 11 of these are full
papers and the rest posters. At the time of writing we are in the process of collecting demonstrations.
However, due to the tight time schedule, we will unfortunately not be able to include these into the
proceedings. The papers cover a number of thematic areas: spoken dialogue systems, question-answering
agents, natural language generation for dialogue applications, machine learning and multimodal dialogue
management.

We are very grateful to the members of the Program Committee for investing their time not only for
reviewing but also for their post-review discussions.

There are a number of additional people who have been involved in the preparation of this workshop. In
particular, we would like to express our gratitude to the following people: Stephan Lesch (DFKI GmbH)
for setting up and management of the web page, Olivia Kwong for help producing the proceedings and
Suzanne Stevenson for local organisation. We would also like to thank Microsoft for their sponsorship
of the workshop. Finally, a special thanks to David Traum (ICT) and Wolfgang Minker (UIm) from the
SlGdial executive committee for their valuable advice and assistance.

We are very grateful to our invited speakers Diane Litman (Pittsburgh) and Jonathan Ginzburg (King’s
College, London) for contributing their expertise. It is our belief that their presence will make the
workshop even more attractive. Finally, we wish all participants of the Workshop a great event.

Jan Alexandersson (DFKI GmbH) and Alistair Knott (University of Otago)
Organising Committee






Organizers

Chairs:

Jan Alexandersson, DFKI GmbH (Germany)
Alistair Knott, University of Otago (New Zealand)

Program Committee:

André Berton, DaimlerChrysler AG (Germany)

Masahiro Araki, Kyoto Institute of Technology (Japan)

Ellen Bard, University of Edinburgh (UK)

Johan Bos, La Sapienza (ltaly)

Johan Boye, Telia Research (Sweden)

Dirk Buhler, University of Ulm (Germany)

Sandra Carberry, University of Delaware (USA)

Rolf Carlson, KTH (Sweden)

Jennifer Chu-Carroll, IBM Research (USA)

Mark Core, University of Edinburgh (UK)

Laila Dybkjaer, University of Southern Denmark (Denmark)
Sadaoki Furui, Tokyo Institute of Technology (Japan)
Jonathan Ginzburg, King's College, London (UK)

Iryna Gurevych, Darmstadt University of Technology (Germany)
Joakim Gustafson, Teliasonera (Sweden)

Masato Ishizaki, University of Tokyo (Japan)

Michael Johnston, AT&T Research (USA)

Arne bnsson, Linkping University (Sweden)

Staffan Larsson, Gteborg University (Sweden)

Ranmbn Lopez-Mzar Delgado, University of Granada (Spain)
Susann Luperfoy, Stottler Henke Associates (USA)

Michael McTear, University of Ulster (UK)

Wolfgang Minker, University of UIm (Germany)

Sharon Oviatt, Oregon Health and Sciences University (Canada)
Tim Paek, Microsoft Research (USA)

Norbert Pfleger, DFKI GmbH (Germany)

Roberto Pieraccini, Tell-Eureka (USA)

Massimo Poesio, University of Essex (UK)

Norbert Reithinger, DFKI GmbH (Germany)

Laurent Romary, LORIA (France)

Alex Rudnicky, Carnegie Mellon University (USA)

David Schlangen, University of Potsdam (Germany)

Candy Sidner, Mitsubishi Electric Research Laboratories—MERL (USA)
Ronnie Smith, East Carolina University (USA)

Matthew Stone, Rutgers University (USA)

Marc Swerts, Tilburg University (The Netherlands)

David Traum, USC/ICT (USA)

Bonnie Webber, University of Edinburgh (UK)

Janyce Wiebe, University of Pittsburgh (USA)

Ingrid Zukerman, Monash University (Australia)

Invited Speakers:

Jonathan Ginzburg, King’s College, London (UK)
Diane J. Litman, University of Pittsburgh (USA)

vii






Workshop Program

Saturday, 15 July 2006

08:45-09:00

09:00-09:45

09:45-10:30

10:30-11:00

11:00-11:45

11:45-12:30

12:30-13:45

13:45-14:45

14:45-15:30

15:30-16:00

Opening remarks
Session 1: Spoken dialogue systems
Adaptive Help for Speech Dialogue Systems Based on Learning and Forgetting of
Speech Commands
Alexander Hof, Eli Hagen and Alexander Huber
Multi-Domain Spoken Dialogue System with Extensibility and Robustness against
Speech Recognition Errors
Kazunori Komatani, Naoyuki Kanda, Mikio Nakano, Kazuhiro Nakadai, Hiroshi
Tsujino, Tetsuya Ogata and Hiroshi G. Okuno

Morning coffee break

Session 2: Question-answering agents

Building Effective Question Answering Characters
Anton Leuski, Ronakkumar Patel, David Traum and Brandon Kennedy

Interactive Question Answering and Constraint Relaxation in Spoken Dialogue Sys-
tems
Sebastian Varges, Fuliang Weng and Heather Pon-Barry

Lunch

Invited Talk | - Jonathan Ginzburg

Content Recognition in Dialogue
Jonathan Ginzburg

Session 3: Generation in dialogue

Multidimensional Dialogue Management
Simon Keizer and Harry Bunt

Afternoon coffee break



Saturday, 15 July 2006 (continued)

16:00-17:00 Poster and demo session

DRT Representation of Degrees of Belief
Yafa Al-Raheb

Resolution of Referents Groupings in Practical Dialogues
Alexandre Denis, Guillaume Pitel and Matthieu Quignard

Tracing Actions Helps in Understanding Interactions
Bernd Ludwig

Semantic and Pragmatic Presupposition in Discourse Representation Theory
Yafa Al-Raheb

Semantic tagging for resolution of indirect anaphora
R. Vieira, E. Bick, J. Coelho, V. Muller, S. Collovini, J. Souza and L. Rino

An annotation scheme for citation function
Simone Teufel, Advaith Siddharthan and Dan Tidhar

An Information State-Based Dialogue Manager for Call for Fire Dialogues
Antonio Roque and David Traum

Automatically Detecting Action Items in Audio Meeting Recordings
William Morgan, Pi-Chuan Chang, Surabhi Gupta and Jason M. Brenier

Empirical Verification of Adjacency Pairs Using Dialogue Segmentation
T. Daniel Midgley, Shelly Harrison and Cara MacNish

Multimodal Dialog Description Language for Rapid System Development
Masahiro Araki and Kenji Tachibana

(Titles of demos will be provided at the workshop)



Sunday, 16 July 2006

09:00-09:45

09:45-10:30

10:30-11:00

11:00-11:45

11:45-12:30

12:30-13:45

13:45-14:45

14:45-15:30

15:30-16:00

16:00-16:45

16:45-17:00

Session 4: Coherence relations and dialogue acts
Classification of Discourse Coherence Relations: An Exploratory Study using Multiple
Knowledge Sources

Ben Wellner, James Pustejovsky, Catherine Havasi, Anna Rumshisky and Roser Sauri

Measuring annotator agreement in a complex hierarchical dialogue act annotation scheme
Jeroen Geertzen and Harry Bunt

Morning coffee break
Session 5: Machine learning |

Balancing Conflicting Factors in Argument Interpretation
Ingrid Zukerman, Michael Niemann and Sarah George

An Analysis of Quantitative Aspects in the Evaluation of Thematic Segmentation Algo-
rithms
Maria Georgescul, Alexander Clark and Susan Armstrong

Lunch

Invited Talk Il - Diane J. Litman

Discourse and Dialogue Processing in Spoken Intelligent Tutoring Systems
Diane J. Litman

Session 6: Multi-modal dialogue management

A computational model of multi-modal grounding for human robot interaction
Shuyin Li, Britta Wrede and Gerhard Sagerer

Afternoon coffee break
Session 7: Machine learning Il
Relationship between Utterances and "Enthusiasm" in Non-task-oriented Conversational
Dialogue

Ryoko Tokuhisa and Ryuta Terashima

Closing remarks

Xi






Adaptive Help for Speech Dialogue Systems Based on Learnirajnd
Forgetting of Speech Commands

Alexander Hof, Eli Hagen and Alexander Huber
Forschungs- und Innovationszentrum
BMW Group, Munich
al exander . hof , el i . hagen, al exander . hc. huber @nw. de

Abstract

In this paper we deal with learning and for-

getting of speech commands in speech di-
alogue systems. We discuss two mathe-
matical models for learning and four mod-

els for forgetting. Furthermore, we de-

scribe the experiments used to determine
the learning and forgetting curve in our

environment. Our findings are compared
to the theoretical models and based on
this we deduce which models best describe Entertainment

learning and forgetting in our automotive = 4 3 BAYERN3 TP TMC & SOS 10:32 i R
environment. The resulting models are _ o

used to develop an adaptive help system Elgure_ 1. iDrive controller and Central Informa-
for a speech dialogue system. The system tion Display (CID)

provides only relevant context specific in-

formation.

Kommunikation

Navigation

timize the options by adaption that takes prefer-
1 Introduction ences and knowledge into account.

Modern premium class vehicles contain a large ©OUr basic concern was to reduce the driver's
number of driver information and driving assis- MeMory load by reducing irrelevant information.
tance systems. Therefore the need for enhancedf? @daptive help system based upon an individual
display and control concepts arose. BMW's iDrive US€r model could overcome this disadvantage. In
is one of these concepts, allowing the driver tolKomatani et al., 2003) and (Libuda and Kraiss,
choose functions by a visual-haptic interface (se€003), several adaptive components can be in-
Fig. 1) (Haller, 2003). In Addition to the visual- ¢luded to improve dialogue systems, e.g. user and
haptic interface, iDrive includes a speech dialogué®ntent adaption, situation adaption and task adap-

system (SDS) as well. The SDS allows the drivetion- Hassel (2006) uses adaption to apply differ-

to use a large number of functions via speech com€nt dialogue strategies according to the user’s ex-

mands (Hagen et al., 2004). The system offererience with the SDS. In our system we concen-

a context specific help function that can be acrate on user modeling and content adaption.

tivated by uttering the keyword ’'options’. The In this paper, we present studies concerning
options provide help in the form of a list, con- learning and forgetting of speech commands in au-
taining speech commands available in the curreniomotive environments. The results are used to de-
context (see dialogue 1). Currently neither thevelop a model describing the driver's knowledge

driver's preferences nor his knowledge is takenin our SDS domain. This model is used to adapt
into consideration. We present a strategy to opthe content of the options lists.

1
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Dialogue 1

User: "Phone.”

System: "Phone. Say dial name, dial number or name a list.”

User: "Options.”

System: "Options. Say dial followed by a name, for exampial 'dlex’, or say dial name,

dial number, save number, phone book, speed dialing listetpht, last eight, ac-
cepted calls, missed calls, active calls and or or off.”

2 Learning of Commands next task was presented. The procedure was re-

In this section, we determine which function mostIoeated untl! all commands had be_en memorized.
For each trial, we measured the time span from

adequately describes learning in our environment o ,
quately 9 . SDS activation until the correct speech command
In the literature, two mathematically functions can

be found. These functions help to predict the'Vas ;poken. The time spans were standarqh;ed by
. . . dividing them through the number of the minimal
time necessary to achieve a task after several trials.

necessary steps that had to be taken to solve a task.
One model was suggested by (Newell and Rosen-
bloom, 1981) and describes learning with@ver 22 Results
law. Heathcote et. al.

(2002) instead suggest t? | that | ing tak |
use anexponential law n general, we can say that learning takes place

very fast in the beginning and with an increas-
T = B-N“ (powerlaw) (1) ing amount of trials the learning curve flattens
T = B-e*N (exponentiallaw) (2) and approximates an asymptote. The asymptote
at Ti,in = 2s defines the maximum expert level,

In both equationd” represents the time to solve .
9 P that means that a certain task can not be completed

a task, B is the time needed for the first trial of faster
a task,N stands for the number of trials andis ' . : . N

: . The resulting learning curve is shown in Fig. 3.
the learning rate parameter that is a measure fqr

the learning speed. The parametehnas to be de- n ord.er 0 d_etermlne whether equation (1) or (2).
termined empirically. We conducted memory testsdescrlbes this curve more exactly, we used a chi-
' squared goodness-of-fit test (Rasch et al., 2004).

to determine, which of the the two functions besLI_ 9
: . o . The morey“ tends to zero, the less the observed
describes the learning curve for our specific envi-

values (f,) differ from the estimated valuegy).

ronment.
2.1 Test Design for Learning Experiments 2= Z (fo—fe)? @)
The test group consisted of seven persons. The i=1 Je

subjects’ age ranged from 26 to 43 years. Five of _ _ .
According to Fig. 2, the power law has a mini-

the subjects had no experience with an SDS, two 5 O ith o | _

had very little. Novice users were needed, becaus@umf Oinin = O'4i) with a earn:r}g rat:e p_aram_e-

we wanted to observe only novice learning behav;[er ofa j 1.31. The e>_<ponent|a aw has Its min-
mum (x;;, = 2.72) with a = 0.41. This means

iour. The tests lasted about one hour and were coﬁh h miri £ th ial law diff
ducted in a BMW, driving a predefined route with; att he va uesl 0 It N EXpO?]em'a aV\II |’er rrl10re
moderate traffic. rom the actual value than the power law’s values.

Each subject had to learn a given set of ten taskghergfore, we use the power law (see Fig. 3(a)) to
with differing levels of complexity (see table 1). describe learning in our environment.
Cpmplexity is measured by the minimal necessary; Forgetting of Commands
dialogue steps to solve a task. The tasks were not
directly named, but explained in order not to men-The second factor influencing our algorithm for
tion the actual command and thus avoid any influthe calculation of options is forgetting. If a com-
ence on the learning process. There was no helmand was not in use for a long period of time,
allowed except the options function. The subjectave can assume that this command will be forgot-
received the tasks one by one and had to seardkn. In this section, we determine how long com-
for the corresponding speech command in the opmands are being remembered and deduce a func-
tions. After completion of a task in the testset thetion most adequately describing the process of for-



Task 1
Task 2
Task 3
Task 4
Task 5
Task 6
Task 7
Task 8
Task 9

Listen to a radio station with a specific frequency
Summary of already used destinations

Enter a new destination

Start navigation

Turn off speech hints

3D map

Change map scale

Avoid highways for route calculation

Turn on CD

Task 10 Display the car’s fuel consumption

Table 1: Tasks for learning curve experiments
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Figure 2: Localy? Minima

getting in our environment. In (Rubin and Wen- The variabley represents the initial amount of
zel, 1996) 105 mathematical models on forgettingearned items. The period of time is represented
were compared to several previously published rethrough ¢ while ¢ defines the decline parameter
tention studies. The results showed that there is nof the forgetting curve. In order to determine the
generally appliable mathematical model, but a fewbest forgetting curve for SDS interactions, we con-
models fit to a large number of studies. The mostiucted tests in which the participants’ memory
adequate models based on a logarithmic functiorskills were monitored.

an exponential function, a power function and a

square root function.

Hnew
Hnew

Hnew

Hnew

Hold
Hold
Hold

Hold

3.1 Test design for forgetting experiments
The second experiment consisted of two phases,

‘In(t+e)~° (logarithmic)(4) learning and forgetting. In a first step ten subjects

o0t

(exponential) (5)
(t+06)7°

learned a set of two function blocks, each consist-
ing of ten speech commands (see table (2)). The

(power) (6) learning phase took place in a BMW. The tasks

eV (square root) (7) and the corresponding commands were noted on
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Figure 3: Learning curves
Function block 1 Function block 2
Task 1 Start CD player Task 11 Turnon TV
Task 2 Listen to CD, track 5 Task 12 ~ Watch TV station 'ARD’
Task 3 Listen to tadio Task 13 Regulate blowers
Task 4 Listen to radio station 'Antenne Bay-Task 14  Change time settings
ern’
Task 5 Listen to radio on frequency 103,0 Task 15  Change date settings
Task 6 Change sound options Task 16 Change CID brightness
Task 7 Start navigation system Task 17 Connect with BMW Online
Task 8 Change map scale to 1km Task 18 Use phone
Task 9 Avoid highways for route calculation | Task 19 Assistance window
Task 10  Avoid ferries for route calculation Task 20  Turn off the CID

Table 2: Tasks for forgetting curve experiments

a handout. The participants had to read the tasks
and uttered the speech commands. When all 20
tasks were completed, this step was repeated as
long as all SDS commands could be freely repro-
duced. These 20 commands built the basis for ourigure 4: Iconic representation of the functions:
retention tests. phone, avoid highways and radio

Our aim was to determine how fast forgetting
took place, so we conducted several memory testSrpig method guarantees that each function was
over a time span of 50 days. The tests were con-
ducted in a laboratory environment and should im- 9 days 22 days 36 days 50 days
itate the situation in a car if the driver wants to per- | | | l l
form a task (e.g. listen to the radio) via SDS. Be- | | ) | |
cause we wanted to avoid any influence on the par
ticipant's verbal memory, the intentions Were Notsmng  sock 1 blaces  Bloes  pos
presented verbally or in written form but as iconic
representations (see Fig. 4). Eachiconrepresented Figure 5: Test procedure for retention tests
an intention and the corresponding speech com-
mand had to be spoken. only used once and relearning effects could not in-

fluence the results. As a measure for forgetting, we

Intention — Task— Command— Success  ysed the number of commands recalled correctly

Icon — Task— Command— Success  after a certain period of time.
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Figure 6: Forgetting curves

3.2 Results on the exponential function, we estimate that com-

The observed forgetting curve can be seen in Figf.)IEte forgetting will take place after approximately

6(a). In order to determine whether equation (4),100 days.

(5), (6) or (7) fits best to our findings, we used the L )

chi-squared goodness-of-fit test (cf. section 2.2)4 Providing Adaptive Help

The minimay? for the functions are shown in ta- . . . .
As discussed in previous works, several adaptive

ble (3). Because the exponential function (see F'g(:omponents can be included in dialogue systems,

Function 2 Corresponding e.g. user gdapti_on (Hassel ar?d Hagen, 2005), con-
logarithmic  2.11 0.58 tent adaption, situation adaption and task adaption
exponential  0.12 0.027 (Libuda and Kraiss, 2003). We concentrate on user
power 1.77 0.22 and content adaption and build a user model.
square root  0.98 0.15 According to Fischer (2001), the user’s knowl-
edge about complex systems can be divided into
Table 3:x? values several parts (see Fig. 7). well known and regu-

larly used conceptd-(1), vaguely and occasionally
6(b)) delivers the smallest?, we use equation (5) used conceptd=@) and concepts the user believes
for our further studies. to exist in the systemFQ3). F represents the com-
Concerning forgetting in general we can deduceplete functionality of the system. The basic idea
that once the speech commands have been learndighind the adaptive help system is to use infor-
forgetting takes place faster in the beginning. Withmation about the driver's behaviour with the SDS
increasing time, the forgetting curve flattens ando provide only help on topics he is not so famil-
at any time tends to zero. Our findings show thaiar with. Thus the help system focuses 62, F3
after 50 days about 75% of the original numberwithin F and finally the complete functionality.
of speech commands have been forgotten. Based For every driver an individual profile is gen-



tor UM.
The parameters are differently weighted by a

weight vectorU M,,, because each parameter is a
different indicator for the user’s experience.

h = 0.11
. o = 033

. UM,=]| t = 045 9)
Figure 7: Model about the user’'s knowledge on of = 022
complex systems b — —011

erated, containing information about usage freThe final user model is calculated by the scalar

quency and counters for every function. Severaproduct ofUM x UM,. If the resulting value is

methods can be used to identify the driver, e.gover a predefined threshold, the user is categorized
a personal ID card, a fingerprint system or faceas novice and a more explicit dialogue strategy is
recognition (Heckner, 2005). We do not furtherapplied, e.g. the dialogues contain more expam-

focus on driver identification in our prototype. ples. If the user model delivers a value under the
threshold, the user is categorized as expert and an
4.1 Defining an Expert User implicit dialogue strategy is applied.

In section 2 we observed that in our environ-
ment, the time to learn speech commands follows
a power law, depending on the number of trialsOur findings from the learning experiments can be
(N), the duration of the first interaction3) and used to create an algorithm for the presentation of
the learning rate parametes)( If we transform the context specific SDS help. Therefore, the op-
equation (1), we are able to determine the numbelion commands of every context are split into sev-
of trials that are needed to execute a function in £l help layers (see Fig. 8). Each layer contains a

given timeT'.

4.2 Knowledge Modeling Algorithm

T I Layer 1 ‘ ‘ Layer 2 ‘ ‘ Layer 3 ‘

N= "4 B (8) ‘ tem A ‘ 1 ‘ ‘ ltem E ‘ 5 ‘ ‘ item | ‘ 9 ‘

If we substituteT” with the minimal timeT,;, an ] ltem B [ 2 \ \ tem F [ 6 \ \ ltem J \10\
expert needs to execute a functidi,{, = 2s, cf. J r— l 8 ‘ ‘ — \ - ‘ ‘ i ‘11 ‘

section 2.2), we can estimate the humber of trials
which are necessary for a novice user to becom| temdp |4 || temH |8|| femL |12
an expert. The only variable is the duratiéh
which has to be measured for every function at itf=igure 8: Exemplary illustration of twelve help
first usage. items divided into three help layers

Additionally, we use two stereotypes (novice
and expert) to classify a user concerning his genmaximum of four option commands in order to re-
eral experience with the SDS. According to Has-duce the driver’s mental load (Wirth, 2002). Each
sel (2006), we can deduce a user’s experience hjem has a counter, marking the position within the
monitoring his behaviour while using the SDS.layers. The initial order is based on our experience
The following parameters are used to calculate awith the usage frequency by novice users. The first
additional user model: help requehtfuser asked layer contains simple and frequently used com-
for general information about the system), optionsmands, e.g. dial number or choose radio station.
request (user asked for the currently available Complex or infrequent commands are put into the
speech commands), timeoutgthe ASR did not lower layers. Every usage of a function is logged
get any acoustic signal), onset timguser needed by the system and a countés increased by 1 (see
more than 3 sec to start answering) and bargeequation 10).
in b (user starts speech input during the system’s Besides the direct usage of commands, we also
speech output). The parameters are noted in a vetake transfer knowledge into account. There are




several similar commands, e.g. the selectionofer]  Lavert || Llaer2 || Layers |
tries in different lists like phonebook, adressbook‘

or in the cd changer playlists. Additionally, there
are several commands with the same parametefl  iemb ‘ 4 \ ‘ ltem H } 8 | ‘ ltem K ‘11 \
e.g. radio on/off, traffic program on/off etc. All
similar speech commands were clustered in funa_ "emE [ ]]
tional families. If a user is familiar with one com- ‘ ltem F ‘ 8 ‘ ‘ ltem J ‘10| | ltem A |16|
mand in the family, we assume that the other func-
tions can be used or learned faster. Thus, we ingjgyre 9: Item A had an initial counter of= 1
troduced a valueg, that increases the indices of ang was presented in layer 1; after it has been used
all cammnds within the functional families. The 15 times (i> N), it is shifted into layer 3 and the
value ofo depends on the experience level of thecgnter has a new valie= 16

user.

ltem B ‘QH ltem G ‘7“ ltem C ‘10‘

Item | ‘ 9 | ‘ ltem L ‘12‘

. iq +1 direct usage 3.2) and the behaviour of the counter is described
fmew =\ 4+ o similar command (10) by equation (5).

In order to determine the value ef we conducted 5> Summary and Future Work

a small test series where six novice users were tolth this paper we presented studies dealing with
to learn ten SDS commands from different func-learning and forgetting of speech commands in an
tional families. Once they were familiar with the in-car environment. In terms of learning, we com-
set of commands, they had to perform ten tasks repared the power law of learning and the exponen-
quiring similar commands. The subjects were notial law of learning as models that are used to de-
allowed to use any help and should derive the necscribe learning curves. We conducted tests under
essary speech command from their prior knowl-driving conditions and showed that learning in this
edge about the SDS. Results showed that approxgase follows the power law of learning. This im-
mately 90% of the tasks could be completed by deplies that learning is most effective in the begin-
ducing the necessary speech commands from thging and requires more effort the more it tends to-
previously learned commands. Transferring thesevards an expert level.
results to our algorithm, we assume that once a Concerning forgetting we compared four possi-
user is an expert on a speech command of a fundle mathematical functions: a power function, an
tional family, the other commands can be derivecexponential function, a logarithmic function and a
very well. Thus we setr..,.,c = 0.9 for expert  square root function. Our retention tests showed
users and estimate that for novice users the valugat the forgetting curve was described most ad-
should beo,,ice = 0.6. These values have to be equately by the exponential function. Within the
validated in further studies. observed time span of 50 days about 75% of the
Every usage of a speech command increases iisitial amount of speech commands have been for-
counter and the counters of the similar commandsgotten.
These values can be compared to the valu&of  The test results have been transferred into an
resulting from equation (8)V defines a threshold algorithm specifying the driver's knowledge of
that marks a command as known or unknown. Ilfcommands within the SDS. Based on the learn-
a driver uses a command more often than the coling experiments we are able to deduce a thresh-
responding threshold (> N), our assumption is old that defines the minimal number of trials that
that the user has learned it and thus does not neette needed to learn a speech command. The for-
help on this command. It can be shifted into thegetting experiments allow us to draw conclusions
lowest layer and the other commands move oveon how long this specific knowledge will be re-
to the upper layers (see Fig. 9). mebered. With this information, we developed an
If a command is not in use for a long period of algorithm for an adaptive options list. It provides
time (cf. section 3.2), the counter of this commandhelp on unfamiliar speech commands.
steadily declines until the item’s initial counter Future work focuses on usability tests of the
value is reached. The decline itself is based on thprototype system, e.g. using the PARADISE eval-
results of our forgetting experiments (cf. sectionuation framework to evaluate the general usabil-



ity of the system (Walker et al., 1997). One mainBjorn Rasch, Malte Friese, Wilhelm Hofmann, and
question that arises in the context of an adaptive Ewald Naumann. 2004.Quantitative Methoden
help system is if the adaption will be judged use- SPTnNger

ful on the one hand and be accepted by the useabavid Rubin and Amy Wenzel. 1996. One hundred
on the other hand. Depending on user behaviour years of forgetting: A quantitative description of re-
the help system could shift its contents very fast, tention.Psychological Reviewl03(4):734-760.
which may cause some irritation. The test resultsyarilyn Walker, Diane Litman, Candace Kamm, and
will show whether people get irritated and whether Alicia Abella. 1997. Paradise: A framework for

the general approach for the options lists appears evaluating spoken dialogue agents. Rroceedings
of the eighth conference on European chapter of

to be useful. the Associationfor Computational Linguistiggages
271-280, Morristown, New Jersey. Association for
Computational Linguistics.
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Abstract

We developed a multi-domain spoken dia-
logue system that can handle user requests
across multiple domains. Such systems
need to satisfy two requirements. extensi-
bility and robustness against speech recog-
nition errors. Extensibility is required to
allow for the modification and addition
of domainsindependent of other domains.
Robustness against speech recognition er-
rors is required because such errors are
inevitable in speech recognition. How-
ever, the systems should still behave ap-
propriately, even when their inputs are er-
roneous. Our system was constructed on
an extensible architecture and is equipped
with arobust and extensible domain selec-
tion method. Domain selection was based
on three choices: (1) the previous domain,
(I the domain in which the speech recog-
nition result can be accepted with the high-
est recognition score, and (lll) other do-
mains. With the third choice we newly
introduced, our system can prevent dia-
logues from continuously being stuck in
an erroneous domain. Our experimental
results, obtained with 10 subjects, showed
that our method reduced the domain selec-
tion errors by 18.3%, compared to a con-
ventional method.

1 Introduction

Many spoken dialogue systems have been devel-
oped for various domains, including: flight reser-
vations (Levin et a., 2000; Potamianos and Kuo,
2000; San-Segundo et al., 2000), train travel in-
formation (Lamel et a., 1999), and bus informa-
tion (Komatani et al., 2005b; Raux and Eskenazi,

2004). Since these systems only handle a sin-
gle domain, users must be aware of the limita-
tions of these domains, which were defined by
the system developer. To handle various domains
through a single interface, we have developed a
multi-domain spoken dialogue system, which is
composed of several single-domain systems. The
system can handle complicated tasks that contain
requests across several domains.

Multi-domain spoken dial ogue systems need to
satisfy the following two requirements: (1) exten-
sibility and (2) robustness against speech recog-
nition errors. Many such systems have been de-
veloped on the basis of a master-slave architec-
ture, which is composed of a single master module
and several domain experts handling each domain.
This architecture has the advantage that each do-
main expert can be independently developed, by
modifying existing experts or adding new experts
into the system. In this architecture, the master
module needs to select a domain expert to which
response generation and dial ogue management for
the user’s utterance are committed. Hereafter, we
will refer to this selecting process domain selec-
tion.

The second requirement is robustness against
speech recognition errors, which are inevitable in
systems that use speech recognition. Therefore,
these systems must robustly select domains even
when the input may be incorrect due to speech
recognition errors.

We present an architecture for a multi-domain
spoken dialogue system that incorporates a new
domain selection method that is both extensi-
ble and robust against speech recognition errors.
Since our system is based on extensible architec-
ture similar to that developed by O’ Neill (O’ Neill
et a., 2004), we can add and modify the domain

Proceedings of the 7th SIGdial Workshop on Discourse and Dialqoages 9-17,
Sydney, July 20062006 Association for Computational Linguistics
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Figure 1: Distributed-type architecture for multi-domain spoken dialogue systems

experts easily. In order to maintain robustness,
domain selection takes into consideration vari-
ous features concerning context and situations of
the dialogues. We also designed a new selection
framework that satisfies the extensibility issue by
abstracting the transitions between the current and
next domains. Specifically, our system selects the
next domain based on: (1) the previous domain,
(1) the domain in which the speech recognition
result can be accepted with the highest recognition
score, and (lll) other domains. Conventional meth-
ods cannot select the correct domain when neither
the previous domain nor the speech recognition re-
sults for a current utterance are correct. To over-
come this drawback, we defined another choice as
(11 that enables the system to detect an erroneous
situation and thus prevent the dialogue from con-
tinuing to be incorrect. We modeled this frame-
work as a classification problem using machine
learning, and showed it is effective by perform-
ing an experimental evaluation of 2,205 utterances
collected from 10 subjects.

2 Architectureused for Multi-Domain
Spoken Dialogue Systems

In multi-domain spoken dial ogue systems, the sys-
tem design is more complicated than in single do-
main systems. When the designed systems are
closely related to each other, a modification in a
certain domain may affect the whole system. This
type of a design makes it difficult to modify ex-
isting domains or to add new domains. Therefore,
adistributed-type architecture has been previously
proposed (Lin et al., 2001), which enables system
developers to design each domain independently.
In this architecture, the system is composed of
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two kinds of components: a part that can be de-
signed independently of all other domains, and a
part in which relations among domains should be
considered. By minimizing the latter component,
a system developer can design each domain semi-
independently, which enables domains to be eas-
ily added or modified. Many existing systems are
based onthisarchitecture(Lineta., 2001; O’ Neill
et al., 2004; Pakucs, 2003; Nakano et al., 2005).
Thus, we adopted the distributed-type architec-
ture (Nakano et al., 2005). Our system is roughly
composed of two parts, as shown in Figure 1: sev-
eral expertsthat control dialoguesin each domain,
and a central module that controls each expert.
When auser speaksto the system, the central mod-
ule drives a speech recognizer, and then passes
the result to each domain expert. Each expert,
which controls its own domains, executes a lan-
guage understanding module, updates its dialogue
states based on the speech recognition result, and
returns the information required for domain selec-
tion*. Based on the information obtained from
the experts, the central module selects an appro-
priate domain for giving the response. An expert
then takes charge of the sel ected domain and deter-
mines the next dialogue act based on its dialogue
state. The central module generates a response
based on the dialogue act obtained from the expert,
and outputs the synthesized speech to the user.
Communications between the central module and
each expert are realized using method-callsin the
central module. Each expert is required to have
several methods, such as utterance understanding
or response selection, to be considered an expert

!Dialogue states in a domain that are not selected during
domain selection are returned to their previous states.



in this architecture.

As was previously described, the central mod-
ule is not concerned with processing the speech
recognition results; instead, the central module
leaves this task to each expert. Therefore, it is
important that the central module selects an ex-
pert that is committed to the process of the speech
recognition result. Furthermore, information used
during domain selection should also be domain
independent, because this allows easier domain
modification and addition, which is, after dl, the
main advantage of distributed-type architecture.

3 Extensible and Robust Domain
Selection

Domain selection in the central module should
also be performed within an extensibleframework,
and also should be robust against speech recogni-
tion errors.

In many conventional methods, domain selec-
tion is based on estimating the most likely do-
mains based on the speech recognition results.
Since these methods are heavily dependent on
the performance of the speech recognizers, they
are not robust because the systems will fail when
a speech recognizer fails. To behave robustly
against speech recognition errors, the success of
speech recognition and of domain selection should
be treated separately. Furthermore, in some con-
ventional methods, accurate language models are
required to construct the domain selection parts
before new domains are added to a multi-domain
system. This means that they are not extensible.

When selecting a domain, other studies have
used theinformation on the domainin which apre-
vious response was made. Lin et a. (2001) gave
preference to the domain selected in the previous
turn by adding a certain score as an award when
comparing the N-best candidates of the speech
recognition for each domain. Lane and Kawa-
hara (2005) also assigned a similar preference in
the classification with Support Vector Machine
(SVM). A system described in (O'Neill et d.,
2004) does not change its domain until its sub-task
iscompleted, which isaconstraint similar to keep-
ing dialogue in one domain. Since these methods
assumethat the previous domain ismost likely the
correct domain, it is expected that these methods
keep a system in the domain despite errors due
to speech recognition problems. Thus, should do-
main sel ection be erroneous, the damage dueto the
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Figure 2: Overview of domain selection

error is compounded, as the system assumes that
the previous domain is always correct. Therefore,
we solve this problem by considering features that
represent the confidence of the previously selected
domain.

We define domain selection as being based on
the following 3-class categorization: (1) the previ-
ous domain, (II) the domain in which the speech
recognition results can be accepted with the high-
est recognition score, which is different from the
previous domain, and (lll) other domains. Figure
2 depicts the three choices. This framework in-
cludesthe conventional methods as choices (1) and
(1. Furthermore, it considers the possibility that
the current interpretations may be wrong, which
is represented as choice (Ill). Thisframework also
has extensibility for adding new domains, since it
treats domain selection not by detecting each do-
main directly, but by defining only a relative re-
lationship between the previous and current do-
mains.

Since our framework separates speech recogni-
tion results and domain selection, it can keep di-
alogues in the correct domain even when speech
recognition results are wrong. This situation is
represented as choice (I). An example is shown
in Figure 3. Here, the user’s first utterance (U1)
is about the restaurant domain. Although the sec-
ond utterance (U2) is aso about the restaurant do-
main, an incorrect interpretation for the restaurant
domain is obtained because the utterance contains
an out-of-vocabulary word and is incorrectly rec-
ognized. Although a response for utterance U2
shouldideally bein the restaurant domain, the sys-
tem control shifts to the temple sightseeing infor-
mation domain, in which an interpretation is ob-
tained based on the speech recognition result. This



U1l: Tell mebarsin Kawaramachi area.
(domain: restaurant)

S1: Searching for barsin Kawaramachi area.
30 itemsfound.

U2: | want Tamanohikari (name of liquor).
(domain: restaurant)
Tamanohikari is out-of-vocabulary word, and
misrecognized as Tamba-bashi (name of place).
(domain: temple)

S2 (bad): Searching spots near Tamba-bashi. 10 items
found. (domain: temple)

S2 (good): | do not understand what you said. Do you
have any other preferences? (domain: restaurant)
-

Figure 3: Exampleinwhich choice (1) is appropri-
ate in spite of speech recognition error

is shown as utterance S2 (bad). In such cases, our
framework is capable of behaving appropriately.
This is shown as S2 (good), which is made by
selecting choice (1). Accepting erroneous recogni-
tion results is more harmful than rejecting correct
ones for the following reasons: 1) a user needs to
solve the misunderstanding as a result of the false
acceptance, and 2) an erroneous utterance affects
the interpretation of the utterancesfollowingit.

Furthermore, we define choice (lll), which de-
tects the cases where normal dialogue manage-
ment is not suitable, in which case the central
module selects an expert based on either the pre-
vious domain or the domain based on the speech
recognition results. The situation corresponds to
a succession of recognition errors. However, this
problem is more difficult to solve than merely de-
tecting a simple succession of the errors because
the system needs to distinguish between speech
recognition errors and domain selection errors in
order to generate appropriate next utterances. Fig-
ure 4 shows an example of such a situation. Here,
the user’s utterances U1 and U2 are about the tem-
ple domain, but a speech recognition error oc-
curred in U2, and system control shiftsto the hotel
domain. The user again says (U3), but this results
in the same recognition error. In this case, a do-
main that should ideally be selected is neither the
domain in the previous turn nor the domain deter-
mined based on the speech recognition results. If
thissituation can be detected, the system should be
able to generate an appropriate response, like S3
(good), and prevent inappropriate responses based
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U1: Tell methe addressof Horin-ji (temple name).
(domain: temple)

S1: The address of Horin-ji is...
U2: Then, what isthe feefor Horin-ji?
(domain: temple)
misrecognized as “ the fee of Holiday Inn” .
(domain: hotel)
S2: Thefeeof Holiday Innis...
U3: Thefeeof Horin-ji. (domain: temple)
again misrecognized as “ the fee of Holiday Inn” .
(domain: hotel)
S3 (bad): Thefee of Holiday Innis...
S3 (good): Areyou asking about hotel information?
U4: No.

S4: Would you like to return to the templeinformation
service?
%

N

Figure 4: Examplein which choice (lIl) should be
selected

on an incorrect domain determination. It is pos-
sible for the system to restart from two utterances
before (U1), after asking a confirmatory question
($4) about whether to returntoit or not. After that,
repetition of similar errors can also be avoided if
the system prohibitstransition to the hotel domain.

4 Domain Selection using Dialogue
History

We constructed a classifier that selects the appro-
priate domains using various features, including
dialogue histories. The selected domain candi-
dates are based on: (1) the previous domain, (II)
the domain in which the speech recognition results
can be accepted with the highest recognition score,
or (Ill) other domains. Here, we describe the fea-
tures present in our domain selection method.

In order to not spoil the system’s extensibility,
an advantage of the distributed-type architecture,
the features used in the domain selection should
not depend on the specific domains. We categorize
thefeatures used into three categorieslisted bel ow:

e Features representing the confidence with
which the previous domain can be considered
correct (Table 1)

o Featuresabout auser’s speech recognition re-
sult (Table 2)



Table 1: Features representing confidence in pre-
vious domain

Table 3: Features representing situations after do-
main selection

P1: number of affirmatives after entering the domain

P2: number of negations after entering the domain

P3: whether tasks have been completed in the domain
(whether to enter “ requesting detailed information”
in database search task)

P4. whether the domain appeared before

P5: number of changed slots after entering the domain

P6: number of turns after entering the domain

P7: ratio of changed slots (= P5/P6)

P8: ratio of user's negative answers (= P2/(P1 + P2))

PO: ratio of user’s negative answers in the domain (=
P2/P6)

P10: statesin tasks

Table 2: Features of speech recognition results

R1: best posteriori probability of the N-best candidates
interpreted in the previous domain

best posteriori probability for the speech recogni-
tion result interpreted in the domain, that is the do-
main with the highest score

average of word's confidence scores for the best
candidate of speech recognition results in the do-
main, that is, the domain with the highest score
difference of acoustic scores between candidates
selected as (1) and (II)

ratio of averages of words confidence scores be-
tween candidates selected as (1) and (I1)

R2:

R3:

RA4:

R5:

o Features representing the situation after do-
main selection (Table 3)

We can take into account the possibility that a
current estimated domain might be erroneous, by
using features representing the confidence in the
previous domain. Each feature from P1 to P9 is
defined to represent the determination of whether
an estimated domain is reliable or not. Specifi-
cally, if there are many affirmative responses from
a user or many changes of slot values during in-
teractionsin the domain, we regard the current do-
main as reliable. Conversely, the domain is not
reliableif there are many negative answers from a
user after entering the domain.

We also adopted the feature P10 to represent
the state of the task, because the likelihood that
a domain is changed depends on the state of the
task. We classified the tasks that we treat into two
categories using the following classifications first
made by Araki et al. (1999). For atask catego-
rized as a “dot-filling type’, we defined the di-
alogue states as one of the following two types:
“not completed”, if not all of the requisite slots
have been filled; and “completed”, if all of the
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C1: dialogue state after the domain selection after se-
lecting previous domain

whether the interpretation of the user’s utteranceis
negative in previous domain

number of changed slots after selecting previous
domain

dialogue state after selecting the domain with the
highest speech recognition score

whether the interpretation of the user’s utterance
is negative in the domain with the highest speech
recognition score

number of changed slots after selecting the domain
with the highest speech recognition score

number of common slots (name of place, here)
changed after selecting the domain with the high-
est speech recognition score

whether the domain with the highest speech recog-
nition score has appeared before

C2.

C3.

C4.

C5:

C6:

C7.

Cs:

requisite slots have been filled. For atask catego-
rized as a “database search type”, we defined the
dialogue states as one of the following two types.
“gpecifying query conditions’ and “requesting de-
tailed information”, which were defined in (Ko-
matani et a., 2005a).

The features which represent the user’s speech
recognition result are listed in Table 2 and corre-
spond to those used in conventional studies. R1
considersthe N-best candidates of speech recogni-
tion results that can be interpreted in the previous
domain. R2 and R3 represent information about a
domain with the highest speech recognition score.
R4 and R5 represent the comparisons between the
above-mentioned two groups.

The features that characterize the situations af-
ter domain selection correspond to the information
each expert returns to the central module after un-
derstanding the speech recognition results. These
are listed in Table 3. Features listed from C1 to
C3 represent a situation in which the previous do-
main (choice (1)) is selected. Those listed from
C4 to C8 represent a situation in which a domain
with the highest recognition score (choice (I1)) is
selected.

Note that these features listed here have sur-
vived after feature selection. A feature survives
if the performance in the domain classification is
degraded when it isremoved from afeature set one
by one. We had prepared 32 features for theinitial
Set.



Table 4: Specifications of each domain

Name of Class of #of vocab. | #of
domain task inASR | dots
restaurant || database search 1,562 10
hotel database search 741 9
temple database search 1,573 4
weather dot filling 87 3
bus dot filling 1,621 3
total - | 7373 | -

5 Experimental Evaluation

51

We implemented a Japanese multi-domain spoken
dialogue system with five domain experts: restau-
rant, hotel, temple, weather, and bus. Specifica-
tions of each expert are listed in Table 4. If there
is any overlapping slot between the vocabularies
of the domains, our architecture can treat it as a
common slot, whose value is shared among the
domains when interacting with the user. In our
system, place names are treated as a common slot.
We adopted Julian as the grammar-based
speech recognizer (Kawahara et al., 2004). The
grammar rules for the speech recognizer can be
automatically generated from those used in the
language understanding modules in each domain.
As a phonetic model, we adopted a 3000-states
PTM triphone model (Kawahara et al., 2004).

Implementation

5.2 Callecting Dialogue Data

We collected dialogue data using a baseline sys-
tem from 10 subjects. First, the subjects used the
system by following a sample scenario, to get ac-
customed to the timing to speak. They, then, used
the system by following three scenarios, where at
least three domains were mentioned, but neither
an actual temple name nor domain was explicitly
mentioned. One of the scenariosis shown in Fig-
ure 5. Domain selection in the baseline system
was performed on the basis of the baseline method
that will be mentioned in Section 5.4, in which «
was set to 40 after preliminary experiments.

In the experiments, we obtained 2,205 utter-
ances (221 per subject, 74 per diaogue). The
accuracy of the speech recognition was 63.3%,
which was rather low. This was because the sub-
jects tended to repeat similar utterances even after
mi srecognition occurred due to out-of-grammar or
out-of-vocabulary utterances. Another reason was
that the dialogues for subjects with worse speech
recognition results got longer, which resulted in an
increase in the total number of misrecognition.
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Tomorrow or the day after, you are planning a sightsee-
ing tour of Kyoto. Please find a shrine you want to visit
in the Arashiyama area, and determine, after consider-
ing the weather, on which day you will visit the shrine.
Please, ask for atemperature on the day of travel. Also
find out how to go to the shrine, whether you can take a
bus from the Kyoto station to there, when the shrineis
closing, and what the entrance feeis.

Figure 5: Example of scenarios

5.3 Construction of the Domain Classifier

We used the data containing 2,205 utterances col-
lected using the baseline system, to construct ado-
main classifier. We used C5.0 (Quinlan, 1993) as
a classifier. The features used were described in
Section 4. Reference labels were given by hand
for each utterance based on the domains the sys-
tem had selected and transcriptions of the user’s
utterances, as follows?.

Label (I): When the correct domain for a user’s
utterance is the same as the domain in which
the previous system’s response was made.

Label (I1): Except for case (1), when the correct
domain for a user’s utterance is the domain
in which a speech recognition result in the N-
best candidates with the highest score can be
interpreted.

Label (ll1): Domains other than (1) and (II).

5.4 Evaluation of Domain Selection

We compared the performance of our domain se-
lection with that of the baseline method described
bel ow.

Baseline method: A domain having an interpre-
tation with the highest score in the N-best
candidates of the speech recognition was se-
lected, after adding « for the acoustic likeli-
hood of the speech recognizer if the domain
was the same as the previous one. We calcu-
lated the accuracies of domain selections for
various a.

2Although only one of the authors assigned the labels,
they could be easily assigned without ambiguity, since the
labels were automatically defined as previously described.
Thus, the annotator only needs to judge whether a user’s re-
quest was about the same domain asthe previous system’sre-
sponse or whether it was about a domain in the speech recog-
nition result.
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Figure 6: Accuracy of domain selection in the
baseline method

Our method: A domain was selected based on
our method. The performance was cal cul ated
with a 10-fold cross validation, that is, one
tenth of the 2,205 utteranceswere used astest
data, and the remainder was used as training
data. The processwas repeated 10 times, and
the average of the accuracies was computed.

Accuracies for domain selection were calculated
per utterance. When there were several domains
that had the same score after domain selection, one
domain was randomly selected among them as an
output.

Figure 6 shows the number of errors for do-
main selection in the baseline method, categorized
by their reference labels as o changed. As « in-
creases, so does the system desire to keep the pre-
vious domain. A condition where o« = 0 cor-
responds to a method in which domains are se-
lected based only on the speech recognition re-
sults, which implies that there are no constraints
on keeping the current domain. As we can see
in Figure 6, the number of errors whose refer-
ence labelsare“adomain in the previous response
(choice(l))” decreasesas a getslarger. Thisis be-
cause incorrect domain transitions due to speech
recognition errors were suppressed by the con-
straint to keep the domains. Conversely, we can
see an increase in errors whose labels are “a do-
main with the highest speech recognition score
(choice (II))". This is because there is too much
incentive for keeping the previous domain. The
smallest number of errors was 634 when o = 35,
and the error rate of domain selection was 28.8%
(= 634/2205). There were 371 errors whose refer-
ence labelswere neither “adomain in the previous
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response” nor “a domain with the highest speech
recognition score”, which cannot be detected even
when « is changed based on conventiona frame-
works.

We also cal cul ated the classification accuracy of
our method. Table 5 shows the results as a con-
fusion matrix. The left hand figure denotes the
number of outputs in the baseline method, while
the right hand figure denotes the number of out-
puts in our method. Correct outputs are in the
diagona cells, while the domain selection errors
are in the off diagonal cells. Total accuracy in-
creased by 5.3%, from 71.2% to 76.5%, and the
number of errorsin domain selection was reduced
from 634 to 518, so the error reduction rate was
18.3% (= 116/634). There was no output in the
baseline method for “ other domains(lll)”, whichis
in the third column, because conventional frame-
works have not taken this choice into considera-
tion. Our method was able to detect this kind of
error in 157 of 371 utterances, which alows us
to prevent further errors from continuing. More-
over, accuracies for (1) and (Il) did not get worse.
Precision for (I) improved from 0.77 to 0.83, and
the F-measure for (1) also improved from 0.83 to
0.86. Although recall for (Il) got worse, its preci-
sionimproved from 0.52 to 0.62, and consequently
the F-measure for () improved slightly from 0.61
to 0.62. These results show that our method can
detect choice (lll), which was newly introduced,
without degrading the existing classification accu-
racies.

The features that follow played an important
role in the decision tree. The features that repre-
sent confidence in the previous domain appeared
in the upper part of the tree, including “the num-
ber of affirmativesafter entering the domain (P1)”,
“the ratio of user’'s negative answers in the do-
main (P9)”, “the number of turns after entering the
domain (P6)”, and “the number of changed slots
based on the user’s utterances after entering the
domain (P5)”. Thesewere also “whether adomain
with the highest score has appeared before (C8)”
and “whether an interpretation of a current user’s
utteranceis negative (C2)".

6 Conclusion

We constructed a multi-domain spoken dialogue
system using an extensible framework. Domain
selection in conventional studies is based on ei-
ther the domain based on the speech recognition



Table 5: Confusion matrix in domain selection (baseline / our method)

referencelabel \ output || in previousresponse (I) | with highest score (Il) [ others(lll) [| #total Iabel (recall)

in previous response (1) 1289/ 1291 162785 0/75 1451 (0.89/0.89)
with highest score (1) 84/99 299" / 2567 0/28 383(0.74/0.62)
others (Il 293/ 172 78142 0/157 371( 0/042)

total 1666/ 1562 5397383 07260 2205
(precision) (0.77) / (0.83) (0.52) / (0.62) (-)/(0.60) (0.712/0.765)

t: Theseinclude 17 errors because of random selection when there were several domains having the same highest scores.

results or the previous domain. However, we no-
ticed that these conventional frameworks cannot
cope with situations where neither of these do-
mains is correct. Detection of such situations
can prevent dialogues from staying in the incor-
rect domain, which allows our domain selection
method to be robust against speech recognition er-
rors. Furthermore, our domain selection method
is also extensible. Our method does not select the
domains directly, but, by categorizing them into
three classes, it can cope with an increase or de-
crease in the number of domains. Based on there-
sults of an experimental evaluation using 10 sub-
jects, our method was able to reduce domain se-
lection errors by 18.3% compared to a basdine
method. This means our system is robust against
speech recognition errors.

There are till some issues that could make
our system more robust, and this is included in
future work. For example, in this study, we
adopted a grammar-based speech recognizer to
construct each domain expert easily. However,
other speech recognition methods could be used,
such as a statistical language model. As well,
multiple speech recognizers employing different
domain-dependent grammars could be run in par-
alel. Thus, we needto investigate how to integrate
these approaches into our framework, without de-
stroying the extensibility.
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Abstract out who caused this local havoc. She is out to in-
terrogate a number of withesses represented by the

In this paper, we describe methods for  virtual characters. It is reasonable to expect that
building and evaluation of limited do-  each conversation is going to be focused solely on
main question-answering characters. Sev-  the event of interest and the characters may refuse
eral classification techniques are tested, in-  to talk about anything else. Each witness may have
cluding text classification using support g particular and very narrow view into an aspect of
vector machines, language-model based the event, and the student's success would depend
retrieval, and cross-language information  on what sort of questions she asks and to which
retrieval teChniqueS, with the latter haVing character she addresses them.
the highest success rate. We also evalu- Automatic question answering (QA) has been
ated the effect of speech recognition errors sy died extensively in recent years. For example,
on performance with users, finding thatre-  here js a significant body of research done in the
trieval is robust until recognition reaches  context of the QA track at the Text REtrieval Con-
over 50% WER. ference (TREC) (Voorhees, 2003). In contrast to
the TREC scenario where both questions and an-
swers are based on facts and the goal is to provide
In the recent Hollywood movie “iRobot” set in the mostrelevantanswer, we focus the answer’s

2035 the main character played by Will Smith is@ppropriateness In our example about an inves-
running an investigation into the death of an oldtigation, an evasive, misleading, or an “honestly”
friend. The detective finds a small device thatwrong answer from a witness character would be
projects a holographic image of the deceased. ThePpropriate but might not be relevant. We try
device delivers a recorded message and responéf highlight that distinction by talking about QA
to questions by playing back prerecorded answergharactersas opposed to QA systems or agents.
We are developing virtual characters with similar We expect that a typical simulation would con-
capabilities. tain quite a few QA characters. We also expect
Our target applications for these virtual characthose characters to have a natural spoken language
ters are training, education, and entertainment. Fdnteraction with the student. Our technical require-
use in education, such a character should be abgents for such a QA character is that it should be
to deliver a message to the student on a specifiable to understand spoken language. It should be
topic. It also should be able to support a basic sporobust to disfluencies in conversational English. It
ken dialog on the subject of the message, e.g., ashould be relatively fast, easy, and inexpensive to
swer questions about the message topic and giveonstruct without the need for extensive domain
additional explanations. For example, consider &nowledge and dialog management design exper-
student learning about an event in a virtual world tise.
Lets say there is a small circus in a small town and In this paper we describe a QA character by the
someone has released all the animals from circusiame of SGT Blackwellwho was originally de-
A young student plays a role of a reporter to findsigned to serve as an information kiosk at an army

1 Introduction
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conference (see Appendix C for a photograph othat the user persists in asking the questions for
the system)?). We have used SGT Blackwell to which the character has no informative response,
develop our technology for automatic answer sethe system tries to nudge the user back into the
lection, conversation management, and system irconversation domain by suggesting a question for
tegration. We are presently using this technologythe user to ask: “You should ask me instead about
to create other QA characters. my technology.” There are 7 different prompts in
In the next section we outline the SGT Black-the system.
well system setup. In Section 3 we discuss the One topic can be covered by multiple answers,
answer selection problem and consider three difso asking the same question again often results in
ferent algorithms: Support Vector Machines clas-a different response, introducing variety into the
sifier (SVM), Language Model retrieval (LM), and conversation. The user can specifically request
Cross-lingual Language Model (CLM) retrieval. alternative answers by asking something along
We present the results of off-line experimentsthe lines of “do you have anything to add?” or
showing that the CLM method performs signifi- “anything else?” This is the first of two types
cantly better than the other two techniques in Seceommand-like expressions SGT Blackwell under-
tion 4. Section 5 describes a user study of the sysstands. The second type is a direct request to re-
tem that uses the CLM approach for answer selegeat the previous response, e.g., “come again?” or
tion. Our results show that the approach is verywhat was that?”
robust to deviations in wording from expected an- If the user persists on asking the same question
swers, and speech recognition errors. Finally, wever and over, the character might be forced to re-
summarize our results and outline some directionpeat its answer. It indicates that by preceding the

for future work in Section 6. answer with one of the four “pre-repeat” lines in-
dicating that incoming response has been heard re-
2 SGT Blackwell cently, e.g., “Let me say this again...”

A user talks to SGT Blackwell using a head-3 aAnswer Selection
mounted close capture USB microphone. The
user’s speech is converted into text using an au¥he main problem with answer selection is uncer-
tomatic speech recognition (ASR) system. Wetainty. There are two sources of uncertainty in
used the Sonic statistical speech recognition era spoken dialog system: the first is the complex
gine from the University of Colorado (Pellom, nature of natural language (including ambigu-
2001) with acoustic and language models proity, vagueness, underspecification, indirect speech
vided to us by our colleagues at the University ofacts, etc.), making it difficult to compactly char-
Southern California (Sethy et al., 2005). The an-acterize the mapping from the text surface form to
swer selection module analyzes the speech recogie meaning; and the second is the error-prone out-
nition output and selects the appropriate responsgut from the speech recognition module. One pos-
The character can deliver 83 spoken lines rangsible approach to creating a language understand-
ing from one word to a couple paragraphs |ong'ng system is to design a set of rules that select a
monologues. There are three kinds of lines SGTesponse given an input text string (Weizenbaum,
Blackwell can deliver: content, off-topic, and 1966). Because of uncertainty this approach can
prompts. The 57 content-focused lines cover théluickly become intractable for anything more than
identity of the character, its origin, its languagethe most trivial tasks. An alternative is to cre-
and animation technology, its design goals, ougte an automatic system that uses a set of train-
university, the conference setup, and some misng question-answer pairs to learn the appropriate
cellaneous topics, such as “what time is it?” andjuestion-answer matching algorithm (Chu-Carroll
“where can | get my coffee?” and Carpenter, 1999). We have tried three differ-
When SGT Blackwell detects a question that€nt methods for the latter approach, described in
cannot be answered with one of the contentthe restof this section.
focused lines, it selects one out of 13 off-topic re- o
sponses, (e.g., “I am not authorized to commenig'l Text Classification
on that,”) indicating that the user has ventured ouiThe answer selection problem can be viewed as a
of the allowed conversation domain. In the eventext classification task. We have a question text
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as input and a finite set of answers, — classes, eeived by the systen®R, is the set of all the an-
we build a system that selects the most appropriatewers appropriate to that question, aftlv|R¢)
class or set of classes for the question. Text classis the probability that a word randomly sampled
fication has been studied in Information Retrievalfrom an appropriate answer would be the ward
(IR) for several decades (Lewis et al., 1996). TheThe language model @ is the set of probabili-
distinct properties of our setup are (1) a very smalties P(w|Rq) for every word in the vocabulary. If
size of the text, — the questions are very short, and/e knew the answer set for that question, we can
(2) the large number of classes, e.g, 60 responsesasily estimate the model. Unfortunately, we only
for SGT Blackwell. know the question and not the answer Bgt We

An answer defines a class. The questions correédpproximate the language model with the condi-
sponding to the answer are represented as vectdiignal distribution:
of term features. We tokenized the questions and
stemmed using the KStem algorithm (Krovetz,
1993). We used af x idf weighting scheme to  P(w|Rg) =~ P(w|Q)
assign values to the individual term features (Al-
lan et al., 1998). Finally, we trained a multi-class The next step is to calculate the joint probabil-
Support Vector MachinesS(/ M """ classifier ity of observing a string? (W) = P(wy, ..., wy).
with an exponential kernel (Tsochantaridis et al. Different methods for estimating(17) have been
2004). We have also experimented with linearsuggested starting with simple unigram approach
kernel function, various parameter values for theyhere the occurrences of individual words are as-
exponential kernel, and different term weightingsumed independent from each othe?(WW) =
schemes. The reported combination of the kerﬂg‘:l P(w;). Other approaches include Proba-
nel and weighting scheme showed the best clasilistic Latent Semantic Indexing (PLSI) (Hoff-
sification performance. Such an approach is wellman, 1999) and Latent Dirichlet Allocation
known in the community and has been shown tqLDA) (Blei et al., 2003). The main goal of these
work very well in numerous applications (Leuski, different estimations is to model the interdepen-
2004). In fact, SVM is generally considered to bedencies that exist in the text and make the esti-
one of the best performing methods for text clasmation feasible given the finite amount of training
sification. We believe it provides us with a very data.

_ P(w,q1, ..., qm)
= Planogn) D

strong baseline. In this paper we adapt an approach suggested
by Lavrenko (Lavrenko, 2004). He assumed that
3.2 Answer Retrieval all the word dependencies are defined by a vector

The answer selection problem can also be viewed' possmly_unknown pa_lram_(,eters on the Ie_mguage
model. Using the de Finetti's representation the-

as an information retrieval problem. We have a

set of answers which we can call documents in aco ¢ and kernel-based probability estimations, he

cordance with the information retrieval terminol- 4€rved the f(?II0W|ng estimate for the query lan-

ogy. Let the question be the query, we compareguage model.

the query to each document in the collection and

return the most appropriate set of documents. Pw|Q) S ses ms(w) Ty ms(gs)
Presently the best performing IR techniques ST ms(qs)

are based on the concept of Language Model- . .

ing (Ponte and Croft, 1997). The main strategy H€re we sum over all training strings € 5,

is to view both a query and a document as sample¥heres is the set of training stringsr, (w) is the

from some probability distributions over the words ProPability of observing wordy in the strings,
in the vocabulary (i.e., language models) and comwhich can be estimated directly from the training

pare those distributions. These probability distri-data. Generally the unigram maximum likelihood
butions rarely can be computed directly. The “art"€Stimator is used with some smoothing factor:
of the field is to estimate the language models as

(2)

accurately as possible given observed queries and #(w, 5) S #(w, 5)
documents. ms(w) = Ay - 5] + (1= \y)- =
Let @ = ¢i1...qn be the question that is re- (3)
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where#(w, s) is the number of times word ap-  the problem as a cross-lingual information task,
pears in strings, |s| is the length of the string,  where one has a query in one language and wishes
we sum over all training strings € S, and the to retrieve documents in another language. There
constant\, is the tunable parameter that can beare two ways we can solve it: we can translate the
determined from training data. answers into the question language by building a
We know all the possible answers, so the answerepresentation for each answer using the question
language modeP(w|A) can be estimated from vocabulary or we can build question representa-
the data: tions in the answer language.
Plw]d) = ma(w) “) 3.4 Question domain

3.3 Ranking criteria We create an answer representation in the ques-

To compare two language models we use thd&ion vocabulary by merging together all the train-

Kullback-Leibler divergencé)(p,||p.) defined as  ing questions that are associated with the answer
into one string: a pseudo-answer. We use equa-

tions 5, 2, 3, and 4 to compare and rank the
P(w|Q)

D(pgllpa) = 3 P(w|Q)log Pl (5) pseudo-answers. Note that in equationiterates

weV over the set of all pseudo-answers.

which can be interpreted as the relative entropy be3.5 Answer domain

tween two distributions. Note that the Kullback- Let us look at the question |anguage model

Leibler divergence is a dissimilarity measure, WeP(w’Q) again, but now we will take into account

use—D(pg||pa) to rank the answers. thatw andQ are from different vocabularies and
So far we have assumed that both questiongave potentially different distributions:

and answers use the same vocabulary and have

the same a priori language models. Clearly, it is m

not the case. For example, consider the follow- P(w|Q) = 2 oa, (W) 1321 7Q. () (6)

ing exchange: “what happened here?” — “well, s 1% 7o, (ai)
_ma?r?/\,/;:)rr;ﬁone relea_selt_jktf;etangmals this morn- Heres iterates over the training set of question-
'”g't ¢ 'ﬂ? © ar1t§wet[r|]s 'Kely fo be ;ery a:oprctJ)- answer pairs(Qs, As} and az(w) is the experi-
priate fo Ihe question, tere IS No Word overiap bey, o probability distribution on the answer vo-
tween these sentences. This is an example of wh

i N ; ; @bulary given by the expression similar to equa-
is known in information retrieval as vocabulary tio yg y p q

. n3:
mismatch between the query and the documents.
In a typical retrieval scenario a query is assumed ap (1) = A #(w, ) - )ZS #(w, )
to look like a part of a document. We cannot make "/ 7% |g] D DN

the same assumption about the questions because
of the language rules: e.g., “what”, “where”, and@nd the answer language mode{w|A) can be
“why” are likely to appear much more often in €stimated from the data as
guestions than in answers. Additionally, a typi-
cal document is much larger than any of our an-
swers and has a higher probability to have word
in common with the query. Finally, a typical re-
trieval scenario is totally context-free and a user i3Ne have a collection of questions for SGT Black-
encouraged to specify her information need as acwell each linked to a set of appropriate responses.
curately as possible. In a dialog, a portion of theOur script writer defined the first question or two
information is assumed to be well-known to thefor each answer. We expanded the set by a) para-
participants and remains un-verbalized leading t@hrasing the initial questions and b) collecting
sometimes brief questions and answers. questions from users by simulating the final sys-
We believe this vocabulary mismatch to be satem in a Wizard of Oz study (WOZ). There are
significant that we view the participants as speaki,261 questions in the collection linked to 72 an-
ing two different “languages”: a language of ques-swers (57 content answers, 13 off-topic responses,
tions and a language of answers. We will modeland 2 command classes, see Section 2). For this

P(w]A) = as(w)

2 Algorithm comparison
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study we considered all our off-topic responseshown are statistical significant by t-test with the
equally appropriate to an off-topic question andcutoff set to 5% % < 0.05).
we collapsed all the corresponding responses into We repeated out experiments on QA charac-
one class. Thus we have 60 response classes. ters we are developing for another project. There
We divided our collection of questions into We have 7 different characters with various num-
training and testing subsets following the 10-foldber of responses. The primary difference with
cross-validation schema. The SVM system waghe SGT Blackwell data is that in the new sce-
trained to classify test questions into one of the 6@ario each question is assigned to one and only
classes. one answer. Table 2 shows the accuracy numbers
Both retrieval techniques produce a ranked lisfor the answer selection techniques on those data
of candidate answers ordered by thé(p,||pa) sets. These performance_ numbers are generally
score. We only select the answers with scores thdpWer than the corresponding numbers on the SGT
exceed a given thresholdD(py|[pa) > 7. If the Blackwell collection. We have not yet collected
resulting answer set is empty we classify the ques2S many training questlo_nS as for SGT Blackwell.
tion as off-topic, i.e., set the candidate answer sef/e observe that the retrieval approaches are more
contains to an off-topic response. We determinsuccessful for problems with more answer classes

the language model smoothing parameterand and more training data. The table shows the per-
the threshold- on the training data. cent improvement in classification accuracy for

each LM-based approach over the SVM baseline.

We consider two statistics when measuring th S . o .
e . g eI'he asterisks indicate statistical significance using
performance of the classification. First, we mea-

- i o)
sure its accuracy. For each test question the firse%t test with the cutoff setto 5% (< 0.05).
response returned by the system, — the class fro
the SVM system or the top ranked candidate anl—g Effect of ASR

swer returned by either LM or CLM methods, — |y the second set of experiments for this paper
is considered to be correct if there is link betweenye studied the question of how robust the CLM
the question and the response. The accuracy is thgswer selection technique in the SGT Blackwell
proportion of correctly answered questions amongystem is to the disfluencies of normal conversa-
all test questions. tional speech and errors of the speech recogni-
The second statistic is precision. Both LM andtion. We conducted a user study with people in-
CLM methods may return several candidate anterviewing SGT Blackwell and analyzed the re-
swers ranked by their scores. That way a user wilkults. Because the original system was meant for
get a different response if she repeats the questionne of three demo “reporters” to ask SGT Black-
For example, consider a scenario where the firsivell questions, specialized acoustic models were
response is incorrect. The user repeats her queased to ensure the highest accuracy for these three
tion and the system returns a correct response crémale) speakers. Consequently, for other speak-
ating the impression that the QA character simplyers (especially female speakers), the error rate was
did not hear the user correctly the first time. Wemuch higher than for a standard recognizer. This
want to measure the quality of the ranked list ofallowed us to calculate the role of a variety of
candidate answers or the proportion of approprispeech error rates on classifier performance.
ate answers among all the candidate answers, but For this experiment, we recruited 20 partici-
we should also prefer the candidate sets that list appants (14 male, 6 female, ages from 20 to 62)
the correct answers before all the incorrect onesrom our organization who were not members of
A well-known IR technique is to compute aver- this project. All participants spoke English flu-
age precision — for each position in the ranked lisently, however the range of their birth languages
compute the proportion of correct answers amonghcluded English, Hindi, and Chinese.
all preceding answers and average those values.  After filling out a consent form, participants
Table 1 shows the accuracy and average precivere “introduced” to SGT Blackwell, and demon-
sion numbers for three answer selection methodstrated the proper technique for asking him ques-
on the SGT Blackwell data set. We observe a sigtions (i.e., when and how to activate the micro-
nificant improvement in accuracy in the retrievalphone and how to adjust the microphone posi-
methods over the SVM technique. The differencedion.) Next, the participants were given a scenario
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SVM LM CLM
accuracy| accuracy impr. SVM avg. preg.accuracy impr. SVM avg. preg.
53.13 57.80 8.78 63.8§ 61.99 16.67 65.24

Table 1: Comparison of three different algorithms for answer selection on SGT Blackwell data. Each
performance number is given in percentages.

number of number of SVM LM CLM
guestions answersaccuracy| accuracy impr. SVM accuracy impr. SVM
1 238 22 44.12 47.06 6.67* 47.90 8.57*
2 120 15 63.33 62.50 -1.32 64.17 1.32
3 150 23 42.67 44.00 3.12* 50.00 17.19*%
4 108 18 42.59 44.44 4.35* 50.00 17.39*
5 149 33 32.21 41.35 28.37* 42.86 33.04*
6 39 8 69.23 58.97 -14.81* 66.67 -3.70
7 135 31 42.96 44.19 2.85 50.39 17.28*
average 134 21 48.16 48.93 1.60* 53.14 10.34*

Table 2: Comparison of three different algorithms for answer selection on 7 additional QA characters.
The table shows the number of answers and the number of questions collected for each character. The
accuracy and the improvement over the baseline numbers are given in percentages.

wherein the participant would act as a reportetion answer pairs — the TRS-QA set. Appendix B
about to interview SGT Blackwell. The partici- shows a sample dialog between a participant and
pants were then given a list of 10 pre-designate®GT Blackwell.
questions to ask of SGT Blackwell. These ques- Next we used three human raters to judge the
tions were selected from the training data. Theyappropriateness of both sets. Using a scale of
were then instructed to take a few minutes tol-6 (see Appendix A) each rater judged the ap-
write down an additional five questions to ask SGTpropriateness of SGT Blackwell's answers to the
Blackwell. Finally they were informed that af- questions posed by the participants. We evaluated
ter asking the fifteen written down questions, theythe agreement between raters by computing Cron-
would have to spontaneously generate and ask fiieach’s alpha score, which measures consistency in
additional questions for a total of 20 questionsthe data. The alpha score is 0.929 for TRS-QA
asked all together. Once the participants had writand 0.916 for ASR-QA, which indicate high con-
ten down their fifteen questions, they began theistency among the raters.
interview with SGT Blackwell. Upon the com-  The average appropriateness score for TRS-QA
pletion of the interview the participants were thenijs 4.83 and 4.56 for ASR-QA. The difference in
asked a short series of survey questions by thghe scores is statistically significant according to t-
experimenter about SGT Blackwell and the inter-test with the cutoff set to 5%. It may indicate that
view. Finally, participants were given an explana-ASR quality has a significant impact on answer
tion of the study and then released. Voice recordselection.
ings were made for each interview, as well as the we computed the Word Error Rate (WER) be-
raw data collected from the answer selection modtween the transcribed question text and the ASR
ule and ASR. This is our first set of question an-gutput. Thus each question-answer pair in the
swer pairs, we call it the ASR-QA set. ASR-QA and TRS-QA data set has a WER score
The voice recordings were later transcribed. Weassigned to it. The average WER score is 37.33%.
ran the transcriptions through the CLM answer se- We analyzed sensitivity of the appropriateness
lection module to generate answers for each quescore to input errors. Figure la and 1b show
tion. This generated question and answer pairplots of the cumulative average appropriateness
based on how the system would have respondestore (CAA) as function of WER: for each WER
to the participant questions if the speech recognivaluet we average appropriateness scores for all
tion was perfect. This is our second set of quesguestions-answer pairs with WER score less than
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(a) pre-designated (b) user-designated

LS —————— —— -+ 100 100
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_ 75 - 75

557 + 50 50
—————— TRS-QA :

ASR-QA | 25 - 25
] #0fQA | & [
50—+t 0 -0
0 50 100 150 150

WER(%) WER(%)

Figure 1. Shows the cumulative average appropriateness score (CAA) of (a) pre-designated and (b)
user-designated question-answer pairs as function of the ASR’s output word error rate. We show the
scores for TRS-QA (dotted black line) and ASR-QA (solid black line). We also show the percentage of
the question-answer pairs with the WER score below a given value (“# ofQA") as a gray line with the
corresponding values on the right Y axis.

or equal tot. Figure 1b shows the same plots for the user-

1 designated questions. Here the system has to deal
= Sl Z A(p), S = {p|[WER(p) <t}  with questions it has never seen befafed A val-

pes ues decrease for both TRS-QA and ASR-QA as

WER increases. Both ASR and CLM were trained
on the same data set and out of vocabulary words
that affect ASR performance, affect CLM perfor-
france as well.

CAA(t)

where p is a question-answer paitd(p) is the
appropriateness score fpr andW ER(p) is the
WER score fop. Itis the expected value of the ap-
propriateness score if the ASR WER was at mos
t.

Both figures show th&’AA values for TRS-
QA (dotted black line) and ASR-QA (solid black In this paper we presented a method for efficient
line). Both figures also show the percentage ofonstruction of conversational virtual characters.
the question-answer pairs with the WER score beThese characters accept spoken input from a user,
low a given value, i.e., the cumulative distribution convert it to text, and select the appropriate re-
function (CDF) for the WER as a gray line with sponse using statistical language modeling tech-
the corresponding values depicted on the right Yhiques from cross-lingual information retrieval.
axis. We showed that in this domain the performance

Figure la shows these plots for the pre-of our answer selection approach significantly ex-
designated questions. The values@flA for ceeds the performance of a state of the art text clas-
TRS-QA and ASR-QA are approximately the sification method. We also showed that our tech-
same between 0 and 60% WERAA for ASR-  nique is very robust to the quality of the input and
QA decreases for WER above 60% — as the inputan be effectively used with existing speech recog-
becomes more and more garbled, it becomes morgtion technology.
difficult for the CLM module to select an appropri-  Preliminary failure analysis indicates a few di-
ate answer. We confirmed this observation by calrections for improving the system’s quality. First,
culating t-test scores at each WER value: the difwe should continue collecting more training data
ferences betwee@' AA(t) scores are statistically and extending the question sets.
significant fort > 60%. It indicates that until Second, we could have the system generate a
WER exceeds 60% there is no noticeable effect owonfidence score for its classification decisions.
the quality of answer selection, which means thafhen the answers with a low confidence score can
our answer selection technique is robust relative te replaced with an answer that prompts the user
the quality of the input. to rephrase her question. The system would then

6 Conclusions and future work
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use the original and the rephrased version to repe&tavid D. Lewis, Robert E. Schapire, James P. Callan,
the answer selection process. and Ron Papka. 1996. Training algorithms for lin-

. ear text classifiers. IRroceedings of the 19th Inter-
Finally, we observed that a notable percent of national ACM SIGIR Conference on Research and

misclassifications results from the user asking a peyelopment in Information Retrievalages 298—
guestion that has a strong context dependency on 306, Zurich, Switzerland.

the previous answer or question. We are presentl
| kp into | t'q thi t t'r? éryan Pellom. 2001. Sonic: The university of col-
90 !ng Into Incorpora |ng' IS context Informa-—“5rado continuous speech recognizer. Technical Re-
tion into the answer selection process. port TR-CSLR-2001-01, University of Colorado,
Boulder, CO.
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A Appropriateness grading Reporter:  Why should we spend money on you

What should we spend money on yo
Gandhe and his colleagues (Gandhe et al., 2006) ( Hiawe sp y on you)

suggested the following grading scheme that welackwell: Why do you need me?! What you
used in our user evaluation. should be saying is "How did you get along
without me?” | will show you how to be a
leader, how to make critical decisions under
stress... And | am glad to be here, because |
can help. | know | can. Look... | have one
mission: to make better soldiers, make bet-
ter warfighters. And if | can ... can save one
life... bring one loved one back to his fam-
ily... Well, then, | am definitely worth it. You
be the judge.

Grade Description
1 | Response is not related in any way the
guestion
2 | Response contains some discussjon
of people or objects mentioned in the
question, but does not really address
the question itself.
3 | Response partially addresses the
question, but little or no coherenge
between the question and response.  Reporter: What's your value (What's the value
4 | Response does mostly address the in)
guestion, but with major problems in
the coherence between question and Blackwell: | can do "Virtually” anything. | do

response; seems like the response is mission rehearsals, Urban Combat training,
really addressing a different question language training - I speak Farsi, Pashtun and
than the one asked. Arabic. "Mar Haba shabab! That means how
5 | Response does address the question, are you in Arabic.
bl:réhe transition is somewhat awk- Reporter: Do you really work or is this just a
ward. — demo (G. really worker is this just a demo)
6 | Response answers the question in a
perfectly fluent manner. Blackwell: Sorry. That's outside my AO.

Table 3: The question-answer appropriatenesReporter: How could you be better (How could
scale. you be better)

_ Blackwell: Stop mumbling. Just kidding. |
B Sample dialog didn’t get that.

This section presents an example of a participant®enorter: What do you wish you could do
dialog with SGT Blackwell. We only show spon- (When you wish you could do)

taneous questions asked by the participant. Each

of the participant’s questions (called “Reporter” in Blackwell: Career Army. That is what | am
this transcript) is followed by the ASR output of thinking. Just call me a lifer.

that line in brackets. That is what the answer se-

lection module “heard.” Note that ASR does makeR€pPorter: What kind of people have you trained
an occasional mistake and the answer selection is ~ (What other people in the turn in)

able tf) recor\:er grr?cgfully until the neglt tg t:e IaSItBIackweII: | teach cultural awareness, function
question, where the input was so garbled thatonly 54 o training mentor and can call in the full

one correct word got through. range of Joint fires and effects.

Reporter: Who created you (Who created you) Reporter: What's the hardest part of your job

Blackwell: Tell you the truth, | have spent a lot (He was the hardest are you job)

of time with the smart folks at ICT, testing gjackwell: | am not authorized to comment on
and tweaking. | am about ready to get out that

there and train with real soldiers. | am think-

ing first stop is going to be Fort Sill. But my Reporter: You have any virtual friends (The uni-
ultimate goal is to get forward deployed... versal friends)
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Blackwell: Sorry, | can’'t hear you

Reporter: Are you hard of hearing (Are you had
a hearing)

Blackwell: | can’t understand you.

C SGT Blackwell

Figure 2: A photograph of the SGT Blackwell sys-
tem setup.
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Abstract

We explore the relationship between ques-
tion answering and constraint relaxation in
spoken dialog systems. We develop dia-
logue strategies for selecting and present-
ing information succinctly. In particular,
we describe methods for dealing with the
results of database queries in information-
seeking dialogs. Our goal is to structure
the dialogue in such a way that the user is
neither overwhelmed with information nor
left uncertain as to how to refine the query
further. We present evaluation results ob-
tained from a user study involving 20 sub-
jects in a restaurant selection task.

I ntroduction

Fuliang Weng, Heather Pon-Barry
Research and Technology Center
Robert Bosch Corporation
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ful i ang. weng,

heat her . pon-barry
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There has been substantial previous work on
information presentation in spoken dialogue sys-
tems. (Qu and Green, 2002) also present a
constraint-based approach to cooperative informa-
tion dialogue. Their experiments focus on over-
constrained queries, whereas we also deal with un-
derconstrained ones. Moreover, we guide the user
through the dialogue by making suggestions about
query refinements, which serve a similar role to
the conditional responses of (Kruijff-Korbayova et
al., 2002). (Hardy et al., 2004) describe a dialogue
system that uses an error-correcting database man-
ager for matching caller-provided information to
database entries. This allows the system to se-
lect the most likely database entry, but, in contrast
to our approach, does not modify constraints at
a more abstract level. In contrast to all the ap-
proaches mentioned above, our language gener-

Information presentation is an important issuedlor uses overgeneration and ranking techniques
when designing a dialogue system. This is espel-angkilde, 2000; Varges and Mellish, 2001).
cially true when the dialogue system is used in gl his facilitates variation and alignment with the
high-stress environment, such as driving a vehiUSer utterance.

cle, where the user is already occupied with the A long-standing strand of research in NLP is
driving task. In this paper, we explore efficientin natural language access to databases (Androut-
dialogue strategies to address these issues, asdpoulos et al., 1995). It mainly focused on map-
present implemented knowledge management, dping natural language input to database queries.
alogue and generation components that allow cogour work can be seen as an extension of this work
nitively overloaded users —see (Weng et al., 2004y embedding it into a dialogue system and al-
for example — to obtain information from the di- lowing the user to refine and relax queries, and
alogue system in a natural way. We describe @0 engage in clarification dialogs. More recently,
knowledge manager that provides factual and onwork on guestion answering (QA) is moving to-
tological information, a content optimizer that reg- wardinteractivequestion answering that gives the
ulates the amount of information, and a generauser a greater role in the QA process (HLT, forth-
tor that realizes the selected content. The domainoming). QA systems mostly operate on free text
data is divided between domain-specific ontolo-whereas we use a relational database. (Thus, one
gies and a database back-end. We use the systameeds to ‘normalize’ the information contained in
for both restaurant selection and MP3 player taskdree text to use our implemented system without
and conducted experiments with 20 subjects. further adaption.)
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In the following section, we give an overview tion, the Dialog Manager converts a user’s query
of the dialogue system. We then describe thento a semantic frame (i.e., a set of semantic con-
knowledge management, dialogue and generatiostraints) and sends this to the KM via the content
components in separate sections. In section 6 weptimizer. For example, in the Restaurant domain,
present evaluation results obtained from a usea request such as “l want to find an inexpensive
study. This is followed by a discussion section andJapanese restaurant that takes reservations” results

conclusions. in the semantic frame below, whetet egory is a
_ system property, and the other constraints are in-
2 System architecture herited properties of the Restaurant class:

Our dialogue system employs the following archi-(1) fzzi em acﬁi ?g?irzeiezlglst ‘juga%i Rest aur ant
tecture: _the output Qf a speech recognizer (NU-  restaurant: Cuisine = restaurant:j apanese
ance, using a statistical language model) is ana- restaurant: Reservations = yes

lyzed by both a general-purpose statistical depen- In addition to the KM module, we employ a

dency parser and a (domain-specific) topic CIaSSiContent Optimization (CO) module that acts as

fier. Earse trees and t(_)plc labels are matched bgn intermediary between dialogue and knowledge
the ‘dialogue move scripts’ of the dialogue man-

oy q don. 2005: | management during the query process. It receives
ager (Mirkovic and Cavedon, 2005; Weng et al., ;o 1 antic frames from the Dialogue Manager, re-

2_005)' The scripts serve to I|ce_n§e the '_nSta_nt'ailises the semantic frames if necessary (see below),
tion of dialogue moves and their integration into ¢ queries the Knowledge Manager

the dlalo_gue.move_ treec.j bThre] use gf dlalqgll(JIe The content optimizer also resolves remaining
move scripts Is motivated by the need to quic yambiguities in the interpretation of constraints.

tailor the system to new domains: or_1|y the Sc_riptSFor example, if the user requests an unknown cui-
_need to be ad.apted, not the ur_1der|y|ng machmergine type, the otherwise often accurate classifier
implemented in Java. The scripts define short S&4ill not be able to provide a label since it oper-

quence“s IOf dialog )r?"oves, f%r efx?lmple da _C(;mn:)angtes under a closed-world assumption. In contrast,
move ("play song X”) may be followed either by the general purpose parser may be able to pro-

a disambiguation question or a confirmation thatvide an accurate syntactic analysis. However, the

the ((j:ortr;m_and W'I! be exicute_d. '3‘ dialogue PrO-harse still needs to be interpreted by the content
cheed; Iy Integrating suc .slglrlpte sleq_uerllc?ﬂs 'f] timizer which has the domain-specific knowl-
the dialogue move tree, yielding a relatively Tlat edge to determine that “Montenegrin restaurant”

dialogue structurg. built by dial is a cuisine constraint rather than a service level
Query constraints are built by dialogue MOV onstraint, for example. (See also section 7).

scripts if the parse tree matches input patterns Depending on the items in the query result set,

specified in _the sgrlpts. These query Consna”_“%onfigurable properties, and (potentially) a user
are th_e startmg_pomt for the processing Strateg'e_ﬁnodel, the CO module selects and performs an ap-
descrlbed in this paper. The dialogue ;ystem I?)ropriate optimization strategy. To increase porta-
fully |mplemented and has been used in reStaubility, the module contains a library of domain-
rant §electlon and MP3 pllaye.r tasks. There are 4f'hdependent strategies and makes use of external
task-independent, generic dialogue move sCr'ptSCOm‘iguration files to tailor it to specific domains.

52 restaurant selection scripts and 89 MP3 player The CO module can modify constraints de-

scripts.  The examples in this paper are mOSﬂypending on the number of items in the result
taken from the restaurant selection task.

set, the system ontology, and information from
a user model. Constraints can be relaxed, tight-
ened, added or removed. The manner in which
The Knowledge Manager (KM) controls access toa constraint is modified depends on what kind of
domain knowledge that is structured according tovalues it takes. For example, for thai si ne
domain-dependent ontologies. The KM makes useonstraint, values are related hierarchically (e.qg.,
of OWL, a W3C standard, to represent the onto-Chinese, Viethamese, and Japanese are all sub-
logical relationships between domain entities. Thaypes of Asian), whereaBri ceLevel values are
knowledge base can be dynamically updated withinear (e.g., cheap, moderate, expensive), and
new instances at any point. In a typical interac-accept sCr edi t Car ds values are binary (e.g., ac-

3 Knowledge and Content management
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cepted or not accepted). point does it become unhelpful to list items? We
If the original query returns no results, the con-do not have a final answer to this question — how-
tent optimizer selects a constraint to modify andever, it is instructive that the (human) wizard in
then attempts to relax the constraint value. If re-our data collection experiments did not start list-
laxation is impossible, it removes the constrainting when the result set was larger than about 10
instead. Constraint relaxation makes use of thi¢éems. In the implemented system, we define di-
ontological relationships in the knowledge basealogue strategies that are activated at adjustable
For example, relaxing @i si ne constraint entails thresholds.
replacing it with its parent-concept in the domain

ontology. Relaxing a linear constraint entails re-4oes not list any result items, the user may stil

placing the current value with an adjacent Va‘IueWant to see some example items returned for the

Relaxing a b'”"’?ry 'constram.t entails replacing thequery. This observation is based on comments
current value with its opposite value.

. by subjects in experimental dry-runs that in some
Based on the ontological structures, the conten y st P y

Gimi | lculates statistics f ; I&ases it was difficult to obtain any query result at
optimizer aiso caicuiates Stalistcs for every set o, = g, example, speech recognition errors may

items returned by the knowledge manager in "€ tnake it difficult to build up a sufficiently complex

sponse to a user’s query. If the result set is large uery. In response to this, we always give some
these figures can be used by the dialogue managg '

0 o aful in the MP3 d §<ample items even if the result set is large. (An
° glve“meanmg ul responses (e.g., in the ) Oalternative would be to start listing items after a
main, “There are 85 songs. Do you want to list

them b h as Rock. P Soul?” certain number of dialogue turns.) Furthermore,
em by a genre such as Rock, Pop, or Soul?’). g system should encourage the user to refine the

The content optimizer also produces constralnt%luery by suggesting constraints that have not been
that represent meta-knowledge about the Ontomg)ﬁsed yet. This is done by maintaining a list of con-

for_ (_example, n res”ponse to a user input Whatstraints in the generator that is used up as the di-
cuisines are there?”:

alogue progresses. This list is roughly ordered by
(2) rdfs:subGass = restaurant: Quisine poy jikely the constraint will be useful. For exam-
The processing modules described in the nexple, using cuisine type is suggested before propos-
sections can use meta-level constraints in similaing to ask for information about reservations or
ways to object-level constraints (see (1)). credit cards.

Even if the result set is large and the system

In our architecture, information flows from the
CO module to the generator (see section 5) via the
dialogue move scripts of the dialogue manager.
In the following two sections, we describe how These are conditioned on the size of fhml re-
our dialogue and generation strategies tie in withsult set and whether or not any modifications were
the choices made by the content optimizer. Conperformed. Table 1 summarizes the main dialogue
sider the following discourse-initial interaction for strategies. These dialogue strategies represent im-
which the semantic frame (1) is constructed: plicit confirmations and are used if NLU has a high
(3) confidence in its analysis of the user utterance (see

U i want to find an inexpensive Japanese (\grges and Purver, 2006) for more details on our
restaurant that takes reservations

4 Dialogue strategiesfor dealing with
query results

S | found 9 inexpensive Japanese handling of robustness issues). Small result sets
restaurants that take reservations . up to a threshold, are listed in a single sentence.
Here are the first few: meci

S G NZA JAPANESE RESTAURANT For medium 5|zed_rgsul't_ sets up to a thresheld

S: OKI SUSH CAFE the system starts listing immediately. For large re-

S: YONA SUSHI sult sets, the generator shows example items and

S: Should I continue?

makes suggestions as to what constraint the user

The example query has a relatively small resultmay use next. If the CO module performs any con-
set which can be listed directly. This is not alwaysstraint modification, the first, constraint realizing
the case, and thus we need dialogue strategies thegntence of the system turns reflects the modifica-
deal with different result set sizes. For example, ition. (‘NP-original’ and ‘NP-optimized’ in table 1
does not seem sensible to produce “I found 250@re used for brevity and are explained in the next
restaurants. Here are the first few: ...”. At whatsection.)
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|result finail ‘ mod‘ example realization ‘ feap ‘

sla| O no I’'m sorry but | found no restaurants on Mayfield Road that séediterranean food. 0

slb| O yes | I'm sorry but | found no [NP-original]. | did not even find aniP-optimized]. 0

s2a | small: no There are 2 cheap Thai restaurants in Lincoln in my datalddss:Mee Choke and 61
>0,< t Noodle House.

s2b | small yes | I found no cheap Greek restaurants that have a formal drelested there are 0

4 inexpensive restaurants that serve other Mediterrarggahand have a formal
dress code in my database: ... .

s3a | medium: no | found 9 restaurants with a two star rating and a formal dcesle that are open 212
>=1t1,< t2 for dinner and serve French food. Here are the first ones: ... .

s3b | medium yes | | found no [NP-original]. However, there are N [NP-optimiteHere are the firstfew: ... | 5

sda | large: no | found 258 restaurants on Page Mill Road, for example Mayst&eant , 300
>=t Green Frog and Pho Hoa Restaurant. Would you like to try beagdy cuisine?

sdb | large yes | | found no [NP-original]. However, there are N [NP-optimi;eWould you like to try 16

searching by [Constraint]?

Table 1: Dialogue strategies for dealing with query resiidtst column explained in sec. 6)

5 Generation original] but there are [NUM] [NP-optimized] in

_ my database” (see below for further explanation)
The generator produces turns that verbalize thﬁan be combined with a follow-up sentence tem-

constraints used in the database query. This 'ﬁlate such as “You could try to look for [NP-

important since the system may miss or miSimer'constraint-suggestion]”

pret constraints, Ieagling to uncertainty for th_e USel The selection of which sentence template to use
about what gonstralnts were used. FOI‘“thIS readr qotermined by the dialogue move scripts. Typ-
50N, a generic system response such as "I found i%ally, a move-realizing production produces sev-
Items. _'S not sufficient. _ eral alternative sentences. On the other hand, the
The input to the generator consists of the Nnamp yeneration rules realize constraints regardless
of the dialogue move and the relevant instantiateg; 1o specific dialogue move at hand. This al-
nodes of the dialogue move tree. From the iny,q s to also use them for clarification ques-
stantiated move nodes, the generator obtains thg,,s hased on constraints constructed from classi-
database query result including information aboutje jnformation if the parser and associated parse-
query modifications. The core of the generator iSyatching patterns fail: all that is required is a new

a set of productigr’rswritten_ in the Java Expert ¢ontence template, for example “Are you looking
System Shell (Friedman-Hill, 2003). We follow . [NP]?". We currently use 102 productions

the bottom-up generation approach for productiony o a1 in the restaurant and MP3 domains, 38 of

systems described in (Varges, 2005) and performg, o (g generate NPs that realize 19 possible input
mild overgeneration of candidate moves, followed.qsiraints (for both domains).

by ranking. The highest-ranked candidate is se- The decision of the CO module to relax or re-
lected for QUtpUt' o move constraints also affects the generator: there

Productions map individual database CON-yrg o sets of constraints, an ‘original’ one di-
straints to phrases such as *open for Iunch'yecyy constructed from the user utterance, and an
within 3 miles” and “a formal dress code”, and «,imized’ one used by the KM module to obtain
recursively combine them into NPs. This includesy, o query result (see section 3). In case of con-
the use of coordination to produce ‘restaurantsint modifications, these two sets are not identi-
with a 5-star rating and a formal dress code”,q5| ¢ often overlapping. To avoid generating sep-
for example. The NPs are integrated int0 SeNy ate sets of NPs independently for the two con-
tence templates, several_ of which can be combinegy jint sets, we assign unique indices to the con-
to form an output candidate turn. For example.syaints and hand the generator two index sets as
a constraint realizing template “I found no [NP- 5 46t5 of NP generation. We overgenerate NPs

!Productions are ‘if-then’ rules that operate over a sharecfmd check their index sets before integrating them
knowledge base of facts. into sentence templates.
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‘ turn ‘ speaker‘ utterance

1.1 | User i need a restaurant with a five star food rating excellentiserv

1.2 | System | | found 425 restaurants with a five star rating and excellentise , for example
EL CAPITAN FISH MARKET , K-NINE COUNTRY CLUB , and KAISERHOF GRMAN
AMERICAN . You could try to look for cuisine type .

1.3 | User which restaurants take reservations

1.4 | System | | found 353 restaurants that have a five star rating , havelertservice and
take reservations , for example GRAND CENTRAL CAFE , CHASINICKEN , and
CHON WOO RESTAURANT . Would you like to try searching by priee

Figure 1. Example dialogue 1 from system evaluation usistptgant selection task

Ranking of candidate output moves is done byplex grammar formalism to prevent ungrammati-
using a combination of factors. First, the rankercal candidate moves.
computes an alignment score for each candidate .
based on its ngram-based overlap with the usep Evaluation

utterance. For example, this allows us to prefefye conducted experimental studies involving 20
“restaurants that serve Chinese food” over “Chi-subjects in a MP3 player task and 20 Subjects ina
nese restaurants” if the user used a wording morgsstaurant selection task. In the following, we con-
similar to the first. We note that the Gricean centrate on the restaurant selection task because it
Maxim of Brevity, applied to NLG in (Dale and s more challenging for constraint handling and in-
Reiter, 1995), suggests a preference for the segormation presentation.

Ond, shorter realization. However, if the user Each Subject in the restaurant selection task
thought it necessary to use “serves”, maybe tQuas given 9 scenario descriptions involving 3 con-
avoid confusion of constraints or even to correct anstraints. Subjects were instructed to use their own
earlier mislabeling, then the system should make&yords to find a fitting restaurant. We use a back-
it clear that it understood the user correctly byend database of 2500 restaurants containing the
using those same words, thus preferring the firsfollowing information for each restaurant: restau-
realization. Mild Overgeneration combined with rant name, cuisine type1 C|ty and street names,
alignment also allows us to map the constrainiservice level, rating, whether they accept credit
Pri ceLevel =0- 10 in example (1) above to both cards or reservations, price level, open hours, dress
“cheap” and “inexpensive”, and use alignment tocode, additional information (e.g. vegetarian food)
‘play back’ the original word choice to the user. gnd distance from current location. Some of these
As these examples show, using alignment for rankgonstraints have a fixed number of values (e.g.
ing in NLG allows one to employ overgeneration service level and dress code), whereas those tak-
techniques even in situations where no corpus datzg named entities as values are obviously open-
is availablez. ended.

Second, ranking uses a variation score to ‘cycle’ Figures 1 and 2 show two of the dialogues from
over sentence-level paraphrases. In the extrem@e experiments. To exemplify the challenges
case of repeated identical user inputs, the systefihe system is faced with, user turns are shown
simply chooses one paraphrase after the other, and the form of the output of the speech recog-
starts over when all paraphrases have been usednizer (we currently use the best ASR hypothesis

Third, we use an ngram filter based on badas input to the parser). The task of the first dia-
examples ngrams, removing, for example, “Chi-jogue (figure 1) was to find a restaurant that has
nese cheap restaurants” but keeping “cheap Chihe following constraints: [Reservations=yes, Ser-
nese restaurant.” For generalization, we replac@iceLevel:excellent, Rating=5star]. Despite some
constraint realizations with semantic tags derivedninor speech recognition errors, the system cor-
from the constraint names (except for the headectly builds a query for the two constraints pro-
noun), for example the trigram ‘CUISINE PRICE vided by the user in (1.1.) and verbalizes these in
restaurants’. An alternative is to use a more com¢1.2) to show its understanding of the user input.
Tever,we do have wizard-of-0z data to inform the Italso gives some example items and makes a sug-
system design (see section 7). gestion. This suggestion is not taken up by the user
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‘ turn ‘ speaker‘ utterance

2.1 | User breakfast

2.2 | System | Are you looking for a restaurant that is open for breakfast ?

2.3 | User yes located on bower street

2.4 | System | | found 71 restaurants on bower street that serve breakf@asexample ,
SOUPLANTATION-TO-GO , RAMAYANI WESTWOOD, and , PHILLY WEST
You could try to look for cuisine type .

2.5 | User which

2.6 | System| I'm sorry, | do not understand what you mean by: which

2.7 | System | Please try rephrasing that.

2.8 User casual dress

2.9 | System | There are 51 restaurants on bower street that serve breakfhkave a casual

dress code in my database , for example , BERTY'S , LABOTETE@Ad ,

JAVAN RESTAURANT . Would you like to try searching by price ?

2.10 | User british

2.11 | System | | found no restaurants on bower street that serve britisti férave a casual

dress code and are open for breakfast but there are 8 regarabower street that are open for
breakfast , serve European food and have a casual dresscogedatabase . Here are the first fe!
2.12 | System | HOTEL BEL-AIR

Figure 2: Example dialogue 2 from system evaluation usistatgant selection task

—in fact, we find that suggestions are generally nostrategy s3b for medium-sized result sets with con-
taken up by the user. We believe this is due to thetraint modifications (section 4). The result of
nature of the tasks, which specified exactly whichboth dialogues is that all task constraints are met.
criteria to match. On the other hand, in more open We conducted 20 experiments in the restaurant
application scenarios, where users may not knowlomain, 2 of which were restarted in the middle.
what questions can be asked, suggestions may l&verall, 180 tasks were performed involving 1144
useful. In (1.3) the user issues a sub-query thatiser turns and 1818 system turns. Two factors con-
further constrains the result set. By again summatributing to the higher number of system turns are
rizing the constraints used, the system confirms im) some system turns are counted as two turns,
(1.4) that it has interpreted the new constraint as auch as 2.6, 2.7 in figure 2, and b) restaurants in
revision of the previous query. The alternative islonger enumerations of result items are counted as
to start a new query, which would be wrong in thisindividual turns. On average, user utterances are
context. significantly shorter than system utterances (4.9
The task of the second dialogue, figure 2, was tavords, standard deviation= 3.82 vs 15,4 words,

find a restaurant that meets the constraints [Busie = 13.53). This is a result of the ‘constraint sum-
nessHours:breakfast, StreetName='bower streetinaries’ produced by the generator. The high stan-
DressCode=casual]. This user tends to givaelard deviation of the system utterances can be ex-
shorter, keyword-style input to the system (2.1,plained by the above-mentioned listing of individ-
2.8). In (2.3), the user reacts to a clarificationual result items (e.g. utterance (2.12) in figure 2).
question and adds another constraint which the We collected usage frequencies for the dia-
system summarizes in (2.4). (2.5) is an ASR erlogue strategies presented in section 4: there was
ror which the system cannot handle (2.6, 2.7). Theno occurrence of empty final result sets (strat-
user constraint of (2.8) is correctly used to reviseegy sla/b) because the system successfully re-
the query (2.9), but “british” (2.10) is another ASR laxed constraints if it initially obtained no results.
error that leads to a cuisine constraint not intendetrategy s2a (small result sets without modifica-
in the scenario/by the user. This additional contions) was used for 61 inputs, i.e. constraint sets
straint yields an empty result set, from which theconstructed from user utterances. Strategy s3a/b
system recovers automatically by relaxing the hi{medium-sized result sets) was used for 217 times
erarchically organized cuisine constraint to “Eu-and required constraint relaxations in 5 cases.
ropean food”. In (2.11) the system uses dialoguestrategy s4a/b (large result sets) was used for
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316 inputs and required constraint relaxations in..”, we do need to be able to use generation input
16 cases. Thus, the system performed constrairthat uses unseen attribute-value pairs. The price
modifications in 21 cases overall. All of these one has to pay for this increased robustness and
yielded non-empty final result sets. For 573 in-flexibility is, of course, potentially bad output if
puts, no modification was required. There were ndNLU mislabels input words. More precisely, we
empty final result set despite modifications. find that if any one of the interpretation modules
On average, the generator produced 16 outpunakes an open-world assumption, the generator
candidates for inputs of two constraints, 160 canhas to do as well, at least as long as we want to
didates for typical inputs of 3 constraints and 320verbalize the output of that module.
candidates for 4 constraints. Such numbers can
easily be handled by simply enumerating candi-/-1 Futurework
dates and selecting the ‘best’ one. Our next application domain will be in-car naviga-
Task completion in the experiments was high:tion dialogues. This will involve dialogues that de-
the subjects met all target constraints in 170 out ofine target destinations and additional route plan-
180 tasks, i.e. completion rate was 94.44%. Aming constraints. It will allow us to explore the
error analysis revealed that the reasons for onlgffects of cognitive constraints due to changing
partially meeting the task constraints were varieddriving situations on dialogue behavior. The nav-
For example, in one case a rating constraint (“fivégation domain may also affect the point of inter-
stars”) was interpreted as a service constraint bgction between dialogue system and external de-
the system, which led to an empty result set. Th&ices: we may query a database to disambiguate
system recovered from this error by means of conproper names such as street names as soon as these
straint relaxation but the user seems to have beesire mentioned by the user, but start route planning
left with the impression that there are no restau-only when all planning constraints are collected.

rants of the desired kind with a five star rating. An option for addressing the current lack of a
_ _ user model is to extend the work in (Cheng et al.,
7 Discussion 2004). They select the level of detail to be com-

Based sard-of data. th ' it municated to the user by representing the driver’s
ased on wizard-ot-oz dala, ne System allely, ;o knowledge to avoid repeating known infor-

nates specific and unspecific refinement Sugges: ~tion

tions ( You could searcr’l, by cuisines type” vs "Can Another avenue of future research is to automat-

you refine your query?”). Furthermore, many of.

ically learn constraint relaxation strategies from
the phrases used by the generator are taken froEré ppropriately annotated) evaluation data. User
wizard-of-oz data too. In other words, the sys- '

. . o modeling could be used to influence the order in
tem, including the generator, is informed by em g

- . ) “which refinement suggestions are given and deter-
pirical data but does not use this data directly (Re-_. 99 . g
mine the thresholds for the information presenta-

iter and Dale, 2000). This is in contrast to generay . ves described in section 4.

tion systems such as the ones described in (Langk- One could handle much laraer numbers of gen-
ilde, 2000) and (Varges and Mellish, 2001). . . . g . 9
eration candidates either by using packing (Langk-

godnstldsrmg thﬁ fact thatkthe do_malr; ontOIOgtyilde, 2000) or by interleaving rule-based genera-
and catabase schema are xnown in advance, it g, , i, corpus-based pruning (Varges and Mel-
tempting to make a closed world assumption in

. lish, 2001) if complexity should become an issue
the generator (which could also help system de-I )| prexty N ISsu

: : when doing overgeneration.

velopment and testing). However, this seems too

restrictive: assume, for examplg, that the user hag  conclusions

asked for Montenegrin food, which is an unknown

cuisine type, and that the statistical parser com¥e described strategies for selecting and present-
bined with the parse-matching patterns in the diing succinct information in spoken dialogue sys-
alogue manager has labeled this correctly. Théems. Verbalizing the constraints used in a query is
content optimization module will remove this con- crucial for robustness and usability — in fact, it can
straint since there is no Montenegrin restaurant ifbe regarded as a special case of providing feed-
the database. If we now want to generate “I did noback to the user about what the system has heard

find any restaurants that serve Montenegrin foodind understood (see (Traum, 1994), for example).
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The specific strategies we use include ‘backing{vana Kruijff-Korbayova, Elena Karagjosova, and Stef-
off’ to more genera| constraints (by the System) fan Larsson. 2002. Enhancmg collaboration with

. - conditional responses in information-seeking dia-
or suggesting query refinements (to be requested logues. InProc. of 6th workshop on the semantics

explicitly by the usgr). Our architecturg is config-  gng pragmatics of dialogue (EDILOG-02)
urable and open: it can be parametrized by em-
i i Irene Langkilde. 2000. Forest-based Statistical Sen-
pirically derived values and extended by new con- .
straint handling techniques and dialogue strate- t1e7n7c_e Generation. IRroc NAACL-00 pages 170
gies. Constraint relaxation techniques have widely
been used before, of course, for example in synDatF‘”OI II\D/llirkOVicdalgld '—%V\_"Tf”ce Cl\;;l\vedon. 20?5H- Prac-
- - - _tical Plug-and-Play Dialogue Management.Rro-
tactl(;: an.clj shemar;]tlc prOC?S'”Q- Th(?] presen(';ed pr? ceedings of the 6th Meeting of the Pacific Associa-
per details how these techniques, when used at the tion for Computational Linguistics (PACLING)
content determination level, tie in with dialogue
and generation strategies. Although we focusse K . : :
on tr?e restaurant selgction task gur approach is Approach for Cooperative Information-Seeking Di-
_ ( , Pp! alogue. InProceedings of the International Work-
generic and can be applied across domains, pro- shop on Natural Language Generation (INLG-02)
vided that the dialogue centers around accessin hud Reit d Robert Dale. 200Building Aoplied
- - ud Reiter and Robert Dale. uilding Applie
and selecting potentially large amounts of factua Natural Language Generation Systen@ambridge

information. University Press, Cambridge, UK.
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Invited Talk

Content Recognition in Dialogue

Jonathan Ginzburg
Dept of Computer Science
King’s College London
The Strand London WC2R 2LS
email: ginzburg@dcs.kcl.ac.uk

Abstract

Deciding what is the content of an utterance in dialogue is a potentially
tricky business: should it be an entity computed using (solely/primarily)
grammatical information or is it determined by recognition of participant
intention using domain level inference? The decisions one makes on this
score play a crucial role in any model of the interaction involved in ground-
ing an utterance. Integrating the clarificatory potential of an utterance into
the grounding process transforms the issue of content recognition into a
more concrete issue: grammatically determined content has markedly dis-
tinct clarificatory potential from content determined using domain level in-
ference. This leads to a new challenge: how to integrate the two types of
content in such a way that both enables their distinct clarificatory potential
to be maintained and allows content determined by domain level inference
to feature in grounding. My talk will address this challenge.
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Multidimensional Dialogue Management

Simon Keizer and Harry Bunt

Department of Language and Information Science

Faculty of Arts, Tilburg University
P.O. Box 90153, 5000 LE Tilburg, The Netherlands
{s.keizer,harry.bunt}@uvt.nl

Abstract

In this paper we present an approach to
dialogue management that supports the
generation of multifunctional utterances.
It is based on the multidimensional dia-
logue act taxonomy and associated con-
text model as developed in Dynamic Inter-
pretation Theory (DIT). The multidimen-
sional organisation of the taxonomy re-
flects that there are various aspects that di-
alogue participants have to deal with si-
multaneously during a dialogue. Besides
performing some underlying task, a par-
ticipant also has to pay attention to vari-
ous aspects of the communication process
itself, including social conventions.

Therefore, a multi-agent approach is pro-
posed, in which for each of the dimensions
in the taxonomy a specialised dialogue act
agent is designed, dedicated to the gener-
ation of dialogue acts from that particular
dimension. These dialogue act agents op-
erate in parallel on the information state of
the system. For a simplified version of the
taxonomy, a dialogue manager has been
implemented and integrated into an inter-
active QA system.

1 Introduction

During (task-oriented) dialogues, the participants
have to deal with many different aspects of com-
munication simultaneously. Besides some under-
lying task that may be performed through the dia-
logue, there are also various aspects of managing
the communicative process itself, including deal-
ing with social obligations. Therefore, speakers
often use utterances that are multifunctional.
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We will present an approach to dialogue man-
agement that accounts for the generation of multi-
functional utterances. The approach is based on a
dialogue theory involving a multidimensional dia-
logue act taxonomy and associated context model.
In this theory, called Dynamic Interpretation The-
ory (DIT) (Bunt, 1996; Bunt, 2000a), a dialogue is
modelled as a sequence of (sets of) dialogue acts
operating on the Information State of each of the
participants. The dialogue acts are organised in a
taxonomy that is multidimensional, i.e., each ut-
terance may involve dialogue acts of at most one
type from each dimension. The taxonomy has di-
mensions for aspects like feedback, interaction-
management, social obligations management and
managing the underlying task.

In a dialogue system developed according to
the principles of DIT, the information state is rep-
resented through a context model, containing all
information considered relevant for interpreting
user utterances an generating system utterances in
terms of dialogue acts. Hence, given the multidi-
mensionality of the taxonomy, the input interpre-
tation components of the system result in several
dialogue acts for each utterance, at most one from
each of the dimensions. Using these recognised
user dialogue acts, the context model is updated.

On the other hand, the ultimate task for a di-
alogue manager component of a dialogue system
is deciding which dialogue acts to generate. So,
again with the multidimensional organisation of
the taxonomy in mind, we argue for a multi-agent
approach, in which the dialogue act generation
task is divided over several agents that operate in
parallel on the context model, each agent being
dedicated to the generation of dialogue acts from
one particular dimension in the taxonomy. This
leads to the design of a number of so-called Di-
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alogue Act Agents, including e.g. a task-oriented
agent, two feedback agents and an agent dealing
with social obligations management.

The multi-agent approach to dialogue manage-
ment itself is not new: JASPIS (Turunen and
Hakulinen, 2000; Salonen et al., 2004) is a multi-
agent framework for dialogue systems which al-
lows for implementations of several agents for the
same tasks, varying from input interpretation and
output presentation to dialogue management. De-
pending on the situation, the agent that is most
appropriate for a given task is selected in a pro-
cess involving several so-called ’evaluators’. In
JASPIS the multi-agent approach is aimed at flex-
ibility and adaptiveness, while our approach fo-
cuses more on supporting multidimensionality in
communication.

In a very general sense, our dialogue manage-
ment approach follows an information state update
approach similar to the dialogue managers that are
developed within the TRINDI framework (Lars-
son and Traum, 2000). For example, Matheson
et al. (2000) describe the implementation of a di-
alogue management system focusing in the con-
cepts of grounding and discourse obligations.

An approach to dialogue management which
identifies several simultaneous processes in the
generation of system utterances, is described in
(Stent, 2002). In this approach, which is imple-
mented in the TRIPS dialogue system, dialogue
contributions are generated through three core
components operating independently and concur-
rently, using a system of conversation acts or-
ganised in several levels (Traum and Hinkelman,
1992).

Although there are apparent similarities be-
tween our approach and that of the TRINDI based
dialogue managers and the TRIPS system, there
are clear differences as well, which for an impor-
tant part stem from the system of dialogue acts
used and the way the information state is organ-
ised. More particularly, the way in which mech-
anisms for generating dialogue acts along multi-
ple dimensions are modelled and implemented by
means of multiple agents, differs from existing ap-
proaches.

This paper is organised as follows. First we ex-
plain the closely connected DIT notions of dia-
logue act and information state, and the multi-
dimensional dialogue act taxonomy and context
model (Sections 2 and 3). We then introduce
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the multi-agent approach to dialogue management
(Section 4) and illustrate it by a description of
the current implementation (Section 4.1). This
implementation is carried out in the PARADIME
project (PARallel Agent-based DIlalogue Manage-
ment Engine), which is part of the multiproject
IMIX (Interactive Multimodal Information Ex-
traction). The PARADIME dialogue manager is
integrated into an interactive question-answering
system that is developed in a collaboration be-
tween several projects participating in IMIX. The
paper ends with conclusions and directions for fu-
ture research (Section 5).

2 The DIT dialogue act taxonomy

Based on studies of a variety of dialogues from
several dialogue corpora, a dialogue act taxonomy
was developed consisting of a number of dimen-
sions, reflecting the idea that during a dialogue,
several aspects of the communication need to be
attended to by the dialogue participants (Bunt,
2006). Even within single utterances, several as-
pects are dealt with at the same time, i.e., in gen-
eral, utterances are multifunctional. The multidi-
mensional organisation of the taxonomy supports
this multifunctionality in that it allows several di-
alogue acts to be performed in each utterance, at
most one from each dimension. The 11 dimen-
sions of the taxonomy are listed below, with brief
descriptions and/or specific dialogue act types in
that dimension. For convenience, the dimensions
are further grouped into so-called layers. At the
top level are two layers: one for dialogue con-
trol acts and one coinciding with the task-domain
dimension. Dialogue control is further divided
into 3 layers: Feedback (2 dimensions), Interac-
tion Management (7 dimensions), and a layer co-
inciding with the Social Obligations Management
dimension.

e Dialogue Control

— Feedback

1. Auto-Feedback: acts dealing with the
speaker’s processing of the addressee’s
utterances; contains positive and nega-
tive feedback acts on the levels of per-
ception, interpretation, evaluation, and
execution;

2. Allo-Feedback: acts dealing with the
addressee’s processing of the speaker’s
previous utterances (as viewed by the



speaker); contains positive and negative
feedback-giving acts and feedback elic-
itation acts, both on the levels of per-
ception, interpretation, evaluation, and
execution;

— Interaction management

3. Turn Management: turn accepting,
giving, grabbing, keeping;

. Time Management: stalling, pausing;

. Dialogue Structuring: opening,
preclosing, closing, dialogue act an-
nouncement;

. Partner Processing Management:
completion, correct-misspeaking;

. Own Processing Management: error
signalling, retraction, self-correction;

. Contact Management: contact check,
contact indication;

. Topic Management: topic introduction,
closing, shift, shift announcement;

10. Social Obligations Management: saluta-

tion, self-introduction, gratitude, apology,
valediction;

11. Task/domain: acts that concern the specific
underlying task and/or domain.

Formally, a dialogue act in DIT consists of a
Semantic Content and a Communicative Function,
the latter specifying how the information state
of the addressee is to be updated with the for-
mer. A dialogue act in a particular dimension
may have either a dimension-specific communica-
tive function, or a General-Purpose communica-
tive function with a content type (type of semantic
content) in that dimension. The general-purpose
communicative functions are hierarchically or-
ganised into the branches of Information Trans-
fer and Action Discussion functions, Information
Transfer consisting of information-seeking (e.g.,
WH-QUESTION, YN-QUESTION, CHECK) and
information-providing functions (e.g., INFORM,
WH-ANSWER, YN-ANSWER, CONFIRM), and
Action Discussion consisting of commissives
(e.g., OFFER, PROMISE, ACCEPT-REQUEST) and
directives (e.g., INSTRUCT, REQUEST, DECLINE-
OFFER).

The taxonomy is currently being evaluated in
annotation experiments, involving several anno-
tators and several dialogue corpora. Measuring
inter-annotator agreement will give an indication
of the usability of the taxonomy and annotation
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scheme. A first analysis has resulted in promising
scores (Geertzen and Bunt, 2006).

3 The DIT context model

The Information State according to DIT is repre-
sented by a Context Model, containing all infor-
mation considered relevant for interpreting user
utterances (in terms of dialogue acts) and gener-
ating system dialogue acts (leading to system ut-
terances). The contents of the context model are
therefore very closely related to the dialogue act
taxonomy; in (Bunt and Keizer, 2005) it is ar-
gued that the context model serves as a formal se-
mantics for dialogue annotation, such an annota-
tion being a kind of underspecified semantic rep-
resentation. In combination with additional gen-
eral conceptual considerations, the context model
has evolved into a five component structure:

1. Linguistic Context: linguistic information
about the utterances produced in the dialogue
so far (a kind of ’extended dialogue history’);
information about planned system dialogue

acts (a ’dialogue future’);

. Semantic Context: contains current infor-
mation about the task/domain, including as-
sumptions about the dialogue partner’s infor-
mation;

. Cognitive Context: the current processing
states of both participants (on the levels of
perception, interpretation, evaluation, and
task execution), as viewed by the speaker;

. Physical and Perceptual Context: the percep-
tible aspects of the communication process
and the task/domain;

. Social Context: current communicative pres-
sures.

In Figure 1, a feature structure representation of
the context model is given, in which the five com-
ponents have been specified in further detail. This
specification forms the basis for the dialogue man-
ager being implemented in the PARADIME project.

The Linguistic Context contains features for
storing dialogue acts performed in the dialogue so
far: user_utts and system_utts, having lists of di-
alogue act representations as values. It also has
features for information about topics and conver-
sational structure: topic_struct and conv_state re-
spectively. Finally, there are two features that



user_utts : (last_user_dial_act = udag,uda—;,uda_s,...)
system_utts : (last_system_dial _act = sdag, sda—_1,sda_s,...)

topic_struct : (referents)

qa_answers : {...)

own_proc_state :

CogContext : {

PhysPercContext : [ ]

SocContext : {

LingContext : ) )
conv_state : opening|body|closing
candidate_dial_acts : ...
dial_acts_pres : ...
task_progress : comp_quest|quest_qga|answ_eval|user_sat
tion : ...
SemContext : | user_info_needs : (..., queé Lon ye)
satisfied : +|—

[proc_problem : perc|int|eval|exec|none]

partner_proc_state : [proc_problem : perc|int|eval|exec|none]

reactive_pressures : none|grt|apo|thk|valed

interactive_pressures : none|grt|apo|thk|valed

|

|

Figure 1: Feature structure representation of the PARADIME context model.

are related to the actual generation of system di-
alogue acts: candidate_dial_acts stores the dia-
logue acts generated by the dialogue act agents,
and dial_acts_pres stores combined dialogue acts
for presentation as system output; in Section 4,
this will be discussed in more detail.

The specification of the Semantic Context is
determined by the character of the task-domain.
In Section 4.1, the task-domain of interactive
question-answering on encyclopedic medical in-
formation will be discussed and from that, the
specification of the Semantic Context for this pur-
pose.

The Cognitive Context is specified by means of
two features, representing the processing states of
the system (own_proc_state) and the user (part-
ner_proc_state). Both features indicate whether or
not a processing problem was encountered, and if
so, on which level of processing this happened.

The Physical and Perceptual Context is consid-
ered not to be relevant for the current system func-
tionality.

The Social Context is specified in terms of re-
active and interactive pressures; the correspond-
ing features indicate whether or not a pressure ex-
ists and if so, for which social obligations manage-
ment act it is a pressure (e.g., reactive_pressures:
grt indicates a pressure for the system to respond
to a greeting).
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4 Dialogue Act Agents

Having discussed the dialogue act taxonomy and
context model in DIT, we can now move on to the
dialogue management approach that is also closely
connected to these concepts. Having 11 dimen-
sions of dialogue acts that each attend to a dif-
ferent aspect of communication, the generation of
(system) dialogue acts should also happen along
those 11 dimensions. As a dialogue act in a di-
mension can be selected independent of the other
dimensions, we propose to divide the generation
process over 11 Dialogue Act Agents operating in
parallel on the information state of the system,
each agent dedicated to generating dialogue acts
from one particular dimension.

All of the dialogue act agents continuously
monitor the context model and, if appropriate, try
to generate candidate dialogue acts from their as-
sociated dimension. This process of monitoring
and act generation is modelled through a trigger-
ing mechanism: if the information state satisfies
the agent’s triggering conditions, i.e., if there is
a motivation for generating a dialogue act from a
particular dimension, the corresponding agent gets
triggered and tries to generate such a dialogue act.
For example, the Auto-Feedback Agent gets trig-
gered if a processing problem is recorded in the
Own Processing State of the Cognitive Context.
The agent then tries to generate a negative auto-
feedback act in order to solve the processing prob-



lem (e.g., “Could you repeat that please?” or “Did
you say ’five’?”). The Auto-Feedback Agent may
also be triggered if it has reason to believe that the
user is not certain that the system has understood
a previous utterance, or simply if it has not given
any explicit positive feedback for some time. In
these cases of triggering, the agent tries to gener-
ate a positive auto-feedback act.

Hence the dialogue management process in-
volves 11 dialogue act agents that operate in par-
allel on the context model. The dialogue acts gen-
erated by these agents are kept in the linguistic
context as candidates. The selection of dialogue
acts from different dimensions may happen inde-
pendently, but for their order of performance and
their combination, the relative importance of the
dimensions at the given point in the dialogue has
to be taken into account.

An additional Evaluation Agent monitors the
list of candidates and decides which of them can
be combined into a multifunctional system utter-
ance for generation, and when. Some of the dia-
logue act candidates may have higher priority and
should be generated at once, some may be stored
for possible generation in later system turns, and
some will already be implicitly performed through
the performance of other candidate acts.

4.1 A dialogue manager for interactive QA

The current implementation of the PARADIME
dialogue manager is integrated in an interactive
question-answering (QA) system, as developed
the IMIX multiproject. The task-domain at hand
concerns encyclopedic information in the medical
domain, in particular RSI (Repetitive Strain In-
jury). The system consists of several input anal-
ysis modules (ASR, syntactic analysis in terms
of dependency trees, and shallow semantic tag-
ging), three different QA modules that take self-
contained domain questions and return answers
retrieved from several electronic documents with
text data in the medical domain, and a presentation
module that takes the output from the dialogue
manager, possibly combining any QA-answers to
be presented, into a multimodal system utterance.

The dialogue management module provides
support for more interactive, coherent dialogues,
in which problems can be solved about both com-
munication and question-answering processes. In
interaction with the user, the system should play
the role of an Information Search Assistant (ISA).
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This HCI metaphor posits that the dialogue system
is not an expert on the domain, but merely assists
the user in formulating questions about the domain
that will lead to QA answers from the QA mod-
ules satisfying the user’s information need (Akker
et al., 2005).

In the context model for this dialogue manager,
as represented by the feature structure in Figure 1,
the Semantic Context has been further specified
according to this underlying task. It contains a
state variable for keeping track of the question-
answering process (the feature rask_progress with
values to distinguish between the states of com-
posing a self-contained question to send to the QA
modules, waiting for the QA results in case a QA-
question has been sent, evaluating the QA results,
and discussing the results with the user). Also, the
Semantic Context keeps a record of user’s infor-
mation need, by means of a list user_info_needs
of ’information need’ specifications in terms of
semantic descriptions of domain questions and
whether or not these info-needs have been satis-
fied.

For the first version of the dialogue manager
we have defined a limited system functionality,
and following from that a simplified version of
the dialogue act taxonomy. This simplification
means for example that Social Obligations Man-
agement (SOM) and the various dimensions in
the Interaction Management (IM) layer have been
merged into one dimension, following the obser-
vation that utterances with a SOM function very
often also have a function in the IM layer, es-
pecially in human-computer dialogue; see (Bunt,
2000b). Also several general-purpose commu-
nicative functions have been clustered into single
types. Table 1 lists the dialogue acts that the dia-
logue act recogniser is able to identify from user
utterances.

GP AUF IM-SOM
YN-Question || PosAutoFb Init-Open
WH-Question || NegAutoFb-Int Init-Close

H-Question
Request

NegAutoFb-Eval

Instruct

Table 1: Dialogue act types for interpreting user
utterances.

Table 2 lists the dialogue acts that can be gen-
erated by the dialogue manager. Task-domain
acts, generally answers to questions about the do-



main, consist of a general-purpose function (either
a WH-ANSWER or UNC-WH-ANSWER; the latter
reflecting that the speaker is uncertain about the in-
formation provided) with a semantic content con-
taining the answers obtained from QA.

AUF ALF IM-SOM
NegAutoFb-Int | Fb-Elicit | React-Open
NegAutoFb-Exe React-Close

Table 2: Dialogue act types for generating system
responses.

The above considerations have resulted in a di-
alogue manager containing 4 dialogue act agents
that operate on a slightly simplified version of the
context model as specified in Figure 1: a Task-
Oriented (TO) Agent, an Auto-Feedback (AUF)
Agent, an Allo-Feedback (AUF) Agent, and an
Interaction Management and Social Obligations
Management (IMSOM) Agent. In addition, a (cur-
rently very simple) Evaluation Agent takes care of
merging candidate dialogue acts for output presen-
tation.

In Appendices A.1 and A.2, two example di-
alogues with the IMIX demonstrator system are
given, showing system responses based on can-
didate dialogue acts from several dialogue act
agents. The ISA metaphor is reflected in the sys-
tem behaviour especially in the way in which QA
results are presented to the user. In system utter-
ances S2 and S3 in Appendix A.1, for example,
the answer derived from the retrieved QA results is
isolated from the first part of the system utterance,
showing that the system has a neutral attitude con-
cerning that answer.

4.1.1 The Task-Oriented Agent

The TO-Agent is dedicated to the generation of
task-specific dialogue acts, which in practice in-
volves ANSWER dialogue acts intended to satisfy
the user’s information need about the (medical)
domain as indicated through his/her domain ques-
tions. The agent is triggered if a new information
need is recorded in the Semantic Context. Once it
has been triggered, the agent sends a request to the
QA modules to come up with answers to a ques-
tion asked, and evaluates the returned results. This
evaluation is based on the number of answers re-
ceived and the confidence scores of the answers;
the confidence scores are also part of the output of
the QA modules. If the QA did not find any an-
swers or if the answers produced had confidence
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scores that were all below some lower threshold,
the TO-Agent will not generate a dialogue act, but
write an execution problem in the Own Process-
ing State of the Cognitive Context (which causes
the Auto-Feedback Agent to be triggered, see Sec-
tion 4.1.2; an example can be found in the dia-
logue in Appendix A.2). Otherwise, the TO-Agent
tries to make a selection from the QA answers
to be presented to the user. If this selection will
end up containing extremely many answers, again,
an execution problem is written in the Cognitive
Context (the question might have been too gen-
eral to be answerable). Otherwise, the selection
will be included in an answer dialogue act, either
a WHANSWER, or UNCWHANSWER (uncertain
wh-answer) in case the confidence scores are be-
low some upper threshold. System utterances S1
and S2 in the example dialogue in Appendix A.1
illustrate this variation. The selection is narrowed
down further if there is a subselection of answers
with confidences that are significantly higher than
those of the other answers in the selection.

4.1.2 The Auto-Feedback-Agent

The AUF-Agent is dedicated to the generation
of auto-feedback dialogue acts. It currently pro-
duces negative auto-feedback acts on the levels
of interpretation (“I didn’t understand what you
said”), evaluation (“I do not know what to do with
this”) and execution (“I could not find any answers
to your question”). It may also decide to occa-
sionally give positive feedback to the user. In the
future, we would also like this agent to be able
to generate articulate feedback acts, for example
with the purpose of resolving reference resolution
problems, as in:

U: what is RSI?

S: RSI (repetitive strain injury) is a pain or
discomfort caused by small repetitive move-

ments or tensions.

U: how can it be prevented?

S: do you mean 'RSI’ or ’pain’?

4.1.3 The Allo-Feedback Agent

The ALF-Agent is dedicated to the generation
of allo-feedback dialogue acts. For example, it
may generate a feedback-elicitation act if it has
reason to believe that the user might not be sat-
isfied with an answer (“‘Was this an answer to your
question?”).



4.1.4 Interaction Management and Social
Obligations Management Agent

The IM-SOM Agent is dedicated to the gener-
ation of social obligations management acts, pos-
sibly also functioning as dialogue structuring acts
(opening resp. closing a dialogue through a greet-
ing resp. valediction act). It gets triggered if
communicative pressures are recorded in the So-
cial Context. Currently it only responds to re-
active pressures as caused by initiative greetings
and goodbyes. The example dialogues in Appen-
dices A.1 and A.2 illustrate this type of social be-
haviour.

4.1.5 Multi-agent Architecture of the
Dialogue Manager

In Figure 2, a schematic overview of the multi-
agent dialogue manager is given. It shows the
context model with four components (for now, the
Physical and Perceptual Context is considered to
be of minor importance and is therefore ignored),
a set of dialogue act agents, and an Evaluation
Agent. The dialogue act agents each monitor the
context model and may be triggered if certain con-
ditions are satisfied. The TO-agent may also write
to the Cognitive Context (particularly in case of
execution problems). All agents may construct
a dialogue act and write it in the candidates list
in the Linguistic Context. The Evaluation Agent
monitors this candidates list and selects one or
more dialogue acts from it for presentation as sys-
tem output. In this way, a control module may
decide to take this combination of dialogue act for
presentation anytime and send it to the presenta-
tion module to produce a system utterance.

With this initial design of a multi-agent dia-
logue manager, the system is able to support mul-
tifunctional output. The beginning of the example
dialogue in Appendix A.1 illustrates multifunc-
tionality, both in input interpretation and output
generation. The system has recognised two dia-
logue acts in processing U1 (a conventional open-
ing and a domain question), and S1 is generated
on the basis of two candidate dialogue acts gen-
erated by different dialogue act agents: the IM-
SOM-Agent (generated the react-greeting act) and
the TO-Agent (generated the answer act).

5 Conclusions and future work

We have presented a dialogue management ap-
proach supporting the generation of multifunc-
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DIALOGUE ACT AGENTS

AUF-Agent CONTEXT MODEL

ALF-Agent Cognitive Context

TO-Agent Semantic Context

Social Context

IM-SOM-Agent

T,

.

Linguistic Context

candidate
dialogue acts

candidate
dialogue acts

Eval-Agent

Figure 2: Architecture of the PARADIME dialogue
manager.

dialogue acts
for presentation

tional utterances. The approach builds on a di-
alogue theory involving a multidimensional dia-
logue act taxonomy and an information state on
which the dialogue acts operate. Several dialogue
acts from different dimensions are generated by
dialogue act agents associated with these dimen-
sions, and can thus be combined into multifunc-
tional system utterances.

A first implementation of a dialogue manager
following this multi-agent approach has been in-
tegrated into an interactive QA system and sup-
ports a limited range of dialogue acts from the
DIT taxonomy, both for interpreting user utter-
ances and generating system utterances. The sys-
tem is able to attend to different aspects of the
communication simultaneously, involving reactive
social behaviour, answering domain questions and
giving feedback about utterance interpretation and
the question-answering process.

Future development will involve extending the
range of dialogue acts to be covered by the dia-
logue manager, for a part following from the def-
inition of an extended system functionality, and
consequently, extending the set of dialogue act
agents. This also has consequences for the Eval-
uation Agent: the process of combination and se-
lection will be more complex if more dialogue act
types can be expected and if the dialogue acts have
a semantic content that is more than just a collec-
tion of QA-answers.

In terms of system functionality we aim at sup-



port for generating articulate feedback, i.e., feed-
back acts that are not merely signalling processing
success or failure, but (in case of negative feed-
back) also contain a further specification of the
processing problem at hand. For example, the sys-
tem may have encountered problems in processing
certain parts of a user utterance, or in resolving an
anaphor; then it should be able to ask the user a
specific question in order to obtain the informa-
tion required to solve the processing problem (see
the example in Section 4.1.2). The articulate feed-
back acts may also involve dealing with problems
in the question answering process, where the sys-
tem should be able to give specific instructions to
the user to reformulate his question or give addi-
tional information about his information need.

In addition to supporting generation of articu-
late feedback acts, we also aim at dialogues be-
tween user and system that are more coherent and
natural, i.e., the system should be more aware of
the conversational structure, and display more re-
fined social behaviour. Not only should it gener-
ate simple reactions to greetings, apologies, and
goodbyes; it should also be able to generate initia-
tive social acts, for example, apologies after sev-
eral cases of negative auto-feedback.

The extended set of dialogue acts will also lead
to an extended context model. Related to the
context model and updating mechanism is on-
going work on belief dynamics and grounding
in DIT (Morante and Bunt, 2005). The defined
mechanisms for the creation, strengthening, adop-
tion, and cancelling of beliefs and goals in the
context model are currently being implemented
in a demonstrator tool and will also be integrated
in the information state update mechanism of the
PARADIME dialogue manager.
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A Example dialogues

A.1 Example 1: greetings, answers and
unc-answers

Ul: hallo, ik wilde graag weten wat rsi is
(hello, I wanted to know what is rsi)
[INIT-OPEN; INDWHQ, task-domain]
S1: Hallo. Ik heb de volgende informatie gevonden:
(repetitive strain injury) Algemene benaming voor
(blijvende) beschadigingen aan het lichaam ten gevolge
van langdurige, eentonige werkzaamheden.
(Hello. I found the following information: ...)
[REACT-OPEN; ANSWER, task-domain]
U2: wat moet ik doen als ik denk rsi te hebben
(what should I do if I think I have RSI)
[WHQUESTION, task-domain]

S2: De volgende informatie levert mogelijk een antwoord

Op UW vraag:

Ontspanning betekent minder stress, minder aange-
spannen spieren en dus minder kans op RSI.

(The following information might answer your ques-
tion: ...)

[UNCANSWER, task-domain]
U3: helpt ontspanning ook als ik eenmaal rsi heb
(does relaxing help as well, once I have RSI)
[YNQUESTION, task-domain]
S3: Ik heb de volgende informatie gevonden:

Behandelmethoden bij RSI Er zijn vele wegen die naar
Rome leiden. Verbetering van de doorbloeding ...

(1 found the following information: ...)
[ANSWER, task-domain]|
U4: oke, bedankt
(okay, thanks)

[INIT-CLOSE]
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S4: tot ziens. U kunt de buttons gebruiken om te stoppen
of om een nieuwe dialoog te beginnen.

(Goodbye. You may use the buttons to stop or to start a
new dialogue.)

[REACT-CLOSE]

A2
Ul:

Example 2: negative execution-feedback
hallo!
(hello!)
[INIT-OPEN]
S1: Hallo. Stel uw vraag.

(Hello. Ask your question.)

[REACT-OPEN]

U2: wat kan ik als beelschermwerker tegen rugpijn doen
(what can I, a person working behind a computer
screen all the time, do against pain in the back)
[WHQUESTION, task-domain]

S2: Ik heb helaas geen antwoorden kunnen vinden; probeer
de vraag te herformuleren.

(Unfortunately, I could not find any answers; please try
to reformulate the question)
[NEGAUTOFB-EXEC]

U3: wat kan men tegen rugpijn doen
(what can be done against pain in the back)
[WHQUESTION, task-domain]

S3: ik heb de volgende informatie gevonden:
Deze is afthankelijk van de oorzaak. Rugpijn die door
instabiliteit of door tekortschietende spieren en ban-
den ontstaat, kan behandeld worden met houdingscor-
rigerende oefentherapie.
(I found the following information: ...)
[ANSWER, task-domain]

U4: bedankt!
(thanks!)
[INIT-CLOSE]

S4: Tot ziens. U kunt de buttons gebruiken om te stoppen

of om een nieuwe dialoog te beginnen.

(Goodbye. U may use the buttons to stop or to start a
new dialogue.)

[REACT-CLOSE]
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Abstract

This paper investigates the problems facing mod-
elling agents’ beliefs in Discourse Representation
Theory (DRT) and presents a viable solution in the
form of a dialogue-based DRT representation of
beliefs. Integrating modelling dialogue interaction
into DRT allows modelling agents’ beliefs, inten-

interaction dictates that the strength or degree of
belief varies depending on contextual factors. This
can be seen from the following example:

(1) A: | want to make a booking for my
wife.
B: Yeah.
A: What time is the Thailand flight on

tions and mutual beliefs. Furthermore, it is one of Monday?

the aims of the paper to account for the important B: It's at 2 pm.

notion of agents’ varying degrees of belief in differ-

ent contexts. In example (1) B does not necessarily need to be-

lieve the presupposition (given information) that
A has a wife. For the purposes of the conversa-
Heydrich et al. remark that ‘serious description oftion, which is providing A with information, B can
natural dialogue seems to necessitate that we cosimply ‘go along with’ the presupposition and not
sider the mental states of the speakers involvedhave it as a member of his beliefs (i.e. his belief
(1998)? This is a step that is by no means easy. liset) (Stalnaker 2002). Similarly, let us consider the
is the aim of this paper to integrate previous workfollowing example, (2). The speaker is a customer
on beliefs in DRT and dialogue theory in order toin a clothing shop.

model the mental states of agents in dialogue.

1 Introduction

The connection between beliefs, intentions and(2) S1: I wantto buy a dress for my wife.
speech or dialogue acts has been noted in the liter- H1: Is it for a formal occasion?
ature. Stalnaker notes, for instance, that S2: Yes.

H2: What is her favourite colour?
[i[f we understand contexts, and the S3: She doesn't like red anymore.
speech acts made in contexts, in terms H3: Does your wife like black?
of the speaker’s beliefs and intentions, S4: Yes

we have a better chance of giving sim-

pler and more transparent explanations  As the speaker, S, introduces the presupposition
of linguistic behaviour (Stalnaker 2002: that he has a wife, the hearer, H, can come to the
720). conclusion that S believes S has a wife. However,

] ) _when the hearer comes to refer to S’s wife, H does
The kind of agent beliefs we are concerned W'thnot necessarily have to believe S has a wife. H

here arises in dialogue interaction. The nature OEan simply go along with the information that the

!| gratefully acknowledge support from Science Founda-speaker has a wife and use this form of acceptance
tion Ireland grant 04/IN/IS27. , , _in H2 without committing to ‘strongly believing’

Other names for mental state used in the literature in- Indeed. th K be buvi d f
clude ‘information state’, ‘conversational score’, and ‘dis- It. Indeed, the speaker may be buying a dress for

course context’ (Larsson and Traum 2000). his mistress rather than his wife. By going along
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with it, the hearer does not have to commit him-of beliefs that are shared between, or are common
self to believing that the speaker has a wife. Whato, the two agents.

is more at stake than believing that the speaker in- The question is: how can DRT best model be-
deed has a wife and not a mistress is closing théiefs? The following section, 2, outlines the prob-
sale. Contrast examples (1) and (2) with exampléems facing modelling beliefs in DRT. Section 3

(3): presents a graded view of agents’ beliefs in dia-
logue as a solution to these problems. This is fol-
(3) S1: You have to get Peter’s son a Chris-lowed by a description of the relationship between
tening present. belief and mutual belief, section 4, and then of the
H1: Peter has a son? relationship between belief and dialogue acts, sec-
S2: Sorry | forgot to mention that be- tjon 5.
fore.
H2: Ok, what sort of present should | 2 Problems Facing Modelling Beliefs in
get him? DRT

S3: A toy would be nice.
According to Heydrich et al. (1998), paradigms of

In this context, the hearer, H, is required to commitdynamic semantics (DRT, Situation Semantics and
more strongly to the presupposition of Peter havDynamic Predicate Logic) face three obstacles in
ing a son than simply going along with it, since H modelling dialogue. First, there is the problem of
is being asked to buy a Christening present. Th@dapting the paradigm, originally made to model
fact that H2 agrees to buying a present for Peter'snonological discourse, to the description of dia-
son reflects more commitment to the presuppologue with different agents. The second problem
sition than B shows in example (1). Considera-s the description of mental states and the beliefs
tions of this kind lead to the conclusion that dif- of the agents. The third problem is in explaining
ferent contexts call for varying strengths of beliefshow the mental states are related to overt linguistic
and belief representation. We shall not attempt tdehaviour.
describe all the contextual factors that can cause With respect to the first problem, DRT has grad-
strength of belief to vary. The point is, rather, thatually attempted to address problems of belief rep-
we clearly need to model strength of belief andresentation in dialogue. For example, Rmole-
no current model of DRT incorporates such a progomenaKamp introduces a simple model of ver-
posal. This paper, thus, makes an original proposdlal communication (Kamp 1990: 71), which con-
for including a system for graded beliefs in the be-sists of two agents, A and B, and their mental
lief spaces (or sets) of both the speaker and thstates K(A) and K(B). Later work by Kamp et
hearer. al. (2005) introduces agent modelling for single-
Bearing this in mind, there is a need in DRT for sentence discourse, namely the hearer. The treat-
representing the differing beliefs of agents in dia-ment presented in this paper allows the represen-
logue and their beliefs (meta-beliefs) about othetation of dialogue with different agents, thus, ad-
agents’ beliefs or mental state. By focussing ordressing the first problem identified by Heydrich
the intentions of speakers and hearers and infeet al. (1998).
ring agents’ intentions in making an utterance, the With regard to the second problem, however,
approach presented in this paper aims at fulfillingDRT has been primarily concerned with repre-
this need. It follows that, to have a ‘full’ theory of senting utterances containing propositional atti-
beliefs and to have an insight into the mental statetudes such as ‘believe’, rather than the beliefs and
of agents in dialogue (the speaker and the hearemneta-beliefs of agents. Segmented-DRT (SDRT)
it is necessary to have a representation of agentsias mainly focused on belief update and revision
beliefs, degrees of beliefs, and the dialogue actéAsher and Lascarides 2003). The treatment in
expressed by their utterances (Asher 1986). This ithis paper takes previous work on beliefs in dy-
also in order to strengthen the link between utternamic semantics as a starting point and extends it
ances and agents’ intentions in dialogue. The dito reach a richer representation of the interaction
alogue act or function performed by the utterancéetween mental states and the linguistic content of
tells us something about the speaker’s beliefs. Fumntterances. For example, both speaker and hearer
thermore, what is also needed is a representatiomental states are represented and the beliefs and
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meta-beliefs of agents are reviewed after each usearch to include further degrees of belief. Modal
terance. expressions, including words such as ‘possibly’
As a semantic theory, DRT tells us which dis-and ‘might’, are evidence that there exist more de-
course referents are needed in context. Howevegrees of belief than the ones discussed in this pa-
DRT does not deal with planning, nor with prag- per.
matic aspects of contexts rendered through re- The beliefs of an agent are ‘her model of how
lating the current utterance to agents’ intentionsthings are’ (Traum 1994: 15). The notionlélief
Kamp et al’s (2005) expansion of the original, (or strong belief) is to be understood in relation
also known as ‘vanilla’, DRT (Poesio and Traumto the agent: it is what the agent takes to be true.
1997a), deal minimally with intentions. To deal There is an important philosophical background to
with the third problem mentioned by Heydrich et the discussion of ‘belief’ and ‘knowledge’. It is
al., Al-Raheb (2005) has already outlined a pragoutside the scope of this paper to review all the
matic extension to DRT that makes it appropriatéiterature here. Quine (1960), Hintikka (1962),
for linking the current utterance and agents’ inten_ewis (1969, 1979), and Davidson (1983) are rep-
tions. resentative. The term ‘belief’ is understood in this
The present paper aims to show how that linkpaper to refer to propositions strongly held by the
can be strengthened through modelling agents’ inagent to be true and when making utterances relat-
tentions and relating them to the dialogue actsng to them, the speaker not only commits herself
communicated via utterances. In relation to thisto their truth but also communicates to the hearer
link, the significance of degrees of belief is ex-that she, the speaker, believes those proposition to

plained in the following section. be true.
Another degree of belief calledcceptanceas
fyoum accounted for in this model. Acceptance consists
R of the agent’s weakly believed propositions. The
c2: newShoes(s) agent may be going along with what the speaker
drs2:| attitude(you, ACCEPT’, drs3) . . . ..
drea. is saying or has acquired a new proposition based
on the speaker’s utterance which has not yet been
atttude(i, ACCEPT", drs?) confirmed into a stronger belief.
attitude(i, ‘BEL’, drs4) . . . .
v To illustrate what is meant by the distinction be-
bz, ey tween belief and acceptance, let us look at:
b3: has(m.,y)
. attitude(you, ‘BEL’, drs5)
I rsa: s 4) S1: I need to buy new shoes for Mary’s
b4:
s D5 pard) party.
| b6: h 3
b7: Dy bg) H1: Try Next on Henry Street.
b8: newShoes(s)
atitude(you, INT', drs6) The speaker tells the hearer that she has to buy
ys , .
oL mary(m) new shoes for Mary’s party. In this example, the
p2:party(y) . .
ares| P3 hasm.y) hearer already (strongly) believes there is a party
‘| al: buy(you,a2)
a2: newShoes(s) and he suggests a place where the speaker can buy
informyou 1. a1 them. Figure 1 demonstrates the hearer’s mental

state after hearing the speaker’s utterance, S1. The
hearer's mental state is represented by a Discourse
Representation Structure (DRS), which contains
three sub-DRSs, one for intention (referred to by
‘attitude(you, ‘INT’, drs6)’ and the label for the
intention DRS, drs6), another for the belief DRS
To our knowledge, there is no account in DRT containing strong beliefs (referred to by ‘attitude(i,
that accommodates strengths or degrees of beli@EL’, drs4)’ and the the label for the belief DRS,

of agents in dialogue. This section addresses thidrs4), and finally the acceptance DRS contain-
gap and proposes initially two strengths of beliefing weak beliefs (referred to by ‘attitude(i, ‘AC-
involved in dialogue to be expanded in future re-CEPT’, drs2)’ and the the label for the acceptance

Figure 1: Hearer Recognition of S1

3 Degrees of Belief
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DRS, drSZﬁ iyoum

If we change example (4) so that the hearer does
not actually hold the belief that there is a party, as e a0, ACCEPT drs3)
in: drs4:
(5) S1: | need to buy new shoes for Mary'’s attitude(i, ACCEPT", drs2)
attitude(i, ‘BEL’, drs4)
party. sh
H1: | didn’t realize Mary is throwing a Eé;p’h‘;i;(y((y’}”)
. has(m,’
party' b4: buy(yoz,bS)
S2: Yeah she is. It's next Tuesday. bo o
H2: You can probably buy them at Next. _ b7 next(n)
drs: drs4:| attitude(you, ‘BEL’, drs5)
The hearer does not necessarily need to strongly B8, ey
believe that Mary is throwing a party. He can ‘go arss{ P10 hasny)
. . : buy(you,
along with’ or accept it and even suggest a place bL2: newShoes(c)
. : try(you,
where the speaker can buy the shoes. The exis- b14: nex(n)
tence of a party does not affect the hearer person- .
ally or directly, i.e. he does not need to act on auiudetron, NT. dieT)
it. However, let us now consider the effect if we O]
change the example again so that the hearer does arst: 22 uyap2)
not know about Mary’s party, nor that he is re- ooy oy
quired to buy new shoes, as in:

(6) S1: You need to buy new shoes for Figure 2: Speaker Recognition of H2
Mary’s party.
H1: | didn’t realize Mary is throwing a

party. ‘Mutual belief’, also referred to as ‘mutual knowl-

S2: Yeah she is. You should try Next on €dge’, is the term used by Traum (1994) among
Henry Street. others, where a group of individuals may believe
H2: | will. X, where X may or may not be true. Stalnaker's

(2002) ‘common belief’ is comparable to what
This time, for the hearer to commit to buying others call mutual belief. For X to be a mutual
something for a party (in H2) that he did not evenbelief, it has to be accessible to a group; all be-
know existed suggests a stronger degree of belidieve X and all believe that all believe X, and all
than that of ‘going along with’ the speaker havingbelieve that all believe that all believe X.
to buy it. The existence of the party affects the In face-to-face communication, the hearer be-
hearer personally and directly. Therefore, agreelieves that the speaker believes what she, the
ing to buy new shoes justifies the inference that hgpeaker, is communicating. On the other hand, un-
believes rather than just accepts there is a partyess the hearer indicates doubt or objects to what
This is what the paper describes as belief, or ahe speaker is saying, the speaker assumes that the
strong degree of belief. Contrast Figure 1 with thehearer believes what the speaker has said — which
figure representing the speaker’s mental state aftés consistent with expectations under Gricean co-

hearing H2 in example 6, Figure 2. operativeness assumptions (1989). The speaker
) _ also assumes that the hearer now has the belief that

4 Beliefs and Mutual Beliefs the speaker believes what she just said. This as-

The treatment of beliefs that we are developin ;g‘(';_t';’g)'s what leads to ‘mutual’ beliefs (Kamp

here requires an explicit account of how the be-

lief spaces or DRSs of two agents can interact. However, mutual belief can be viewed as the

- processof establishing that the speaker and the
%Inside the agent's DRS, ‘i’ is used to refer to the agenthearer hold the same belief. One way in which

and ‘you’ is used to refer to the other agent. Assertions ar%h. . h h ker hold

marked by ‘a’, presuppositions by ‘p’, believed informa- IS process may occur Iis when the speaxer holds

tion by ‘b’ and accepted information by ;:¢. a belief and communicates that belief to the hearer.
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This belief may then be adopted by the hearer who Tyou
can provide feedback to the speaker that the infor-
mation communicated has now acquired the status
of belief in an ideal situation with a cooperative

hearer. When both participants reach the conclu-

attitude(you, ‘ACCEPT’, drs3)

drs2: drs3:

attitude(i, ACCEPT’, drs2)

sion that S bel(ieves) X, H bel X, H bel S bel X, atttude(, ‘BEL', drsd)
. . Xy
and S bel H bel X, then mutual belief is estab- B1: neighbour(x)
. . . b2: h i,
ished. The speaker in example elieves her b3: wairdoth)
lished. The speak ple (7) bel h
. . . . b4: wind
neighbour is a weirdo. Whether the utterance is bs: have(iy)
informative (new) or not depends on the context. b7 Sy
In this example, (7), the speaker may not already auiuielyou, BEL, 09
have the belief that the hearer believes her neigh- bo. hoaig
bour is a weirdo. T
drs4: b12: have(i,y)
drsl: b13: peeping-through(x,y)
@) Sp_eaker: My neighbour is such a itael el )
Welrdo' . . . e b15: neighbour(x)
Hearer: Yeah, he is. | saw him peeping pie: ';Vzvif;g(xg)
through your window the other day. drs6;| - b18: window(y)

b19: have(i,y)
b20: peeping-through(x,y)
b21: saw(you,b20)

However, after the hearer makes his utterance, the
speaker can now strongly believe that the hearer

believes her neighbour is a weirdo, that he believes attitude(you, ‘INT’, drs?)
she believes her neighbour is a weirdo, and now o1 TeghBaT)
she believes he believes her neighbour is a weirdo. D i)
Figure 3 shows the level of nesting to accommo- O e roughtxy)
. y . 2: ,al
date the mutual belief that the speaker’s neighbour ;m;gggszfegdgack(you,i,pz
is aweirdo. Itis possible when this level of nesting inform(you.1a2)
is reached to have a separate DRS or space for mu-
tual beliefs, called ‘mutual belief DRS’. In which Figure 3: Speaker Recognition

case, the propositions held in drs6, can now be
removed from drs6 and added to the ‘mutual be-
lief DRS'. Figure 3 represents the speaker’s menModel beliefs in dialogue, it is necessary to un-
tal state after the hearer makes his utterance. Féferstand what the representation of dialogue in-
the purposes of this example, the DRT represente¥Plves. A dialogue is ‘a cooperative undertaking
in Figure 3 will mainly focus on the speaker's be-Of @gents engaged in developing and transform-
lief DRT. ing their common situation’, involving verbal and
Achieving mutual belief is immensely helped non_-verbal action (Heydri_ch et al. 1998: 21). In
by dialogue acts. For example, when a hearef dialogue, L_Jtterarlces give rise _to dialogue acts
provides strong feedback about a new propositioCf- 2gents’ intention DRSs in Figures 1, 2 and
(cf. drs7 in Figure 3), the speaker can come to3), hamed speech acts by some, and conversation
believe the hearer believes that proposition. SecdCts by others (Traum 1994). _
tion 5 shows the importance of considering the di- ©One of the features of dialogue acts is how they
alogue acts expressed by an assertion (new infoRffect the agents’ mental states. As Traum points

mation) and their relationship to degrees of beliefPut - speech acts are a good link between the
and strengthening of beliefs. mental states of agents and purposeful communi-

cation’ (Traum 1999: 30). Each agent in dialogue
5 Beliefs and Dialogue Acts needs to have a representation of their beliefs and

the other agent’s beliefs or cognitive state in or-
When someone makes an assertion, they commuler for a dialogue act to be felicitous in Austin’s
nicate not only information they assume to be newand Searle’s sense (Asher 1986). That is to say,
to the hearer, but also communicate to the hearatialogue acts depend on agents’ beliefs for inter-
information about their own beliefs. In order to pretation.
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Each assertion made has one ‘function’ or more. Tyouxa

For example, the function of a statement could be attitude(i, ‘BEL, drs2)

to make a claim about the world. Traum (1997) di- BT XFTesOVD®)
vides statements into ‘assert’, ‘re-assert’, and ‘in- e b 2?;‘;,‘;’&?{,4)
form’. ‘Assert’ is trying to ‘change’ the belief of T 2| BEA@ s
the addressee. The result of assert is that the hearer e

now assumes that the speaker is trying to get the bS: xFilesDVD(x)

hearer to believe the assertion. ‘Re-assert’ can be
used when participants try to verify old informa-
tion, and not necessarily inform of something new. Figure 4: Inform: Speaker’s utterance
‘Inform’ means that the speaker is trying to pro-
vide the hearer with information that the hearer
did not have before. However, Traum does not
go further to discuss cases where agents believe

iyouxa

attitude(i, ‘BEL’, drs2)

b1: xFilesDVD(x)

their utterances (Traum 1994: 14). It is one of the b2 amazont@) |
claims of this paper that agents in dialogue either i . bﬁ}ta‘;(ag o .

. . . ‘| attitude(you, * ', drs
strongly or weakly believe their utterances in order

. . . . drs3:[ b5: xFilesDVD
to be cooperative. It is possible to extend this ap- ¥ b notonsaletn)

proach in order to include cases where agents are
purposefully deceitful. However, this is left for fu-
ture research. Figure 5: Change belief

The adapted dialogue acts, or functions, in thiss
paper’s treatment of beliefs in DRT are mainly
‘inform’, ‘change belief’ and ‘other’. ‘Inform’ Figure 5, drs3, in which the speaker believes the
is used to communicate new information to thehearer believes the X-Files DVD is not on sale,
hearer, whereas ‘change belief’ (or to use Poesitot(onSale(x))'.
and Traum’s (1997b) dialogue act term ‘assert’) The category ‘Other’ embraces any dialogue act
is used to change the hearer’s beliefs about somsther than ‘inform’ and ‘change belief’, whose
proposition. The importance of the representatiomecognition involves the same process explained
introduced in section 3 in relation to dialogue actsfor others, e.g. ‘suggest’, ‘clarify’, and ‘explaift’.
transpires in allowing us to make the distinctionThe dialogue acts ‘accept’ and ‘reject’ come un-
between the dialogue acts ‘inform’ and ‘changeder the umbrella of feedback as they can be in re-
belief’ (‘assert’). To ‘inform’ the hearer of X, the sponse to, for instance, a ‘suggest’ dialogue act.
speaker needs to have the belief in her beliefs thathe dialogue act ‘clarify’ is used when a hearer
the hearer does not believe X, i.e. bek®el(H, is having difficulty recognizing the speaker’s ut-
X)). This is a constraint to making an informative terance’. On the other hand, ‘explain’ is when
utterance. Figure 4 shows the speaker’s beliefs behe speaker responds to the hearer’s clarification

fore making the utterance in example (8). request and provides a clarifying utterance. The
' _ hearer can accept, believe, or reject that explana-
(8) The X-Files DVD is on sale on Amazon. tion. The dialogue act ‘suggest’ also instigates one

of three reactions: the hearer can accept, believe or

The speaker believes the hearer does not afgject that suggestion and may provide feedback to
ready believe that the X-Files DVD is on sale onjpgicate which is his reaction. It is of more inter-

Amagzon, drs3. This is demonstrated by the missast 19 this paper to examine the effects of dialogue

ing propositions representing ‘on sale on Amazonacis on the hearer’s beliefs, and what dialogue acts
‘onSale(x, b4)" and ‘at(a)’ from drs3 in Figure 4. suggest about the speaker’s beliefs.

On the other hand, to make a ‘change belief’ or

an ‘assert’, the speaker would have reason to be- “It is possible for this category to be expanded to in-
lieve that the hearer believes something differentiude more dialogue acts such as ‘question’, ‘answer’, ‘self-
or the opposite of what the speaker believes, bel(gorrect’ and ‘offer.

. " SClarification is a form of feedback. ‘I didn’t hear what
bel(H, = X)). The DRT treatment of beliefs pro- you said’ is both ‘feedback’ act and an ‘inform’ (Schegloff et

posed in this paper allows us to reflect this inal. 1977).
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Figure 6: Feedback

5.1 Feedback and Agents’ Beliefs tive feedback’ (another extension to DIT’s positive
Traum (1994) suggests that when an assertion ifseed_back), where the hearer not only indicates re-

L ception of A, but also that she agrees that A (cf.
made, the hearer has an obligation to produc

an ‘understanding act. In aeneral. acknowled e_%rs? Figure 3). This is where confirming adoption
g - ng ’ 9€ 5 new beliefs takes place, example (9.c). Reject-

ment is expected in Traum’s treatment of speech . U .
. .Jng A is another way of giving feedback, negative
acts. This means that when a hearer responds wi :
eedback, as in example (9.d).

‘okay’, the hearer can be taken to be providing

an acknowledgement and an acceptance. How¢g) Speaker: Mary loves John.

ever, the hearer does not always provide feedback. a. Hearer:

Grounding often happens as a result of implicit b. Hearer: aha.

rather than overt feedback and acknowledgement c. Hearer: | couldn't agree more!

(Bunt 1995)° In fact, the treatment outlined in d. Hearer: No, Mary is besotted with
this paper maintains that the lack of feedback is to Tom!

be considered a form of ‘weak positive feedback’,

an extension to Dynamic Interpretation Theory’s There are also degrees of belief that can be ex-

(DIT) positive feedback (Bunt 1995). The hearerpressed according to the speech act used, firm ver-

does not object to the speaker’s utterance by ndtus ‘tentative’. Poesio and Traum pay less atten-

providing feedback, since if the hearer did objecttion to ‘the attitudes expressed by the acts’ (Poesio

he would explicitly do so. and Traum 1998: 221). Unlike Traum’s model, the
When the speaker makes an assertion, theffects of the dialogue acts’ employed in agents’

hearer may indicate that the message has been fi@RSs on agents’ beliefs are considered in this pa-

ceived (weak positive feedback), example (9.b)Per- Figure 6 demonstrates the Iink between feed-

Weak positive feedback may indicate understando@ck dialogue acts and agents’ beliefs.

ing, continued attention, or acknowledgement .

such as ‘uh huh’, and ‘yeah’ (Clark and Schaefer6 Conclusion

1989). Another case of weak positive feedback isAs this paper has demonstrated, beliefs vary in

provided by example (9.a) where the hearer doestrength according to context. Beliefs also change

not say anything. It is assumed that the hearer ditvith the coming of new information. The DRT

not have any problems and has received the assdreatment discussed here allows for the represen-

tion, A. In the case of weak feedback, it can betation of strong beliefs and weaker beliefs as well

argued that this represents the ‘acceptance’ 6f A.as changes to beliefs. Agents in a dialogue may

Another response for the hearer is ‘strong posiform stronger beliefs as the dialogue progresses,

requiring moving the content of their weaker be-

®Grounding is a term adapted by Traum (1994) fromJiefs to the stronger belief space.

Clark and Schaefer’s (1989) work on establishing common . .

ground. In'sum, there is no account in standard DRT that
"This does not cancel cases where for social reasons, sué&ccommodates degrees of belief of agents in dia-

as politeness, the hearer does not necessarily agree with “l‘@gue. This paper has addressed this omission and
speaker, but does not wish to indicate it. The speaker can ted t d f belief i ved in di
wrongly or rightly come to the conclusion that the hearer ac-~uggested two degrees ol beliet involved In dia-

cepts the assertion. logue, namely ‘belief’ and ‘acceptance’. It is sug-
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gested that this is the initial step in representing<amp, H., van Genabith, J.,, and Reyle, U. 2005.
agents’ mental states in dialogue-oriented DRT. The Handbook of Logic Unpublished Manuscript.
. . http://www.ims.uni-stuttgart.de/"hans/.
However, this paper does not deal with words
which introduce more degrees of belief than the-arsson, S. and Traum, D. 2000. ‘Information State and Dia-

: . logue Management in the TRINDI Dialogue Move Engine
two addressed in the model. It would be interest- Toolkit’. In: Natural Language Engineering. Special Is-

ing to see more degrees of belief represented in a sue on Spoken Language Dialogue System Engineering.
DRT dialogue model of agents in future research. Pp- 323-340.
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arranged on a scale corresponding to degrees of vard University Press.
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Abstract

This paper presents an extension to the
Reference Domain Theory (Salmon-Alt,
2001) in order to solve plural references.
While this theory doesn’t take plural
reference into account in its original
form, this paper shows how several
entities can be grouped together by
building a new domain and how they can
be accessed later on. We introduce the
notion of super-domain, representing the
access structure to all the plural referents
of a given type.

I ntroduction

ia.fr,quignard@oria.fr

that represents the access structure to all the
plural referents of typ®. This work is currently
being implemented and evaluated in the MEDIA
project of the EVALDA framework, a national
french understanding evaluation campaign
(Devillers, 2004).

2 Groupingsof Referents

Several kinds of clues can specify that referents
should be grouped together, or at least could be
grouped together. These clues may occur at
several language levels, from the noun phrase
level to the rhetorical structure level. We have
not explored in detail the different ways of

groupings entities together in a discourse or
dialogue. What is described here are just some of

1 the phenomenon we got confronted with while
In the course of a discourse or a dialoguedeveloping a reference resolution module for a

referents introduced separately
referenced with a single plural expression
(pronoun, demonstratives, etc.). The grouping of
these referents may depend on many factors: it
may be explicit if they were syntactically
coordinated or juxtaposed or implicit if they just
share common semantic features (Eschenbach
al., 1989). Time is also an important factor while

it may be difficult to group old mentioned
referents with new ones. Because of this
multiplicity of factors, choosing the right
discursive grouping for a referential plural
expression is ambiguous, and this ambiguity
needs to be explicitly described.

We present a model of grouping based on
reference domains theory (Salmon-Alt, 2001)
that considers that a reference operation consists
of extracting a referent in a domain. However the
original theory barely takes into account plural
reference. This paper shows how several entities
can be grouped together by building a new
domain and how they can be accessed later on. It
introduces also the notion of super-domain
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could bdlialogue understanding system.

Explicit Coordination - The most basic
way to explicitly express the grouping of two
or more referents is using a connector such as
and, or, as well asetc.

“Good afternoon, | would like to book a
single roomand a double roorh

Implicit Sentential Coordination - An
implicit coordination occurs when two or
more referents of the same kind are present in
one sentence, without explicit connector
between them. Does the hotel de la gare
have a restaurant, like the Holiday Irin?
Implicit Discursive Coordination —
Such a coordination occurs when several
reference are evoked in separate sentences.
The grouping must be done based on
rhetorical structuring. Here we consider short
pieces of dialogue, admitting only one level
of implicit discursive coordination®l would

like an hotel close to the sea... | also need an
hotel downtown... And the hotels have to
accept dogs.”
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= Repetitiong/Specifications — In some referents in these domains. See (Landragin et al.,
particular cases, groupings make explicit &001) for a review of perceptual groupings.
previous expression. For instancelwo )

rooms. A single room, a double robm 4 Basic Type

3 Reference Domain Theory A referential domair_l_is defined py: _
* a set of entities accessible through this

We are willing to try a pragmatic approach to domain (ground of domain),
reference resolution in practical multimodal
dialogues (Gieselman, 2004). For example we
need to process frequent phenomena like
ordinals for choosing in a list (discursive, or « g set of access structures to these
visual) or otherness when re-evoking old entities.

referents. Hence keeping the track of the way th . .
context is modified V\t)he% introducing a referyen or instance: the Ibis hotel(h,) and the hotel
or referring, is mandatory. The Referencd-afayette (h)” forms a referential domain,
Domains Theory (Salmon-Alt, 2001) supposeé"'hose. type WQUId be Hotel, and whose
that every act of reference is related to a certaifccessible — entities - would  béy,  and hy,

domain of interpretation. It endorses thethemselves defined as domains of type Hotel.

cognitive grammar concept of domain, definedThese two hotels could be accessed later on by
as a cognitive structure presupposed by thE'€r names.

semantics of the expres_sion (Kumar_ etal., 2003} 1 Accessstructures

In other words, a referring expression has to be o

interpreted in a given domain, highlighting andW& suppose that the distinction between the
specifying a particular referent in this domain. areferents from the excluded alternatives requires
reference domain is composed of a group dpighlighting a discrimination criterion opposing
entities in the hearer's memory which can pdhem. This criterion _behaves Il'kepartltlon of
discursive referents, visual objects, or conceptdhe accessible entities, grouping them together
It describes how each entity could be addressédfcording to their similarities and their
through a referential expression. differences. A partition may have one of its parts

This theory views the referring process as 40cused. There are, at least, three kinds of
dynamic extraction of a referent in a domaindiscrimination criteria:

instead of a binding between two entities . discrimination on description. Entities
(Salmon-Alt, 2000). Hence doing a reference act can pe discriminated by their type, their

consists in isolating a particular entity from athe  yroperties, or by the relations they have with
rejected candidates, amongst all the accessible giher entities. For example the name of the

entities composing the domain (Olson, 1970). notels is a discrimination criterion itite Ibis
This dynamic discrimination relies on projecting  hote| and the hotel Lafayette

an access structure focusing the referent in the o N

domain. The domain then becomes salient for * discrimination on focus. Entities can
further interpretations. The preferences for also be discriminated by the focus they have
choosing a suitable domain are inspired from the When they are mentioned in the discourse or

Relevance theory (Sperber & Wilson, 1986) designed by a gesture. For examplé)is
taking into account such focalization and roont would select a focused referent in a

salience. domain, whereasthe other roorh would

Landragin & Romary (2003) have also studied Sselect a non-focused one.

the usage of reference domains in order to model ¢ discrimination on time of occurrence.

a visual scene. The grouping factors for visual Entities can finally be discriminated by their

objects are those given by the Gestalt theory, occurrence in the discourse. For examie

proximity, similarity, and good continuation.  Second hotélwould discriminate this hotel

Each perceptual groups or groups designated by by its rank in the domain.

a gesture could be the base domain for ap . . .
: : , 4.2 Classical resolution algorithm

extraction. Referential expressions work the

same way either the domains are discursivesach activated domain belongs to list of domains

perceptual or gestural, they extract and highlighordered along their recentness (the referential

a description subsuming the description
of all these entities (type of domain),
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space). The resolution algorithm consists of twd&koom then one can profile Rrice from D. The

phases: plural domainsD” serve as either asgeneric
1. Searching a suitable, preferred domain ibase or as aplural representative for profiling
the referential space when interpreting aa simple domai. A generic base is mandatory
referring expression. The suitability isin our model to support the insertion of new
defined by the minimal conditions the domainextra-linguistic referents evoked with an
has to conform to in order to be the base of aimdefinite construct (for instance saw a black
interpretation (particular description, orbird on the roof), while plural representatives
presence of a particular access structure withre used for explicit groupings. A doméin,
focus or not). The main preference factor iscan also be profiled from B, providedD’;
the minimization of the access costprofiles a subset of the elementds.
(recentness or salience), however otheBecond, we introduce the notion afiper-
criteria like thematic structure could be takerdomain D*, from which aD" can be profiled.
into account and will be future work. EachThe relations allowed between domains are
domain is tested according to the constraintsepresented on figure 1. A super-dom&ih is
given by the referential expression. We allowthe domain of all grouping®’, including a
several layers of constraints for each type o$pecialD’,; grouping which is the representative
expression : if the stronger constraints are natf all evoked instances of a given category. This
met, then weaker constraints are tried. configuration is not intended to deal with long
2. Extracting a referent and restructuring thedialogues  where several, trans-sentential
referential space, taking into account thisgroupings occur, and where older groupings may
extraction. It not only focuses the referent inbecome out of access. Doing this would require
its domain, but also moves the domain itself rhetorically driven structuring of tHz .
to a more recent place. When one referent

acquires the focus, the alternative members D" D: : super-domain

of the same partition loose it. D : plural domain
This generic scheme is instantiated for each type ¢ D : simple domain
of access modes (a modality plus an expression\ *

For example a definitette N' will search for a DA/D\AD*

domain in which a particular entity of type “N”
can be discriminated, and the restructuring
consists in focalizing in this domain the referent ~ Figure 1: Access structure of Reference
found. See (Landragin & Romary, 2003) for a Domains

description of the different access modes. _ _ o
The algorithm highlights the two types of As Reference Domain T.heor_y is primarily
ambiguities, domain or referent ambiguitiesargeted toward  extra-linguistic  referents
which occur when there is no preference?ccurring in practlcal dialogue, _the construction
available to make a choice between multiple§f the domain trees, representing the supposed
entities in the first or the second phase. We gues§ructuring of referents accessibility, is based on
that natural ambiguities should eventually bePntology. As a consequence, for each “natural”
solved through the dialogue between the agenf¥Pe€ and each subtype (for instance

. gives access to
—»

of the communication. RoontiSinglg, a domain tree is potentially
created (actually, one can easily imagine how
5 Super-Domains this creation may be driven ‘on-demand’).

) ) . Another evolution from the initial Reference
In order to take groupings into account in thepomain Theory is the possibility to focalize
Reference Domains Theory, we introduce tWQeyeral items of a partition. Indeed, since the
constructs in our formal toolbox. Indeed, havingesolution algorithm can focalize a whole plural
only one kind of domain construct doesn’t aHOWdomain, all elements of this domain must be
for a correct distinction between differentfocalized in all the plural domains they occur in.
referent statuses. , _In order to refer to plural entities the idea is to
First we dlstlngwsh_ plural and simple domainsyiid plural domains dynamically : when some
The simple domainsD serve as bases for gentence-level grouping, either implicit or
profiling, or highlighting, asubpart, or related  gyplicit occurs or when a plural extra-linguistic
part of a simple referent. For instance,Df = referent is evoked, B is created and focussed
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in D", with each of its components as childreng I mplementation
when possible (that is, when each component is

described). When new extra-linguistic referentdVe used description logics for modelling
(singular or plural) are evoked, they aredomains and domain-reasoning. One has to deal

individually  profiled under the D’ Withplural entities and can follow (Franconi, 93)

corresponding to their types (that is, theiPy Uusing collection theory, representing
“natural” type, and all the subtypes they arecollections as individuals and membership by a

eligible to). role (plus plural quantifiers). But we should use
In short, for all referents of type: another way considering that the inference
they become subdomainsBf, engine we use, Racer (Haarslev and Mdller, 03),

_ ~does not take into account ALCS. Hence we
if they_are plural refe_rents, they also buildried representing the domains by concepts,
up a focalized subdomain Bf given their semantic are set of individuals. The

all the referents of a given type are therflomainD" corresponds to the concept and

grouped together under a new focalizedhe  domain-subdomain  relation is a
subdomain ob™. subsumption. All basic manipulation with

Figure 2 illustrates the state of théotel ~domains could be done using Thox assertions.

domain tree after a scenario with three dialoguédditionnally, a partition structure is simply a
acts, the first one introducirigoteh, the second Seduence of subdomains which are different

one inserting a grouping dfiotel, and Hotek. ~ from each other (disjoint concepts) and whose
and the third one referring to it. elements could be focussed. The algorithm goes

_ _ _ through the referential space and tests each

Si: Maybe the Hotel Lafayetteptel,) or constraints given by the referential expression.

Conceptual tests on the description and
the Hotel de la cloché-ptely) partitional tests on the focus or possible

U,: Those hotels are too far from the airport. discriminations are made to retrieve the domain

Hotel and the referent. If none are found, they may be

T~ created by accomodation. Groupings are created

. only for explicit coordinations, implicit

Hote a Hotel; sentential coordinations (two referents could be

/W grouped if they have the same basic type) and
Hotel, Hotel, Hotels some kind of specifications.

Domains and groupings creation entails the

Figure 2: A domain tree built from a scenario creation of new concepts in the Tbox. Each

above (focus itbold) concept insertion  requires a  costly
The operations are the following : reclassification, therefore we preferred an
U, : Hotek becomes a subdomain &fotel, ~ @pproximation considering only that new
which gains focus iiotel", groupings assert primitive concepts. Other

S, : Hoteh and Hotel, become subdomains of domains are concept termise. descriptions
Hotel . In addition Hote, and Hotek are Which do not have to be asserted in the Thox

grouped inHotel; which gains the focus in automatically.

Hotel" while Hotel 4 loses it. Implicit  discursive  groupings are not
U, : The pronoun is solved Hotel’, andHotel;  implemented considering the need of a rhetorical
is retrieved. structure (like in SDRT, Asher 93) or a mental

One can see thatlotel . is inaccessible by a Space model. The following example shows the
generic expression like a demonstrative withoufeeds : _
modifiers but only by a special expression like ~ Ui:1would like an hotel ()

“all the hotel8. In our point of view, the reason S : | propose you the hotel Ibis jhand
is that the groupinddotel’; lowers the salience the Lafayette hotel ¢h _
of Hotefl . Hotel h could very hardly be grouped with h

and h, even by “all these hotels” (or maybe by a
third speaker). We guess among other factors
that they belong to different levels of
interpretation, hin the domain of the desires of
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the user, and the others in the domain of existintn order to interpret Y U, or U; one needs to
hotels. The link between the two domains igely on the previous structuring of Hn Uy, the
possible if one knows that, 8 an answer of to previously focalized domain His preferred to
U's request. Such discrimination criterion andoe the base for interpretinghe second orie
high level domains are not yet implementedbecause of the order discrimination. This leads
Instead we concentrated on extra-linguistido extracting h hence focalizing it in H but
referents which are assumed to be interpreted aiso in Ho and in Hy. In U,, H'; cannot be the
the real/system world (like hotels, rooms). Webase for interpretingthe third oné because no
are currently testing the approach to see if ientity could be discriminate this way. Therefore
could be extended to any type of entitieshe only suitable domain is K. It is also
provided accurate discrimination criteria (likeimpossible to interpret 4J: “the other on&in

the predication).

7 Example

H"; because of the lack of a focus discrimination
between hand h.
It is however possible to choose ;Hfor the

ﬁlomain of interpretation: the excluded referents

A sample dialogue (table 1) is analyzed througgl and h are unfocused whileslgains focus.

the preceding algorithm. This example show
how the referents introduced in an explicit
coordination could be referenced as a whtte “
two hotel§, or extracted discriminately by an
ordinal ‘the second orieor by an otherness This work is currently being evaluated in the
expression the other oné All the subdomains MEDIA/EVALDA framework, a national

of H" (i.e. the plural domains of hotels) are understanding evaluation campaign. (Devillers et
indicated after each interpretation using aal., 04). It aims to evaluate the semantic and
simplified notation. Only the ordered list of referential abilities of systems with various
accessible entities and their focalization (boldapproaches of natural language processing. The
are noted for each subdomain. For instanceesults of each system are compared to manually
H ai= (h, hy, hs) means that the domainddis  annotated utterances transcribed from a Woz

8 Evaluation in progress

focalized in H, and that his focalized in Hy.

Dialogue

H+

U: Is there a bathroom at

H*0 = (hy, hy)

corpus in a hotel reservation task. For the
referential  facet, referential expressions
(excluding indefinites, and proper names) are
annotated by a semantic description of their

the Ibis hote(hy) and the [H’,, = (hy, hy) referents.
hotel Lafayettéh,)? Our system which relies on a symbolic approach
S: No they don't have H'o = (hy, hy) using deep parsing and description logics for
bathrooms H i = (hy, hy) semantic currently scores 64% (f-measure) for
S: But | propose you the |H'g = (hy, hy) identifying and describing accurately the
Campanile hote(h) H . = (hy, hy, hy) referents. We guess that such evaluation will be
U: Hmm no, how much |H'y = (hy, hy) an occasion for us to test different hypothesis on
were the two hotels? H i = (hy, o, ) reference resolution using domains (for exemple
S: The hotel Lafayette is | H'; = (h,, hy) different criteria for groyplng). However we do
100 euros, the Ibis hotel ', = (h,, hy) not have yet more precise results on plurals and
75 euros H'a = (hy, hy, he) ordinals specifically.
U: Ok, | take the second H:l = (hy, hy) 9 Conclusion
one H*o = (hy, hp)

H a1 = (hy, hp, hy) The extension we made to the Reference

Domains Theory is still limited because it

U,: OK, | take the third  |H'; = (hy, hy) considers only extra-linguistic referentgg.
one H'o = (hy, hy) those also having an existence outside discourse.
Us: and the other one ? [4* = (hy, hy, hy) In addition the trans-sentential groupings are not

Table 1: Example of dialogue (focushiald)

fully studied yet. We guess that such groupings
should need a rhetorical description of the
discourse or dialogue. In spite of its limits, the
extension can render dynamic effects allowing
ordinals and otherness in plural contexts. An
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Abstract

Integration of new utterances into context
is a central task in any model for ratio-
nal (human-machine) dialogues in natural
language. In this paper, a pragmatics-first
approach to specifying the meaning of ut-
terances in terms of plans is presented. A
rational dialogue is driven by the reaction
of dialogue participants on how they find
their expectations on changes in the en-
vironment satisfied by their observations
of the outcome of performed actions. We
present a computational model for this
view on dialogues and illustrate it with ex-
amples from a real-world application.

1 A Pragmatics-First View on Dialogues

Rational dialogues that are based on GRICE’s
maxims of conversation serve for jointly execut-
ing a task in the domain of discourse (called the
application domain) by following a plan that could
solve the task assigned to the participants of the di-
alogue. Therefore, the interpretation of new con-
tributions and their integration into a dialogue is
controlled by global factors (e.g. the assumption
that all dialogue participants behave in a coopera-
tive manner and work effectively towards the com-
pletion of a joint task) as well as by local factors
(e.g. how does the new contribution serve in com-
pleting the current shared plan?).

Ony if these factors are represented in an effec-
tive and efficient formal language, dialogue sys-
tems can be implemented. Examples of such mod-
els and their implementation are the information-
state-update approach (an implemented system is
described in (Larsson, 2002)), or — more linguisti-
cally oriented — approaches like the adjacency-pair
models or intentional models such as GROSZ and
SIDNER’s (see (Grosz and Sidner, 1986)).

Even if it has been noted often that discourse
structure and task structure are not isomorphic,

only a few contributions to dialogue research fo-
cus on the question of how both structures inter-
fere (see Sect. 2). In this paper, we emphasize
that it is important to distinguish between the dia-
logue situation and the application situation: The
former is modified whenever speech acts are per-
formed, whereas the latter changes according to
the effects of each action being executed. In this
section, we will use a MAPTASK dialogue to show
what the notions dialogue situation and applica-
tion situation intend to mean. After presenting re-
lated work in Sect. 2, we present our approach first
informally and then formally by explaining which
Al algorithms we apply in order to turn the infor-
mal model into a computationally tractable one.

1.1 Talking about Domain Situations

The main hypothesis of this paper is that modi-
fications of the dialogue situation are triggered by
changes of the application situation. As a response
to a speech act, dialogue participants perform a se-
ries of actions aiming at achieving some goal. If
these actions can be executed, the reaction can sig-
nal success. At this point, our understanding of the
role of shared plans exceeds that of (Grosz et al.,
1999): GrROSZ and KRAUS define an action to be
resolved if it is assumed that an agent is able to
execute the action. However, in order to under-
stand coherence relations in complex dialogues, it
is important to know whether an action has actu-
ally been executed and what effect it has produced.
Consider the following excerpt from a MAPTASK
dialogue (MAP 9, quoted from (Carletta, 1992)):

R: ++ and ++ you are not quite horizontal you are taking
a slight curve up towards um the swamp ++ not obviously
going Into 1t

G: well sorry I have not got a swamp

R: you have not got a swamp?

G: no

R: OK

G: start again from the palm beach

Proceedings of the 7th SIGdial Workshop on Discourse and Dialqoages 6067,
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G has failed to find the swamp, which means G
has failed to perform the action necessary to per-
form the next one (take a slight curve).

In order to solve the current task, R has been
able to organize a solution for the task at hand
which may or may not involve the other dialogue
participant G. How can R put his solution into ac-
tion? First, he executes each step and, second, val-
idates after each step whether all expectations re-
lated to it are fulfilled.

1.2 Talking about Error and Failure

In the example above, R’s expectations are not met
because G does not find the swamp on the map.
However, this would be a precondition for R to
continue putting the solution into action that he
has organized. On the other hand, G understands
that finding the swamp is very important in the cur-
rent task, but he missed to reach that goal. In order
to share this information with R, G verbalizes his
failure diagnosis: “I have not got a swamp.”

This turn makes R realize that his solution does
not work. Obviously, R believed his solution to be
well elaborated because he tries to get a confirma-
tion of its failure by asking back “you have not got
a swamp?” G’s reacknowledgement is a clear in-
dication for R that it is necessary to reorganize his
solution for the current task. Being a collaborative
dialogue participant, he will try to recover from
that failure to explain the way to the destination.

1.3 Domain and Discourse Strategies

For the purpose of recovery, the dialogue partici-
pants try to apply a repair strategy that helps them
to reorganize the solution. Repair strategies are
complex domain dependent processes of modify-
ing tasks and solutions to them. Even being do-
main dependent in detail, there are some strate-
gies that are domain independent and are regularly
adapted to particular domains:

Delay: Maybe it is the best decision to wait a
bit and try the failed step again.

Delegation: Maybe someone else can per-
form better.

Replanning: Another solution should be
found based on the current error diagnosis.

Relaxation: Modify some parameters or
constraints of the task so that a tractable so-
lution can be found.
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e New Tools: Maybe somehow the dialogue
participant can extend his capabilities in the
domain so that he can achieve the solution us-
ing other, more, or stronger tools and means.

e Negotiation: Try to retrieve new helpful in-
formation from the user or to come to an
agreement of how the task can be modified.

e Cancellation: Sometimes giving up to find a
solution is the only remaining possibility.

This list is necessarily incomplete as depending
on the particular domain and current situation in
which a dialogue participant has to act these strate-
gies appear in very different fashion. So, it is hard
to decide whether exception handling for a single
case is taking place or if a particular strategy is
being applied. In the example dialogue, G tries to
suggesta replanning by telling to R up to what
point he was able to understand R’s explanations.

According to his communication strategy, a di-
alogue participant tells his deliberations in more
or less detail, sometimes even not at all. This is
the case in the example dialogue above. In the last
turn, G does not tell that he wants R to reorganize
his solution. R must infer this from the content, in
particular from the request to restart the explana-
tion at a point that has been passed before the G
had failed to understand a step in R’s explanation.

This example shows that domain strategies and
communication strategies interfere in a dialogue
and that complicated reasoning is necessary to
identify them in order to react appropriately.

Our analysis shows that the notion of coher-
ence is strongly related with the execution of sin-
gle steps in a solution. Often, coherence cannot
be explained satisfactorily within a discourse, but
the current situation in which an utterance is made,
must be taken into consideration as well.

2 Related Work

There are several main research directions on dia-
logue understanding. The one closest to our ap-
proach is activity-based dialogue analysis (All-
wood, 1997; Allwood, 2000) contrasting BDI-
style approaches such as the one by (Cohen
and Levesque, 1995). This research shows how
speech acts are related to expectations expressed
by means of language and inspired our approach.
However, ALLWOOD does not work out in detail
how the pragmatics of the application domain can
be formalized in a tractable way. (Carletta, 1992)



shows in a corpus analysis that risk taking is a el-
ementary behavior of dialogue participants. (Bos
and Oka, 2002) uses first-order logic in a DRT en-
vironment to reason about the logical satisfiabil-
ity of a new utterance given a previous discourse.
For reasoning about action however, we think that
a first-order theorem prover or model builder is
not the ideal tool because it is too general. Ad-
ditionally, in dialogues about acting in an envi-
ronment, the primary interest of semantic eval-
uation is not whether a formula is true or false,
but how a goal or task can be solved. Therefore,
planning is more appropriate than proofing formu-
lae. Work on planning as part of dialogue under-
standing is reported in (Zinn, 2004). This paper
does not address selecting strategies for error re-
covery. Conflict resolution is addressed in (Chu-
Carroll and Carberry, 1996). However, the pre-
sented discourse model is not computationally ef-
fective. (Huber and Ludwig, 2002; Ludwig, 2004)
present an interactive system which uses planning,
(Yates et al., 2003) and recently (Lieberman and
Espinosa, 2006) reported on applying planning as
a vehicle for natural language interfaces, but none
of the papers discusses how a dialogue can be
continued when a failure in the application oc-
curs. In the WITAS system (see (Lemon et al.,
2002)), activities are modelled by activity mod-
els, one for each type of activity the system can
perform or analyse. A similiar recipe-based ap-
proach is implemented in COLLAGEN (Garland
et al., 2003). As activities are hard-coded in the
respective model, adaptation of the task and dia-
logue structure to the needs in a current situation
are harder to achieve than in our approach in which
only goals are specified and activities are selected
by a planner depending on the current state. In ad-
dition, executing plans by verifying preconditions
and effects of an activity that has been carried out
recently lies the basis for a framework of under-
standing the pragmatics of a dialogue that is not
implemented for a particular application, but tries
to be as generic as possible.

3 Problem and Discourse Organization

A computational approach that aims at analyzing
and generating rational — i.e. goal-oriented — dia-
logues in a given domain must address the issues
of organizing a solution in the application domain
as well as in the discourse domain. Furthermore, it
must provide an effective method to organize so-
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Figure 1: Example data for a classification task.

lutions, classify current states in the discourse as
well as in the application situation (are they erro-
neous or not?) and select strategies that promise a
recovery in case of an error.

3.1 Expectations and Observations

To diagnose an error, a dialogue participant must
be able to determine whether his expectations on
how the environment changes due to an action
match his observations.

3.2 The Origin of Expectations

The expectations of a dialogue participant are de-
rived from his organization of a solution to the cur-
rent task. Each step herein has — after it has been
executed — a certain intended impact. It forms the
expectations that are assigned to a single step.

An expectation is met by a set of observations if
the observations are sufficient to infer the expecta-
tion from. The inference process that is employed
in this context may be as simple as a slot-filling
mechanism or as complicated as inference in a for-
mal logic. In the slot-filling case, the inference al-
gorithm is to determine whether the semantic type
of the answer given by the user match the type that
was expected by the dialogue system.

However, inference in the sense of this paper
may involve difficult computations: Expectations
are generated while a solution is organized. Each
step in a solution leads to certain changes in the
environment that are expected to happen when
the step is actually executed. Later in the paper,
we will demonstrate how planning algorithms can
generate such expectations. Additionally: — see
Fig. 1) — in order to verify expectations of the re-
quest “Fill coffee into the cup!” image data need
to be classified before it can be concluded that the
expectation (image 3) is satisfied.

4 Planning Solutions

In order to illustrate our approach how a natural
language dialogue system can organize solutions
for user requests, we discuss a natural language in-
terface for operating a transportation system. The



produce-coffee

:parameters (?c - cup ?3 - jura)
:precondition
(and (under-spout ?2c)

(not
(and

(service-request ?73)))

ceffect (not (empty ?c)) (ready ?7))

Figure 2: Example of a plan operator in PDDL

system allows to control a model train installation
and electronic devices currently on the market.

4.1 Organizing a Solution

First of all, in order to specify the (pragmatic)
capabilities of the whole system, a formal model
of the system is needed that allows the necessary
computations for organizing solutions. For this
purpose, we model all functions provided by the
system in terms of plan operators in the PDDL
planning language. Fig. 2 shows an example.
This operator describes part of the functionality
of the automatic coffee machine that is integrated
into our system: the function produce-coffee
can be executed if there is a cup under the spout
of the machine and if it does not require service
(as such filling in water or beans). These are the
preconditions of the function. After coffee has
been produced, it is expected that the environment
is changed in the following way: the cup is not
empty any longer, and the machine is ready again.
In order to organize a solution, a task is needed
and knowledge about the current state of the envi-
ronment. The latter comes from interpreting sen-
sor data, while the former is computed from nat-
ural language user input. For the example request
“Fill in a cup of espresso!”, we assume the current
state in Fig. 3 to hold and use the formula in Fig.
4 as the description of the current task to solve.
The example in Fig. 3 assumes that the cup is
parked and empty, and the coffee machine and the
robot (used for moving cups) are ready. The task
is formalized as a future state of the environment
in which the cup is parked and the coffee machine
is in the mode one small cup (see Fig. 4).
To compute a solution, a planning algorithm
(we incorporated the FF planner (Hoffmann and
Nebel, 2001) in our system) uses the information

(and (parked cup)

(ready Jjura)

(empty cup)
(ready robo))

Figure 3: The current state of the environment for
the example in Sect. 4
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about the current state and the intended future state
as input and computes a plan for a number of steps
to execute in order to solve the task (see Fig. 5).

In the following, we will consider such a plan as
in Fig. 5 as an organized solution for the task to be
solved. Expected changes of the environment are
defined by the effects of each step of the solution.
Fig. 6 shows which changes are expected if the
plan in Fig. 5 is eventually executed.

4.2 Executing a Solution

Given a plan for a task to be solved, our dialogue
system executes each step sequentially. Before a
step of the solution is performed, the system ver-
ifies each precondition necessary for the step to
be executable. If all tests succeed, actuators are
commanded to perform everything related to the
current step. Feedback is obtained by interpret-
ing sensor input which is used to control whether
the intended effects have been achieved. For the
function produce—-coffee above, the follow-
ing procedure is executed:

produce-coffee (cup c, jura 3j) |
if test (under-spout,c)=false
signal_error;
else {
if test (service-request, j)=true
signal_error;
else do produce-coffee,
}i
if test (empty,c)=true signal_error;
else {
if test (ready, j)=false signal_error;
else return;

bi

c, Ji

}

In this procedure, each precondition of the func-
tion produce-coffee is verified. If the system
can infer from the sensor values that a precondi-
tion cannot be satisfied, it signals an error. The
same is done with all effects when the actuators
have finished to change the environment. As we
will discuss in Sect. 6, these error signals are the
basic information for continuing a dialogue when
unexpected changes have been observed.

5 Diagnosing Errors

How can the dialogue system react if a precondi-
tion or effect does not match the system’s expecta-
tions? The primary goal of a dialogue system is to
(and

(parked cup) (mode-osc jura))

Figure 4: The task to be solved



put—-cup-on-spout (cup, jura, robo)
draw-off-osc (cup, jura)
produce-coffee (cup, jura)
go—in-place(train)
take-cup-off-spout (cup, jura, robo)
load-cup-on-waggon (cup, jura, robo, train)
park-cup (cup, jura, robo,train)

Figure 5: A plan for the task in Fig. 4

Step #  Action and expected changes

1 put-cup-on-spout(cup, jura, robo)
(under—-spout ?c)

(not (robo-loaded ?r 2c))

(not (parked 2c))
draw-off-osc(cup, jura)

(not (ready ?7j)) (mode-osc ?7j)
produce-coffee(cup, jura)

(not (empty ?c)) (ready ?7)
go-in-place(train)

(in-place ?t)
take-cup-off-spout(cup, jura, robo)

(not (under-spout ?c))
(robo—-loaded ?r ?c)
load-cup-on-waggon(cup, jura, robo, train)
(not (robo-loaded ?r 2c))
(train-loaded ?t ?c)
park-cup(cup, jura, robo, train)

(not (train—-loaded ?t ?c))
(parked 2c)

Figure 6: Expected changes in the environment

meet principles of conversation such as GRICE’s
maxims. Often, however, it is not obvious to the
user how a particular constraint in a plan is re-
lated to the current task. Therefore, a plausible and
transparent explanation of an error brings the diag-
nosed mismatch in its context of the current action
and solution for the current task. At the core of
each explanation are the unexpected observations.
The context of the error is formed by all available
sensor values and the history of past actions which
are steps in the solution (see Fig. 5) for the current
task. The example in Fig. 7 shows the state of the
system after the first four steps of the solution in-
troduced in Sect. 4.1 have been carried out. Af-
ter executing take—cup-off-spout however,
the observed changes of the system state do not
match the expected ones: Analyzing the most re-
cent images and the robot’s weight sensor, the sys-
tem recognizes that the cup still is on the spout, but
not being carried away by the robot.

Given the situation in Fig. 7, what is the system
able to or should communicate to the user? With-
out any additional reasoning, the system could
only tell what it has observed:

User: Fill in a cup of espresso!
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System: The cup is under the spout and
the robot is not loaded with the cup.

Such a response would not be very helpful for
the user (especially if he cannot see the situ-
ation or is unexperienced in handling the sys-
tem). Our approach to generating plausible expla-
nations for failures of the system is to compute
a diagnosis that takes the context of the failure
and the task to be solved into account. The ap-
proach relies on an explicit error model for each
function that the system provides in the sense
of (Balduccini and Gelfond, 2003): In the case
of take—cup-off-spout the following symp-
toms and causes lead to failure of the function:
Symptom Cause
(under-spout c) wrong position
robo lost cup
arm motor off
arm not ok
didn’t hold cup

The approach of (Balduccini and Gelfond, 2003)
generates models in a formal logic of what could
be reasons for the failure of the system and in
which state the system would be in each case. If
more than one model is generated when an unex-
pected observation has been made, the system has
to find evidence for each model and compare how
reliable a diagnosis is (given the available sensor
values and their interpretation). For that purpose,
decision trees are trained on past cases of failure
and the confidence values for the computed inter-
pretations. (e.g. to which class does the image in
Fig. 1?7). Applying such a decision tree on a given
system state and mismatched expectation results
in a unique model that is seen as an explanation
for the failure of the system’s function. In this way,
the dialogue system can explain better to the user
what it thinks has happened during the execution
of take—cup-off-spout:

- (robo-loaded r c)

User: Fill in a cup of espresso!

System: [ could not carry the cup to the
train because I lost the cup on the way.

From the viewpoint of discourse analysis, we can
consider the mismatch between observations and
expectations as the main cause for the system re-
sponse. As a consequence, we can consider the
logical relation between the current task, the so-
lution organized by the system, and the computed
error diagnosis as sufficient conditions for any dis-
course relation to hold between the user and the



Actions up to now System state

after go—in-place
(ready Jjura)
(ready robo)

- (parked cup)

- (empty cup)

put—-cup—-on—-spout
draw—-off-osc
produce-coffee
go—-in-place

(mode-osc jura)

Last Action Observed state

take—-cup-off-spout

- (robo-loaded robo)

(in-place train)
(under—-spout cup)

(under—-spout cup)
- (robo-loaded robo)

Expected state Error Diagnosis

none
none
none
none
none
none
none
none

robo could not
hold the cup

= (under—-spout cup)
(robo-loaded robo)

Figure 7: Context information for the diagnosis of an error

system utterance in the dialogue excerpt above: In
terms of TRAUM’s DU acts (Traum, 1994), coher-
ence between both utterances is established as a
reject relation as the purpose of the utterance
is to indicate failure of the task that has been initi-
ated by the user request. To explain the MAPTASK
dialogue cited in the introduction, another level of
pragmatic reasoning is required: As already men-
tioned in Sect. 1.3, the dialogue system is cooper-
ative and tries to find out a way in order to never-
theless solve the task as completely as possible.

6 Error Repair and Discourse Update

Such a way out consists in applying a strategy
that is appropriate for the current state of the sys-
tem and the interaction with the user. In the Al
(Mitchell, 1997) and robotics (Bekey, 2005) liter-
ature, algorithms for applying adaptive strategies
in different situations are all based on the current
state as input and an evaluation function that helps
selecting an optimal strategy.

6.1 Repair Strategies in the Application

A favorite algorithm for this kind of interactive
control problems is to select the optimal policy out
of a set of possibilities. Before that, an evaluation
function is trained by reinforcement learning to al-
ways select the action that maximizes the reward
obtainable in the current state. In (Henderson et
al., 2005), this machine learning approach was ap-
plied to selecting speech acts after training an eval-
uation function on a dialogue corpus in which each
utterance was labeled with a speech act.

Different from (Henderson et al., 2005), in our
approach the actions between whom the dialogue
system can choose are repair strategies instead of
speech acts. In our opinion, speech acts are a phe-
nomenon of another invisible process — text gen-
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eration — but not objects of the decision at the
discourse planning level: the selection of a repair
strategy does not fix the type of a speech act nor
its content. The way a repair strategy works and —
as a consequence — has influence on the flow of a
dialogue is that, firstly, it modifies the current task
and, secondly, seeks a new solution that will be ex-
ecuted later on. Future speech acts then are a result
of performing single steps of the new solution.

To recover the take—cup-off-spout func-
tion, the system may have the option to fill an-
other cup and try to bring this one to its destina-
tion. It must be noted, however, that this option
depends to a large extent on the availability of an-
other empty cup, the readiness of the robot and the
coffee machine and sufficient resources like beans,
water, and time to complete the task. All these pa-
rameters influence the computation of the reward
and the risk to be assigned to this domain-specific
variant of a New Tools-strategy (see Sect. 1.3).

6.2 Effects on Discourse Update

The MAPTASK dialogue in Sect. 1.1 even is some-
what more complicated: G understands that he
does not have the capability to repair the misun-
derstanding as there is too much information miss-
ing. Therefore, he initiates a Negotiation-strategy
in which he switches the topic of the dialogue to
the domain of strategies for MAPTASK. G pro-
poses a new strategy with a slightly modified task
to R. It is exactly this logical relation that explains
the coherence between the turns in this dialogue.
In this case, the coherence cannot be established
by reasoning in one single domain.

In terms of the Conversation Acts Theory by
(Traum and Hinkelman, 1992) and (Poesio and
Traum, 1998; Traum, 1994), the discourse seg-
ment related to the solution for a task can be called



multiple discourse unit (MDU). Consequently, the
conversation acts for MDU are a trace of the di-
alogue participant’s decisions on which interac-
tions are needed to solve the task and how they
could be verbalized best. Argumentation is based
on the formal knowledge about the domain, the
current task, and a solution proposed for it. This
means that an analysis of the current state of the
system and the dialog provides facts that can be
used as conditions for the applicability of a speech
act. Equally, facts about the system are conditions
for the applicability of a system function at a cer-
tain point of time. It follows directly from this ob-
servation that planning argumentation acts can be
viewed as a special kind of classical planning in
Al. However, due to the interactive nature of such
a dialogue task, it must be possible to react flexibly
and directly on mismatches between expectations
and observations for speech acts and the intended
changes during the course of a dialogue.

Therefore, in this paper dialogue management
is seen as a special case of reactive planning. As
shown above, discourse relations are derived from
meta-information about the state of executing a
plan for the current task. The discourse relations
serve as preconditions for speech acts effectuating
the update of the dialogue state.

6.3 Diagnosing Linguistic Errors

Our model of relating pragmatics and interaction
can be extended to discourse pragmatics as well.
It is particularly helpful to understand grounding
acts in the utterance unit level (see (Traum
and Hinkelman, 1992)). In this case, the (“appli-
cation”) domain is that of understanding language.
The task to be solved is to extract words from a
speech signal and to construct meaning from those
words. Error diagnoses occur frequently and op-
tions caused by ambiguities of natural language
have to be tested whether they can help to repair
a diagnosed error automatically. If not, the di-
agnoses as symptoms of misunderstanding have
to be assigned to possible causes. Strategic de-
cisions have to be made how to communicate the
causes and possible suggestion for repairs to the
user. This reasoning results in grounding acts that
would be hard to analyze otherwise. This idea can
be applied to negotiating speech acts as well. The
difficult task, however, is to implement a diagnosis
algorithm for failure in syntax analysis, (composi-
tional) semantics, and speech act analysis.
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7 Understanding User Utterances

There are implications of our approach for com-
putational semantics: In order to see whether a
user utterance meets the system’s expectations, it
is necessary to analyze which domain the utter-
ance refers to. For this purpose, expectations for
discourse and system state are maintained sepa-
rately. Each new contribution must satisfy the dis-
course expectations (e.g. an answer should follow
a question) and pragmatic expectations (the con-
tent of the contribution must extend without con-
tradictions what is known about the current solu-
tion. To test this, a model (in the sense of formal
logic) is computed for the conjunction of the new
content and the currently available information.
As discussed above, it may happen in dialogues
that the focus is switched to another topic, i.e.
another domain, and the coherence can be estab-
lished only when taking this domain shift into ac-
count. In order to be able to detect such a do-
main shift, we define the meaning of performative
words depending on whether they refer to the hid-
den reasoning processes that are part of our ap-
proach, the discourse control domain, or to states,
objects, and functions in the current applications
situation: In the MAPTASK example, the utterance
Start from the palm beach refers to the process of
strategy selection and organization of a solution,
but not to the domain of explanations in a map.

8 Conclusions

The presented approach allows dialogue under-
standing to take into account that the (human) di-
alogue participant the system is interacting with is
(at least) equally able to diagnose errors and mis-
matches between observations and expectations
and generates utterances intended to update the di-
alogue state according to these findings. There-
fore, for establishing the coherence of a user utter-
ance, there are always several options: firstly, the
user continues the current solution, secondly, he
diagnoses failure and reports about it, and thirdly,
he switches the focus to another domain including
discourse update and repair strategies.

For these options, our approach devises a com-
putational model able to explain dialogues in
which coherence of turns is difficult analyze. In
this way, more natural dialogues can be analyzed
and generated. As the approach incorporates a
model for how talking about actions is related to
acting in a formalized domain, it serves as a basis



for constructing natural language assistance sys-
tems, e.g. for a great range of electronic devices.
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Yafa Al-Raheb
National Centre for Language Technology
School of Computing
Dublin City University, Ireland
yafa.alraheb@gmail.com

Abstract beliefs and presupposition, hence neglecting the
connection between pragmatic presupposition and
semantic presupposition in DRT.

To account for pragmatic presupposition as well
as making presupposition within DRT more prag-
matic, presupposition is understood to be a prop-
erty of the agent. In essence, the effect of pre-
supposition is to give insights about the speaker’s
beliefs as well as the speaker’s beliefs about the
hearer’s beliefs. Speaker belief leads to presuppo-
sition, which indicates the beliefs of the speaker
to the hearer. Presupposition is a reflection of the
speaker’s state of mind. This is stronger than what
is generally conceded in the literature. Geurts
(1996, 1998, 1999) maintains that a presupposi-
tion should not necessarily reflect the beliefs of
. the speaker, but rather the speaker’'s commitment
1 Introduction to the truth of the presupposition. If, for example,

DRT, with its detailed apparatus for the representawe were to use Stalnaker’s (2002) example,

tion of context, offers the most obvious framework

for investigating presupposition in depth (Kamp (1) | have to pick my sister up from the air-
1984, 1988, 1990, 1995, 2001a, 2001b; Kamp and port.

Reyle 1993; Kamp et al. 2005). However, de-

spite the suitability of DRT for pursuing a detailed Geurts argues that the speaker does not have to be-
account of presupposition, it is argued that in ordieve she has a sister, but just needs to be ‘commit-
der to enrich our understanding of presuppositioried to’ the truth of the presupposition that she has a
within the DRT framework, this framework itself sister. In other words, the speaker need only com-
needs to be modified (cf. Al-Raheb 2005). The apmit to the presupposition (P) being true. The ap-
proach presented in this paper understands presuproach presented here takes a somewhat stronger
position within the parameters of dynamic semanyposition than Geurts’ position (Geurts 1999) be-
tics (van der Sandt 1992), part of which is DRT, cause it assumes that Grice’s Cooperative Princi-
but attempts to go beyond that in order to make thele is in place (Grice 1975, 1989). If we make the
understanding of presupposition within DRT moresimplifying assumption that the agents in the dia-
pragmatic. The dynamic semantics view of predogue are being cooperative, are not lying, are be-
supposition is incomplete from a pragmatic standing relevant, etc., we can take the stronger position
point because it neglects the connection betweethat the information introduced by the presupposi-
" 1 gratefully acknowledge support from Science Founda-tion, here ‘having a sister’, is indeed a belief held
tion Ireland grant 04/IN/I527. by the speaker.

This paper investigates semantic and prag-
matic presupposition in Discourse Repre-
sentation Theory (DRT) and enhances the
pragmatic perspective of presupposition in
DRT. In doing so, it draws attention to the
need to account for agent presupposition
(i.,e. both speaker and hearer presuppo-
sition) when dealing with pragmatic pre-
supposition. Furthermore, this paper links
this pragmatic conception of presupposi-
tion with the semantic one (sentence pre-
supposition) through using ‘information
checks’ which agents are hypothesized to
employ when making and receiving utter-
ances:
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Speaker Beliefs , Hearer Beliefs
Speaker’s
and and
- Utterance -
Presupposition Presupposition

A

Sentence
Presupposition

Figure 1: Speaker, Sentence and Hearer Presupposition

Viewing presupposition from the more prag-and the speaker’s beliefs about the hearer’s be-
matic perspective of the agents’ point of viewliefs. The discrepancy leads to an assertion, A,
in dialogue leads us to viewing presuppositionwhich may need presupposed arguments to be un-
from both the speaker’'s and the hearer’s pointslerstood. First, the speaker decides on the asser-
of view. Distinguishing speaker presuppositiontion after checking belief discrepancies. Then, the
from hearer presupposition helps make the apspeaker finds the right presuppositions to be able
proach to presupposition within DRT more prag-to communicate the assertion.
matic, since we are speaking not of truth condi- Hearer presupposition differs in that utterances
tions but of states of mind in communicative in- are split into presupposition and assertion, where
teraction. Therefore, this paper deals with twopossible, and presuppositions are first needed to
types of agent presupposition, speaker presuppestablish links to objects in order for the new in-
sition and hearer presupposition (cf. section 3)formation to be understood by the hearer. For a
This is different from semantic presupposition, i.e.hearer, assertions build on presupposition and the
sentence presupposition (cf. section 2). Agenprocedure is bottom-up (assertion is supported by
presupposition differs from sentence presupposipresuppositiony.
tion in that the latter stems from sentence mean- Therefore, in line with linking the speaker’s
ing, whereas the former attaches itself to the bepeliefs with the linguistic utterance and the lin-

liefs of the speaker and her intentions. It is argue@uistic utterance with the hearer's beliefs, the

here that the semantic and pragmatic notions o§peaker’s presupposition is conveyed through the
presupposition in DRT can be linked through link- speaker’s utterance (sentence presupposition), and
ing agents’ beliefs to the utterance being commuthe speaker’s utterance leads to the hearer’s pre-

nicated. supposition. This interaction between the seman-

_ ) tic and pragmatic notions of presupposition is a

2 Semantic and Pragmatic more balanced conception of presupposition (cf.
Presupposition Figure 1).

The literature has mostly considered the hearer’s \_N'tg breg?[ﬁrdhto the tpr; pﬁrt of an ut;er??ce re:[’
side of receiving the presupposition when deal—ce"Ve k?/ bel' ea,ret:; N e_a][er ca? Irs gclc;ep ’
ing with agent presupposition (pragmatics) as op-Or weakly believe, the new information and ‘ater

posed to sentence presupposition (semantics). FoF turn that weak belief into a belief, by adding it

instance, van der Sandt (1992) deals with accomt-0 her belle_f S(.et (Al-Raheb 2005?' However, itIs
worth mentioning that when making an utterance,

modation from the hearer’s perspective, not dis- th th K dthe h ¢ their att
tinguishing between speaker and hearer presu t'-o eAsper? Er an f earetr dO(t:)usth e;: atten-
position. However, the relationship between seniIon onh » WhIC t(;]anr?e accepel ty g faArer.
tence presupposition and agent presupposition caHbSL:.C ¢ a gqsz’. te eatre[hmay ake ra OFI)(. is
be explained by dividing agent presupposition into® elte ?r; Il_nflcahg io 0 the spea er,t maxing
speaker presupposition and hearer presuppositioﬁ.mu ual beliel, which may or may not serve as
, . . a presupposition afterwards in the dialogue. It is
From the speaker’s point of view, speakers . .
. . possible for P to be a mutual belief that both agents
make utterances to communicate new informas )
. : in the conversation mutually know they hold, or a
tion. Generally speaking, to generate a commu-

mcatlvel_y meaningful utterance, there would t_)e 2It remains for future work to test the psychological real-
some discrepancy between the speaker’s beliefs of these hypotheses.
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new piece of information packaged as P. From thiss part of the consistency check, another check is
discussion, it can be seen that beliefs impose son@erformed, more specifically for the hearer’s ben-

constraints on making an utterance. The follow-efit, which checks whether the presupposition is

ing section distinguishes between agent presuppeemarkable or unremarkable. Generally, informa-

sition (speaker presupposition and hearer presugion can be accommodated, so long as it is ‘unre-
position) and links agents presupposition to senmarkable’ (Geurts 1999: 36). For example,

tence presupposition.
2) The car across the street from my house

3 Agent Presupposition belongs to my neighbour.

Speaker presupposition differs from hearer prels less likely to cause problems than

supposition in terms of three ‘information checks’ (3) The small jet across the street from my
agents are hypothesized to perform when intro- house be|0ngs to my neighbour,

ducing or dealing with presupposition. The checks

are (1)clarification check(2) informativity check ~When the hearer knows that the speaker lives in the
and (3)consistency checkThe checks are sim- City centre?

ilar in principle to Purver (2004) and van der The process of ‘information checks’ influences
Sandt (1992). However, they are developed herBOW speakers make their utterances and how hear-
as a process which distinguishes speaker gener8[S recognize those utterances. Section 3.1 follows
tion from hearer recognition, allowing us to dif- the information check process for presuppositions
ferentiate Speaker presupposition from hearer préor the Speaker, whereas section 3.2 demonstrates
supposition, hence establishing the link betweerat process for the hearer.

speaker presupposition and sentence presuppo%j—l Speaker Presupposition
tion, and between sentence presupposition and

hearer presupposition. The three checks apply toPeaker presupposition differs from hearer pre-
both speaker and hearer. supposition in terms of checks. When a speaker

The clarification check may be used at the pedenerates a sentence presupposition (via the com-

ginning of the process of checking. It correspondgnur"c"’ue_oI utterance), we :are assuming tha_t the
to Grice's maxim of manner on the part of thespeaker is bound by Grice’s Cooperative Princi-

speaker (1989). Nonetheless, as there are differeH{e (1975, 1989_)'_ To hutter a Eentenccelz trig%er-
kinds of clarification requests (Purver et al. 2003),Ing a presup|:)_05|t|orr11, the Speaxer ne(_e_s t(_) ave
clarification can also be initiated at various stage§eason to believe that her presupposition is go-

of the check process, indicating a different kind of"g to be clea_r and cons[stent. The speaker
clarification. may have previous context in memory that shows

The purpose of the informativity check is to her presupposition to be consistent with her be-

check whether the presupposition is new or oIcJ'efS about the hearer’s beliefs. However, when

information to the speaker and the hearer. This?UCh evidence is lacking, the speaker may stil

check is a modification of Grice's (1989) qual- :nake presuppos!;[!on—trlgdgt?[ﬂng uttirarlcr:]es_ (jen-
ity maxim, which has been reworked to include ence presupposition) an €n make the judge-

two degrees of beliefs, acceptance and belief (Alment that the presupposition is consistent if there

Raheb 2005). In addition, it checks whether theS No negative feedback; alternatively, the speaker

information is new or old to the other agent, based?'gr;t rEcelvit(ivglie[lcre w;:}shhor\'\és hh? prisu?%(])sr
on the beliefs of one agent about the other. Th%‘o 0 be contradictory er beliets about the

. earer’s beliefs.
process of checks for the speaker mirrors that o The informativity check comes into plav when
the hearer. However, as the process of recogni- € Informativity check comes into play whe

R . the speaker elaborates on given or known infor-
tion is different from the process ofgenera‘uon,them tion b kaging it ; ition and f
‘information checks’ are described for the speaker ation by packaging It as a presupposition and 1o

. cusing attention on the assertion part of her utter-
and hearer individually.

o ) .___ance, i.e. on the new information. In this case, the
Similarly, the consistency check determines

whether the presupposition is consistent with “Of course, anything can be ‘out of the ordinary’ or its
reverse for a specific set of circumstances. The speaker is

the ‘T’lgents’ beliefs — in accordance with Gr_"_:e’smaking assumptions about shared conceptions of the ‘ordi-
maxim of relevance (1989). For presuppositionnary’.
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Figure 2: Speaker Presupposition

speaker needs to have reason to believe that the the hearer, the speaker would expect the hearer
hearer is already aware of this presupposed inforto accept the information provided by the sentence
mation, therefore, that it is known. For example, presupposition by default, or even believe it. This
process is generally referred to as binding in dy-
namic semantic$. Of course, the hearer may ex-
perience some difficulty in understanding and ask

To be consistent, the speaker checks her menf0r a ‘clarification’, check 1.

ory to see if the speaker has record that she, the However, the information presented as a sen-
speaker, has reason to believe that the hearer bi&NCe presupposition may be new. The speaker
lieves that the speaker has a grandchild. Th&ay wish to introduce a topic into the dialogue,
speaker, being in a retirement home, discussingnoWing that the hearer has no previous knowl-
her grandchildren with the carer, and having hagdge of the topic. The new information (speaker
previous conversations with the same carer abolR"€SUpposition) is then checked by the speaker for
her family, has reason to believe that the hearer afonsistency, where it may be remarkable or unre-

ready knows she has a grandchild. She, thereforglarkable. Here, we follow Geurts’s (1999) classi-
presupposes ‘I have a grandchild’. fication of remarkable and unremarkable presup-

Another example of elaborating on given in- position? Thus, examples (6) and (7), given a cer-

formation is when the speaker believes the give@in situation and agents, are more unusual to ac-
information has been established, i.e. both th€ommodate without questioning than example (1),

speaker and the hearer believe that the informatioynere many people may have sisters.

4) My grandchild loves horses.

is part of their mutual or common beliefs. This (g) | have to pick my personal trainer up

constitutes a case of strong speaker belief. Con- from the airport.

sider example (5):

(5) Sylvia's will means we have to move (7) | have to get the keys for my private jet.
out.

Unremarkable information is information that
In this case, the speaker and the hearer have begaople may accept without too much questioning,
talking about Sylvia’s will in their dialogue and ————— o . :
both have reason to believe that Svivia has a wil The lack of feedback about this information is consid-
0 Vi lev ylvi wi lared ‘weak positive feedback’ that the hearer has accepted

and that they both know the other person has reake information (Al-Raheb 2005).
son to believe Sylvia has a will. ®This further subclassification of presupposition is not in-

G v if th K the inf dicated in the classification of checks for reasons of clarity,
enerally, It the speaker assumes [ne Intormayg, ;¢ j; js incorporated in the DRT model presented in this pa-

tion presented in the presupposition to be knowrper.
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Figure 3: Hearer Presupposition: Check 1 (Clarification Check)

such as having a brother or a sister. An example oéxpect the hearer to ask for clarification and a clar-
remarkable information might be: ification process takes place, in which the hearer
might ask for more clarification if the information
is still not clear. When the information is finally
In social contexts in which it is not expected thatclear, the hearer may provide feedback.
everyone owns a private jet, such information will Despite the speaker’s best efforts to be coop-
at least raise an eyebrow. Being cooperative, therative, there are cases where the presupposition
speaker will assume, unless the hearer indicatesontradicts the hearer’s previous beliefs. Speakers
otherwise, that the information she provides inusually do not expect this to happen, but are gener-
the presupposition is unremarkable for the partically prepared to produce a clarification or attempt
ular hearer in the particular context, and that theo fix the dialogue when such a problem occurs.
hearer will accommodate the information by either  Figure 2 is a flowchart displaying the speaker’s
accepting it or believing it. Whether something expectations in terms of presupposition according
is remarkable depends on the specific participano her beliefs and on the assumption that she is
and type of communicative situation. For exam-being cooperative. According to this treatment of
ple, two film stars talking together would presum-presupposition, whether the speaker believes the
ably not find example (8) ‘remarkable’, nor might information in a presupposition is new or old, the
a journalist interviewing a celebrity. result is the same in terms of how the speaker ex-
The speaker has to be prepared for cases whepects the hearer to act. The only difference is
despite being cooperative, the hearer might perthat new information gets accommodated by the
ceive sentence presupposition as unclear/and hearer, while known information is ‘bound’ and
contradictory. What this means for the presengither already accepted or believed (Asher and
treatment of presupposition is that generally thg ascarides 1998; van der Sandt and Geurts 1991).
speaker believes that the new information preit has to be said that this is of course an ideal sit-
sented in the presupposition is unremarkableyation. The speaker does not always have beliefs

therefore, the speaker will expect the hearer t@oncerning whether the hearer already believes the
accommodate the new information. However, inpresupposed information or not.
case the hearer should find the new information 1o sym up, when initiating the topic of a

unusual or remarkable, the speaker will, we aspresupposition, we can conclude the following:
sume, expect the hearer to check whether the prgye|(S, P), bel(S, clear(P)), bel(S, consistent(P)),
supposition is consistent with her beliefs or not.ang pel(S, accept(H,P§)The speaker may have
The speaker may also expect the hearer to ask f@ither the belief bel(S; bel(H,P)) or the belief
clarification if the sentence presupposition is Notye|(S pel(H,P)). However, in our implementation
clear. of the pragmatic and semantic notions of presup-
If clear, the speaker may expect the hearer to agsosition in DRT, the only beliefs represented after
commodate the sentence presupposition and mays ytterance are: bel(S, P), or accept(S,P) and if
safely assume that the information has been ac-
cepted, unless it is indicated through ‘strong pos- °Discourse referents of known presuppositions attach

itive feedback’ that the information is actually themselv_es to previous discourse markers referring to the
same object or person.

strongly be"ev?_d (AI'Raheb 2005). However, if 75 gtangs for the speaker, H stands for the hearer and bel
the presupposition is not clear, the speaker maytands for believes.

(8) My private jet arrives this afternoon.
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Figure 4: Hearer Presupposition: Check 2 (Informativity Check: Old)
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sufficient previous information is available, eitherhearer needs to provide an explanation. Figure 3

bel(S;- bel(H,P)) or bel(S,bel(H,P)). incorporates this potentially iterative loop. This
N is consistent with conversation analysis research,
3.2 Hearer Presupposition which assumes that information may be cleared up

As a result of the speaker’s initiating the topic ofafter an explanation is provided, but also allows
P indicated through sentence presupposition, th&r further clarification if needed (Schegloff et al.
hearer acquires the belief that the speaker believé77). If the sentence presupposition is cleared
the presupposition. The first information checkup, then the hearer may provide feedback that the
to apply to hearer presupposition is the Cyear information is clear. However, lack of feedback
not clear check. That is to say, upon hearings also considered a case of ‘weak positive feed-
P, the hearer first checks whether the presuppd?ack’ (Al-Raheb 2005). Generally, after provid-
sition is clear (e.g. hearer has no problems witing an explanation, the speaker’s assumptions are
perception). As mentioned previously, there ardikely to be that the hearer now has no problems
other types of clarification requested when inconWith the sentence presupposition.

sistency arises. However, what we are concerned Having made sure that the sentence presupposi-
with here is whether the hearer has been able g, is clear the hearer may now move on to per-
receive the message or not. Other clarification, . the inf'ormativity check check 2. If the in-

checks may take place after the hearer performg, \aiiqn the speaker presents as a sentence pre-
the newold (informativity) check and the consis- g, qsition is known to the hearer, in the sense of

tency check. o _ being in his acceptance space, i.e. already a hearer
If the presupposition is not clear in the above o nnosition, the hearer may strengthen that ac-
sense, the hearer may ask the speaker to CIa‘”&’eptance by now believing the presupposition (cf.
her statement. As & simple example, consider aR|.Raheb 2005). The hearer may previously hold
imaginary dialogue between a customer and Cuss girong belief about the presupposition, i.e. the
tomer service assistant about a gas heater: hearer may already believe P. In this case, it is
not necessary to add a new belief that P to hearer
presupposition. We are assuming here that the
hearer’'s knowledge of a sentence presupposition
" means that this presupposition does not contradict
previous beliefs held by the hearer. Figure 4 shows
the hearer’s options if the sentence presupposition

is already a hearer presupposition, or known to

After checking whether the information, sentencehim The speaker ideally expects the hearer wil

presupposition, is clear, the customer service asécce tP (ie. P will have become hearer presup-
sistant asks the customer to clarify. In this partic- b = b P

ular case, the lack of clarity may be attributed to

9 Customer: How long does it take to fix
my gas heater?
Customer Service Assistant:  You
what?
Customer: My gas heater needs fixing.

position), unless negative feedback is provided by

'the hearer. If strong positive feedback is provided

e.g. not hearing very well. The hearer expects th%y the hearer, the speaker may thereby form the
speaker to provide an explanation or clarification. ) ’
meta-belief that bel(H,bel(S,bel(H,P))).

The speaker is then obliged to provide a further
explanation. If the information is still not clear, If the sentence presupposition provides new in-
the hearer may ask for more clarification and thdormation, the hearer then performs the consis-
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Figure 5: Hearer Presupposition: Check 3 (Consistency and Informativity Check: New)
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tency check. If the information provided contra- and thus goes through ‘remarkable’ check after the
dicts previous beliefs, the hearer may reject theonsistency check.
sentence presupposition and an attempt would be

Again, the hearer may provide feedback con-
made to remedy or fix the dialogue. For example ga! Y provi

terning whether the explanation has been ac-

consider: cepted or not. Unless negative feedback is pro-
(10) Speaker: Julia’s husband is coming forvided, the hearer is expected to at least accept
dinner. the presupposition bel(S,accept(H,P)). In addition,

Hearer: This can’t be! Julia is widowed! the other agent (speaker) may assume that the
_ _ hearer now has no problem with the presupposi-
When the information presented by the sentencgon’ bel(S,clear(H,P)). If the hearer is not con-

presupposition is consistent with the hearer’s be\'/inced by the speaker's explanation, an attempt at
lief space or acceptance space, the hearer mak?épairing the dialogue is need&d.
a judgement about whether the information is re-

markable (odd or unusual) eamremarkable(cf. To sum up, at the stage of the hearer’s receiv-
Geurts 1999). If the information is unremarkable,ing the speaker’s utterance, the hearer may make
the hearer accommodates the new information b§€ judgement that the speaker believes the pre-
either accepting it or believing it. In other words, SUPPOsition (speaker presupposition). In addition,
it becomes hearer presupposition. Figure 5 showdnless the hearer gives the speaker reason to think
presupposition processing from the hearer's perthat the hearer disagrees with the presupposition,
spective when the sentence presupposition cotle speaker assumes that the hearer has no prob-
tains information new to the hearer. lem understanding the sentence presupposition,
If the presupposition is remarkable, the heare@nd further, that the hearer has now come to ac-
may check for clarity. This is a different type Cept the presupposition (hearer presupposition). It
of clarity check from the one performed initially. Must be pointed out that generally speaking, un-
Clarification checks can arise from different rea-€ss the speaker has introduced as her presupposi-
sons and not just because of difficulty in hearing!ion @ topic perceived to be new and very unusual,
This time the hearer requires an explanation for théhe hearer does not need to go through the clarifi-
oddnesof the information used as a presupposi-cation process for each presupposition, since gen-

tion. This is when the clarification process startserally the presuppositions are not the focus of the
again. For example, speaker’s utterance (Levinson 1983).

(11) Speaker: My pet lion requires a lot of

attention. 8This example raises a lot of interesting cognitive and
Hearer: Your pet what? pragmatic issues, which will be ignored here so as not to dis-
Speaker: Oh sorry, | mean one of those’[ra%t from the main focus of this argument.
. Fixing a dialogue process is not addressed here. It is
virtual pets you take care of. assumed that if fixing the dialogue is successful, the agent
will then continue with the consistency check in order to carry
Here, we may assume, the hearer has not fou with the dialogue, unless one of the agents simply gives

the appropriate discourse referent for ‘pet lion’up.
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Abstract olution. However, here we present an evalu-

ation of the semantic tagging provided by the

This paper presents an evaluation of indi-  portuguese parser PALAVRAS  (Bick, 2000)
rect anaphor resolution which considers as  (http://visl.sdu.dk/visl/pt/parsing/automatic) as a
lexical resource the semantic tagging pro-  |exical resource for indirect anaphora resolution.

vided by the PALAVRAS parser. We de-  we focus on indirect anaphors for two reasons,
scribe the semantic tagging process and a  they are greater in number and they present better
corpus experiment. agreement features concerning human annotation.
1 Introduction 2 Semantic Annotation with Prototype
Tags

Bridging anaphora represents a special part of the
general problem of anaphor resolution. As a speAs a Constraint Grammar system, PALAVRAS
cial case of anaphora, it has been studied and digncodes all annotational information as word
cussed by different authors and for various lanbased tags. A distinction is made between mor-
guages. There are many problems in developphological, syntactic, valency and semantic tags,
ing such studies. First, bridging is not a regu-and for a given rule module (or level of analysis),
lar class, it seldom contains cases of associativene tag type will be regarded as primary (= flagged
and indirect anaphora (defined in the sequencejor disambiguation), while tags from lower lev-
lexical resources such as Wordnet are not availels provide unambiguous context, and tags from
able for every language, and even when availablaigher levels ambiguous lexical potentialities.
such resources have proven to be insufficient forhus, semantic tags are regarded as secondary
the problem. In fact, different sources of lexi- help tags at the syntactic level, but will have un-
cal knowledge have been evaluated for anaphordergone some disambiguation at the anaphora res-
resolution (Poesio et al., 2002; Markert and Nis-olution level. The semantic noun classes were
sim, 2005; Bunescu, 2003). At last, corpus studconceived aglistinctorsrather than semantic de-
ies of bridging anaphora usually report resultsfinitions, the goal being on the one hand to cap-
on a reduced number of examples, because thisire semantically motivated regularities and rela-
kind of data is scarce. Usually bridging anaphoraions in syntax, on the other hand to allow to dis-
considers two typesAssociative anaphorsare tinguish between different senses, or to chose dif-
NPs that have an antecedent that is necessafgrent translation equivalents in MT applications.
to their interpretation (the relation between theA limited set of semantic prototypelasses was
anaphor and its antecedent is different from idendeamed ideal for both purposes, since it allows at
tity); and Indirect anaphor are those that have the same time similarity-based lumping of words
an identity relation with their antecedents but the(useful in structural analysis, IR, anaphora reso-
anaphor and its antecedent have different headution) and context based polysemy resolution for
nouns. In both associative and indirect anaphoraan individual word (useful in MT, lexicography,
the semantic relation holding between the anaphaalignment). Though we definelass hypernyms
and its antecedent play an essential role for resas prototypes in the Roschian sense (Rosch, 1978)
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as an (idealized) best instance of a given class of E€ = enities CONCRETE)

entities, we avoided low level prototypes, using . ‘ﬂ‘i@ﬁbﬁm ENTITY
<Azo> for four-legged land-animals rather than Mm = £MAS
<dog> and <cat> for dog and cat races etc.). LI= £LOCATION

. . polysemy spectrum
Where possible, systematic sub-classes were essge [ [ [ Hh | m | LT | faculdade
tablished. Semiotic artifactssem>, for instance E H L | <inst> univ. faculty
are sub-divided into “readables*sem-r> (book- e ] HE — Ll' fifng; property
prototype: book, paper, magazipe“watchables” e h L | <Labs> bottom
<sem-w> (film, show, spectac)e “listenables” E H L | <inst> foundation
etc. The final category inventory, though devel- 2 ] HL‘ T Ll' ;g[itrfasm%f””ds
oped independently, resembles the ontology used H | m L | <inst> industry
in the multilingual European SIMPLE project | €| | h|M | | <am> diligence
(http:/mww.ub.es/ gilcub/SIMPLE/simple.htmi). | & | 3 [ Fp | m [ bojrece
For the sake of rule based inheritance reasoning|, i|H <inst> <+n> network
semantic prototype classes were bundled using J| h <furn> hammock

matrix of 16 atomic semantic features Thus,

the atomic feature +MOVE is shared by the dif- Table 1: Feature bundles in prototype based poly-
ferent human and animal prototypes as well a$€my

the vehicle prototype, but the vehicle prototype

lacks the +ANIM feature, and only the bun-, the productive nature of this word class. In
dle on human prototypes<iprof>, <Hfam>, 4 recent NER projects, the parser was aug-

<Hideo>,...) shares the +HUM feature (human yonted with a pattern recognition module and a
professional, human family, human follower of a\,a_pased module for identifying and classify-
theory/belief/conviction/ideology). In the Parser,jng names. In the first project (Bick, 2003)
a rule selecting the +MOVE feature (€.9. for sub-g main classes with about 15 subclasses were

jects of movement verbs) will help discard com- ,caq in a lexeme-based approach, while the

peting senses from lemmas with the above protogecond adopted the 41 largely functional cate-

types, since they will all inherit choices based ONyories of Linguateca’s joint HAREM evaluation

the shared atomic feature. Furthermore, atomiq:n 2005 (http:/mwww.linguateca.com). A lexicon-
features can themselves be subjected to inherjggistered name lik@erlin would have a stable

tance rules, e.g. +HUM-> +ANIM —> +CON- 54 (ciy> = civitas) in the first version, while
CRETE, or +MOVE-> +MOVABLE. InTable 1, i \yould be tagged as eithechum>, <top> or
which contains examples of polysemic mstltutlon<0rg> in the second, dependent on context. At
nouns, positive features are marked with capita}pe time of writing, we have not yet tagged our
letters, negative features with small letfer§he anaphora corpus with name type tags, and it is

words in the Table 1 are ambiguous with regardnclear which approach, lexematic or functional,

to the feature H, and since it is only thenst i work best for the resolution of indirect and
prototype that contributes the +HUM feature po-;cqociative anaphora.

tential, it can be singled out by a rule selecting

"H" or by discarding 'h’. The parser’s about 140 3 |ndirect Anaphora Resolution

prototypes have been manually implemented for a

lexicon of about 35.000 nouns. In addition, theOur work was based on a corpus formed by 31

+HUM category was also introduced as a selechewspaper articles, from Folha dad&Paulo, writ-

tion restriction for 2.000 verb senses (subject reten in Brazilian Portuguese. The corpus was au-

striction) and 1.300 adjective senses (head restridomatically parsed using the parser PALAVRAS,

tion). and manually annotated for anaphoricity using
While the semantic annotation of commonthe MMAX tool(http://mmax.eml-research.de/) .

nouns is carried out by disambiguating a givenFour subjects annotated the corpus. All annota-
lemma’s lexicon-listed prototype potential, this tOrs agreed on the antecedent in 73% of the cases,

tween three annotators and in 5% of the cases only
Yurn=furniture, con=container, inst=institution two annotators agreed. There were 133 cases of
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definiteIndirect anaphorgNPs starting with def- the same antecedent as marked in the manual an-
inite articles) from the total of 1454 definite de- notation. Considering the chain identified by the
scriptions (near to 10%) and 2267 NPs. system the correct cases go up to 30%. The great
The parser gives to each noun of the text (or tolumber of unsolved cases were related to the fact
most of them) a semantic tag. For instance, théhat proper names were not tagged. Considering
nounjaporés[japanesghas the following seman- mainly the tagged nouns (about 93 cases), the cor-
tic tagsling and Hnat, representing the features: rect cases amount to 43%). This gives us an idea
human nationality and language respectively.  of the quality of the tags for the task. We further

<word id="word_28"> tested if increasing the weight of more specific

<n can="japon &s" gender="M" number="S"> features in opposition to the more general ones
<secondary_n tag="Hnat"/> would help in the antecedent decision process. A
</n><se°°”dary—” tag="ling"/> semantic tag that is more specific receives a higher
</word> weight The semantic tag set has three levels, level

1, which is more general receives weight 1, level 2

The approach consists in finding refationshipge ejyes 5, and level 3 receives 10. See the exam-
with previous nouns through the semantic tagsple below.

The chosen antecedent will be the nearest expres- _

. . . <A> 1 Animal, umbrella tag
sion with the largest number of equal semantic pn. 5 Group of animals
tags. For instance, in the example below, the<Adom> 10 Domestic animal
anaphor is resolved by applying this resolution
principle, tojaporés- a lingua

O Eurocenter ofereceursos de japoes em Kanazawa.
Apds um ngs, o aluno falé& modestameni& lingua.

In this experiment the chosen candidate is the
nearest one whose sum of equal tag values has
higher weight. Table 3 shows just a small im-
provement in the correct cases. If we do not

The Eurocenter offerdapanese coursés Kanazawa. A ~qnsider unsolved cases, mostly related to proper
ter one month, a student can modestly spgakanguage.  npames, indirect anaphors were correctly identified

As both expressions (japanese and languagey 46% of the cases (43/96).
hold the semantic tag “ling” the anaphor is re-

solved. For the experiments, we considered as cor- l |
rect the cases where the antecedent found automat- } Results I # | % of Total
l |

Indirect anaphora

. . . 0,
ically was the same as in the manual annotation Same 24 | 18%

l

|

: l

(same), and also the cases in which the antecedent | Toltr;-lcgc?:rr]ecq ig I ;‘2":2 }
of the manual annotation was found further up in [in-candidates| 6 | 5% |
the chain identified automatically (in-chain). We [ Unsoved | 40 [ 30% |
also counted those cases in which the antecedent l Eror | 44 | 33% |
of the manual annotation was among the group of [ Total [133] 100% |

candidates sharing the same tags (in-candidates),
but was not the chosen one (the chosen being the Table 3: Indirect anaphor - weighting schema
nearest with greater number of equal tags).

Since there is no semantic tagging for proper
names as yet, the relationship between pairs such

Indirect anaphora

l |
| Rgsuns | js | %Olfgzj’ta' as SAo Carlos - a cidadgSao Carlos - the city
} |n-2::n I 7= | 110/2 could not be found. Regarding wrong antecedents,

we have seen that some semantic relationships are
weaker, having no semantic tags in common, for

|
|
[ In-candidates] 9 | 7%
[ Unsolved | 40 | 30%
|
|

l
l
%
[ Total Correct] 40 30% ]
l
|
l
l

instance:a proposta- 0 aumentdthe proposat
[ Eror | 44 33% the risd. In some cases the antecedent is not a
[ Total [ 133 100% previous noun phrase but a whole sentence, para-

graph or disjoint parts of the text. As we con-
Table 2: Indirect anaphor resolution sider only relations holding between noun phrases,
these cases could not be resolved. Finally, there
Table 2 shows the results of the indirect anaphoare cases of plain heuristic failure. For instance,
resolution. In 19% of the cases, the system founestablishing a relationship betwees professores
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[the teacherk with the semantic tagd andHprof, = References

andos politicos[the politiciang, with the seman-  gyhard Bick. 2000The Parsing System PALAVRAS:
tic tagsH andHprof, when the correct antecedent  Automatic Grammatical Analysis of Protuguese in

wasos docente$the docentls with the semantic a Constraint Grammar Framework Ph.D. thesis,

tagsHH (group of humans) andprof. Arhus University, Arhus.
Eckhard Bick. 2003. Multi-level ner for portuguese in
4 Final Remarks a cg framework. In Nuno J. et al. Mamede, editor,

Computational Processing of the Portuguese Lan-
Previous work on nominal anaphor resolution has gﬁage F()':g?ggggogg)the 6gh Inzt?e;riat]onl_al \:Vork-

: I shop, number in Lecture
u;ed lexical knowledge in different ways. (Poe- Notes in Computer Science, pages 118-125, Faro,
sio et al., 1997) presented results concerning the portugal. Springer.
resolution of bridging definitions, using the Word- o
Net (Fellbaum, 1998), where bridging DDs en_Razvan Bunescu. 2003. Associative anaphora reso-

! ' . lution: A web-based approach. Proceedings of
C!Ose ourndirectandAssociative anaphoré>oe- the Workshop on The Computational Treatment of
sio et al. reported 35% of recall for synonymy, Anaphora - EACL 2003Budapest.

56% for hypernymy and 38% for meronymy. - .
Christiane Fellbaum, editor. 1998VordNet: An Elec-

.(Schulte im Walde, 1_997) evgluated the bridg- tronic Lexical Database MIT Press, Cambridge,
ing cases presented in (Poesio et al.,, 1997), on pA.

the basis of lexical acquisition from the British

National Corpus. She reported a recall of 339~aroline Gasperin and Renata Vieira. 2004. Us-
ing word similarity lists for resolving indirect

for synonymy, 15% for hypernymy and 18% for  gnaphora. IProceedings of ACL Workshop on Ref-
meronymy. (Poesio et al., 2002) considering syn- erence Resolution and its Applicationsages 40—
tactic patterns for lexical knowledge acquisition, 46, Barcelona.

obtained better results for.resolvmg .meronymyKatja Markert and Malvina Nissim. 2005. Comparing
(66% of recall). (Gasperin and Vieira, 2004)  knowledge sources for nominal anaphora resolution.
tested the use of word similarity lists on resolv- Computational Linguistics31(3):367—401.

T . 0

ing indirect ana_lphora, reporting 33% of recall'Massimo Poesio, Renata Vieira, and Simone Teufel.
(Markert and Nissim, 2005) .pl.’esente'd tWo ways 1997,  Resolving bridging descriptions in un-
(WordNet and Web) of obtaining lexical knowl-  restricted texts.  InProceedings of the Work-
edge for antecedent selection in coreferent DDs shop on Operational Factors In Practical, Robust,
(Direct and Indirect anaphord  Markert and ?”g%‘;ﬁgesomt'on for Unrestricted Texpages
Nissim achieved 71% of recall using Web-based ’ '

method and 65% of recall using WordNet-basedviasimo Poesio, Ishikawa Tomonori, Sabine Shulte im
method. We can say that our results are very sat- \I:Vfim?'da”dee”ata r\]/'e'ra- 20|02_. Aﬁ;iln“'r'”gd!ex'ca'
: Cy nowledge for anaphora resolution. Pmoceedings
isfactory, consujermg thg rglated work. N.ote that of 3rd Language resources and evaluation confer-
usually evaluation of bridging anaphora is made ence L REC 2002 as Palmas.

on the basis of a limited number of cases, becau;

the datla 'S Sr[])grr]sg. Our stug);jwas based on 1 In E. Rosch and B. Lloyd, editors;ognition and
examples, W ich Is not muc ut.surpasses SOME categorizationpages 27—48. Hillsdale, New Jersey:
of the previous related work. Mainly, our results |Lawrence Erlbaum Associate.

indicate that the semantic tagging provided by theS bine Schulte im Walde. 199 Resoning Bridai
: . . Sabine Schulte im Walde. esolving Bridging
parser is a good resource for dealing with the prob Descriptions in High-Dimensional Space Resolving

lem, if compared to other lexical resources such as Bridging Descriptions in High-Dimensional Space
WordNet and acquired similarity lists. We believe  Ph.D. thesis, Institutifr Maschinelle Sprachverar-
that the results will improve significantly once se-  beitung, Universt Stuttgart, and Center for Cogni-
mantic tags for proper names are provided by the tive Science, University of Edinburgh, Edinburgh.
parser. This evaluation is planned as future work.

eanor Rosch. 1978. Principles of categorization.

Acknowledgments

This work was partially funded by CNPq.

79



An annotation scheme for citation function

Simone Teufel

Advaith Siddharthan

Dan Tidhar

Natural Language and Information Processing Group
Computer Laboratory
Cambridge University, CB3 OFD, UK
{Simone.Teufel,Advaith.Siddharthan,Dan.Tidhar}@cl.cam.ac.uk

Abstract

We study the interplay of the discourse struc-
ture of a scientific argument with formal ci-
tations. One subproblem of this is to clas-
sify academic citations in scientific articles ac-
cording to their rhetorical function, e.g., as a
rival approach, as a part of the solution, or
as a flawed approach that justifies the cur-
rent research. Here, we introduce our anno-
tation scheme with 12 categories, and present
an agreement study.

Scientific writing, discourse structure
and citations

In recent years, there has been increasing interest in
applying natural language processing technologies to
scientific literature. The overwhelmingly large num-
ber of papers published in fields like biology, genetics
and chemistry each year means that researchers need
tools for information access (extraction, retrieval, sum-
marization, question answering etc). There is also in-
creased interest in automatic citation indexing, e.g.,
the highly successful search tools Google Scholar and
CiteSeer (Giles et al., 1998).! This general interest in
improving access to scientific articles fits well with re-
search on discourse structure, as knowledge about the
overall structure and goal of papers can guide better in-
formation access.

Shum (1998) argues that experienced researchers are
often interested in relations between articles. They
need to know if a certain article criticises another and
what the criticism is, or if the current work is based
on that prior work. This type of information is hard
to come by with current search technology. Neither
the author’s abstract, nor raw citation counts help users
in assessing the relation between articles. And even
though CiteSeer shows a text snippet around the phys-
ical location for searchers to peruse, there is no guar-
antee that the text snippet provides enough information
for the searcher to infer the relation. In fact, studies
from our annotated corpus (Teufel, 1999), show that
69% of the 600 sentences stating contrast with other
work and 21% of the 246 sentences stating research
continuation with other work do not contain the cor-
responding citation; the citation is found in preceding

ICiteSeer automatically citation-indexes all scientific ar-
ticles reached by a web-crawler, making them available to
searchers via authors or keywords in the title.
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Li and Abe 96

Brown et al. 90a Church and Gale 91

Resnik 95 Rose et al. 90

Dagan et al. 94
Hindle 93 Nitta and Niwa 94 Dagan et al 93

Hinw\ 0. /

Pereira et al. 93

His notion of similarity
seems to agree with our
intuitions in many cases,
but it is not clear how it
can be used directly to
construct word classes
and corresponding
models of association.

Following Pereira et al, we measure
word similarity by the relative entropy|
or Kulbach—Leibler (KL) distance, bet
ween the corresponding conditional
distributions.

Figure 1: A rhetorical citation map

sentences (i.e., the sentence expressing the contrast or
continuation would be outside the CiteSeer snippet).
We present here an approach which uses the classifica-
tion of citations to help provide relational information
across papers.

Citations play a central role in the process of writing
a paper. Swales (1990) argues that scientific writing
follows a general rhetorical argumentation structure:
researchers must justify that their paper makes a con-
tribution to the knowledge in their discipline. Several
argumentation steps are required to make this justifica-
tion work, e.g., the statement of their specific goal in
the paper (Myers, 1992). Importantly, the authors also
must relate their current work to previous research, and
acknowledge previous knowledge claims; this is done
with a formal citation, and with language connecting
the citation to the argument, e.g., statements of usage of
other people’s approaches (often near textual segments
in the paper where these approaches are described), and
statements of contrast with them (particularly in the
discussion or related work sections). We argue that the
automatic recognition of citation function is interest-
ing for two reasons: a) it serves to build better citation
indexers and b) in the long run, it will help constrain
interpretations of the overall argumentative structure of
a scientific paper.

Being able to interpret the rhetorical status of a ci-
tation at a glance would add considerable value to ci-
tation indexes, as shown in Fig. 1. Here differences
and similarities are shown between the example paper
(Pereira et al., 1993) and the papers it cites, as well as
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the papers that cite it. Contrastive links are shown in
grey — links to rival papers and papers the current pa-
per contrasts itself to. Continuative links are shown in
black — links to papers that are taken as starting point of
the current research, or as part of the methodology of
the current paper. The most important textual sentence
about each citation could be extracted and displayed.
For instance, we see which aspect of Hindle (1990) the
Pereira et al. paper criticises, and in which way Pereira
et al.’s work was used by Dagan et al. (1994).

‘We present an annotation scheme for citations, based
on empirical work in content citation analysis, which
fits into this general framework of scientific argument
structure. It consists of 12 categories, which allow us
to mark the relationships of the current paper with the
cited work. Each citation is labelled with exactly one
category. The following top-level four-way distinction
applies:

o Weakness: Authors point out a weakness in cited
work

Contrast: Authors make contrast/comparison with
cited work (4 categories)

Positive: Authors agree with/make use of/show
compatibility or similarity with cited work (6 cat-
egories), and

Neutral: Function of citation is either neutral, or
weakly signalled, or different from the three func-
tions stated above.

We first turn to the point of how to classify citation
function in a robust way. Later in this paper, we will
report results for a human annotation experiment with
three annotators.

2 Annotation schemes for citations

In the field of library sciences (more specifically, the
field of Content Citation Analysis), the use of informa-
tion from citations above and beyond simple citation
counting has received considerable attention. Biblio-
metric measures assesses the quality of a researcher’s
output, in a purely quantitative manner, by counting
how many papers cite a given paper (White, 2004;
Luukkonen, 1992) or by more sophisticated measures
like the h-index (Hirsch, 2005). But not all citations
are alike. Researchers in content citation analysis have
long stated that the classification of motivations is a
central element in understanding the relevance of the
paper in the field. Bonzi (1982), for example, points out
that negational citations, while pointing to the fact that
a given work has been noticed in a field, do not mean
that that work is received well, and Ziman (1968) states
that many citations are done out of “politeness” (to-
wards powerful rival approaches), “policy” (by name-
dropping and argument by authority) or “piety” (to-
wards one’s friends, collaborators and superiors). Re-
searchers also often follow the custom of citing some
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1. Cited source is mentioned in the introduction or
discussion as part of the history and state of the
art of the research question under investigation.

Cited source is the specific point of departure for
the research question investigated.

Cited source contains the concepts, definitions,
interpretations used (and pertaining to the disci-
pline of the citing article).

Cited source contains the data (pertaining to the
discipline of the citing article) which are used
sporadically in the article.

Cited source contains the data (pertaining to the
discipline of the citing particle) which are used
for comparative purposes, in tables and statistics.

Cited source contains data and material (from
other disciplines than citing article) which is
used sporadically in the citing text, in tables or
statistics.

Cited source contains the method used.

Cited source substantiated a statement or assump-
tion, or points to further information.

Cited source is positively evaluated.

10.
11.

Cited source is negatively evaluated.

Results of citing article prove, verify, substantiate
the data or interpretation of cited source.

Results of citing article disprove, put into ques-
tion the data as interpretation of cited source.

13.  Results of citing article furnish a new interpreta-

tion/explanation to the data of the cited source.

Figure 2: Spiegel-Riising’s (1977) Categories for Cita-
tion Motivations

particular early, basic paper, which gives the founda-
tion of their current subject (“paying homage to pio-
neers”). Many classification schemes for citation func-
tions have been developed (Weinstock, 1971; Swales,
1990; Oppenheim and Renn, 1978; Frost, 1979; Chu-
bin and Moitra, 1975), inter alia. Based on such an-
notation schemes and hand-analyzed data, different in-
fluences on citation behaviour can be determined, but
annotation in this field is usually done manually on
small samples of text by the author, and not confirmed
by reliability studies. As one of the earliest such stud-
ies, Moravcsik and Murugesan (1975) divide citations
in running text into four dimensions: conceptual or
operational use (i.e., use of theory vs. use of techni-
cal method); evolutionary or juxtapositional (i.e., own
work is based on the cited work vs. own work is an al-
ternative to it); organic or perfunctory (i.e., work is cru-
cially needed for understanding of citing article or just
a general acknowledgement); and finally confirmative
vs. negational (i.e., is the correctness of the findings
disputed?). They found, for example, that 40% of the
citations were perfunctory, which casts further doubt
on the citation-counting approach.

Other content citation analysis research which is rel-



evant to our work concentrates on relating textual spans
to authors’ descriptions of other work. For example, in
O’Connor’s (1982) experiment, citing statements (one
or more sentences referring to other researchers’ work)
were identified manually. The main problem encoun-
tered in that work is the fact that many instances of cita-
tion context are linguistically unmarked. Our data con-
firms this: articles often contain large segments, par-
ticularly in the central parts, which describe other peo-
ple’s research in a fairly neutral way. We would thus
expect many citations to be neutral (i.e., not to carry
any function relating to the argumentation per se).

Many of the distinctions typically made in content
citation analysis are immaterial to the task considered
here as they are too sociologically orientated, and can
thus be difficult to operationalise without deep knowl-
edge of the field and its participants (Swales, 1986). In
particular, citations for general reference (background
material, homage to pioneers) are not part of our an-
alytic interest here, and so are citations “in passing”,
which are only marginally related to the argumentation
of the overall paper (Ziman, 1968).

Spiegel-Riising’s (1977) scheme (Fig. 2) is an exam-
ple of a scheme which is easier to operationalise than
most. In her scheme, more than one category can apply
to a citation; for instance positive and negative evalu-
ation (category 9 and 10) can be cross-classified with
other categories. Out of 2309 citations examined, 80%
substantiated statements (category 8), 6% discussed
history or state of the art of the research area (cate-
gory 1) and 5% cited comparative data (category 5).

Category | Description

Weak Weakness of cited approach

CoCoGM | Contrast/Comparison in Goals or Meth-
ods (neutral)

CoCoRO Contrast/Comparison in Results (neutral)

CoCo- Unfavourable Contrast/Comparison (cur-
rent work is better than cited work)

CoCoXY | Contrast between 2 cited methods

PBas author uses cited work as starting point

PUse author uses tools/algorithms/data

PModi author adapts or modifies
tools/algorithms/data

PMot this citation is positive about approach or
problem addressed (used to motivate work
in current paper)

PSim author’s work and cited work are similar

PSup author’s work and cited work are compat-
ible/provide support for each other

Neut Neutral description of cited work, or not
enough textual evidence for above cate-
gories or unlisted citation function

Figure 3: Our annotation scheme for citation function

Our scheme (given in Fig. 3) is an adaptation of the
scheme in Fig. 2, which we arrived at after an analysis
of a corpus of scientific articles in computational lin-
guistics. We tried to redefine the categories such that
they should be reasonably reliably annotatable; at the
same time, they should be informative for the appli-
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cation we have in mind. A third criterion is that they
should have some (theoretical) relation to the particu-
lar discourse structure we work with (Teufel, 1999).

Our categories are as follows: One category (Weak)
is reserved for weakness of previous research, if it is ad-
dressed by the authors (cf. Spiegel-Riising’s categories
10, 12, possibly 13). The next three categories describe
comparisons or contrasts between own and other work
(cf. Spiegel-Riising’s category 5). The difference be-
tween them concerns whether the comparison is be-
tween methods/goals (CoCoGM) or results (CoCoRO).
These two categories are for comparisons without ex-
plicit value judgements. We use a different category
(CoCo-) when the authors claim their approach is bet-
ter than the cited work.

Our interest in differences and similarities between
approaches stems from one possible application we
have in mind (the rhetorical citation search tool). We
do not only consider differences stated between the cur-
rent work and other work, but we also mark citations if
they are explicitly compared and contrasted with other
work (not the current paper). This is expressed in cat-
egory CoCoXY. It is a category not typically consid-
ered in the literature, but it is related to the other con-
trastive categories, and useful to us because we think
it can be exploited for search of differences and rival
approaches.

The next set of categories we propose concerns pos-
itive sentiment expressed towards a citation, or a state-
ment that the other work is actively used in the cur-
rent work (which is the ultimate praise). Like Spiegel-
Riising, we are interested in use of data and methods
(her categories 4, 5, 6, 7), but we cluster different us-
ages together and instead differentiate unchanged use
(PUse) from use with adaptations (PModi). Work
which is stated as the explicit starting point or intellec-
tual ancestry is marked with our category PBas (her
category 2). If a claim in the literature is used to
strengthen the authors’ argument, this is expressed in
her category 8, and vice versa, category 11. We col-
lapse these two in our category PSup. We use two
categories she does not have definitions for, namely
similarity of (aspect of) approach to other approach
(PSim), and motivation of approach used or problem
addressed (PMot). We found evidence for prototypi-
cal use of these citation functions in our texts. How-
ever, we found little evidence for her categories 12 or
13 (disproval or new interpretation of claims in cited
literature), and we decided against a “state-of-the-art”
category (her category 1), which would have been in
conflict with our PMot definition in many cases.

Our fourteenth category, Neut, bundles truly neutral
descriptions of other researchers’ approaches with all
those cases where the textual evidence for a citation
function was not enough to warrant annotation of that
category, and all other functions for which our scheme
did not provide a specific category. As stated above, we
do in fact expect many of our citations to be neutral.



Citation function is hard to annotate because it in
principle requires interpretation of author intentions
(what could the author’s intention have been in choos-
ing a certain citation?). Typical results of earlier cita-
tion function studies are that the sociological aspect of
citing is not to be underestimated. One of our most fun-
damental ideas for annotation is to only mark explicitly
signalled citation functions. Our guidelines explicitly
state that a general linguistic phrase such as “better”
or “used by us” must be present, in order to increase
objectivity in finding citation function. Annotators are
encouraged to point to textual evidence they have for
assigning a particular function (and are asked to type
the source of this evidence into the annotation tool for
each citation). Categories are defined in terms of cer-
tain objective types of statements (e.g., there are 7 cases
for PMot). Annotators can use general text interpreta-
tion principles when assigning the categories, but are
not allowed to use in-depth knowledge of the field or
of the authors.

There are other problematic aspects of the annota-
tion. Some concern the fact that authors do not al-
ways state their purpose clearly. For instance, several
earlier studies found that negational citations are rare
(Moravcsik and Murugesan, 1975; Spiegel-Riising,
1977); MacRoberts and MacRoberts (1984) argue that
the reason for this is that they are potentially politically
dangerous, and that the authors go through lengths to
diffuse the impact of negative references, hiding a neg-
ative point behind insincere praise, or diffusing the
thrust of criticism with perfunctory remarks. In our
data we found ample evidence of this effect, illustrated
by the following example:

Hidden Markov Models (HMMs) (Huang
et al. 1990) offer a powerful statistical ap-
proach to this problem, though it is unclear

how they could be used to recognise the units
of interest to phonologists. (9410022, S-24)?

It is also sometimes extremely hard to distinguish
usage of a method from statements of similarity be-
tween a method and the own method. This happens
in cases where authors do not want to admit they are
using somebody else’s method:

The same test was used in Abney and Light
(1999). (0008020, S-151)

Unification of indices proceeds in the same

manner as unification of all other typed

feature structures (Carpenter 1992).
(0008023, S-87)

In this case, our annotators had to choose between
categories PSim and PUse.

It can also be hard to distinguish between continu-
ation of somebody’s research (i.e., taking somebody’s

*In all corpus examples, numbers in brackets correspond
to the official Cmp_lg archive number, “S-"” numbers to sen-
tence numbers according to our preprocessing.
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research as starting point, as intellectual ancestry, i.e.
PBas) and simply using it (PUse). In principle, one
would hope that annotation of all usage/positive cate-
gories (starting with P), if clustered together, should re-
sult in higher agreement (as they are similar, and as the
resulting scheme has fewer distinctions). We would ex-
pect this to be the case in general, but as always, cases
exist where a conflict between a contrast (CoCo) and a
change to a method (PMod 1) occur:

In contrast to McCarthy, Kay and Kiraz,
we combine the three components into a sin-
gle projection. (0006044, S-182)

The markable units in our scheme are a) all full cita-
tions (as recognized by our automatic citation proces-
sor on our corpus), and b) all names of authors of cited
papers anywhere in running text outside of a formal
citation context (i.e., without date). Our citation pro-
cessor recognizes these latter names after parsing the
citation list an marks them up. This is unusual in com-
parison to other citation indexers, but we believe these
names function as important referents comparable in
importance to formal citations. In principle, one could
go even further as there are many other linguistic ex-
pressions by which the authors could refer to other peo-
ple’s work: pronouns, abbreviations such as “Mueller
and Sag (1990), henceforth M & S”, and names of ap-
proaches or theories which are associated with partic-
ular authors. If we could mark all of these up auto-
matically (which is not technically possible), annota-
tion would become less difficult to decide, but techni-
cal difficulty prevent us from recognizing these other
cases automatically. As a result, in these contexts it is
impossible to annotate citation function directly on the
referent, which sometimes causes problems. Because
this means that annotators have to consider non-local
context, one markable may have different competing
contexts with different potential citation functions, and
problems about which context is “stronger” may oc-
cur. We have rules that context is to be constrained to
the paragraph boundary, but for some categories paper-
wide information is required (e.g., for PMot, we need
to know that a praised approach is used by the authors,
information which may not be local in the paragraph).

Appendix A gives unambiguous example cases
where the citation function can be decided on the ba-
sis of the sentence alone, but Fig. 4 shows a more typ-
ical example where more context is required to inter-
pret the function. The evaluation of the citation Hin-
dle (1990) is contrastive; the evaluative statement is
found 4 sentences after the sentence containing the ci-
tation®. It consists of a positive statement (agreement
with authors’ view), followed by a weakness, under-
lined, which is the chosen category. This is marked on
the nearest markable (Hindle, 3 sentences after the ci-
tation).

3In Fig. 4, markables are shown in boxes, evaluative state-
ments underlined, and referents in bold face.



$-5 | Hindle (1990)/Neut | proposed dealing with the

sparseness problem by estimating the likelihood of un-
seen events from that of “similar” events that have been
seen.

S-6 For instance, one may estimate the likelihood of a
particular direct object for a verb from the likelihoods
of that direct object for similar verbs.

S-7 This requires a reasonable definition of verb simi-
larity and a similarity estimation method.

S-8 In |Hindle/Weak | ’s proposal, words are similar

if we have strong statistical evidence that they tend to
participate in the same events.

S-9 His notion of similarity seems to agree with our in-
tuitions in many cases, but it is not clear how it can be
used directly to construct word classes and correspond-
ing models of association. (9408011)

Figure 4: Annotation example: influence of context

A naive view on this annotation scheme could con-
sider the first two sets of categories in our scheme as
“negative” and the third set of categories “positive”.
There is indeed a sentiment aspect to the interpretation
of citations, due to the fact that authors need to make
a point in their paper and thus have a stance towards
their citations. But this is not the whole story: many
of our “positive” categories are more concerned with
different ways in which the cited work is useful to the
current work (which aspect of it is used, e.g., just a
definition or the entire solution?), and many of the con-
trastive statements have no negative connotation at all
and simply state a (value-free) difference between ap-
proaches. However, if one looks at the distribution of
positive and negative adjectives around citations, one
notices a (non-trivial) connection between our task and
sentiment classification.

There are written guidelines of 25 pages, which in-
struct the annotators to only assign one category per
citation, and to skim-read the paper before annotation.
The guidelines provide a decision tree and give deci-
sion aids in systematically ambiguous cases, but sub-
jective judgement of the annotators is nevertheless nec-
essary to assign a single tag in an unseen context. We
implemented an annotation tool based on XML/XSLT
technology, which allows us to use any web browser to
interactively assign one of the 12 tags (presented as a
pull-down list) to each citation.

3 Data

The data we used came from the CmpLg (Computation
and Language archive; 320 conference articles in com-
putational linguistics). The articles are in XML format.
Headlines, titles, authors and reference list items are
automatically marked up with the corresponding tags.
Reference lists are parsed, and cited authors’ names
are identified. Our citation parser then applies regu-
lar patterns and finds citations and other occurrences of
the names of cited authors (without a date) in running
text and marks them up. Self-citations are detected by
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overlap of citing and cited authors. The citation pro-
cessor developped in our group (Ritchie et al., 2006)
achieves high accuracy for this task (96% of citations
recognized, provided the reference list was error-free).
On average, our papers contain 26.8 citation instances
in running text*.

4 Human Annotation: results

In order to machine learn citation function, we are
in the process of creating a corpus of scientific arti-
cles with human annotated citations, according to the
scheme discussed before. Here we report preliminary
results with that scheme, with three annotators who are
developers of the scheme.

In our experiment, the annotators independently an-
notated 26 conference articles with this scheme, on the
basis of guidelines which were frozen once annotation
started®. The data used for the experiment contained a
total of 120,000 running words and 548 citations.

The relative frequency of each category observed in
the annotation is listed in Fig. 5. As expected, the dis-
tribution is very skewed, with more than 60% of the
citations of category Neut.® What is interesting is the
relatively high frequency of usage categories (PUse,
PModi, PBas) with a total of 18.9%. There is
a relatively low frequency of clearly negative cita-
tions (Weak, CoCoR-, total of 4.1%), whereas the
neutral—contrastive categories (CoCoGM, CoCoRO,
CoCoXY) are slightly more frequent at 7.6%. This
is in concordance with earlier annotation experiments
(Moravesik and Murugesan, 1975; Spiegel-Riising,
1977).

We reached an inter-annotator agreement of K=.72
(n=12;N=548;k=3)". This is comparable to aggreement
on other discourse annotation tasks such as dialogue
act parsing and Argumentative Zoning (Teufel et al.,
1999). We consider the agreement quite good, consid-
ering the number of categories and the difficulties (e.g.,
non-local dependencies) of the task.

The annotators are obviously still disagreeing on
some categories. We were wondering to what de-
gree the fine granularity of the scheme is a prob-
lem. When we collapsed the obvious similar cat-
egories (all P categories into one category, and
all CoCo categories into another) to give four top
level categories (Weak, Positive, Contrast,
Neutral), this only raised kappa to 0.76. This

4 As opposed to reference list items, which are fewer.

>The development of the scheme was done with 40+ dif-
ferent articles.

SSpiegel-Riising found that out of 2309 citations she ex-
amined, 80% substantiated statements.

"Following Carletta (1996), we measure agreement in

Kappa, which follows the formula K = %(PE()E) where
P(A) is observed, and P(E) expected agreement. Kappa

ranges between -1 and 1. K=0 means agreement is only as
expected by chance. Generally, Kappas of 0.8 are considered
stable, and Kappas of .69 as marginally stable, according to
the strictest scheme applied in the field.



Neut PUse | CoCoGM | PSim | Weak | CoCoXY | PMot | PModi | PBas | PSup | CoCo- | CoCoRO
62.7% | 15.8% 3.9% 3.8% 3.1% 2.9% 2.2% 1.6% 1.5% 1.1% 1.0% 0.8%
Figure 5: Distribution of the categories
Weak CoCo- CoCoGM CoCoRO CoCoXY PUse PBas PModi PMot PSim PSup Neut
Weak 5 3
CoCo- 1 3
CoCoGM 23 3
CoCoRO 4
CoCoXY 1
PUse 86 6 2 1 12
PBas 3 2
PModi 3
PMot 13 4
PSim 3 20 5
PSup 1 2 1
Neut 6 10 6 4 17 1 6 4 287
Figure 6: Confusion matrix between two annotators
points to the fact that most of our annotators disagreed Weakness  Positive  Neutral
about whether to assign a more informative category Weakness 9 1 12
or Neut, the neutral fall-back category. Unfortunately, Positive 140 13
Kappa is only partially sensitive to such specialised dis- Neutral 4 30 339

agreements. While it will reward agreement with in-
frequent categories more than agreement with frequent
categories, it nevertheless does not allow us to weight
disagreements we care less about (Neut vs more in-
formative category) less than disagreements we do care
a lot about (informative categories which are mutually
exclusive, such as Weak and PSim).

Fig. 6 shows a confusion matrix between the two an-
notators who agreed most with each other. This again
points to the fact that a large proportion of the confu-
sion involves an informative category and Neut. The
issue with Neut and Weak is a point at hand: au-
thors seem to often (deliberately or not) mask their in-
tended citation function with seemingly neutral state-
ments. Many statements of weakness of other ap-
proaches were stated in such caged terms that our anno-
tators disagreed about whether the signals given were
“explicit” enough.

While our focus is not sentiment analysis, it is pos-
sible to conflate our 12 categories into three: positive,
weakness and neutral by the following mapping:

Old Categories | New Category

Weak, CoCo- | Negative
PMot, PUse, PBas, PModi, PSim, PSup | Positive
CoCoGM, CoCoR0, CoCoXY, Neut | Neutral

Thus negative contrasts and weaknesses are grouped
into Negative, while neutral contrasts are grouped
into Neutral. All the positive classes are conflated
into Positive. This resulted in kappa=0.75 for three
annotators.

Fig. 7 shows the confusion matrix between two an-
notators for this sentiment classification. Fig. 7 is par-
ticularly instructive, because it shows that annotators
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Figure 7: Confusion matrix between two annotators;
categories collapsed to reflect sentiment

have only one case of confusion between positive and
negative references to cited work. The vast majority of
disagreements reflects genuine ambiguity as to whether
the authors were trying to stay neutral or express a sen-
timent.

Distinction Kappa
PMot v. all others .790
CoCoGM v. all others 765
PUse v. all others 761
CoCoRO v. all others 746
Neut v. all others 742
PSimv. all others .649
PModi v. all others 553
CoCoXY v. all others 553
Weak v. all others 522
CoCo- v. all others 462
PBas v. all others 414
PSup v. all others 268

Figure 8: Distinctiveness of categories

In an attempt to determine how well each cate-
gory was defined, we created artificial splits of the
data into binary distinctions: each category versus a
super-category consisting of all the other collapsed cat-
egories. The kappas measured on these datasets are
given in Fig. 8. The higher they are, the better the anno-
tators could distinguish the given category from all the
other categories. We can see that out of the informa-




tive categories, four are defined at least as well as the
overall distinction (i.e. above the line in Fig. 8: PMot,
PUse, CoCoGM and CoCoRO. This is encouraging,
as the application of citation maps is almost entirely
centered around usage and contrast. However, the se-
mantics of some categories are less well-understood by
our annotators: in particular PSup (where the difficulty
lies in what an annotator understands as “mutual sup-
port” of two theories), and (unfortunately) PBas. The
problem with PBas is that its distinction from PUse is
based on subjective judgement of whether the authors
use a part of somebody’s previous work, or base them-
selves entirely on this previous work (i.e., see them-
selves as following in the same intellectual framework).
Another problem concerns the low distinctivity for the
clearly negative categories CoCo— and Weak. This is
in line with MacRoberts and MacRoberts’ hypothesis
that criticism is often hedged and not clearly lexically
signalled, which makes it more difficult to reliably an-
notate such citations.

5 Conclusion

We have described a new task: human annotation of
citation function, a phenomenon which we believe to
be closely related to the overall discourse structure of
scientific articles. Our annotation scheme concentrates
on contrast, weaknesses of other work, similarities be-
tween work and usage of other work. One of its prin-
ciples is the fact that relations are only to be marked if
they are explicitly signalled. Here, we report positive
results in terms of interannotator agreement.

Future work on the annotation scheme will concen-
trate on improving guidelines for currently suboptimal
categories, and on measuring intra-annotator agree-
ment and inter-annotator agreement with naive annota-
tors. We are also currently investigating how well our
scheme will work on text from a different discipline,
namely chemistry. Work on applying machine learning
techniques for automatic citation classification is cur-
rently underway (Teufel et al., 2006); the agreement
of one annotator and the system is currently K=.57,
leaving plenty of room for improvement in comparison
with the human annotation results presented here.
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A Annotation examples

Weak

However, Koskenniemi himself understood that his initial implementation had signif-
icant limitations in handling non-concatenative morphotactic processes.
(0006044, S-4)

CoCoGM

The goals of the two papers are slightly different: Moore ’s approach is designed to
reduce the total grammar size (i.e., the sum of the lengths of the productions), while
our approach minimizes the number of productions.

(0008021, S-22)

CoCoRO

This is similar to results in the literature (Ramshaw and Marcus 1995).
(0008022, S-147)

CoCo-

For the Penn Treebank, Ratnaparkhi (1996) reports an accuracy of 96.6% using the
Maximum Entropy approach, our much simpler and therefore faster HMM approach
delivers 96.7%. (0003055, S-156)

CoCoXY

Unlike previous approaches (Ellison 1994, Walther 1996), Karttunen ’s approach
is encoded entirely in the finite state calculus, with no extra-logical procedures for
counting constraint violations. (0006038, S-5)

PBas

Our starting point is the work described in Ferro et al. (1999), which used a fairly
small training set. (0008004, S-11)

PUse

In our application, we tried out the Learning Vector Quantization (LVQ) (Kohonen et
al. 1996). (0003060, S-105)

PModi

In our experiments, we have used a conjugate-gradient optimization program adapted
from the one presented in Press et al. (0008028, S-72)

PMot

It has also been shown that the combined accuracy of an ensemble of multiple clas-
sifiers is often significantly greater than that of any of the individual classifiers that
make up the ensemble (e.g., Dietterich (1997)). (0005006, S-9)

PSim

Our system is closely related to those proposed in Resnik (1997) and Abney and
Light (1999). (0008020, S-24)

PSup

In all experiments the SVM _Light system outperformed other learning algorithms,
which confirms Yang and Liu ’s (1999) results for SVMs fed with Reuters data.
(0003060, S-141)

Neut

The cosine metric and Jaccard’s coefficient are commonly used in information re-
trieval as measures of association (Salton and McGill 1983). (0001012, S-29)
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Abstract

We present a dialogue manager for “Call
for Fire” training dialogues. We describe
the training environment, the domain, the
features of its novel information state-
based dialogue manager, the system it is a
part of, and preliminary evaluation results.

1 Overview

Dialogue systems are built for many different pur-
poses, including information gathering (e.g., (Aust
et al., 1995)), performing simple transactions (e.g,
(Walker and Hirschman, 2000)), collaborative in-
teraction (e.g., (Allen et al., 1996)), tutoring (e.g.,
(Rose et al., 2003)), and training (e.g. (Traum
and Rickel, 2002)). Aspects of the purpose, as
well as features of the domain itself (e.g., train
timetables, air flight bookings, schedule mainte-
nance, physics, and platoon-level military opera-
tions) will have a profound effect on the nature of
the dialogue which a system will need to engage
in. Issues such as initiative, error correction, flex-
ibility in phrasing and dialogue structure may de-
pend crucially on these factors.

The information state approach to dialogue
managers (Larsson and Traum, 2000) has been an
attempt to cast some of these differences within
the same framework. In this approach, a theory
of dialogue is constructed by providing informa-
tion structure elements, a set of dialogue moves
that can be recognized and produced and are used
to modify the nature of these elements, a set of
update rules that govern the dynamics of how the
information is changed as dialogue moves are per-
formed, and an update strategy. Many differ-
ent dialogue systems have been built according to
this general approach (e.g., (Cooper and Larsson,

’
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1999; Matheson et al., 2000; Lemon et al., 2001;
Johnston et al., 2002; Traum and Rickel, 2002;
Purver, 2002)).

In this paper, we present an information-state
based dialogue manager for a new domain: train-
ing call for fire dialogues. Like other dialogue sys-
tems used as role-players in training applications,
the structure of the dialogue is not completely free
for a dialogue designer to specify based on issues
of dialogue efficiency. The dialogue system must
conform as much as possible to the type of dia-
logue that a trainee would actually encounter in the
types of interaction he or she is being trained for.
In particular, for military radio dialogues, much
of the protocol for interaction is specified by con-
vention (e.g., (Army, 2001)). Still, there is a fair
amount of flexibility in how other aspects of the
dialogue progress.

This dialogue manager is part of a system we
call Radiobot-CFF. Radiobots are a general class
of dialogue systems meant to speak over the ra-
dio in military simulations. Our most extended
effort to date is the Radiobot-CFF system, which
engages in “call for fire” dialogues to train ar-
tillery observers within a virtual reality training
simulation. Our dialogue system can operate ac-
cording to three different use cases, depending on
how much control a human operator/trainer would
like to exercise over the dialogue. There is a fully
automatic mode in which the Radiobot-CFF sys-
tem engages unassisted in dialogue with the user, a
semi-automatic mode in which the Radiobot-CFF
system fills in forms (which can be edited) and the
operator can approve or change communication
with a simulator or trainee, and a passive mode
in which the operator is engaging in the dialogue
and the Radiobot-CFF system is just observing.

In section 2, we describe the training applica-
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tion that our dialogue system has been embedded
in as well as the system itself. In section 3, we de-
scribe some aspects of “call for fire dialogues”, es-
pecially the differences in initiative and purposes
of different phases in the dialogue. In section 4,
we describe the information-state based dialogue
model we have developed for this domain. This in-
cludes dialogue moves, information components,
and update rules. We describe some error handling
capabilities in section 5, and evaluation results in
section 6.

2 Testbed

Our current testbed, Radiobot-CFF, has been
developed in a military training environment,
JFETS-UTM, at the U.S. Army base in in Ft. Sill,
Oklahoma. JFETS-UTM trains soldiers to make
Calls for Fire (CFFs), in which a Forward Ob-
server (FO) team locates an enemy target and re-
quests an artillery fire mission by radio from a Fire
Direction Center (FDC). The training room resem-
bles a battle-scarred apartment in a Middle East-
ern country. A window shows a virtual city dis-
played by a rear-projected computer screen, and
the soldiers use binoculars with computer displays
at their ends to search for targets.

Ordinarily, two trainers control a UTM session.
One communicates with the FO via a simulated
radio, and the other decides what the artillery fire
should be and inputs it to a GUI for the simu-
lator. It is our goal to replace those two train-
ers with one trainer focusing on assessment while
Radiobot-CFF handles the radio communications
and interfaces with the virtual world.

Radiobot-CFF is composed of several pipelined
components. A Speech Recognition component
is implemented using the SONIC speech recogni-
tion system (Pellom, 2001) with custom language
and acoustic models. An Interpreter component
tags the ASR output with its its dialogue move
and parameter labels using two separate Condi-
tional Random Field (Sha and Pereira, 2003; Mc-
Callum, 2002) taggers trained on hand-annotated
utterances. A Dialogue Manager processes the
tagged output, sending a reply to the FO (via a
template-based Generator) and, when necessary, a
message to the artillery simulator FireSim XXI! to
make decisions on what type of fire to send. The
reply to FO and messages to simulator are medi-
ated by GUIs where the trainer can intervene if

"http://sill-www.army.mil/blab/sims/FireSimXXLhtm
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need be.

3 Call for Fire Dialogues

Call for Fire procedures are specified in an Army
field manual (Army, 2001) with variations based
on a unit’s standard operating procedure. Mes-
sages are brief and followed by confirmations,
where any misunderstandings are immediately
corrected. A typical CFF is shown in Figure 1.

1 FO steel one niner this is gator niner one adjust
fire polar over

2 FDC  gator nine one this is steel one nine adjust fire
polar out

3 FO direction five niner four zero distance four
eight zero over

4 FDC direction five nine four zero distance four eight
zero out

5 FO one b m p in the open i ¢ m in effect over

6 FDC one b m p in the open i ¢ m in effect out

7 FDC message to observer kilo alpha high explo-
sive four rounds adjust fire target number al-
pha bravo one zero zero zero over

8 FO m t o kilo alpha four rounds target number al-
pha bravo one out

9 FDC  shot over

10 FO shot out

11 FDC splash over

12 FO splash out

13 FO right five zero fire for effect out over

14 FDC right five zero fire for effect out

15 FDC shotover

16 FO shot out

17  FDC  rounds complete over

18 FO rounds complete out

19 FO end of mission one b m p suppressed zero ca-
sualties over

20 FDC end of mission one b m p suppressed zero ca-

sualties out

Figure 1: Example Dialogue with Radiobot-CFF

CFFs can generally be divided into three
phases. In the first phase (utterances 1-6 in Fig-
ure 1) the FOs identify themselves and important
information about the CFF, including their coor-
dinates, the kind of fire they are requesting, the
location of the target, and the kind of target. In
utterance 1 in Figure 1 the FO performs an identi-
fication, giving his own call sign and that of the
FDC he is calling, and also specifies a method
of fire (“adjust fire”) and a method of targeting
(“polar”.) Note that when speakers expect a reply,
they end their utterance with “over” as in utter-
ance 1, otherwise with “out” as in the confirmation
in utterance 2. In utterance 3 the FO gives target
coordinates, and in utterance 5 the FO identifies
the target as a BMP (a type of light tank) and re-
quests ICM rounds (“improved conventional mu-
nitions”.) These turns typically follow one another



in quick sequence.

In the second phase of a CFF, (utterances 7-12
in Figure 1), after the FDC decides what kind of
fire they will send, they inform the FO in a mes-
sage to observer (MTO) as in utterance 7. This
includes the units that will fire (“kilo alpha”), the
kind of ammunition (“high explosive”), the num-
ber of rounds and method of fire (“4 rounds ad-
just fire”), and the target number (“‘alpha bravo one
zero zero zero”). CFFs are requests rather than or-
ders, and they may be denied in full or in part. In
this example, the FO’s request for ICM rounds was
denied in favor of High Explosive rounds. Next
the FDC informs the FO when the fire mission has
been shot, as in utterance 9, and when the fire is
about to land, as in utterance 11. Each of these are
confirmed by the FO.

In the third phase, (utterances 13-20 in Fig-
ure 1) the FO regains dialogue initiative. Depend-
ing on the observed results, the FO may request
that the fire be repeated with an adjust in location
or method of fire. In utterance 13 the FO requests
that the shot be re-sent to a location 50 meters to
the right of the previous shot as a “fire for effect”
all-out bombardment rather than an “adjust fire”
targeting fire. This is followed by the abbreviated
FDC-initiated phase of utterances 15-18. In utter-
ance 19 the FO ends the mission, describing the
results and number of casualties.

Besides the behavior shown, at any turn either
participant may request or initiate an intelligence
report or request the status of a mission. Further-
more, after receiving an MTO the FO may imme-
diately begin another fire mission and thus have
multiple missions active; subsequent adjusts are
disambiguated with the target numbers assigned
during the MTOs.

4 Dialogue Manager

We have constructed an Information State-based
dialogue manager (Larsson and Traum, 2000) on
this domain consisting of a set of dialogue moves,
a set of informational components with appropri-
ate formal representations, and a set of update
rules with an update strategy. We describe each
of these in turn.

4.1 Dialogue Moves

We defined a set of dialogue moves to represent
the incoming FO utterances based on a study of
transcripts of human-controlled JFETS-UTM ses-
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sions, Army manuals, and the needs of the simu-
lator. As shown in Figure 2 these are divided into
three groups: those that provide information about
the FO or the fire mission, those that confirm in-
formation that the FDC has transmitted, and those
that make requests.

Mission Information:
Observer Coordinates
Situation Report
Identification
Warning Order
Method of Control
Method of Engagement
Target Location
Target Description
End of Mission

Confirming Information:
Message to Observer
Shot
Splash
Rounds Complete
Intel Report

Other Requests:
Radio Check
Say Again
Status
Standby
Command

Figure 2: FO Dialogue Moves

The dialogue moves that provide information
include those in which the FOs transmit their Ob-
server Coordinates (grid location on a map), a
generic Situation Report, or one of the various
components of a fire mission request ranging from
call sign Identification to final End of Mission.
The dialogue moves that confirm information in-
clude those that confirm the MTO and other FDC-
initiated utterances, or a general report on scenario
Intel. The final group includes requests to check
radio functionality, to repeat the previous utter-
ance, for status of a shot, to stand by for transmis-
sion of information, and finally a set of commands
such as “check fire” requesting cancellation of a
submitted fire mission.

Each of these dialogue moves contains informa-
tion important to the dialogue manager. This in-
formation is captured by the parameters of the di-
alogue move, which are enumerated in Figure 3.
Each parameter is listed with the dialogue move
it usually occurs with, but this assignment is not
strict. For example, “number_of_enemies” param-
eters occur in Target Description as well as End of
Mission dialogue moves.



Identification-related:
fdc_id
fo_id

Warning Order-related:
method_of fire
method_of_control
method_of_engagement
method_of_location

Target Location-related:
grid_location
direction
distance
attitude
left_right
left_right_adjust
add_drop
add_drop_adjust
known_point

End Of Mission-related:
target_type
target_description
number_of_enemies
disposition

Other:
command
detail_of_request
target_number

Figure 3: Dialogue Move Parameters

Figure 4 shows how the dialogue moves and pa-
rameters act to identify the components of an FO
utterance. The example is based on utterance 1 in
Figure 1; the Identification move has two param-
eters representing the call signs of the FDC and
the FO, and the Warning Order has two parame-
ters representing the method of fire and method of
location. Parameters need to be identified to con-
firm back to the FO, and in some cases to be sent
to the simulator and for use in updating the infor-
mation state. In the example in Figure 4, the fact
that the requested method of fire is an “adjust fire”
will be sent to the simulator, and the fact that a
method of fire has been given will be updated in
the information state.

Identification: steel one nine this is gator niner one
fdc_id: steel one nine
fo_id: gator niner one

Warning Order: adjust fire polar
method_of_fire: adjust fire
method-of_location: polar

Figure 4: Example Dialogue Moves and Parame-
ters

4.2 Informational Components

The Radiobot-CFF dialogue manager’s informa-
tion state consists of five classes of informational
components, defined by their role in the dia-
logue and their level of accessibility to the user.
These are the Fire Mission Decision components,
the Fire Mission Value components, the Post-Fire
Value components, the Disambiguation compo-
nents, and the Update Rule Processing compo-
nents.

By dividing the components into multiple
classes we separate those that are simulator-
specific from more general aspects of the domain.

Decisions to fire are based on general con-
straints of the domain, whereas the exact com-
ponents to include in a message to simulator will
be simulator-specific. Also, the components have
been designed such that there is almost no over-
lap in the update rules that modify them (see sec-
tion 4.3). This reduces the complexity involved
in editing or adding rules; although there are over
100 rules in the information state, there are few
unanticipated side-effects when rules are altered.

The first class of components are the Fire Mis-
sion Decision components, which are used to de-
termine whether enough information has been col-
lected to send fire. These components are boolean
flags, updated by rules based on incoming dia-
logue moves and parameters. Figure 5 shows the
values of these components after utterance 3 in
Figure 1 has been processed. The FO has given a
warning order, and a target location (which can ei-
ther be given through a grid location, or through a
combination of direction and distance values, and
observer coordinates), so the appropriate compo-
nents are “true”. After the FO gives a target de-
scription, that component will be true as well, and
an update rule will recognize that enough informa-
tion has been gathered to send a fire mission.

has warning order? true

has target location? true
has grid location? false
has polar direction? true
has polar distance? true
has polar obco? true

has target descr? false

Figure 5: Fire Mission Decision Components
The second class of information state compo-

nents is the set of Fire Mission Value components,
which track the value of various information el-



ements necessary for requesting a fire mission.
These are specific to the FireSim XXI simulator.
Figure 6 shows the values after utterance 3 in Fig-
ure 1. Components such as “direction value” take
number values, and components such as “method
of fire” take values from a finite set of possibilities.
Several of these components, such as “attitude”
have defaults that are rarely changed. Once the
dialogue manager or human trainer decides that it
has enough information to request fire, these com-
ponents are translated into a simulator command
and sent to the simulator.

method of control: adjust fire

method of fire: adjust fire
method of engagement: none given
target type: -

grid value:

direction value: 5940
distance value: 480
length: 0

width: 100

attitude: O

observer coordinate value: 45603595

Figure 6: Fire Mission Value Components

Fire Mission Value components are also directly
modifiable by the trainer. Figure 7 shows the GUI
which the trainer can use to take control of the
session, edit any of the Fire Mission Value com-
ponents, and relinquish control of the session back
to Radiobot-CFF. This allows the trainer to correct
any mistakes that the Radiobot may have made or
test the trainee’s adaptability by sending the fire
to an unexpected location. The example shown in
Figure 7 is after utterance 5 of Figure 1; the sys-
tem is running in semi-automated mode and the
dialogue manager has decided that it has enough
information to send a fire. The trainer may send
the message or edit it and then send it. A second
GUI, not shown, allows the trainer to take con-
trol of the outgoing speech of the Radiobot, and,
in semi-automated mode, either confirm the send-
ing of a suggested output utterance, alter it before
sending, or author new text for the radiobot to say.

The third class of components is the Post-Fire
Value components, which are also exposed to the
trainer for modification. The example shown in
Figure 8 is from after utterance 13 in Figure 1; the
FO has requested an “adjust fire” with an indica-
tor of “fire for effect” and a right adjustment of 50.
At this point in the dialogue the FO could have in-
stead chosen to end the mission. If the initial fire
had been a “fire for effect” it could have been re-
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N corneone. |
FDC: [steel one nine
Method of Control: |6 - Adjust Fire ¥

Semi

Maote ¥ |

Methad of Fire: | 4 - Adjust Fire S

Method of 0-None Given -

Target Type: |9 - ARMORLT -

Direction: [5940
Grid:
Distance: |480

| width: [100

Length: [0 | attituge: [0 |

Observer Humber: |91

Build Message

"gator nine one""steel ane nine” POLAR 6 4 0 5940 4800301000091 0000
0

Figure 7: GUI

peated, rather than following up an initial “adjust
fire.” The adjust fire stage does not have any de-
cision components because typically the adjust in-
formation is given in one move.

adjust fire: true
shift indicator:
repeat FFE: false

fire for effect

left-right adjustment: 50
add-drop adjustment: O
vertical adjustment: 0

end of mission: false

disposition:
number of casualties:

Figure 8: Post-Fire Value Components

The fourth class, Disambiguation components,
are used by many rules to disambiguate local in-
formation based on global dialogue features. The
example shown in Figure 9 is from the dialogue
in Figure 1, after utterance 1. The “mission is
polar” component helps determine the method of
target location if speech recognition erroneously
detects both polar and grid coordinates. Target
numbers allow the FOs to handle multiple mis-
sions at the same time (e.g., starting a new call for
fire, before the previous mission has been com-
pleted). The “missions active” component tracks
how many missions are currently being discussed.
The “phase” refers to the state of a three-state FSA



that tracks which of the three subdialogue phases
(described in section 3) the dialogue is in for the
most recently-discussed mission.

An example of the use of the Disambiguation
components is to determine whether the phrase
“fire for effect” refers to an adjustment of a pre-
vious mission or the initiation of a new mission.
In utterance 13 in Figure 1, “fire for effect” refers
to an adjustment of a CFF that began with an “ad-
just fire” in utterance 1. However, the FO could
have started that CFF by calling for a “fire for ef-
fect”. Furthermore the FO could have started a
second CFF in utterance 13 rather than doing an
adjust, and might have specified “fire for effect”.
By using a rule to check the phase of the mission
the move can be disambiguated to understand that
it is referring to an adjustment, rather than the ini-
tiation of a new fire mission.

mission is polar?: true
target number: 0
missions active: 0
last method of fire:

phase: Info-Gathering

adjust

Figure 9: Disambiguation Components

The last class of components, shown in Fig-
ure 10, is closely tied to the update rule processing,
and is therefore described in the following section.

current reply: gator nine one this is
steel one nine

previous reply:

understood? true
send EOM? false

send repeat? false

send repeat adjust? false
send repeat ffe? false

Figure 10: Update Rule Processing Components

4.3 Update Rules

Update rules update the informational compo-
nents, build a message to send to the FO, build
a message to send to the simulator, and decide
whether a message should actually be sent to the
FO or simulator.

As an example of rule application, consider the
processing of utterance 1 in Figure 1. Figure 4
shows the moves and parameters for this utterance.
When the dialogue manager processes this utter-
ance, a set of rules associated with the Identifi-
cation move are applied, which starts building a
response to the FO. This response is built in the
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“current reply” Update Rule Processing compo-
nent. Figure 10 shows a reply in the process of
being built: a rule has recognized that an Identifi-
cation move is being given, and has filled in slots
in a template with the necessary information and
added it to the “current reply”’ component.

Next, the update rules will recognize that a
Warning Order is being given, and will identify
that it is an “adjust fire” method of fire, and up-
date the “has warning order” decision component,
the “method of control” and “method of fire” value
components, and the “last method of fire” disam-
biguation component. As part of this, the appro-
priate fields of the GUIs will be filled in to allow
the trainer to override the FO’s request if need be.
Another rule will then fill in the slots of a template
to add “adjust fire polar” to the current reply, and
later another rule will add “out”, thus finishing the
reply to the FO. After the reply is finished, it will
place it in the “previous reply”” component, for ref-
erence if the FO requests a repeat of the previous
utterance.

Certain rules are specified as achieving compre-
hension — that is, if they are applied, the “under-
stood” variable for that turn is set. If no reply has
been built but the move has been understood, then
no reply needs to be sent. This happens, for ex-
ample, for each of utterances 8, 10, and 12 in Fig-
ure 1: because they are confirmations of utterances
that the FDC has initiated, they do not need to be
replied to. Similarly, no reply needs to be sent if
no reply has been built and the incoming message
is empty or only contains one or two words in-
dicative of an open mic and background noise. Fi-
nally, if no reply has been built and the move has
not been understood, then the FO is prompted to
repeat the message.

As described above, the Fire Mission Decision
components are used to determine whether to send
a fire mission. For other communications with the
simulator, a simpler approach is possible. The de-
cisions to send an end of mission, a repeat fire, or a
repeat fire with the *adjust’ or ’fire for effect’ spec-
ification can be made with update rules acting on
a single boolean, and so these are also part of the
Update Rule Processing Components as shown in
Figure 10.

Finally, the application of rules follows a spe-
cific strategy. A given utterance may contain one
or more dialogue moves, each with a set of rules
specific to it. The dialogue manager applies the



appropriate rules to each dialogue move in the
utterance before applying the rules that send the
FO messages or simulator commands, as shown in
Figure 11. Rules for producing replies and simula-
tor commands are delayed until the end of process-
ing an utterance to allow for utterances that may
contain self-corrections or relevant details later in
the turn.

for each dialogue move in utterance

apply rules for that dialogue move
end for

apply rules to send reply to FO
apply rules to send simulator commands

Figure 11: Update Strategy for Rules

5 Error Handling

Radiobot-CFF is able to handle various kind of
problematic input in a number of ways. It can han-
dle partially correct information, as in Figure 12.
Speech recognition errors caused the “three casu-
alties” information to be lost, but the update rules
were able to handle the essential part of the FO
contribution: that the mission was ended, and that
the target was neutralized. The domain is forgiv-
ing in this particular example, although a strict
trainer might want to intervene by the GUI and
insist that the FO re-submit the end of mission re-

port.

FO Said: end of mission target
neutralized estimate three
casualties over

in end of mission target
neutralized as the make three
catch a these over

end of mission target
neutralized out

ASR Output:

Radiobot:

Figure 12: Error Correction

In other cases, such as when giving number co-
ordinates, all information must be fully grounded.
An example of this is in Figure 13, where the num-
ber “five” is lost by the speech recognition. In
this case, the domain-appropriate response is to
prompt for a repetition.

FO Said: right five zero over
ASR Output: right by zero over
Radiobot: say again over

Figure 13: Error Correction - Prompt
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6 Evaluation

We conducted an evaluation of the Radiobot-CFF
system in fully-automated, semi-automated, and
human-controlled conditions. The system per-
formed well in a number of measures; for exam-
ple, Table 1 shows the scores for median time-to-
fire and task-completion rates. Additional mea-
sures and further details are available in (Robinson
et al., 2006).

Table 1: Example Evaluation Measures

] Measure \ Human | Semi Fully
Time To Fire | 106.2s | 139.45s | 104.3 s
Task Compl. 100% | 97.5% | 85.9%

Of particular relevance here, we performed an
evaluation of the dialogue manager, using the eval-
uation corpus of 17 missions run on 8 sessions, a
total of 408 FO utterances. We took transcribed
recordings of the FO utterances, ran them through
the Interpreter, and corrected them. For each ses-
sion, we ran corrected Interpreter output through
the Dialogue Manager to print out the values of the
informational components at the end of every turn.
We then corrected those, and compared the cor-
rections to the uncorrected values to receive preci-
sion, accuracy, and f-scores of 0.99 each.?

7 Summary

We presented a dialogue manager which can en-
gage in Call for Fire training dialogues, and de-
scribed the environment and system in which it
works. It has an information state-based design
with several components accessible to a human
operator, and may be controlled either fully, in
part, or not at all by that human operator.
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Abstract

Identification of action items in meeting
recordings can provide immediate access
to salient information in a medium noto-
riously difficult to search and summarize.
To this end, we use a maximum entropy
model to automatically detect action item-
related utterances from multi-party audio
meeting recordings. We compare the ef-
fect of lexical, temporal, syntactic, seman-
tic, and prosodic features on system per-
formance. We show that on a corpus of ac-
tion item annotations on the ICSI meeting
recordings, characterized by high imbal-
ance and low inter-annotator agreement,
the system performs at an F measure of
31.92%. While this is low compared to
better-studied tasks on more mature cor-
pora, the relative usefulness of the features
towards this task is indicative of their use-
fulness on more consistent annotations, as
well as to related tasks.

Introduction

Jason M. Brenier
Department of Linguistics
Center for Spoken Language Research
Institute of Cognitive Science
University of Colorado at Boulder
594 UCB
Boulder, Colorado 80309-0594
j breni er @ol orado. edu

difficulties presented by single-party recordings,
typically contain backchannels, elaborations, and
side topics, all of which further confound search
and summarization processes. Making efficient
use of large meeting corpora thus requires intel-
ligent summary and review techniques.

One possible user goal given a corpus of meet-
ing recordings is to discover theetion items de-
cided within the meetings. Action items are deci-
sions made within the meeting that require post-
meeting attention or labor. Rapid identification
of action items can provide immediate access to
salient portions of the meetings. A review of ac-
tion items can also function as (part of) a summary
of the meeting content.

To this end, we explore the task of applying
maximum entropy classifiers to the task of auto-
matically detecting action item utterances in au-
dio recordings of multi-party meetings. Although
available corpora for action items are not ideal, it
is hoped that the feature analysis presented here
will be of use to later work on other corpora.

2 Related work

Multi-party meetings have attracted a significant

Meetings are a ubiquitous feature of workplaceamount of recent research attention. The creation
environments, and recordings of meetings proof the ICSI corpus (Janin et al., 2003), comprised
vide obvious benefit in that they can be replayedof 72 hours of meeting recordings with an average
or searched through at a later date. As recordef 6 speakers per meeting, with associated tran-
ing technology becomes more easily available andcripts, has spurred further annotations for var-
storage space becomes less costly, the feasibilbus types of information, including dialog acts
ity of producing and storing these recordings in-(Shriberg et al., 2004), topic hierarchies and action
creases. This is particularly true for audio record-tems (Gruenstein et al., 2005), and “hot spots”
ings, which are cheaper to produce and store thafWrede and Shriberg, 2003).
full audio-video recordings. The classification of individual utterances based
However, audio recordings are notoriously diffi- on their role in the dialog, i.e. as opposed to their
cult to search or to summarize. This is doubly truesemantic payload, has a long history, especially
of multi-party recordings, which, in addition to the in the context ofdialog act (DA) classification.
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Research on DA classification initially focused = =
on two-party conversational speech (Mast et al., * 7
1996; Stolcke et al., 1998; Shriberg et al., 1998)

and, more recently, has extended to multi-partyz
audio recordings like the ICSI corpus (Shriberg§ < 4
et al., 2004). Machine learning techniques such”
as graphical models (Ji and Bilmes, 2005), maxi-

mum entropy models (Ang et al., 2005), and hid- 1] H
den Markov models (Zimmermann et al., 2005) ‘ ‘ ‘ ‘ ‘ ‘
have been used to classify utterances from multi- 00 02 04 0e 08 10
party conversations. kappa

It is only more recently that work focused Figure 2: Distribution of (inter-annotator agree-

specifically on action items themselves has b?epnent) across the 54 ICSI meetings tagged by two
developed. SVMs have been successfully appl'egnnotators. Of the two meetings with= 1.0, one

to the task of extracting action items from emallhas only two action items and the other only four.
messages (Bennett and Carbonell, 2005; Corston-

Oliver et al., 2004). Bennett and Carbonell, in par-

ticular, distinguish the task of action item detec-fined as:

tion in email from the more well-studied task of _ P(O) - P(E)
text classification, noting the finer granularity of 1-P(E)
the action item task and the difference of seman-

tics vs. intent. (Although recent work has beguntoWhere P(O) is the probability of the observed

blur this latter division, e.g. Cohen et al. (2004).) agreement, and’(f?).the probability of the ex-
pected agreement” (i.e., under the assumption the

In the audio domain, annotations for action itethO sets of annotations are independent). The
utterances on several recorded meeting corpor@appa statistic ranges from to 1, indicating per-

including the ICSI corpus, have recently becomegct gisagreement and perfect agreement, respec-
available (Gruenstein et al., 2005), enabling Worktively.

on this topic.

2
|

Overall inter-annotator agreement as measured
by « on the action item corpus is poor, as noted in
3 Data Purver et al. (2006), with an overallof 0.364 and

values for individual meetings ranging froh) to
We use action item annotations produced by Grutess than zero. Figure 2 shows the distribution of
enstein et al. (2005). This corpus provides topic; across all 54 annotated ICSI meetings.
hierarchy and action item annotations for the ICSI T reduce the effect of poor inter-annotator
meeting corpus as well as other corpora of meetagreement, we focus on the top 15 meetings as
ings; due to the ready availability of other types ofyanked byx; the minimumx in this set is 0.435.
annotations for the ICSI corpus, we focus solelyaithough this reduces the total amount of data
on the annotations for these meetings. Figure hyailable, our intention is that this subset of the
gives an example of the annotations. most consistent annotations will form a higher-

The corpus covers 54 ICSI meetings annotatedjuality corpus.
by two human annotators, and several other meet- While the corpus classifies related action item
ings annotated by one annotator. Of the 54 meetatterances into action item “groups,” in this study
ings with dual annotations, 6 contain no actionwe wish to treat the annotations as simply binary
items. For this study we consider only those meetattributes. Visual analysis of annotations for sev-
ings which contain action items and which are aneral meetings outside the set of chosen 15 suggests
notated by both annotators. that the union of the two sets of annotations yields

As the annotations were produced by a smalthe most consistent resulting annotation; thus, for
number of untrained annotators, an immediatéhis study, we consider an utterance to be an action
guestion is the degree of consistency and reliabilitem if at least one of the annotators marked it as
ity. Inter-annotator agreement is typically mea-such.
sured by the kappa statistic (Carletta, 1996), de- The 15-meeting subset contains 24,250 utter-
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A2

So that will be sort of the assignment for next week, is to—

to—for slides and whatever net you picked and what it camad—and how far
you've gotten. Pppt!

Well, I'd like to also,

though, uh, ha- have a first cut at what the

belief-net looks like.

Even if it's really crude.

- - OK? So, you know,

- - here a- here are—

- X Sowe're supposed to @@ about features and whatnot, and—

X X

X X X

Figure 1: Example transcript and action item annotationarked “X”) from annotators Al and A2.
‘@@ signifies an unintelligible word. This transcript i an ICSI meeting recording and has=
0.373, ranking it 18N out of 54 meetings in annotator agreement.

] maximum entropy (maxent) model (Berger et al.,
= ‘ 1996) to this task.
I

[

|

]

I

|

l Maxent models seek to maximize the condi-
] tional probability of a clasg given the observa-
] tions X using the exponential form

] ] | P(c|X) = Z(l‘X) exp [EZ: /\i,c fz,c(X)‘|

: : : : : ‘ where f; .(X) is the ith feature of the dataX

0 500 1000 1500 2000 2500 in classe, \; . is the corresponding weight, and
Z(X) is a normalization term. Maxent models

Figure 3: Number of total and action item utter- choose the weights; . so as to maximize the en-

ances across the 15 selected meetings. There arepy of the induced distribution while remaining

24,250 utterances total, 590 of which (2.4%) areconsistent with the data and labels; the intuition is

action item utterances. that such a distribution makes the fewest assump-

tions about the underlying data.

ances total; under the union strategy above, 590 of Our maxent model is regularized by a quadratic

these are action item utterances. Figure 3 showkO" and uses quasi-Newton parameter optimiza-

the number of action item utterances and the numt:C"- Due to the limited amount of training data

ber of total utterances in the 15 selected meetingé.See Section 3) and _to gvou_j overfitting, we em-
One noteworthy feature of the ICSI corpus un_pon 10-fold cross validation in each experiment.
. L : ) «: . TO evaluate system performance, we calculate
derlying the action item annotations is the “digit the F measure) of precision ¢?) and recall {?)
reading task,” in which the participants of meet- P '

ings take turns reading aloud strings of digits.dmclneol as:

This task was designed to provide a constrained- p _ |ANC]
vocabulary training set of speech recognition de- |A]
velopers interested in multi-party speech. In this |[ANC|
study we did not remove these sections; the net R~ o= IC]
effect is that some portions of the data consist of 2PR
these fairly atypical utterances. F = PIR

4 Experimental methodology _ _
where A is the set of utterances marked as action

We formulate the action item detection task as onéems by the system, and is the set of (all) cor-
of binary classification of utterances. We apply arect action item utterances.
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The use of precision and recall is motivated by e Number ofNN* tags, denoting the number of
the fact that the large imbalance between posi-  nouns.
tive and negative examples in the corpus (Sec- ¢ Number ofvs* tags, denoting the number of
tion 3) means that simpler metrics like accuracy verbs.
are insufficient—a system that simply classifies
every utterance as negative will achieve an accu-
racy of 97.5%, which clearly is not a good reflec-
tion of desired behavior. Recall and F measure fob.4 Prosodic features

such a system, however, will be zero. Under the hypothesis that action item utterances
Likewise, a system that flips a coin weighted inyj|| exhibit particular prosodic behavior—for ex-
proportion to the number of positive examples ingmple, that they are emphasized, or are pitched a
the entire corpus will have an accuracy of 95.25%certain way—we performed pitch extraction using
but will only achieveP = R = F' = 2.4%. an auto-correlation method within the sound anal-
ysis package Praat (Boersma and Weenink, 2005).
From the meeting audio files we extract the fol-
As noted in Section 3, we treat the task of produc/owing prosodic features, on a per-utterance basis:
ing action item annotations as a binary classificalPitth measures are in Hz; intensity in energy; nor-
tion task. To this end, we consider the following Malization in all cases is-normalization)
sets of features. (Note that all real-valued features
were range-normalized so as to ligin1] and that

e Presence of/BD tag, denoting the presence
of a past-tense verb.

5 Features

e Pitch and intensity range, minimum, and

no binning was employed.) maximum.
g ployed. e Pitch and intensity mean.
5.1 Immediate lexical features e Pitch and intensity median (0.5 quantile).

We extract word unigram and bigram features © Pitchand intensity standard deviation.
from the transcript for each utterance. We nor- e Pitch slope, processed to eliminate halv-
malize for case and for certain contractions; for ing/doubling.
example, “I'll" is transformed into “I will”. e Number of voiced frames.

Note that these are oracle features, as the tran- 4 puyration-normalized pitch and intensity
scripts are human-produced and not the product  yanges and voiced frame count.
of automatic speech recognizer (ASR) system out-

out e Speaker-normalized pitch and intensity
ut.

means.

5.2 Contextual lexical features 5.5 Temporal features

We extract word unigram and bigram featuresynder the hypothesis that the length of an utter-
from the transcript for the previous and next ut-ance or its location within the meeting as a whole
terances across all speakers in the meeting. will determine its likelihood of being an action
item—for example, shorter statements near the
end of the meeting might be more likely to be ac-
Under the hypothesis that action item utterancesion items—we extract the duration of each utter-
will exhibit particular syntactic patterns, we use ance and the time from its occurrence until the end
a conditional Markov model part-of-speech (POS)of the meeting. (Note that the use of this feature
tagger (Toutanova and Manning, 2000) trained ofprecludes operating in an online setting, where the
the Switchboard corpus (Godfrey et al., 1992) toend of the meeting may not be known in advance.)
tag utterance words for part of speech. We use the
following binary POS features: 5.6 General semantic features
. Under the hypothesis that action item utterances
* Presence ofiH tag, denoting the presence of jj| frequently involve temporal expressions—e.g.
an “interjection” (including filled pauses, un- « at's have the paper written byext Tuesday’—

5.3 Syntactic features

filled pauses, and discourse markers). we use ldentifinder (Bikel et al., 1997) to mark
e Presence oD tag, denoting presence of a temporal expressions (“TIMEX” tags) in utterance
modal verb. transcripts, and create a binary feature denoting
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the existence of a temporal expression in each ut- g - —
terance. . bigram
g . c T emporal

Note that as Identifinder was trained on broad- :;ont’)extfprosodic
cast news corpora, applying it to the very differents & - fine-grained DAs
domain of multi-party meeting transcripts may not < °
result in optimal behavior. ° \
5.7 Dialog-specific semantic features o No—a
Under the hypothesis that action item utterances © = . ' ' ' '

0.0 0.2 0.4 0.6 0.8 1.0

may be closely correlated with specific dialog
act tags, we use the dialog act annotations from

the ICSI Meeting Recorder Dialog Act Corpus. Figure 4: Interpolated precision-recall curve for

(Shriberg et al., 2004) As these .DA annotatlon_s several (cumulative) feature sets. This graph sug-
do not correspond one-to-one with utterances in

) . , ests the level of precision that can be achieved
the ICSI corpus, we align them in the most Ilberalg P

. . ) ) if one is willing to sacrifice some recall, and vice
way possible, i.e., if at least one word in an utter-

: : versa.
ance is annotated for a particular DA, we mark the

entirety of that utterance as exhibiting that DA.

We consider both fine-grained and coarse- In total, nine combinations of features were
grained dialog act$. The former yields 56 fea- considered. In every case except that of syn-
tures, indicating occurrence of DA tags suchtactic and coarse-grained dialog act features, the
as “appreciation,” “rhetorical question,” and additional features improved system performance
“task management”; the latter consists of onlyand these features were used in succeeding exper-
7 classes—"disruption,” “backchannel,” “filler,” iments. Syntactic and coarse-grained DA features
“statement,” “question,” “unlabeled,” and “un- resulted in a drop in performance and were dis-
known.” carded from succeeding systems.

recall

6 Results 7 Analysis

The final performance for the maxent modelThe unigram and bigram features provide signif-
across different feature sets is given in Table licant discriminative power. Tables 2 and 3 give
F measures scores range from 13.81 to 31.92he top features, as determined by weight, for the
Figure 4 shows the interpolated precision-recalimodels trained only on these features. It is clear
curves for several of these feature sets; thesfom Table 3 that the detailed end-of-utterance
graphs display the level of precision that can begyunctuation in the human-generated transcripts
achieved if one is willing to sacrifice some recall, provide valuable discriminative power.
and vice versa. The performance gain from adding TIMEX tag-
Although ideally, all combinations of features ging features is small and likely not statistically
should be evaluated separately, the large numbejignificant. Post-hoc analysis of the TIMEX tag-
of features in this precludes this strategy. Theying (Section 5.6) suggests that Identifinder tag-
combination of features explored here was choging accuracy is quite plausible in general, but ex-
sen so as to start from simpler features and sugibits an unfortunate tendency to mark the digit-
cessively add more complex ones. We start witheading (see Section 3) portion of the meetings as
transcript features that are immediate and ConteXﬁ'emporaJ expressions_ It is plausib|e that remov-

independent (“unigram”, “bigram”, “TIMEX"); ing these utterances from the meetings would al-
then add transcript features that require contexfow this feature a higher accuracy.

(*temporal”, “context’), then non-transcript (i.e.  Based on the low feature weight assigned, utter-
audio signal) features (“prosodic”), and finally add ance length appears to provide no significant value
features that require both the transcript and the aug the model. However, the time until the meet-
dio signal ("DA). ing is over ranks as the highest-weighted feature
" 1we use the therap_01 grouping defined in the MRDA cor- 1N the u'nlgram+b!gram+TIMEXftemporal feature
pus to collapse the tags. set. This feature is thus responsible for the 39.25%
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features

number F | % imp.

unigram

unigram+bigram
unigram+bigram+TIMEX
unigram+bigram+TIMEX+temporal

6844 | 13.81
61281| 16.72| 21.07
61284 | 16.84 0.72
61286 | 23.45| 39.25

unigranmt bigram+ TIMEX+temporal + syntactic 61291 | 21.94 -6.44
unigram+bigram+TIMEX+temporal+context 183833 25.62 9.25
unigram+bigram+TIMEX+temporal+context+prosodic 183871| 27.44 7.10

unigramt+ bigrant+ TIMEX+temporal + context+ prosodic+coarse DAs | 183878 | 26.47 -3.53
unigram+bigram+TIMEX+temporal+context+prosodic+finAd 183927| 31.92| 16.33

Table 1: Performance of the maxent classifier as measurediiBaBure, the relative improvement from
the preceding feature set, and the number of features,saalideature sets tried. Italicized lines denote
the addition of features which do not improve performanbesg are omitted from succeeding systems.

feature +/- A
“pull” + 2.2100
“email” + 1.7883
“needs” + 1.7212
“added” + 1.6613
“mm-hmm” - 1.5937
“present” + 1.5740
“nine” - 1.5019
“r - 1.5001
“five” - 1.4944

“together” + 1.4882

feature +/- A
mean intensity (norm.) - 1.4288
mean pitch (norm.) - 1.0661
intensity range + 1.0510
“i will” + 0.8657
“email” + 0.8113
reformulate/summarize (DA) + 0.7946
“just go” (next) + 0.7190
“i will” (prev.) + 0.7074
“the paper” + 0.6788

understanding check (DA) + 0.6547

Table 2: Features, evidence type (positive denoteable 4: Features, evidence type and weight for
action item), and weight for the top ten featuresthe top ten features on the best-performing model.
in the unigram-only model. “Nine” and “five” are Bigrams labeled “prev.” and “next” correspond to

common words in the digit-reading task (see Secthe lexemes from previous and next utterances, re-

tion 3).

feature  +/- A
g - 1.4308
“Gwill"  + 1.4128

“ % - 1.3115
“uh $” - 1.2752
“w- $” - 1.2419
“ g - 1.2247
“email” + 1.2062
“six $" - 1.1874
“*in” - 1.1833

“so $" - 1.1819

spectively. Prosodic features labeled as “norm.”
have been normalized on a per-speaker basis.

boost in F measure in row 3 of Table 1.

The addition of part-of-speech tags actually de-
creases system performance. It is unclear why this
is the case. It may be that the unigram and bi-
gram features already adequately capture any dis-
tinctions these features make, or simply that these
features are generally not useful for distinguishing
action items.

Contextual features, on the other hand, im-

Table 3: Features, evidence type and weight foP'©Ve System performance significantly. A post-
the top ten features in the unigram-+bigram modelN'C analysis of the action item annotations makes
The symbol * denotes the beginning of an ut,[er_c'lear why: action items are pften split across m_uI-
ance and $ the end. All of the top ten features ardPI€ utterances (e.g. as in Figure 1), only a portion

bigrams except for the unigrams “email”.

of which contain lexical cues sufficient to distin-
guish them as such. Contextual features thus allow
utterances immediately surrounding these “obvi-
ous” action items to be tagged as well.
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Prosodic features yield a 7.10% increase iress than 25% when applying SVMs to the classi-
F measure, and analysis shows that speakefication task to the same corpus, and motivate the
normalized intensity and pitch, and the range indevelopment of a new corpus of action item anno-
intensity of an utterance, are valuable discriminatations.
tive features. The subsequent addition of coarse-
grained dialog act tags does not further improved Future work
system performance. ltis likely this is due to rea-

sons similar to those for POS tags—either the catil Section 6 we showed that contextual lexical
egories are insufficient to distinguish action itemf€atures are useful for the task of action item de-

utterances, or whatever usefulness they provide {€€tion, at least in the fairly limited manner em-
ployed in our implementation, which simply looks

subsumed by other features. : ) i ; ;
Table 4 shows the feature weights for the top_at immediate previous and |mme(j|ate next utter-
It seems likely that applying a sequence

ranked features on the best-scoring system. Thgncdesl. h ditional d
addition of the fine-grained DA tags results in q/Model such as an HMM or conditional random

significant increase in performance.The F measurQGId (CRFs) will act as a generalization of this fea-
of this best feature set is 31.92%.

ture and may further improve performance.
Addition of features such as speaker change and
“hot spots” (Wrede and Shriberg, 2003) may also
aid classification. Conversely, it is possible that
We have shown that several classes of features afeature selection techniques may improve perfor-
useful for the task of action item annotation frommance by helping to eliminate poor-quality fea-
multi-party meeting corpora. Simple lexical fea-tures. In this work we have followed an “ev-
tures, their contextual versions, the time until theerything but the kitchen sink” approach, in part
end of the meeting, prosodic features, and finebecause we were curious about which features
grained dialog acts each contribute significant inwould prove useful. The effect of adding POS and
creases in system performance. coarse-grained DA features illustrates that this is
While the raw system performance numbers ohot necessarily the ideal strategy in terms of ulti-
Table 1 are low relative to other, better-studiedmate system performance.
tasks on other, more mature corpora, we believe In general, the features evaluated in this
the relative usefulness of the features towards thigzork are an indiscriminate mix of human- and
task is indicative of their usefulness on more con-automatically-generated features; of the human-
sistent annotations, as well as to related tasks. generated features, some are plausible to generate
The Gruenstein et al. (2005) corpus providesautomatically, at some loss of quality (e.g. tran-
a valuable and necessary resource for research §€ripts) while others are unlikely to be automati-
this area, but several factors raise the question dfally generated in the foreseeable future (e.g. fine-
annotation quality. The low scores in Section 3 grained dialog acts). Future work may focus on
are indicative of annotation problems. Post-hodhe effects that automatic generation of the former
error analysis yields many examples of utterance§as on overall system performance (although this
which are somewhat difficult to imagine as pos-may require higher-quality annotations to be use-
sible, never mind desirable, to tag. The fact thaful.) For example, the detailed end-of-utterance
the extremely useful oracular information presentounctuation present in the human transcripts pro-
in the fine-grained DA annotation doest raise  Vides valuable discriminative power (Table 3), but
performance to the high levels that one might excurrent ASR systems are not likely to be able to
pect further suggests that the annotations are ngrovide this level of detail. Switching to ASR out-
ideal—or, at the least, that they are inconsistenput will have a negative effect on performance.
with the DA annotation$. One final issue is that of utterance segmenta-
This analysis is consistent with the findings oftion. The scheme used in the ICSI meeting corpus

Purver et al. (2006), who achieve an F measure ofoes not necessarily correspond to the ideal seg-
mentation for other tasks. The action item annota-

2Which is not to say they are devoid of significant value— tions were performed on these Segmentations’ and
training and testing our best system on the corpus with the this stud did t att t tati
590 positive classifications randomly shuffled across all ut In this study we did not attempt resegmentation,

terances yields an F measure of only 4.82. but in the future it may prove valuable to collapse,

8 Conclusions
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for example, successive un-interrupted utterancealexander Gruenstein, John Niekrasz, and Matthew

from the same Speaker into a Sing|e utterance. Purver. 2005. Meeting structure annotation: Data
In conclusion, while overall system perfor- and tools. IrProceedings of the 6th S GDIAL Work-

. shop on Discourse and Dialogue.
mance does not approach levels typical of better-
studied classification tasks such as named-entithdam Janin, Don Baron, Jane Edwards, Dan Ellis,

i i o _ David Gelbart, Nelson Morgan, Barbara Peskin,
recognition, we believe that this is a largely a prod Thilo Pfau, Elizabeth Shriberg, Andreas Stolcke,

uct of the current action item annotation quality. 4,4 chuck Wooters. 2003. The ICSI meeting cor-
We believe that the feature analysis presented here pus. InProceedings of the | CASSP.

is useful, for this task and for other related tasks,

: . . Gang Ji and Jeff Bilmes. 2005. Dialog act tag-
and that, provided with a set of more consistent ging using graphical models. Proceedings of the

action item annotations, the current system can be |cassp.
used as is to achieve better performance. . o
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Empirical Verification of Adjacency Pairs Using Dialogue
Segmentation
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Abstract

A problem in dialogue research is that of
finding and managing expectations.
Adjacency pair theory has widespread
acceptance, but traditional classification
features (in particular, ‘previous-tag’
type features) do mnot exploit this
information optimally. We suggest a
method of dialogue segmentation that
verifies adjacency pairs and allows us to
use dialogue-level information within the
entire segment and not just the previous
utterance. We also use the X’ test for
statistical ~ significance ~ as  ‘noise
reduction’ to refine a list of pairs.
Together, these methods can be used to
extend expectation beyond the traditional
classification features.

1 Introduction

Adjacency pairs have had a long history in
dialogue research. The pairs of question/answer,
inform/backchannel, and others have been well-
known ever since they were proposed by Sacks
and Schegloff in 1973. They have been used by
dialogue researchers to assist in knowing ‘what
comes next’ in dialogue.

Unfortunately, this dialogue information has
been difficult to leverage. Most dialogue act
(DA) classification research uses some kind of
dialogue history, but this usually takes the form
of some kind of ‘previous tag’ feature, perhaps
even ‘two-previous tag’. Dialogue information
from three or more utterances previous is not
normally used because, in the words of one
researcher, “[n]o benefit was found from using
higher-order dialog grammars” (Venkataraman
et al. 2002). This could be due to the sparse data
problem; more permutations means fewer
repetitions.

Part of the problem, then, may lie in the way
the ‘previous tag’ feature is used. Consider the

Shelly Harrison

shelley)@cyllene.uwa.edu.au

Cara MacNish

School of Computer Science and
Software Engineering,

University of Western Australia
cara@csse .uwa.edu.au

following example from the Verbmobil-2 corpus
(Verbmobil 2006)":

A: |how does does November|SUGGEST
fourteenth and fifteenth look

B: |no REJECT

Here, the second pair part occurs directly after
the first pair part that occasioned it. But
sometimes performance factors intervene as in
the following example, where B is engaging in
floor-holding using a dialogue act annotated here
as DELIBERATE:

A: |so that maybe I if I need to if I| SUGGEST
need to order like a limo or
something

B: |<hes> let us see DELIBERATE

B: |the this is the <hes> wrong| DELIBERATE

month
B: |the third DELIBERATE
B: |let us see DELIBERATE

B: |I don't have anything scheduled | INFORM
that morning and we are
leaving at one

The response (INFORM) finally comes, but the
forgetful ‘previous tag’ feature is now looking
for what comes after DELIBERATE.

What is needed is a way to not only
determine what is likely to happen next, but to
retain that expectation over longer distances
when unfulfilled, until that expectation is no
longer needed. Such information would conform
more closely to this description of a
conversational game (but which could be applied
to any communicative subgoal):

'For a full description of the Verbmobil speech
acts, see Alexandersson 1997.
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A conversational game is a sequence of
moves starting with an initiation and
encompassing all moves up until that
initiation’s purpose is either fulfilled or
abandoned. (Carletta 1997, italics mine.)

2 Dialogue segmentation

This work grew out of related research into
finding expectations in dialogue, but we were
also interested in dialogue segmentation.
Dialogues taken as a whole are very different
from each other, so segmentation is necessary to
derive meaningful information about their parts.
The question is, then, how best to segment
dialogues so as to reveal dialogue information or
to facilitate some language task, such as DA
classification?

Various schemes for dialogue segmentation
have been tried, including segmentation based
on fulfilment of expectation (Ludwig et al.
1998), and segmenting by propositionality
(Midgley 2003).

One answer to the question of how to
segment dialogue came from the pioneering
work of Sacks and Schegloff (1973) article.

A basic rule of adjacency pair operation is:
given the recognizable production of a first
pair part, on its first possible completion its
speaker should stop and a next speaker
should start and produce a second pair part
from the same pair type of which the first is
recognizably a member. (p. 296, italics
mine.)

Thus, if a speaker stops speaking, it is likely that
such a handover has just taken place. The last
utterance of a speaker’s turn, then, will be the
point at which the first speaker has issued a first
pair part, and is now expecting a second pair part
from the other speaker. This suggests a natural
boundary.

This approach was also suggested by Wright
(1998), who used a “most recent utterance by
previous speaker” feature in her work on DA
tagging. This feature alone has boosted
classification accuracy by about 2% in our
preliminary research, faring better than the
traditional ‘previous tag’ feature used in much
DA tagging work.

We collected a training corpus of 40
English-speaking dialogues from the
Verbmobil-2 corpus, totalling 5,170 utterances.
We then segmented the dialogues into chunks,
where a chunk included everything from the last

utterance of one speaker’s turn to the last-but-
one utterance of the next speaker.

3 Results of segmentation

This segmentation revealed some interesting
patterns. When ranked by frequency, the most
common chunks bear a striking resemblance to
the adjacency pairs posited by Schegloff and
Sacks.

Here are the 25 most common chunks in our
training corpus, with the number of times they
appeared. The full list can be found at http:/
/www.csse.uwa.edu.au/~fontor/research/chi/
fullseg.txt

SUGGEST : ACCEPT 176
INFORM: FEEDBACK POSITIVE 166
FEEDBACK POSITIVE:FEEDBACK POSITIVE
104
FEEDBACK POSITIVE:INFORM 97
ACCEPT:FEEDBACK POSITIVE 65
FEEDBACK POSITIVE:SUGGEST 60
INFORM: INFORM 57
REQUEST : INFORM 46
INFORM:BACKCHANNEL 41
INFORM: SUGGEST 40
REQUEST COMMENT :FEEDBACK POSITIVE 40
INIT:FEEDBACK POSITIVE 35
BYE :NONE 34
ACCEPT: INFORM 32
BYE:BYE 31
REQUEST : FEEDBACK POSITIVE 30
POLITENESS FORMULA:FEEDBACK POSITIVE
29
REQUEST CLARIFY:FEEDBACK POSITIVE 28
BACKCHANNEL: INFORM 28
NOT CLASSIFIABLE:INFORM 28
REQUEST SUGGEST:SUGGEST 28
NONE : GREET 27
SUGGEST : SUGGEST 27
ACCEPT:SUGGEST 26
SUGGEST :REQUEST CLARIFY 26

The data suggest a wide variety of language
behaviour, including traditional adjacency pairs
(e.g. SUGGEST: ACCEPT), acknowledgement
(INFORM: BACKCHANNEL), formalised
exchanges (POLITENESS FORMULA:
FEEDBACK POSITIVE) offers and counter-
offers (SUGGEST: SUGGEST), and it even
hints at negotiation subdialogues (SUGGEST:
REQUEST CLARIFY).

However, there are some drawbacks to this
list. Some of the items are not good examples of
adjacency pairs because the presence of the first
does not create an expectation for the second
half (e.g. NOT CLASSIFIABLE: INFORM). In
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some cases they appear backwards (ACCEPT:
SUGGEST). Legitimate pairs appear further down
the list than more-common bogus ones. For
example, SUGGEST: REJECT is a well-known
adjacency pair, but it does not appear on the list
until after several less-worthy-seeming pairs.
Keeping the less-intuitive chunks may help us
with classification, but it falls short of providing
empirical verification for pairs.

What we need, then, is some kind of noise
reduction that will strain out spurious pairs and
bring legitimate pairs closer to the top of the list.

We use the well-known X test for statistical
significance.

4 The X test

The X’ test tells how the observed frequency of
an event compares with the expected frequency.
For our purposes, it tells whether the observed
frequency of an event (in this case, one kind of
speech act following a certain other act) can be
attributed to random chance. The test has been
used for such tasks as feature selection (Spitters
2000) and translation pair identification (Church
and Gale 1991).

The X’ value for any two speech acts 4 and B
can be calculated by counting the times that an
utterance marked as tag A (or not) is followed by
an utterance marked as tag B (or not), as in
Table 1.

U =A U #A
U., =B AB —AB
U #B A—B —A—B

Table 1. Obtaining counts for X’.

These counts (as well as N, the total number
of utterances) are plugged into a variant of the X’
equation used for 2x2 tables, as in Schiitze et al.
(1995).

, N(AB - ~A~B - A~B - ~4B)
X'= (4B + A-B)AB + ~AB)A~B + ~A~B)—~AB + ~A-B)

We trained the X* method on the aforementioned
chunks. Rather than restrict our focus to only
adjacent utterances, we allowed a match for pair
A:B if B occurred anywhere within the chunk
started by A. By doing so, we hoped to reduce
any acts that may have been interfering with the
adjacency pairs, especially hesitation noises
(usually classed as DELIBERATE) and
abandoned utterances (NOT CLASSIFIABLE).

5 Results for X*

Here are the 25 pairs with the highest X* scores.
With tail probability p = .0001, a X* value >
10.83 is statistically significant. The full list can
be found at http://www.csse.uwa.edu.au/~fontor/
research/chi/fullchi.txt.

NONE : GREET 1576.87
BYE :NONE 949.89
SUGGEST : ACCEPT 671.81
BYE:BYE 488.60
NONE: POLITENESS FORMULA 300.46
POLITENESS FORMULA:
POLITENESS FORMULA 272.95
GREET:GREET 260.69
REQUEST CLARIFY:CLARIFY 176.63
CLARIFY:CLARIFY 165.76
DEVIATE SCENARIO: DEVIATE SCENARIO
159.45
SUGGEST : FEEDBACK POSITIVE 158.12
COMMIT:COMMIT 154.46
GREET : POLITENESS FORMULA 111.19
INFORM: FEEDBACK POSITIVE 84.82
REQUEST SUGGEST :SUGGEST 83.17
SUGGEST :REJECT 83.11
THANK : THANK 76.25
SUGGEST : EXPLAINED REJECT 69.31
POLITENESS FORMULA:INIT 67.76
NONE: INIT 59.97
FEEDBACK POSITIVE:ACCEPT 59.41
DEFER:ACCEPT 56.07
THANK:BYE 51.82
POLITENESS FORMULA:THANK 50.21
POLITENESS FORMULA:GREET 45.17

Using X* normalises the list; low-frequency acts
like REJECT and EXPLAINED REJECT now
appear as a part of their respective pairs.

These results give empirical justification for
Sacks and Schegloff’s adjacency pairs, and
reveals more not mentioned elsewhere in the
literature, such as DEFER:ACCEPT. As such, it
gives a good idea of what kinds of speech acts
are expected within a chunk.

In addition, these results can be plotted into a
directed acyclic graph (seen in Figure 1). This
graph can be used as a sort of conversational
map.

6 Conclusions and Future Work

We can draw some tentative conclusions from
this work. First of all, the dialogue segmentation
combined with the X* test for significance yields
information about what is likely to happen, not
just for the next utterance, but somewhere in the
next chunk. This will help to overcome the
limitations imposed by the traditional ‘previous
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tag’ feature. We are working to implement this
information into a model where the expectations
inherent in a first pair part are retained when not
immediately fulfilled. The expectations will also
decay with time.

Second, this approach provides empirical
evidence for adjacency pairs mentioned in the
literature on conversation analysis. The noise
reduction feature of the X* test gives more weight
to legitimate adjacency pairs where they appear
in the data.

An intriguing possibility for the chunked
data is that of chunk matching. Nearest-
neighbour algorithms are already used for
classification tasks (including DA tagging for
individual utterances), but once segmented, the
dialogue chunks could be compared against each
other as a classification tool as in a nearest-
neighbour algorithm.
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utterance in the other speaker’s turn. The numbers are X’ scores. For illustrative purposes, higher X’
values are shown by bold lines. The complete graph can be found at http://www.csse.uwa.edu.au/
~fontor/research/chi/fullchart.jpg
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Abstract

In this paper, we explain a rapid devel-
opment method of multimodal dialogue
sys-tem using MIML (Multimodal Inter-
action Markup Language), which defines
dialogue patterns between human and
various types of interactive agents. The
feature of this language is three-layered
description of agent-based interactive
systems which separates task level de-
scription, interaction description and de-
vice dependent realization. MIML has
advantages in high-level interaction de-
scription, modality extensibility and
compatibility with standardized tech-
nologies.

1 Introduction

In recent years, various types of interactive
agents, such as personal robots, life-like agents
(Kawamoto et al. 2004), and animated agents are
developed for many purposes. Such interactive
agents have an ability of speech communication
with human by using automatic speech recog-
nizer and speech synthesizer as a main modality
of communication. The purpose of these interac-
tive agents is to realize a user-friendly interface
for information seeking, remote operation task,
entertainment, etc.

Each agent system is controlled by different
description language. For example, Microsoft
agent is controlled by JavaScript / VBScript em-

bedded in HTML files, Galatea (Kawamoto et al..

2004) is controlled by extended VoiceXML (in
Linux version) and XISL (Katsurada et al. 2003)
(in Windows version). In addition to this differ-
ence, these languages do not have the ability of

higher level task definition because the main
elements of these languages are the control of
modality functions for each agent. These make
rapid development of multimodal system diffi-
cult.

In order to deal with these problems, we pro-
pose a multimodal interaction description lan-
guage, MIML (Multimodal Interaction Markup
Language), which defines dialogue patterns be-
tween human and various types of interactive
agents by abstracting their functions. The feature
of this language is three-layered description of
agent-based interactive systems.

The high-level description is a task definition
that can easily construct typical agent-based in-
teractive task control information. The middle-
level description is an interaction description that
defines agent’s behavior and user’s input at the
granularity of dialogue segment. The low-level
description is a platform dependent description
that can override the pre-defined function in the
interaction description.

The connection between task-level and inter-
action-level is realized by generation of interac-
tion description templates from the task level
description. The connection between interaction-
level and platform-level is realized by a binding
mechanism of XML.

The rest of this paper consists as follows. Sec-
tion 2 describes the specification of the proposed
language. Section 3 explains a process of rapid
multimodal dialogue system development. Sec-
tion 4 gives a comparison with existing multi-
modal languages. Section 5 states conclusions
and future works.
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2  Specification of MIML
2.1 Task level markup language

211

In spoken dialogue system development, we pro-
posed task classification based on the direction
of information flow (Araki et al. 1999). We con-
sider that the same analysis can be applied to
agent based interactive systems (see Table 1).

Task classification

Table 1: Task classification of agent-based inter-
active systems

The appropriate amount of information differs in
the main interaction modality of the target device,
such as small display, normal graphic display or
speech. Therefore, it needs the information of
media capability of the target device.

212

As a result of above investigation, we specify
the task level interaction description language
shown in Figure 1.

| |

Overview of task markup language

Class Direction of Info. flow Typical task
Information ¢ Interactive

assistant user agent presentation
control of home
User agent user  =p agent network equip-

ments

Question user =P agent daily life in-

and Answer g formation query

‘ userModel ‘ ‘deviceModeI‘

(* means the [modet | [input | [ o |
element can mode inpu
:ﬁgsa]t. ?:;ref; @ ‘ query ‘ ‘ search ‘ ‘ result ‘

In the information assistant class, the agent
has information to be presented to the user.
Typically, the information contents are Web
pages, an instruction of consumer product usage,
an educational content, etc. Sometimes the con-
tents are too long to deliver all the information to
the user. Therefore, it needs user model that can
manage user’s preference and past interaction

records in order to select or filter out the contents.

In the user agent class, the user has informa-
tion to be delivered to the agent in order to
achieve a user’s goal. Typically, the information
is a command to control networked home
equipments, travel schedule to reserve a train
ticket, etc. The agent mediates between user and
target application in order to make user’s input
appropriate and easy at the client side process
(e.g. checking a mandatory filed to be filled,
automatic filling with personal data (name, ad-
dress, e-mail, etc.)).

In the Question and Answer class, the user has
an intention to acquire some information from
the agent that can access to the Web or a data-
base. First, the user makes a query in natural lan-
guage, and then the agent makes a response ac-
cording to the result of the information retrieval.
If too much information is retrieved, the agent
makes a narrowing down subdialogue. If there is
no information that matches user’s query, the
agent makes a request to reformulate an initial
query. If the amount of retrieved information is
appropriate to deliver to the user by using current
modality, the agent reports the results to the user.

Figure. 1 Structure of the Task Markup Lan-
guage.

The features of this language are (1) the ability
to model each participant of dialogue (i.e. user
and agent) and (2) to provide an execution
framework of each class of task.

The task markup language <taskml> consists
of two parts corresponding to above mentioned
features: <head> part and <body> part. The
<head> part specifies models of the user (by
<userModel> element) and the agent (by <de-
viceModel> element). The content of each model
is described in section 2.1.3. The <body> part
specifies a class of interaction task. The content
of each task is declaratively specified under the
<section>, <xforms> and <ga> elements, which
are explained in section 2.1.4.

2.13

In the <head> element of the task markup lan-
guage, the developer can specify user model in
<userModel> element and agent model in <de-
viceModel> element.

In the <userModel> element, the developer
declares variables which represent user’s infor-
mation, such as expertise to domain, expertise to
dialogue system, interest level to the contents,
etc.

In the <deviceModel> element, the developer
can specify the type of interactive agent and
main modality of interaction. This information is

Head part of task markup language
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used for generating template from this task de-
scription to interaction descriptions.

2.1.4 Body part of task markup language

According to the class of the task, the <body>
element consists of a sequence of <section> ele-
ments, a <xforms> element or a <qa> element.
The <section> element represents a piece of
information in the task of the information assis-
tant class. The attributes of this element are id,
start time and end time of the presentation mate-
rial and declared user model variable which indi-
cates whether this section meets the user’s needs
or knowledge level. The child elements of the
<section> element specify multimodal presenta-
tion. These elements are the same set of the child
elements of <output> element in the interaction

level description explained in the next subsection.

Also, there is a <interaction> element as a child
element of the <section> element which specifies
agent interaction pattern description as an exter-
nal pointer. It is used for additional comment
generated by the agent to the presented contents.
For the sake of this separation of contents and
additional comments, the developer can easily
add agent’s behavior in accordance with the user
model. The interaction flow of this class is
shown in Figure 2.

matches
ser model?

Multimedia
contents

question and
answer
subdialog

interaction

end of
sections?

yes

no

Figure. 2 Interaction flow of Information Assist
class

The <xforms> element represents a group of
information in the task of the user agent class. It
specifies a data model, constraint of the value
and submission action following the notation of
XForms 1.0.

In the task of user agent class, the role of in-
teractive agent is to collect information from the
user in order to achieve a specific task, such as
hotel reservation. XForms is designed to separate

the data structure of information and the appear-
ance at the user’s client, such as using text field
input, radio button, pull-down menu, etc. because
such interface appearances are different in de-
vices even in GUI-based systems. If the devel-
oper wants to use multimodal input for the user’s
client, such separation of the data structure and
the appearance, i.e. how to show the necessary
information and how to get user’s input, is very
important.

In MIML, such device dependent ‘appearance’
information is defined in interaction level. There-
fore, in this user agent class, the task description
is only to define data structure because interac-
tion flows of this task can be limited to the typi-
cal patterns. For example, in hotel reservation, as
a result of AP (application) access, if there is no
available room at the requested date, the user’s
reservation request is rejected. If the system rec-
ommends an alternative choice to the user, the
interaction branches to subdialogue of recom-
mendation, after the first user’s request is proc-
essed (see Figure 3). The interaction pattern of
each subdialogue is described in the interaction
level markup language.

slot filling

all required
slots are filled?

yes

application fe---- AP access

confirmation recommendation

dialogue

rejection
dialogue

dialogue
?ye
(Lena ) -

Figure. 3 Interaction flow of User Agent class

The <ga> element consists of three children:
<query>, <search> and <result>.

The content of <query> element is the same as
the <xforms> element explained above. However,
generated interaction patterns are different in
user agent class and question and answer class.
In user agent class, all the values (except for op-
tional slots indicated explicitly) are expected to
be filled. On the contrary, in question and answer
class, a subset of slots defined by form descrip-
tion can make a query. Therefore, the first ex-
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change of the question and answer class task is
system’s prompt and user’s query input.

The <search> element represents application
command using the variable defined in the
<query> element. Such application command
can be a database access command or SPARQL
(Simple Protocol And RDF Query Language)® in
case of Semantic Web search.

The <result> element specifies which informa-
tion to be delivered to the user from the query
result. The behavior of back-end application of
this class is not as simple as user agent class. If
too many results are searched, the system transits
to narrowing down subdialogue. If no result is
searched, the system transits to subdialogue that
relaxes initial user’s query. If appropriate num-
ber (it depends on presentation media) of results

are searched, the presentation subdialogue begins.

The flow of interaction is shown in Figure 4.

initial query
input
I

)

(DB(>‘----. search
0 $ too many

appropriate

narrowing
down
subdialog

I

Figure. 4 Interaction flow of Question and An-
swer class

relaxation
dialogue

report
dialogue

end

2.2 Interaction level markup language

2.2.1 Overview of interaction markup lan-

guage

Previously, we proposed a multimodal interac-
tion markup language (Araki et al. 2004) as an
extension of VoiceXML?. In this paper, we mod-
ify the previous proposal for specializing human-
agent interaction and for realizing interaction

pattern defined in the task level markup language.

The main extension is a definition of modality
independent elements for input and output. In
VoiceXML, system’s audio prompt is defined in
<prompt> element as a child of <field> element

! http://www.w3.0rg/TR/rdf-spargl-query/
2 http://www.w3.org/TR/voicexml20/

that defines atomic interaction acquiring the
value of the variable. User’s speech input pattern
is defined by <grammar> element under <field>
element. In our MIML, <grammar> element is
replaced by the <input> element which specifies
active input modalities and their input pattern to
be bund to the variable that is indicated as name
attribute of the <field> element. Also, <prompt>
element is replaced by the <output> element
which specifies active output modalities and a
source media file or contents to be presented to
the user. In <output> element, the developer can
specify agent’s behavior by using <agent> ele-
ment. The outline of this interaction level
markup language is shown in Figure 5.

form

* *
| initial | | block | | field | [ filed |

‘output‘ ‘ filled ‘

‘ input ‘

! speech audio
| image | video
| touch | page
: agent

Figure. 5 Structure of Interaction level Markup
Language

2.2.2

The <input> element and the <output> element
are designed for implementing various types of
interactive agent systems.

The <input> element specifies the input proc-
essing of each modality. For speech input,
grammar attribute of <speech> element specifies
user’s input pattern by SRGS (Speech Recogni-
tion Grammar Specification)®, or alternatively,
type attribute specifies built-in grammar such as
Boolean, date, digit, etc. For image input, type
attribute of <image> element specifies built-in
behavior for camera input, such as nod, faceRec-
ognition, etc. For touch input, the value of the
variable is given by referring external definition
of the relation between displayed object and its
value.

The <output> element specifies the output
control of each modality. Each child element of

Input and output control in agent

8 http://www.w3.org/TR/speech-grammar/
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this element is performed in parallel. If the de-
veloper wants to make sequential output, it
should be written in <smil> element (Synchro-
nized Multimedia Integration Language)®, For
audio output, <audio> element works as the
same way as VoiceXML, that is, the content of
the element is passed to TTS (Text-to-Speech
module) and if the audio file is specified by the
src attribute, it is a prior output. In <video>,
<page> (e.g. HTML) and <smil> (for rich mul-
timedia presentation) output, each element speci-
fies the contents file by src attribute. In <agent>
element, the agent’s behavior definition, such as
move, emotion, status attribute specifies the pa-
rameter for each action.

2.3  Platform level description

The differences of agent and other devices for
input/output are absorbed in this level. In interac-
tion level markup language, <agent> element
specifies agent’s behavior. However, some agent
can move in a real world (e.g. personal robot),
some agent can move on a computer screen (e.g.
Microsoft Agent), and some cannot move but
display their face (e.g. life-like agent).

One solution for dealing with such variety of
behavior is to define many attributes at <agent>
element, for example, move, facial expression,
gesture, point, etc. However, the defects of this
solution are inflexibility of correspondence to
progress of agent technology (if an agent adds
new ability to its behavior, the specification of
language should be changed) and interference of
reusability of interaction description (description
for one agent cannot apply to another agent).

Our solution is to use the binding mechanism
in XML language between interaction level and
platform dependent level. We assume default
behavior for each value of the move, emotion
and status attributes of the <agent> element. If
such default behavior is not enough for some
purpose, the developer can override the agent’s
behavior using binding mechanism and the
agent’s native control language. As a result, the
platform level description is embedded in bind-
ing language described in next section.

3 Rapid system development

3.1 Usage of application framework

Each task class has a typical execution steps as
investigated in previous section. Therefore a sys-
tem developer has to specify a data model and

4 http://www.w3.0rg/AudioVideo/

specific information for each task execution.
Web application framework can drive interactive
task using these declarative parameters.

As an application framework, we use Struts®
which is based on Model-View-Controller (MVC)
model. It clearly separates application logic
(model part), transition of interaction (controller
part) and user interface (view part). Although
MVC model is popular in GUI-based Web appli-
cation, it can be applied in speech-based applica-
tion because any modality dependent information
can be excluded from the view part. Struts pro-
vides (1) a controller mechanism and (2) integra-
tion mechanism with the back-end application
part and the user interface part. In driving Struts,
a developer has to (1) define a data class which
stores the user’s input and responding results, (2)
make action mapping rules which defines a tran-
sition pattern of the target interactive system, and
(3) make the view part which defines human-
computer interaction patterns. The process of
Struts begins by the request from the user client
(typically in HTML, form data is submitted to
the Web server via HTTP post method).

The controller catches the request and stores
the submitted data to the data class, and then
calls the action class specified by the request fol-
lowing the definition of action mapping rules.

The action class communicates with the back-
end application, such as database management
system or outside Web servers by referring the
data class, and returns the status of the process-
ing to the controller. According to the status, the
controller refers the action mapping rules and
selects the view file which is passed to the user’s
client. Basically, this view file is written in Java
Server Pages, which can be any XML file that
includes Java code or useful tag libraries. Using
this embedded programming method, the results
of the application processing is reflected to the
response. The flow of processing in the Struts is
shown in Figure 6.

Action data
mapping A class
7y X
lookup | ! :
request ‘ / call —
_user > ‘ » application
interface |« controller [e logic
results status 9
view controller model

Figure. 6 MVC model.

5 http:// struts.apache.org
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The first step of rapid development is to pre-
pare backend application (Typically using Data-
base Management System) and their application
logic code. The action mapping file and data
class file are created automatically from the task
level description described next subsection.

3.2 Task definition

Figure 7 shows an example description of the
information assistant task. In this task setting,
video contents which are divided into sections
are presented to the user one by one. At the end
of a section, a robot agent put in a word in order
to help user’s understanding and to measure the
user’s preference (e.g. by the recognition of ac-
knowledging, nodding, etc.) . If low user’s pref-
erence is observed, unimportant parts of the
presentation are skipped and comments of the
robot are adjusted to beginner’s level. The im-
portance of the section is indicated by interes-
tLevel attribute and knowledgeLevel attribute
that are introduced in the <userModel> element.
If one of the values of these attribute is below the
current value of the user model, the relevant sec-
tion is skipped. The skipping mechanism using
user model variables is automatically inserted
into an interaction level description.

<taskml type="infoAssist">
<head>
<userModel>
<interestLevel/>
<knowledgeLevel/>
</userModel>
<deviceModel
mainMode="speech" agentType="robot"/>
</head>
<body>
<section id="001"
s_time="00:00:00" e_time="00:00:50"
intersetLevel="1" knowledgeLevel="1">
<video src="vtrl.avi" />
<interaction name="interestl.mmi"
s_time="00:00:30"/>
</section>

</body>
</taskml>

Figure. 7 An Example of Task Markup Lan-
guage.

3.3 Describing Interaction

The connection between task-level and interac-
tion-level is realized by generation of interaction
description templates from the task level descrip-
tion. The interaction level description corre-
sponds to the view part of the MVC model on
which task level description is based. From this
point of view, task level language specification
gives higher level parameters over MVC frame-
work which restricts behavior of the model for
typical interactive application patterns. Therefore,
from this pattern information, the skeletons of
the view part of each typical pattern can be gen-
erated based on the device model information in
task markup language.

For example, by the task level description
shown in Figure 7, data class is generated from
<userModel> element by mapping the field of
the class to user model variable, and action map-
ping rule set is generated using the sequence in-
formation of <section> elements. The branch is
realized by calling application logic which com-
pares the attribute variables of the <section> and
user model data class. Following action mapping
rule, the interaction level description is generated
for each <section> element. In information assis-
tant class, a <section> element corresponds to
two interaction level descriptions: the one is pre-
senting contents which transform <video> ele-
ment to the <output> elements and the other is
interacting with user, such as shown in Figure 8.

The latter file is merely a skeleton. Therefore,
the developer has to fill the system’s prompt,
specify user’s input and add corresponding ac-
tions.

Figure 8 describes an interaction as follows: at
the end of some segment, the agent asks the user
whether the contents are interesting or not. The
user can reply by speech or by nodding gesture.
If the user’s response is affirmative, the global
variable of interest level in user model is incre-
mented.
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<mmvxml>
<form>
<field name="question”>
<input>
<speech type="boolean”/>
<image type="nod”/>
<[input>
<output>
<audio> Is it interesting? </audio>
</output>
<filled>
<if cond="question==true”>
<assign name="intersestLevel”
expr="intersestLevel+1"/>
</if>
<submit src="http://localhost:8080/step2/>
</[filled>
<[field>
</form>
</mmvxml>

Figure. 8 An Example of Interaction level
Markup Language.

3.4 Adaptation to multiple interaction de-
vices

The connection between interaction-level and
platform-level is realized by binding mechanism
of XML. XBL (XML Binding Language)® was
originally defined for smart user interface de-
scription, extended for SVG afterwards, and fur-
thermore, for general XML language. The con-
cept of binding in XBL is a tree extension by
inheriting the value of attributes to the sub tree
(see Figure 9). As a result of this mechanism, the
base language, in this the case interaction
markup language, can keep its simplicity but
does not loose flexibility.

<audio>
Hello
</audio>
<message>
<head>

<to>TTS-module</to>

<from>DM</from>
<head> le;
<body>
Set Text “hello” e);
</body>
</message>

£.__ichild Place

Figure. 9 Concept of XML binding.

By using this mechanism, we implemented
various types of weather information system,

6 http://www.w3.0rg/TR/xbl/

such as Microsoft agent (Figure 10), Galatea
(Figure 11) and a personal robot. The platform
change is made only by modifying agentType
attribute of <deviceModel> element of taskML.

B = =

] smmo<BOERGA
TY. HEOERLTN
OTTHT

Figure. 10 Interaction with Microsoft agent.

Figure. 11 Interaction with Galatea.

4  Comparison with existing multimodal
language

There are several multimodal interaction systems,
mainly in research level (Lopez-Cozar and Araki
2005). XHTML+Voice” and SALT?® are most
popular multimodal interaction description lan-
guages. These two languages concentrate on how
to add speech interaction on graphical Web
pages by adding spoken dialogue description to
(X)HTML codes. These are not suitable for a
description of virtual agent interactions.
(Fernando D’Haro et al. 2005) proposes new
multimodal languages for several layers. Their
proposal is mainly on development environment
which supports development steps but for lan-
guage itself. In contrary to that, our proposal is a

" http://www-306.ibm.com/software/pervasive/
multimodal/x%2Bv/11/spec.htm
8 http:/www.saltforum.org/
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simplified language and framework that auto-
mate several steps for system development.

5 Conclusion and future works

In this paper, we explained a rapid development
method of multimodal dialogue system using
MIML. This language can be extended for more
complex task settings, such as multi-scenario
presentation and multiple-task agents. Although
it is difficult to realize multi-scenario presenta-
tion by the proposed filtering method, it can be
treated by extending filtering concept to discrete
variable and enriching the data type of <user-
Model> variables. For example, if the value of
<knowledgeLevel> variable in Figure 7 can take
one of “expert”, “moderate” and “novice”, and
each scenario in multi-scenario presentation is
marked with these values, multi-scenario presen-
tation can be realized by filtering with discrete
variables. In case of multiple-task agents, we can
implement such agents by adding one additional
interaction description which guides to branch
various tasks.
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Abstract

In this paperwe considerthe problemof
identifying and classifying discourseco-
herencerelations. We report initial re-
sultsover the recentlyreleasediscourse
GraphBankKWolf andGibson,2005). Our
approachconsiders,and determinesthe
contrikutionsof, avariety of syntacticand
lexico-semantideatures We achieve 81%
accurag on the taskof discourseelation
type classificationand 70% accurag on
relationidentification.

1 Intr oduction

Theareaof modelingdiscourséhasarguablyseen
less succesghan other areasin NLP. Contritut-
ing to this is the fact that no consensusasbeen
reachedon the inventory of discourserelations
nor on the typesof formal restrictionsplacedon
discoursestructure. Furthermore modeling dis-
coursestructurerequiresaccessto considerable
prior linguistic analysisincluding syntax, lexical
and compositionalsemanticsas well asthe res-
olution of entity and event-level anaphoraall of
which arenon-trivial problemsthemseles.

Discourseprocessinghas beenusedin mary
text processingapplications, most notably text
summarizatiorand compressiontext generation,
and dialogueunderstanding.However, it is also
importantfor generaltext understandinginclud-
ing applicationssuch as information extraction
andquestiomanswering.

Recently Wolf and Gibson (2005) have pro-
poseda graph-base@pproacho representingn-
formational discourserelationst They demon-
stratethat tree representationare inadequatdor

Therelationsthey defineroughlyfollow Hobbs(1985).

modelingcoherenceelations andshav thatmary

discoursesggmentshave multiple parentgincom-

ing directedrelations)and mary of the relations
introducecrossingdependencies both of which

precludetreerepresentationsT heir annotationof

135 articleshasbeenreleasedasthe GraphBank
corpus.

In this paper we provide initial resultsfor the
following tasks: (1) automaticallyclassifyingthe
typeof discoursecoherenceelation;and(2) iden-
tifying whetherary discourserelation exists on
two text seggments. The experimentswe report
are basedon the annotatediatain the Discourse
GraphBankwherewe assumehat the discourse
unitshave alreadybeenidentified.

In contrasto ahighly structuredcompositional
approacho discourseparsing,we explore a sim-
ple, flat, feature-basedethodology Suchan ap-
proachhasthe adwantageof easilyaccommodat-
ing mary knowledge sources. This type of de-
tailed featureanalysiscansene to inform or aug-
ment more structured,compositionalapproaches
to discoursesuch as those basedon Segmented
DiscourseRepresentatioifheory (SDRT) (Asher
andLascarides2003)or the approacttaken with
the D-LTAG system(Forbesetal., 2001).

Using a comprehense set of linguistic fea-
turesasinput to a Maximum Entropy classifier
we achieve 81% accurag on classifyingthe cor
recttype of discoursecoherenceelationbetween
two segments.

2 PreviousWork

In the pastfew years,the tasksof discoursesey-
mentationand parsing have beentackled from
differentperspecties andwithin differentframe-
works. Within RhetoricalStructureTheory(RST),
Soricut and Marcu (2003) have developed two
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probabilistic modelsfor identifying clausal ele-

mentarydiscourseunits andgeneratingdiscourse
treesat the sentencdevel. Theseare built using
lexical and syntacticinformation obtainedfrom

mappingthe discourse-annotalesentences the

RST Corpus(Carlsonet al., 2003)to their corre-
spondingsyntactictreesin the PennTreebank.

Within SDRIT, Baldridge and Lascarides
(2005b) also take a data-drven approachto
the tasks of seggmentationand identification of
discourserelations. They createa probabilistic
discourseparsembasedndialoguedfrom theRed-
woodsTreebankannotatedvith SDRT rhetorical
relations(BaldridgeandLascarides2005a). The
parseris groundedon headedreerepresentations
and dialogue-basedeatures,such as turn-taking
anddomainspecificgoals.

In thePennDiscourselreeBankPDTB) (Web-
ber et al., 2005), the identification of discourse
structureis approachedndependenthof ary lin-
guistic theory by using discourse connecties
rather than abstractrhetorical relations. PDTB
assumesthat connectres are binary discourse-
level predicatesorveying a semantiaelationship
betweentwo abstractobject-denotingarguments.
The set of semanticrelationshipscan be estab-
lished at different levels of granularity depend-
ing on the application. Miltsakaki, et al. (2005)
proposea first stepat disambiguatinghe senseof
a small subsetof connecties (since while, and
when at the paragrapHevel. They aim at distin-
guishing betweenthe temporal,causal,and con-
trastive useof theconnectie, by meansof syntac-
tic featurederived from the PennTreebankanda
MaxEntmodel.

3 GraphBank

3.1 CoherenceRelations

For annotatinghediscourseaelationsin text, Wolf
and Gibson (2005) assumea clause-unit-based
definition of a discoursesggment. They define
four broadclasse®f coherenceelations:

(1) 1. Resemblance: similarity (par), con-
trast (contr), example (examp), generaliza-
tion (gen),elaborationelab);

2. Cause-dect: explanation(ce), violated
expectation(expv), condition(cond);

3. Temporal(temp): essentiallynarration;

4. Attribution (attr): reportingandevidential
contets.

Thetextual evidencecontrikuting to identifying
thevariousresemblanceelationss heterogeneous
atbestwhere for example, similarity andcontrast
areassociatewith specificsyntacticconstructions
anddevices.For eachrelationtype,therearewell-
known lexical andphrasalkues:

(2) a.similarity: and;
b. contrast by contrastput;
c. example for example;
d. elabomtion: also, furthermore,in addi-
tion, notethat;
e. geneglization in general.

However, just as often, the relation is encoded
throughlexical coherenceyia semanticassocia-
tion, sub/supertypingandaccommodatiorstrate-
gies(AsherandLascarides2003).

The cause-dect relationsinclude corventional
causationand explanationrelations(capturedas
thelabelce), suchas(3) below:

(3) cause: SEG1: crash-landedn New Hope,
Ga.,
effect: SEG2:andinjuring 23 others.

It alsoincludesconditionalsandviolatedexpecta-
tions suchas(4).

(4) cause:SEGL1:anEasternAirlines Lockheed
L-1011enroutefrom Miami to theBahamas
lost all threeof its engines,
effect: SEG2:andlandsafelybackin Miami.

The two last coherenceaelationsannotatedn
GraphBankare tempoal (temp) and attribution
(attr) relations.Thefirst correspondgenerallyto
the occasion(Hobbs, 1985) or narration (Asher
andLascarides2003)relation, while the latteris
ageneraknnotatiorover attribution of source?

3.2 Discussion

The difficulty of annotatingcoherencerelations
consistentlyhasbeenpreviously discussedn the
literature. In GraphBankasin ary corpus,there
are inconsistencieghat must be accommodated
for learningpurposes.As perhapsexpected,an-
notationof attribution andtemporakequenceela-
tionswasconsistenif notentirelycomplete.The
mostseriousconcernwe hadfrom working with

2Thereis onenon-rhetoricatelation,same which identi-
fiesdiscontiguousegments.

118



the corpusderives from the conflationof diverse
and semanticallycontradictory relations among
the cause-déct annotations. For canonicalcau-
sation pairs (and their violations) such as those
above, (3) and(4), the annotatiorwasexpectedly
consistenandsemanticallyappropriate Problems
arise, however when examining the treatmentof

purposeclausesandrationaleclauses. Theseare
annotatedaccordingto the guidelines,as cause-
effect pairings.Considen(5) below.

(5) cause: SEGL1.: to upgradelab equipmentin
1987.
effect: SEG2:Theuniversity spent$ 30,000

Thisis bothcounterintuitive andtemporallyfalse.
Therationaleclauses annotatedisthecauseand
the matrix sentenceasthe effect. Thingsareeven
worsewith purposeclauseannotation. Consider
thefollowing examplediscourse®

(6) Johnpushedthe door to openit, but it was
locked.

This would have the following annotationin
GraphBank:

(7) cause:to openit
effect: Johnpushedhedoor

The guidelinereflectsthe appropriatentuition
that the intention expressedn the purposeor ra-
tionaleclausemustprecedgheimplementatiorof
the action carriedout in the matrix sentence.In
effect, this would be somethindike

(8) [INTENTION TO SEG1]CAUSESSEG2

The problem hereis that the cause-déct re-
lation conflatesreal event-causationwith telos
directedexplanations that is, action directedto-
wardsa goal by virtue of anintention. Giventhat
theseare semanticallydisjoint relations, which
arefurthermoretriggeredby distinctgrammatical
constructionsye believe this conflationshouldbe
undoneand characterizeds two separatecoher
encerelations.If therelationsjust discussedvere
annotatedistelic-causationthe featuresencoded
for subsequentraining of a machinelearningal-
gorithmcouldbenefitfrom distinctsyntacticervi-
ronments. We would like to automaticallygen-
eratetemporalorderingsfrom cause-déct rela-
tionsfrom theeventsdirectly annotatedn thetext.

3This specificexamplewas broughtto our attentionby
Alex Lascaridegp.c).

Splitting theseclassesvould presere the sound-
nessof such a procedure,while keepingthem
lumpedgeneratemconsistencies.

4 Data Preparation and Knowledge
Sources

In this sectionwe describethe variouslinguistic
processingomponentsisedfor classificatiorand
identificationof GraphBanldiscourseelations.

4.1 Pre-Processing

We performed tokenization, sentencetagging,
part-of-speechtagging, and shallav syntactic
parsing(chunking)overthe 135GraphBankdocu-
ments.Part-of-speechaggingandshallov parsing
werecarriedout usingthe Carafeimplementation
of ConditionalRandomFieldsfor NLP (Wellner
andVilain, 2006)trainedon variousstandardor
pora. In addition, full sentenceparseswere ob-
tained using the RASP parser(Briscoeand Car
roll, 2002). Grammaticalrelationsderived from
a singletop-ranked tree for eachsentencghead-
word, modifier, and relation type) were usedfor
featureconstruction.

4.2 Modal Parsing and Temporal Ordering
of Events

We performedboth modal parsing and tempo-
ral parsingover events Identification of events
was performedusing EVITA (Saur et al., 2006),
anopen-domaireventtaggerdevelopedunderthe
TARSQI researchframewvork (Verhagenet al.,
2005). EVITA locatesandtagsall event-referring
expressiondgn the input text that can be tempo-
rally ordered.In addition,it identifiesthosegram-
maticalfeaturesmplicatedin temporalandmodal
information of events; namely tense,aspectpo-
larity, modality aswell asthe eventclass. Event
annotationfollows version1.2.1 of the TimeML
specifications.

Modal parsingin the form of identifying sub-
ordinatingverb relationsand their type was per
formed using SIlinkET (Saur et al., 2006), an-
othercomponentf the TARSQI frameawvork. Slin-
KET identifies subordinationconstructionsntro-
ducing modality informationin text; essentially
infinitival and thatclausesembeddedby factive
predicategregref), reportingpredicategsay), and
predicategeferringto eventsof attempting(try),
volition (wanf, command(order), amongothers.

4Seehttp://wwwtimeml.og.
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SIinkET annotatesthese subordinationcontets
and classifiesthemaccordingto the modality in-
formationintroducedby the relationbetweenthe
embeddingand embeddedoredicateswhich can
beof ary of thefollowing types:

o factive: Theembeddedventis presupposed
or entailedas true (e.g., John manajed to
leavethe party).

e counter-factive: Theembeddeaventis pre-
supposedsentailedasfalse(e.g.,Johnwas
unableto leavethe party).

e evidential: The subordinationis introduced
by areportingor perceptiorevent(e.g.,Mary
saw/toldthat Johnleft the party).

e negative evidential: The subordinationis a
reporting event corveying negative polarity
(e.g.,Mary deniedthat Johnleft the party).

e modal: The subordinatiorcreatesan inten-
sionalcontext (e.g.,Johnwantedto leavethe

party).

Temporalorderingsbetweeneventswereiden-
tified usinga Maximum Entropy classifiertrained
on the TimeBank1.2 and Opinion 1.0acorpora.
These corpora provide annotatedevents along
with temporallinks betweenevents. The link
typesincluded: befoe (e; occursbeforees) , in-
cludes(e; occurssometimeaduringe; ), simultane-
ous(e; occursoverthesameantenal ases), begins
(e1 beginsatthesameime ases), ends(e; endsat
thesametime ase,).

4.3 Lexical SemanticTyping and Coherence

Lexical semantictypesas well as a measureof
lexical similarity or coherencebetweenwordsin
two discoursesggmentswould appearto be use-
ful for assigningan appropriatediscourserela-
tionship. Resemblanceelations,in particular re-
quire similar entitiesto be involved and lexical
similarity heresenesasanapproximatiorto defi-
nite nominalcoreferenceldentificationof lexical
relationshipsbetweenwords acrosssggmentsap-
pearsespeciallyuseful for cause-déct relations.
In example (3) abore, determininga (potential)
cause-déect relationshipbetweercrashandinjury
is necessaryo identify the discourseelation.

4.3.1 Corpus-basedLexical Similarity

Lexical similarity was computed using the
Word Sketch Engine (WSE) (Killgarrif et al.,
2004) similarity metric applied over British Na-
tional Corpus. The WSE similarity metricimple-
mentstheword similarity measurdasedn gram-
maticalrelationsasdefinedn (Lin, 1998)with mi-
nor modifications.

4.3.2 The Brandeis SemanticOntology

As a secondsourceof lexical coherencewe
used the Brandeis SemanticOntology or BSO
(Pustejosky etal.,2006). TheBSOis alexically-
basedontology in the Generatie Lexicon tradi-
tion (Pustejesky, 2001;Pustejosky, 1995).It fo-
cuseson contetualizing the meaningsof words
anddoesthis by arich systemof typesandqualia
structuresFor example,if onewereto look upthe
phraseRED WINE in the BSO, onewould find its
type is WINE andits type’s type is ALCOHOLIC
BEVERAGE. TheBSO containsontologicalqualia
information (shavn belaw). Usingthe BSO, one

wine

CONSTITUTIVE = Alcohol

HASELEMENT = Alcohol

MADE OF = Grapes

INDIRECT TELIC = drink activity

INDIRECT AGENTIVE = make alcoholic beverage

is ableto find out wherein the ontologicaltype
systemWINE is located,what RED WINE’S lexi-
cal neighborsare,andits full setof partof speech
and grammaticalattributes. Otherwords have a
differentconfigurationof annotatedattributesde-
pendingon thetypeof theword.

We usedthe BSOtyping informationto seman-
tically tag individual wordsin orderto compute
lexical pathsbetweenword pairs. Suchlexical as-
sociationsare invoked when constructingcause-
effect relationsand otherimplicatures(e.g. be-
tweencrashandinjure in Example3).

Thetypesystempathsprovide a measuref the
connectednessetweenwords. For every pair of
headwordsin a GraphBankdocumentthe short-
est path betweenthe two words within the BSO
is computed.Currently this metric only usesthe
typesystenrelations(i.e., inheritanceut prelim-
inary testsshav thatincluding qualiarelationsas
connectiongs promising. We also computedthe
earliesttcommonancestoof thetwo words. These
metricsare calculatedfor every possiblesenseof
theword within the BSO.
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Theuseof the BSOis adwantageousompared
to other framewvorks suchas Wordnetbecauset
focusentheconnectiorbetweerwordsandtheir
semanticrelationshipto otheritems. Thesecon-
nectionsarecapturedn thequaliainformationand
thetype system.In Wordnet,qualia-like informa-
tion is only presentin the glosses,and they do
not provide a definite semantigpathbetweenary
two lexical items. Although synorymousin some
ways,synsetmemberften behae differentlyin
mary situationsgrammaticabr otherwise.

5 ClassificationMethodology

This section describesin detail how we con-
structed features from the various knowledge
sourcesdescribedabore and how they were en-
codedin a Maximum Entropy model.

5.1 Maximum Entropy Classification

For our experimentsof classifyingrelationtypes,
we useda Maximum Entropy classifie? in order
to assignlabelsto eachpair of discoursesggments
connectedby somerelation.For eachinstancdi.e.

pair of sggments)the classifiermalesits decision
basedon a setof featues Eachfeaturecanquery
somearbitrarypropertyof thetwo segments pos-
sibly taking into accountexternalinformation or

knowledgesources.For example,a featurecould
query whetherthe two sggmentsare adjacentto

eachother whetherone segmentcontainsa dis-

courseconnectie, whetherthey both sharea par

ticular word, whethera particular syntacticcon-
structionor lexical associations presentgetc. We

make strong use of this ability to include very
mary, highly interdependenteature in our ex-

periments. Besidesbinary-\alued features,fea-
turevaluescanbereal-valuedandthuscapturetre-

gquenciessimilarity values,or otherscalarquanti-
ties.

5.2 Feature Classes

We groupedthe featurestogetherinto various
featue classesbasedroughly on the knowvledge
sourcefrom which they were derived. Table 1
describeghe variousfeatureclassesn detail and
provides someactualexamplefeaturesfrom each
classfor the sgmentpair describedn Exampleb
in Section3.2.

SWe usethe Maximum Entropy classifierincludedwith
Carafeavailableat http://sourcefage.net/projects/carafe

5The total maximumnumberof featuresoccurringin our
experimentds roughly 120,000.

6 Experimentsand Results

In this sectionwe provide the resultsof a set of

experimentfocusedon thetaskof discourseela-

tion classification We alsoreportinitial resultson

relationidentificationwith thesamesetof features
asusedfor classification.

6.1 DiscourseRelation Classification

The task of discourserelation classificationin-
volvesassigningthe correctlabel to a pair of dis-
coursesggments’ The pair of segmentsto assign
arelationto is provided (from theannotatediata).
In addition,we assumefor asymmetridinks, that
the nucleusandsatelliteareprovided (i.e., the di-
rectionof therelation). For the elaboation rela-
tions, we ignoredthe annotatedsubtypeqperson,
time, location,etc.). Experimentsverecarriedout
onthefull setof relationtypesaswell asthe sim-
pler setof coarse-grainedelation categyoriesde-
scribedin Section3.1.

The GraphBankcontainsa total of 8755 an-
notatedcoherencerelations. & For all the ex-
perimentsin this paper we used 8-fold cross-
validation with 12.5% of the datausedfor test-
ing and the remainderusedfor training for each
fold. Accuray numbersreportedarethe average
accuraciesver the 8 folds. Variancewasgener
ally low with a standardieviation typically in the
rangeof 1.5to 2.0. We note herealso that the
interannotatolagreementetweerthetwo Graph-
Bank annotatorswas 94.6% for relationswhen
they agreed on the presenceof a relation The
majority classbaselind(i.e., theaccurag achieed
by calling all relationselabomtion) is 45.7%(and
66.57%with the collapsedcateyories). Theseare
the upperand lower boundsagainstwhich these
resultsshouldbebased.

To ascertainthe utility of eachof the various
featureclasseswe considereceachfeatureclass
independenthyby usingonly featuresfrom a sin-
gle classin additionto the Proximity featureclass
which sene asa baseline. Table 2 illustratesthe
resultof this experiment.

We performed a secondset of experiments
shawvn in Table 3 thatis essentiallythe corverse
of the previous batch.We take the unionof all the

"Eachsegmentmayin factconsistof a sequencef sey-
ments. We will, however, usethe term sggmentlooselyto
referto sggmentsor sgmentsequences.

8All documentsare doublyannotatedywe usedthe anno-
tatorl annotations.
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Feature Description Example

Class

[} Words appearingat beginning and end of the two discoursesey- firstl-is+o; first2-is-The
ments- theseareoftenimportantdiscoursecuewords.

P Proximity and direction betweenthe two sggments(in termsof adjacent; dist-less-than-3; dist-less-
sgments)- binary featuressuchasdistancelessthan 3, distance than-5;direction-reerse;samesentence
greaterthan 10 wereusedin additionto the distancevalueitself;
the distancefrom beginning of the documentusing a similar bin-
ning approach

BSO Pathsin theBSOupto length10betweemon-functionwordsin the ResearchLab— EducationalActrity
two segments. — University

WSE WSE word-pair similarities betweenwords in the two sggments WSE-greatethan-0.05; WSE-
werebinnedas (> 0.05, > 0.1, > 0.2). We alsocomputedsen- sentence-sins 0.005417
tencesimilarity asthe sumof the word similarities divided by the
sumof their sentencéengths.

E Eventheadwordsandeventheadword pairsbetweersggmentsas eventl-isupgrade event2-isspent
identifiedby EVITA. event-pairupgradespent

SIinkET  Eventattributes,subordinatindinks andtheir typesbetweenevent segl-class-issccurience seg2-class-
pairsin thetwo segments is-occurrence seyl-tense-isnfinitive;

sey2-tense-ipast seg2-modatsegl

C-E Cuevordsof onesegmentpairedwith eventsin the other firstl-isto-event2-isspent  first2-is-

Theeventl-isupgrade

Syntax ~ Grammaticadependencrelationsbetweenwo segmentsasiden- gr-ncmod gr-ncmodheadlequipment
tified by the RASP parser We alsoconjoinedtherelationwith one  gr-ncmodhead-2spent etc.
or both of the headverdsassociateavith the grammaticalelation.

Tlink Temporallinks betweeneventsin the two sggments.We included seg2-befoe-seggl

both the link typesandthe numberof occurrence®f thosetypes

betweerthe sggments

Tablel: Featureclassestheir descriptionsandexamplefeatureinstancegor Example5 in Section3.2.

From the ablationresults, it is clear that overall
performanceis most impactedby the cue-wod
features(C) and proximity (P). Syntaxand Slin-

FeatureClass Accuray Coarse-graineécc. 6.2 An alysis
Proximity 60.08% 69.43%
P+C 76.77% 83.50%
P+BSO 62.92% 74.40%
P+WSE 62.20% 70.10%
P+E 63.84% 78.16%
P+SIinkET 69.00% 75.91%
P+CE 67.18% 78.63%
P+Syntax 70.30% 80.84%
P+Tlink 64.19% 72.30%

Table2: Classificatioraccurayg over standardand
coarse-grainedelation types with each feature
classaddedo Proximity featureclass.

featureclassesand performablationexperiments
by removing onefeatureclassatatime.

FeatureClass Accuray Coarse-grai\cc.

KET alsohave highimpactimproving accurag by
roughly 10 and 9 percentrespectiely as shavn
in Table2. From the ablationresultsin Table 3,
it is clearthat the utility of mostof the individ-
ual featuresclassess lessenedvhenall the other
featureclassesaretaken into account. This indi-
catesthat multiple featureclassesareresponsible
for providing evidenceary given discourserela-
tions. Remawing a single featureclassdegrades
performanceut only slightly, asthe otherscan

Overall precision,recall and F-measurgesults
for eachof the differentlink typesusingthe set
of all featureclassesareshowvn in Table4 with the
correspondingonfusionmatrixin TableA.1. Per

All Features 81.06% 87.51%
All-P 71.52% 84.88% compensate.
All-C 75.71% 84.69%
All-BSO 80.65% 87.04%
All-WSE 80.26% 87.14%
All-E 80.90% 86.92%
All-SIinkET 79.68%  86.89%
All-CE 80.41% 87.14%
All-Syntax 80.20% 86.89%
All-Tlink 80.30% 87.36%

Table 3: Classificationaccurag with eachfea-
ture classremoved from the union of all feature
classes.

formancecorrelatesoughlywith thefrequeng of
thevariousrelationtypes.We might thereforeex-
pectsomeimprovementin performancevith more
annotateddatafor thoserelationswith low fre-
gueng in the GraphBank.

122



Relation Precision Recall F-measure Count
elab 88.72 95.31 91.90 512
attr 91.14 95.10 93.09 184
par 71.89 83.33 77.19 132
same 87.09 75.00 80.60 72
ce 78.78 41.26 54.16 63
contr 65.51 66.67 66.08 57
examp 78.94 48.39 60.00 31
temp 50.00 20.83 29.41 24
expv 33.33 16.67 22.22 12
cond 45.45 62.50 52.63 8
gen 0.0 0.0 0.0 0

Table4: PrecisionRecallandF-measureesults.

6.3 CoherenceRelation Identification

The task of identifying the presenceof a rela-
tion is complicatedby the factthat we mustcon-
sider all (7)) potential relationswhere n is the
number of segments. This presentsa trouble-
some, highly-skewed binary classificationprob-

lem with a high proportionof negative instances.

Furthermore,someof the relations, particularly
the resemblanceelations, are transitve in na-
ture (e.g. parallel(s;, sj) N parallel(s;,sg) —
parallel(s;, sg)). However, thesetransitive links
are not provided in the GraphBankannotation-
suchseggmentpairswill thereforebe presentedn-
correctlyasnegative instanceso thelearney mak-
ing this approachnfeasible.An initial experiment
consideringall sggmentpairs, in fact, resultedin
performancenly slightly abose themajority class
baseline.

Instead we considerthe taskof identifying the
presencef discourseelationsbetweensggments
within the samesentence.Using the sameset of
all featuresusedfor relationclassificationperfor
manceis at 70.04%accurag. Simultaneousden-
tification andclassificatiorresultedn anaccurayg
of 64.53%. For both tasksthe baselineaccurag
was58%.

6.4 Modeling Inter-relation Dependencies

Castingthe problem as a standardclassification
problem where eachinstanceis classifiedinde-
pendently aswe have done,is a potentialdraw-

back. In orderto gain insight into how collec-
tive, dependenimodeling might help, we intro-

ducedadditionalfeaturesthat model suchdepen-
dencies:For a pair of discoursesggments,s; and
sj, to classify the relation between,we included
featuredasedntheotherrelationsinvolvedwith

thetwo segments(from the gold standardannota-

tions): {R(s;, sg)|k # j} and{R(s;, s;)|l # i}.

Adding thesefeaturesmproved classificationac-
curay to 82.3%. This improvementis fairly sig-
nificant(a 6.3%reductionin error) giventhatthis
dependeng informationis only encodedweakly
as featuresand not in the form of model con-
straints.

7 Discussionand Futur e Work

We view the accurag of 81% on coherenceela-
tion classificatiorasa positive result,thoughroom
for improvementclearlyremains. An examination
of the errorsindicatesthat mary of the remain-
ing problemsrequiremaking complec lexical as-
sociations,the establishmenbf entity and event
anaphoridinks and, in somecasesthe exploita-
tion of complex world-knovledge. While impor
tant lexical connectionscan be gleanedfrom the
BSO,we hypothesizéhatthecurrentlack of word
sensedisambiguationsenes to lessenits utility
sincelexical pathsbetweerall word senseof two
wordsarecurrentlyused.Additional featureengi-
neering,particularlythe crafting of more specific
conjunctionsof existingfeatureds anothemvenue
to explorefurther- asareautomatidfeatureselec-
tion methods.

Differenttypesof relationsclearly benefitfrom
differentfeaturetypes. For example,resemblance
relationsrequiresimilar entitiesand/orevents,in-
dicating a needfor robust anaphoraresolution,
while cause-dect classrelations require richer
lexical andworld knowledge. One promisingap-
proachis a pipelinewhereaninitial classifieras-
signsa coarse-grainedateyory, followedby sepa-
ratelyengineeredlassifierddesignedo modelthe
finer-graineddistinctions.

An importantareaof future work involvesin-
corporating additional structue in two places.
First, asthe experimentdiscussedn Section6.4
shaws, classifyingdiscourseaelationscollectively
shaws potentialfor improved performance.Sec-
ondly, we believe that the tasksof: 1) identify-
ing which sggmentsare relatedand 2) identify-
ing the discoursesggmentsthemseles are prob-
ably bestapproachedy a parsingmodel of dis-
course.Thisview is broadlysympathetiavith the
approachn (Miltsakaki etal., 2005).

We furthermore believe an extensionto the
GraphBankannotationschemewith someminor
changesswe adwcatein Section3.2,layeredon
top of the PDTB would, in our view, sere asan
interestingresourceand model for informational
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discourse.
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A Appendix

A.1 Confusion Matrix

elab par attr ce temp contr same examp expv cond gen

elab 488 3 7 3 1 0 2 4 0 3 1
par 6 110 2 2 0 8 2 0 0 2 0
attr 4 0O 175 O 0 1 2 0 1 1 0
ce 18 9 3 26 3 2 2 0 0 0 0
temp 6 8 2 0 5 3 0 0 0 0 0
contr 4 12 0 0 0 38 0 0 3 0 0
same 3 9 2 2 0 2 54 0 0 0 0
examp 15 1 0 0 0 0 0 15 0 0 0
expv 3 1 1 0 1 4 0 0 2 0 0
cond 3 0 0 0 0 0 0 0 0 5 0
gen 0 0 0 0 0 0 0 0 0 0 0
A.2 SIinkET Example
S
/Nx\ | /Nx\ /NX\
DT NN VBD $ CD TO VB NN NN IN CD
Event Event
+Past +Infinitive
+Occurr +Occurr
The university $ 30,000 to lupgradet  lab equipment in 1987
+MODA
N - A
A.3 GraphBank Annotation Example - -~ _ - -~
The university spent $30,000
cause-—
effect
elaboration to upgrade lab equipment in 1987.

An estimated $60,000 to $70,000 was earmarked in 19¢
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Measuring annotator agreement in a complex hierarchical dialogue act

annotation scheme
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Abstract

We present a first analysis of inter-
annotator agreement for teT*++ tagset

of dialogue acts, a comprehensive, lay-
ered, multidimensional set of 86 tags.
Within a dimension or a layer, subsets of
tags are often hierarchically organised. We
argue that especially for such highly struc-
tured annotation schemes the well-known
kappa statistic is not an adequate measure
of inter-annotator agreement. Instead, we
propose a statistic that takes the structural
properties of the tagset into account, and
we discuss the application of this statistic
in an annotation experiment. The exper-
iment shows promising agreement scores
for most dimensions in the tagset and pro-
vides useful insights into the usability of
the annotation scheme, but also indicates
that several additional factors influence
annotator agreement. We finally suggest
that the proposed approach for measuring
agreement per dimension can be a good
basis for measuring annotator agreement
over the dimensions of a multidimensional
annotation scheme.

I ntroduction

for feedback and other aspects of dialogue control
that is available imIT, partly inspired by the work

of Allwood (Allwood et al., 1993). As it is often
thought that more elaborate and fine-grained anno-
tation schemes are difficult for annotators to apply
consistently, we decided to address this issue in an
annotation experiment on which we report in this
paper. A frequently used way of evaluating hu-
man dialogue act classification is inter-annotator
agreement. Agreement is sometimes measured as
percentage of the cases on which the annotators
agree, but more often expected agreement is taken
into account in using the kappa statistic (Cohen,
1960; Carletta, 1996), which is given by:

DPo — Pe

1- De
wherep, is the observed proportion of agreement
andp, is the proportion of agreement expected by
chance. Ever since its introduction in general (Co-
hen, 1960) and in computational linguistics (Car-
letta, 1996), many researchers have pointed out
that there are quite some problems in usin@.g.
(Di Eugenio and Glass, 2004)), one of which is
the discrepancy betweep andx for skewed class
distribution.

Another is that the degree of disagreement is

not taken into account, which is relevant for any
non-nominal scale. To address this problem, a

(1)

R =

The DITH* tagset (Bunt, 2005) was designed toweightedx has been proposed (Cohen, 1968) that
combine in one comprehensive annotation schemgenalizes disagreement according to their degree
the communicative functions of dialogue acts dis+ather than treating all disagreements equally. It
tinguished in Dynamic Interpretation Theoyt,
(Bunt, 2000; Bunt and Girard, 2005)), and manyteristics of dialogue acts in a particular taxonomy

of those inbAamsL (Allen and Core, 1997) and in and possible pragmatic similarity between them

other annotation schemes. An important differ-should be taken into account to express annotator
ence between th® T+ andDAMSL schemes isthe agreement. For dialogue act taxonomies which are
more elaborate and fine-grained set of functionstructured in a meaningful way, such as those that

would be arguable that in a similar way, charac-
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express hierarchical relations between concepts ioommunicative functions that are not specific to
the taxonomy, the taxonomic structure can be exany particular dimension but that can be used
ploited to express how much annotators disagreto address any aspect of communication. These
when they choose different concepts that are difunctions, which include questions, answers,
rectly or indirectly related. Recent work that ac- statements, and commissive as well as directive
counts for some of these aspects is a metric foacts, are callecdjeneral purpose functions. A
automatic dialogue act classification (Lesch et al.dialogue act falls within a specific dimension
2005) that uses distance in a hierarchical structuré it has a communicative function specific for
of multidimensional labels. that dimension or if it has a general-purpose
In the following sections of this paper, we will function and a semantic content relating to that
first briefly consider the dimensions in ther*+  dimension. Dialogue utterances can in principle
scheme and highlight the taxonomic characterishave a function (but never more than one) in each
tics that will turn out to be relevant in later stage. of the dimensions, so annotators using the*+
We will then introduce a variant of weightedfor ~ scheme can assign at most one tag for each of the
inter-annotator agreement calleg,, that adopts 11 dimensions to any given utterance.
a taxonomy-dependent weighting, and discuss its Both within the set of general-purpose com-

use. municative function tags and within the sets of
dimension-specific tags, tags can be hierarchically
2 Annotation using DIT related in such a way that a label lower in a hier-

_ _ _ archy is more specific than a label higher in the
DIT is a context-change (or information-state Up-same hierarchy. Tag is more specific than tag
date) approach to the analysis of dialogue, whicly, it 7, defines a context update operation that in-
describes utterance meaning in terms of context|,des the update operation correspondingo
update operations called ‘dialogue acts’. A dia-For instance, consider a part of the taxonomy for

logue act inDIT has two components: (1) the Se- general purpose functions (Figure 1).
mantic content, being the objects, events, proper-

ties, relations, etc. that are considered; and (2)

the communicative function, that describes how P T N
the addressee is intended to use the semantic con- [ NDl N [l NDl‘A”Ql o
tent for updating his context model when he un-

derstands the utterance correctiyr takes a mul-
tidimensional view on dialogue in the sense that FEK

speakers may use utterances to address several as- / N\

pects of the communication simultaneously, as re-

flected in the multifunctionality of utterances. OneF. 1 Two hi hies in the inf i K
such aspect is the performance of the task or ac-'9ure L. TWohierarchies In te information Seek=

tivity for which the dialogue takes place; another9 general purpose functions.
is the monitoring of each other’s attention, under- E it 0 b iane
standing and uptake through feedback acts; others oran utterance to be assignewaqUESTI Cn,

include for instance the turn-taking process an(fe asstl;]metz tTE spleakefrtgelleves ”.‘t"?“ the addrf)sdsee
the timing of communicative actions, and finally nows the fruth vaiue otne proposition presented.

yet another aspect is formed by the social obli-7O" antrl:tteranci K:j(;)_ﬁ a;sllgnﬁ CHECK, Wek at? )
gations that may arise such as greeting, apologisﬁiufmti t (:hspea o 't'l |onth¥[ fas a er\:ea e
ing, or thanking. The various aspects of commu-'c' that the proposiion that forms the seman-

nication that can be addressed independently aEéC content_ 1S true. And fgr ®CS - CHECK, there
called dimensions (Bunt and Girard, 2005; Bunt is the additional assumption that the speaker be-

2006). ThepiT+* tagset distinguishes 11 dimen- lieves (weakly) that the hearer also believes that

sions, which all contain a number of communica—the proposition is trué.

tive functions that are specific to that dimension, Similar to the hierarchical relations between
such asTURN Gl VI NG, PAUSI NG, andAPOLOGY YN- Quest i on, CHECK, andPOsI - CHECK, other parts

Be§|des dlmenSIOn.-S.peCIfIC communicative  igqy 5 formal description of each function in the DIT
functions, DIT also distinguishes a layer of tagsetseattp://1s0143.uvt.nl/dit/
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of the annotation scheme contain hierarchically reagreement scores reported in this paper are all cal-
lated functions. culated on the basis of the annotations of three

The following example illustrates the use of annotators, using the method proposed in (Davies
DIT**+ communicative functions for a very simple and Fleiss, 1982).

translated) dialogue fragmént The dialogues that were annotated are task-
L s _ , oriented and are all in Dutch. To account for
atwhattime do you want to travel today different complexities of interaction, both human-
2 U atten. machine and human-human dialogues are consid-
TASK = VA TURR VARAGENENT = GIVE _ ered. Moreover, the dialogues analyzed are drawn
3 S soyodwantloleave atten inthe moming?  from different corpora: OVIS (Strik et al., 1997),
4 U vyesthatis right. DIAMOND (Geertzen et al., 2004), and a collec-
TASK = CONFI RM TURN: MANAGEMENT = G VE tion of Map Task dialogues (Caspers, 2000); see

Table 1, where the number of annotated utterances

3 Agreement using is also indicated.

[ corpus [[ domain [ type | #utt |
31 Rel ated Work oVvIS TR{-\INSIikeintsractions H-M 193
on train connections
DIAMOND1 interactions on how to H-M 131
Inter-annotator agreements have been calculated operate a fax device
. . . . DIAMOND2 interactions on how to H-H 114
with the purpose of qualitatively evaluating tagsets operate a fax device
and individual tags. FopAMsL, the first agree- MAPTASKC || HERC Map Tasklike 1 H-H 120
ment results were presented in (Core and Allen, | I [ [ 558 ]

199?), based on the analysis of TRAINS- Table 1: Characteristics of the utterances consid-
93 dialogues (Gross et al.,, 1993; Heeman an%red

Allen, 1995). In this analysisf04 utterances

were tagged by mostly two annotators. Follow- Six undergraduate students annotated the se-
ing the suggestions in (Carletta, 1996), Core efected dialogue material. They had been intro-
al. consider kappa scores abobe7 to indi-  duced to theIT++ annotation scheme and the un-
cate significant agreement and scores abid8e derlying theory while participating in a course on
reliable agreement. Another more recent analypragmatics. During this course they were exposed
sis was performed for 8 dialogues of the MON-to approximately four hours of lecturing and few
ROE corpus (Stent, 2000), counti?g97 utter-  small annotation exercises. For all dialogues, the
ances in total, processed by two annotatorslfor audio recordings were transcribed and the annota-
DAMSL dimensions. Other analyses applyMSL  tors annotated presegmented utterances for which
derived schemes (such a&/ITCHBOARD-DAMSL)  full agreement was established on segmentation
to various corpora (e.g. (Di Eugenio et al., 1998;level beforehand. During the annotation sessions
Shriberg et al., 2004) ). For the comprehensivahe annotators had — apart from the transcribed
DIT** taxonomy, the work reported here repre-speech — access to the audio recordings, to the
sents the first investigation of annotator agreepn-line definitions of the communicative functions
ment. in the scheme and to a very brief, 1-page set of an-
notation guidelines The task was facilitated by
the use of an annotation tool that had been built
As noted, existing work on annotator agreemenftor this occasion; this tool allowed the subjects to
analysis has mostly involved only two annotators.assign each utterance ober++ tag for each di-

It may be argued that especially for annotation ofmension without any further constraints. In total
concepts that are rather complex, an odd numbet,674 utterances were annotated.

of annotators is desirable. First, it allows having ]

majority agreement unless all annotators choosg> Froblemswith standard «

entirely different. Second, it allows to deal bet-If we were to apply the standard statistic to

ter with the undesirable situation that one annotabIT** annotations, we would not do justice to an
tor chooses quite differently from the others. Theimportant aspect of the annotation scheme con-
cerning the differences between alternative tags,

3.2 Experiment outline

’Drawn from the OVIS corpus (Strik et al., 1997): —_ ~
OVIS2:104/001/001:008-011 3Seehttp: //1s0143. uvt.nl/dit
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and hence the possible differences in the distribution typical for each annotator, generalize it to
agreement between annotators using alternativihe case for multiple annotators by taking the aver-
tags. An aspect in which theiT++ scheme dif- age over the scores of annotator pairs, and define
fers from other taxonomies for dialogue acts isa function to be used as distance metric.

that, as noted in Section 2, communicative func-

tions (CFs) within a dimension as well as general4.1 Cohen’sweighted

purpose CFs are often structured into hierarchieassuming the case of two annotators, fet de-
in which a difference in level represents a relationnote the proportion of utterances for which the first
of specificity. When annotators differ in that they and second annotator assigned categara j,
assign tags which both belong to the same hiefrespectively. Then Cohen defines in terms of
archy, they may differ in the degree of specificity disagreement rather thanagreement wheregq, =

that they want to express, but they agree to the ext — ;, andg. = 1 — p. such that Equation 1 can
tent that these tags inherit the same elements froige rewritten to:

tags higher in the hierarchy. Inter-annotator dis-

agreement is in such a case much less than if they we1_do @)
would choose two unrelated tags. This is for in- e

stance obvious in the following example of the an-1, arrive ats

, the proportiong, andg. in Equa-
notations of two utterances by two annotators: v e Prop 3 8Nndde In =4

tion 2 are replaced by weighted functions over all

1 S whatdo youwanttoknow? wo v possible category pairs:
2 U canlprint now? YNQ  CHECK
_ > Vij - Doij
. . Ky =1— ©))
With utterancel, the annotators should be said > Vij * Deij

simply to disagree (in fact, annotat®incorrectly where
assigns arNQ function). Concerning utterance

the annotators also disagree, but Figure 1 and t
definitions given in Section 2 tell us that the dis-
agreement in this case is quite small, @BECKin- 4.2 A taxonomic metric

herits the properties of'eq. We therefore should The task of defining a function in order to calcu-

not use a black-and-white measure of agreemen . . .
like the standard:, but we should have a measure Féte the difference between a pair of categories re-

for partial annotator agr t quires us to determine semantic-pragmatic related-
In order to measure partial (dis-)agreement bel' >3 .between the CFs in the_tax_o nomy. Forany an-
otation scheme, whether itis hierarchically struc-

tween annotators in an adequate way, we shoul . ; .
) ) .tured or not, we could assign for each possible pair
not just take into account whether two tags are hi-

erarchically related or not, but also how far theyof categories a value that expresses the semantic-

are apart in the hierarchy, to reflect that two tag 5pragmatlc relatedness between the two categories

. . compared to all other possible pairs. However, it
which are only one level apart are semantically o e . . ;

seems quite difficult to find universal characteris-
more closely related than tags that are several lev:

. . . : tics for CFs to be used to express relatedness on a
els apart. We will take this additional requirement " .
. - : . rational scale. When we consider a taxonomy that
into account when designing a weighted disagree- . . oo
L . is structured in a meaningful way, in this case one
ment statistic in the next section. . . .
that expresses hierarchical relations between CF
4 Agreement based on structural based on their effect on information states, the tax-
taxonomic properties onomic structure can be exploited to express in a
systematic fashion how much annotators disagree
The agreement coefficient we are looking forwhen they choose different concepts that are di-
should in the first place beeighted in the sense rectly or indirectly related.
that it takes into account the magnitude of dis- The assignment of different CFs to a specific ut-
agreement. Two such coefficients are weightederance by two annotators represents full disagree-
kappa €., (Cohen, 1968)) and alpha (Krippen- ment in the following cases:
dorff, 1980). For our purposes, we adop} for
its property to take into account a probability dis- 1. the two CFs belong to different dimensions;

;; denotes the disagreement weight. To
calculate this weight we need to specify a distance
nction as metric.
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2. one of the two CFs is general-purpose; the
other is dimension-speciﬂ”c;

. the two CFs belong to the same dimension
but not to the same hierarchy;

. the two CFs belong to the same hierarchy
but are not located in the same branch. Two
CFs are said to be located in the same branch
when one of the two CFs is an ancestor of theFi
other.

If, by contrast, the two CFs take part in a parent-
child relation within a hierarchy (either within a
dimension or among the general-purpose CFs),
then the CFs are related and this assignment repre-
sents partial disagreement. A distance metric that
measures this disagreement, which we denote as
4, should have the following properties:

1. 6 should be a real number normalized in the
rangel0. .. 1];

LetC be the (unordered) set of CEdzor ev-
ery two CFscy, co € C, 6(c1,c2) = 0 when

Aut o Feedback

7 N
7 N

’Perc* ‘ ’Per ct ‘
| |

’I nt~ ‘ ’I nt+ ‘
| |

lEvaI - ‘ lEvaI + ‘
| |

lExec‘ ‘ lExec+ ‘

gure 2: Hierarchical structures in the auto feed-

back dimension.

2. The magnitude of disagreement betwegn
andc, being located in two different levels of
depthsn andn + 1 might be considered to be
more different than that between to levels of
depthn + 1 andn + 2. If this would be the
case, the deeper two levels are located in the
tree, the smaller the differences between the
nodes on those levels. For the hierarchies in
DIT, we keep the magnitude of disagreement
linear with the difference in levels, and inde-
pendent of level depth;

¢ ande, are not related; Given the considerations above, we propose the
3. LetC be the (unordered) set of CFs. For ev-fO”OWIng metric:

iry communicative function € C, §(c, ¢) = 8(ci ) = aeicy) | pl(eicg) 4)
4. Let C be the (unordered) set of CFs. ForVNere:

every two CFsci,co € C, 0(c1,c2) =
5(62761).

Furthermore, wher; and ¢y are related, we
should specify how distance between them in the
hierarchy should be expressed in terms of partial
disagreement. For this, we should take the follow-
ing aspects into account:

1. The distance in levels between and ¢, in
the hierarchy is proportional to the magnitude
of the disagreement;

“This is in fact a simplification. For instance, RNFORM
act of which the semantic content conveys that the speaker
did not understand the previous utterance forms an act in the
Auto-Feedback dimension (see Note 6), and a tagging to this
effect should perhaps not be considered to express full dis-
agreement with the assignment of the dimension-specific tag
AUTO FEEDBACK- I nt —. See also the next footnote.

SStrictly speaking, in DIT a dialogue act annotation tag is
either (a) the name of a dimension-specific function, or (b) a

e ¢ is a constant for which < a < 1, express-
ing how much distance there is between two
adjacent levels in the hierarchy; a plausible
value fora could be0.75;

A is a function that returns the difference in
depth between the levels efandc;;

b is a constant for which < b < 1, express-
ing in what rate differences should become
smaller when the depth in the hierarchy gets
larger. If there is no reason to assume that
differences on a higher depth in the hierarchy
are of less magnitude than differences on a
lower depth, the = 1;

e I'(ci, ¢j) is a function that returns the mini-

mal depth ofc; andc;.

pair consisting of the name of a general-purpose functioh an TO provide some examples of hosvwould be
the name of a dimension. However, in view of the simplifica- calculated, let us consider the general purpose

tion mentioned in the previous note, for the sake of this pape
we may as well consider tags containing a general-purpos
function as simply consisting of that function.

BJ
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nctions in Figure 1. Consider also Figure 2,
at represents two hierarchies of CFs in the auto



feedback dimensidhand let us assume the values ~ omerson L Loy ] foaws [ opioto )
of the various parameters those that are suggested| __tascadion dicusson 061 | 061 9L [ 037
. ) auto feedback 0.21 0.57 127 0.34
above. We then get the following calculations: allo feedback 042 | 058 7| 014
turn management 0.82 0.82 115 0.18
time management 0.58 0.58 68 0.72
5([ND YNQ CHECK) — 0.752 .1 =0.563 contact management 1.00 1.00 8 0.17
3(YNQ,CHECK) =075 1 =075 GuiGom. manageet || Lou | To0 |2 | 008
5(Perc Perct ) = 0.750 .1 =1 partner com. management nav nav 1 0.07
dialogue struct. managemenf 0.74 0.74 15 0.31
5(P€7’C ,Eval+) =0.75°-1 =0.563 s:)ciall;bl. n?anageme%t 1.00 | 1.00 61 0.80

§(Int™, Int™) =0
5(POSI,NEGA) =0 Table 2: Scores for corrected and s, perDIT

To conclude, we can simply také to be the dimension.
weighting in Cohen’s:,, and come to a coefficient

which we will call taxonomically weighted kappa, When we look at the agreement statistics and
denoted bysy,,: consider x scores above 0.67 to be significant
and scores above 0.8 considerably reliable, as is
21 =6(4,4)) - Poij (5) usual forx statistics, we can find the dimensions
22(1=6(4,5)) - Peiy TURN- MANAGEMENT, CONTACT MANAGEMENT, and
o SOCI AL- OBLI GATI ONS- MANAGEMENT to be reliable
4.3 fp Statistics for DIT andDl ALOGUE STRUCT. MANAGEMENT to be signif-
Considering th@IT*+ taxonomy, it may be argued icant. For some dimensions, the occurences of
that due to the many hierarchies in the topologyfunctions in these dimensions in the annotated di-
of the general-purpose functions, this is the par@logue material were too few to draw conclusions.
where most is to be gained by employirg,. When we also take thep-ratio into account,
Table 2 shows the statistics for each dimensiononly the dimensionsTASK, TI ME MANAGEMENT,
averaged over all annotation pairs. Wighno- ~ @nd SOCI AL- OBLI GATI ONS- MANAGEMENT combine
tation pair is understood the pair of assignments@ fair agreement on functions with fair agreement
an utterance received by two annotators for a paron whether or not to annotate in these dimensions.
ticular dimension. The figures in the table areEspecially for the other dimensions, the question
based on those cases in which both annotators aghould be raised for which cases and for what rea-
signed a function to a specific utterance for a spesons theap-ratio is low. This question asks for
cific dimension. Cases where either one annotatdti'ther qualitative analysis, which is beyond the
does not assign a function while the other doesscope of this papér
or where both annotators do not assign a function
are not considered. Scores for standam@hd .,
can be found in the first two columns. The column|n the previous sections, we showed how the tax-

#pairsindicates on how many annotation pairs thegnomically weighted:,,, that we proposed can be
statistics are based. The last column shows thgore suitable for taxonomies that contain hierar-
ap-ratio. This figure indicates which fraction of chical structures, like theit*+) taxonomy. How-
all annotated functions in that dimension are repever, there are some specific and general issues
resented by annotation pairs. Whgfap denotes that deserve more attention.
the number of annotation pairs asépa denotes A question that might be raised in using, as
the number of partial annotations (annotations irppposed to ordinary, is if the assumption that the
which one annotator assigned a function and thenterpretations of: proposed in literature in terms
other did not), then thep-ratio is calculated as of reliability is also valid forxy,, statistics. This
#ap/(#pa + #ap). We can observe that due to js yltimately an empirical issue, to be decided by
the use of the taxonomic weighting bdtiedback  which r,,, scores researchers find to correspond to
dimensions and théask dimension gained sub- fajr or near agreement between annotators.
stantially in annotator agreement. Another point of discussion is the arbitrariness
SAuto-feedback: feedback on the processing (perceptionOf the values of the parameters that can be cho-

understanding, evaluation,..) of previous utteranceshiy t SE€N ind. In this paper we proposed= 0.75 and

speaker. DIT also distinguishes allo-feedback, where the3 = 0.5. Choosing different values may change
speaker provides or elicits information about the addessse
processing. 'See (Geertzen, 2006) for more details.

Hthl—

5 Discussion

131



the disagreement of two distinct CFs located in theposed can be employed in any taxonomy contain-
same hierarchy considerably. Still, we think thating hierarchically related concepts, since we only
by interpolating smoothly between the intuitively usedstructural properties of the taxonomy.
clear cases at the two extreme ends of the scale, We have also quantitativély evaluated the
it is possible to choose reasonable values for theiT++ tagset per dimension, and obtained an in-
parameters that scale well, given the average hiedication of its usability. We focussed on agree-
archy depth. ment per dimension, but when we desire a global
A more general problem, inherent in almostindication of the difference in semantic-pragmatic
any (dialogue act) annotation activity is that wheninterpretation of a complete utterance it requires
we consider the possible factors that influence thes to consider other aspects. A truly multidimen-
agreement scores, we find that they can be nwsional study of inter-annotator agreement should
merous. Starting with the tagset, unclear defininot only take intra-dimensional aspects into ac-
tions and vague concepts are a major source afount but also relate the dimensions to each other.
disagreement. Other factors are the quality and exn (Bunt and Girard, 2005; Bunt, 2006) it is argued
tensiveness of annotation instructions, and the exhat dimensions should barthogonal, meaning
perience of the annotators. These were kept corthat an utterance can have a function in one dimen-
stant throughout the experiment reported in thission independent of functions in other dimensions.
paper, but clearly the use of more experienced ofhis is a somewhat utopical condition, since there
better trained annotators could have a great influare some functions that show correlations and de-
ence. Then there is the influence that the use of apendencies with across dimensions. For this rea-
annotation tool can have. Does the tool gives hintson it makes sense to try to express the effect of the
on annotation consistency (e.g. awsWeR should presence of strong correlations, dependencies and
be preceded by a@UESTI ON), does it enforce con- possible entailments in a multidimensional notion
sistency, or does it not consider annotation consisef (dis)agreement. Additionally, it may be desir-
tency at all? Are the possible choices for anno-able to take into account the importance that a CF
tators presented in such a way that each choice san have. It is widely acknowledged that utter-
equally well visible and accessible? Clearly, whemances are often multifunctional, but it could be ar-
we do not control these factors sufficiently, we rungued that in many cases an utterance hasraary
the risk that what we measure does not expresiinction andsecondary functions; for instance, if
what we try to quantify: (dis)agreement amongan utterance has both a task-related function and
annotators about the description of what happenene or more other functions, the task-related func-

in a dialogue. tion is typically felt to be more important than the
other functions, and disagreement about the task-
6 Conclusion and future work related function is therefore felt to be more seri-

_ ous than disagreement about one of the other func-
In this paper we have presented agreement scorggns. This might be taken into account by adding
for Cohen’s unweighted: and claimed that for 3 \eighting function when combining agreement
annotation SChemeS W|th hierarChica”y relateqneasures over mul“ple dimensionsl

tags, a weighted: gives a better indication of  other future work we plan is more methodolog-
(dls)agreement than unweighted Th?ff SCOres jcal in nature, quantifying the relative effect of the
for some dimensions seem not particularly spectactors that may have influenced the scores that we
tacular but become more interesting when 100khaye found. This would create a situation in which
ing at semantic-pragmatic differences between dighere is more insight imvhat exactly is evaluated.
alogue acts or CFs. Even though there are somexs for evaluating the tagset, we for instance plan
what arbitrary aspects in weighting, when paramerg fyrther analyze co-occurence matrices to iden-
ters are carefully chosen a weighted metric gives fify frequent misannotations, and to have annota-

better representation of the inter-annotator agregg, g thinking aloud while performing the annota-
ments. More generally, we propose that semanticggp task.

pragmatic relatedness between taxonomic con-___

cepts should be taken into account when calculat- ®Kappa statistics are indicative. To get a full understand-
ina int tator (di t Whil ({g of what the figures represent, qualitative analysis liygus
ing inter-annotator ( |s)agre(?men © e We USEQ g. co-occurence matrices is required, which is beyond the
DITTT as tagset, the weighting function we pro-scope of this paper.
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Abstract

We present a probabilistic approach for the
interpretation of arguments that casts the
selection of an interpretation as a model
selection task. In selecting the best model,
our formalism balances conflicting fac-
tors: model complexity against data fit,
and structure complexity against belief
reasonableness. We first describe our ba-
sic formalism, which considers interpreta-
tions comprising inferential relations, and
then show how our formalism is extended
to suppositions that account for the beliefs
in an argument, and justifications that ac-
count for the inferences in an interpreta-
tion. Our evaluations with users show that
the interpretations produced by our system
are acceptable, and that there is strong sup-
port for the postulated suppositions and
justifications.

1 Introduction

The source-channel approach has been often used
for word-based language tasks, such as speech
recognition and machine translation (Epstein,
1996; Och and Ney, 2002). According to this ap-
proach, an addressee receives a noisy channel (lan-
guage or speech wave), and decodes this channel
to derive the source (idea). The selected source is
that with the maximum posterior probability.

In this paper, we apply the source-channel ap-
proach to the interpretation of arguments. This
approach enables us to cast argument interpreta-
tion as a trade-off between conflicting factors, viz
model complexity against data fit, and structure
complexity against belief reasonableness. This
trade-off is inspired by the Minimum Message
Length (MML) Criterion — a model selection
method that is the basis for several machine learn-
ing techniques (Wallace, 2005). According to this

trade-off, a more complex model might fit the data
better, but the plausibility (priors) of the model
must be taken into account to avoid over-fitting. '

Our argument interpretation mechanism has
been implemented in a system called BIAS
(Bayesian Interactive Argumentation System).
BIAS presents to a user a set of facts about the
world (evidence), and the user constructs an argu-
ment about a particular goal proposition in light
of this evidence. BIAS then generates an interpre-
tation of the user’s argument, i.e., it tries to un-
derstand the argument. When people try to under-
stand an interlocutor’s discourse, their interpreta-
tion is in terms of their own beliefs and inference
patterns. Likewise, our system’s interpretations
are in terms of its underlying knowledge repre-
sentation — a Bayesian network (BN). The inter-
pretations generated by BIAS include inferences
that connect the propositions in a user’s argument,
suppositions that postulate a user’s beliefs that are
necessary to make sense of the argument, and ex-
planatory extensions that justify the inferences in
the interpretation (and in the argument). BIAS
does not generate its own arguments, rather, it in-
tegrates these components to make sense of the
user’s argument.

In this paper, we first describe our basic for-
malism, which is used to calculate the probability
of interpretations that include only inferences, and
then show how progressive enhancements of this
formalism are used for more informative interpre-
tations.

In Section 2, we explain what is an argument
interpretation, and describe briefly the interpreta-
tion process. Next, we discuss our probabilistic
formalism for selecting an interpretation, which is
the focus of this paper. In Section 4, we present

LOther model selection criteria such as Akaike Informa-
tion Criterion (AIC) and Bayes Information Criterion (BIC)
(Box et al., 1994) also argue for model parsimony, but they
do so by penalizing models with more free parameters.

134

Proceedings of the 7th SIGdial Workshop on Discourse and Dialqoages 134-143,
Sydney, July 20062006 Association for Computational Linguistics



the results of our evaluations, followed by a dis-
cussion of related work, and concluding remarks.

2 Argument interpretation

We define an interpretation of a user’s argument as
the tuple {SC, IG, EE}, where SC' is a supposi-
tion configuration, IG is an interpretation graph,
and F'E are explanatory extensions.

e A Supposition Configuration is a set of sup-
positions attributed to the user (in addition to
or instead of shared beliefs) to account for the
beliefs in his or her argument.

e An Interpretation Graph is a domain struc-
ture, in our case a subnet of the domain BN,
that connects the nodes mentioned in the argu-
ment. The nodes and arcs that are included in
an interpretation graph but were not mentioned
by the user fill in additional detail from the BN,
bridging inferential leaps in the argument.

e Explanatory Extensions are domain struc-
tures (subnets of the domain BN) that are added
to an interpretation graph to justify an infer-
ence. Contrary to suppositions, these explana-
tions contain propositions believed by the user
and the system. The presentation of these ex-
planations is motivated by the results of our
early trials, where people objected to belief dis-
continuities between the antecedents and the
consequent of inferences, i.e., increases in cer-
tainty or large changes in certainty (Zukerman
and George, 2005).

To illustrate these components, consider the ex-
ample in Figure 1. The top segment contains
a short argument, and the bottom segment con-
tains its interpretation. The middle segment con-
tains an excerpt of the domain BN which in-
cludes the interpretation; the probabilities of some
nodes are indicated with linguistic terms.> The in-
terpretation graph, which appears inside a light
gray bubble in the BN excerpt, includes the ex-
tra node GreenlnGardenAtTimeOfDeath (boxed).
Note that the propagated beliefs in this interpre-
tation graph do not match those in the argument.
To address this problem, the system supposes that
the user believes that TimeOfDeathl I=TRUE, in-
stead of the BN belief of Probably (boldfaced and

2We use the terms Very Probable, Probable, Possible and
their negations, and Even Chance. These terms, which are
similar to those used in (Elsaesser, 1987), are most consis-
tently understood by people according to our user surveys.

ARGUMENT

Mr Green probably being in the garden at 11 implies that
he possibly had the opportunity to kill Mr Body, but
he possibly did not murder Mr Body.

EXCERPT OF DOMAIN BN
GreenHadMeans GreenMurderedBody —~—— GreenHadMotive

ProbablyNot ProbablyNot EvenChance
. GreenVisitBody
GreenHadOpportunity :
. ProbablyNot LastNight
* GreenInGardenAt |  NbourHeardGreen&Body
dﬁ/ TimeOfDeath ArgueLastNight
GreenLadder
AtWindow / \ /
TimeOfDeath11 GreenInGardenAt11
Probably Probably
INTERPRETATION

Mr Green probably being in the garden at 11, and
supposing that the time of death is 11 implies that

Mr Green probably was in the garden at the time of death.
Hence, he possibly had the opportunity to kill Mr Body, but
Mr Green probably did not have the means.

Therefore, he possibly did not murder Mr Body.

Figure 1: Sample argument, BN excerpt and inter-
pretation

gray-boxed). This fixes the mismatch between the
probabilities in the argument and those in the in-
terpretation, but one problem remains: in early tri-
als we found that people objected to belief discon-
tinuities, such as the “jump in belief” from pos-
sibly having opportunity to possibly not murder-
ing Mr Body (this jump appears both in the origi-
nal argument and in the interpretation, whose be-
liefs now match those in the argument as a re-
sult of the supposition). This prompts the gen-
eration of the explanatory extension GreenHad-
Means[ProbablyNot] (white boldfaced and dark-
gray boxed). The three elements added during the
interpretation process — the extra node in the inter-
pretation graph, the supposition and the explana-
tory extension — appear in boldface italics in the
interpretation at the bottom of the figure.

2.1 Proposing Interpretations

The problem of finding the best interpretation is
exponential. In previous work, we proposed an
anytime algorithm to propose interpretation graphs
and supposition configurations until time runs out
(George et al., 2004). Here we apply our algorithm
to generate interpretations comprising supposition
configurations (SC), interpretation graphs (/G)
and explanatory extensions (F E) (Figure 2).
Supposition configurations are proposed first, as
instantiated beliefs affect the plausibility of inter-
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Algorithm Generatelnterpretations(Arg)

while {there is time}
{
1. Propose a supposition configuration SC' that
accounts for the beliefs stated in the argument.

2. Propose an interpretation graph IG that con-
nects the nodes in Arg under supposition con-
figuration SC.

3. Propose explanatory extensions E'F for inter-
pretation graph /G under supposition config-
uration SC' if necessary.

4. Calculate the probability of interpretation
{SC,IG,EFE}.
5. Retain the top N (=6) most probable interpre-
tations.
}

Figure 2: Anytime algorithm for generating inter-
pretations

pretation graphs, which in turn affect the need for
explanatory extensions. The proposal of supposi-
tion configurations, interpretation graphs and ex-
planatory extensions is driven by the probability
of these components. In each iteration, we gener-
ate candidates for a component, calculate the prob-
ability of these candidates in the context of the
selections made in the previous steps, and proba-
bilistically select one of these candidates. That is,
higher probability candidates have a better chance
of being selected than lower probability ones (our
selection procedures are described in George et al.,
2004). For example, say that in Step 1, we selected
supposition configuration SC\,. Next, in Step 2,
the probability of candidate /G’ is calculated in
the context of the domain BN and SC, and one
of the IGs is probabilistically selected, say Gy,
Similarly, in Step 3, one of the candidate EE's is
selected in the context of SC, and IGYy. In the next
iteration, we probabilistically select an SC' (which
could be a previously chosen one), and so on. To
generate diverse interpretations, if SC|, is selected
again, a different /G will be chosen.

3 Probabilistic formalism

Following (Wallace, 2005), our approach requires
the specification of three elements: background
knowledge, model and data. Background knowl-
edge is everything known to the system prior to in-
terpreting a user’s argument, e.g., domain knowl-
edge, shared beliefs with the user, and dialogue

history; the data is the argument; and the model
is the interpretation.

We posit that the best interpretation is that with
the highest posterior probability.

.....

where ¢ is the number of interpretations.

After applying Bayes rule, this probability is
represented as follows.>

a PI‘(SCZ‘, IGZ, EEZ) X PI‘(A}"g|SCZ‘, IGZ, EEZ)
where « is a normalizing constant that ensures that
the probabilities of the interpretations sum to 1

— 1
a= Z;zlpr(SCj,IGj,EEj)xPr(Arg|SCj,IGj,EE]-) ) '

The first factor represents model complexity,
and the second factor represents data fit.

e Model complexity measures how difficult it is
to produce the model (interpretation) from the
background knowledge. The higher/lower the
complexity of a model, the lower/higher its
probability.

e Data fit measures how well the data (argument)
matches the model (interpretation). The bet-
ter/worse the match between the argument and
an interpretation, the higher/lower the proba-
bility that the speaker intended this interpreta-
tion when he or she uttered the argument.

Model Complexity

Model complexity is a function {8, M}—[0,1]
that represents the prior probability of the model
M (i.e., the interpretation) in terms of the back-
ground knowledge B. The calculation of model
complexity depends on the type of the model: nu-
merical or structural.

The probability of a numerical model depends
on the similarity between the numerical values (or
distributions) in the model and those in the back-
ground knowledge. The higher/lower this similar-
ity, the higher/lower the probability of the model.
For instance, a supposition configuration SC' com-
prising beliefs that differ significantly from those
in the background knowledge will lower the prob-
ability of an interpretation. One of the functions
we have used to calculate belief probabilities is the
Zipf distribution, where the parameter is the differ-
ence between beliefs, e.g., between the supposed

3In principle, Pr(SC;, IG;, EE;|Arg) can be calculated

directly. However, it is not clear how to incorporate the priors
of an interpretation in the direct calculation.
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beliefs and the corresponding beliefs in the back-
ground knowledge (Zukerman and George, 2005).
That is, the probability of a supposed belief in
proposition P according to model M (bel 57 (P)),
in light of the belief in P according to background
knowledge B (bel g(P)), is

0
~ |bel 37 (P)—bel g(P)|Y

Pr(bel 57 (P)|bel g(P))

where 0 is a normalizing constant, and v deter-
mines the penalty assigned to the discrepancy be-
tween the beliefs in P. For example,

Pr(bel ;(P) =TRUE|bel g(P) = Probable) >
Pr(bel 5;(P)=TRUE|bel g(P)=EvenChance)

as TRUE is closer to Probable than to EvenChance.

The probability of a structural model (e.g., an
interpretation graph) is obtained from the proba-
bilities of the elements in the structure (e.g., nodes
and arcs) in light of the background knowledge.
The simplest calculation assumes that the proba-
bility of including nodes and arcs in an interpreta-
tion graph is uniform. That is, the probability of
an interpretation graph comprising n nodes and a
arcs is a function of

e the probability of n,

o the probability of selecting n particular nodes
from N nodes in the domain BN: (]X ) _1,

e the probability of a, and

e the probability of selecting a particular arcs
from the arcs that connect the n selected nodes.

This calculation generally prefers small models
to larger models.*

Data fit

Data fit is a function {M, D} — [0, 1] that rep-
resents the probability of the data D (argument)
given the model M (interpretation). This proba-
bility hinges on the similarity between the model
and the data — the closer the data is to the model,
the higher is the probability of the data.

The calculation of the similarity between nu-
merical data and a numerical model is the same
as the calculation of the similarity between a nu-
merical model and background knowledge.

The similarity between structural data and a
structural model is a function of the number and
type of operations required to convert the model
into the data, e.g., node and arc insertions and

“In the rare cases where n > N /2, smaller models do not
yield lower probabilities.

deletions. For the example in Figure 1, to con-
vert the interpretation graph into the argument, we
must delete one node (GreenlnGardenAtTimeOf-
Death) and its incident arcs. The more operations
need to be performed, the lower the similarity be-
tween the data and the model, and the lower the
probability of the data given the model.

We now discuss our basic probabilistic formal-
ism, which accounts for interpretation graphs, fol-
lowed by two enhancements: (1) a more complex
model that accounts for suppositions; and (2) in-
creases in background knowledge that yield a pref-
erence for larger interpretation graphs under cer-
tain circumstances, and account for explanatory
extensions.

3.1 Basic formalism: Interpretation graphs

In the basic formalism, the model contains only an
interpretation graph. Thus, Equation 1 is simply

Pr(IG;|Arg) = aPr(IG;) x Pr(Arg|IG;) (2)

The difference in the calculations of model
complexity and data fit for numerical and struc-
tural information warrants the separation of struc-
ture and belief, which yields

Pr(1G;|Arg) = aPr(bel IG;, struc IG;) X
Pr(bel Arg, struc Arg|bel IG;, struc IG;)

After applying the chain rule of probability

Pr(IG;|Arg) =
aPr(bel IG;|struc IG;) x Pr(struc IG;) x
Pr(bel Arg|struc Arg,bel IG;, struc IG;) %
Pr(struc Arg|bel IG;, struc I1G;)

Note that Pr(bel IG;|struc IG;) does not cal-
culate the probability of (or belief in) the nodes
in IG;. Rather, it calculates how probable are
these beliefs in light of the structure of IG;
and the expectations from the background knowl-
edge. For instance, if the belief in a node is p,
it calculates the probability of p. This proba-
bility depends on the closeness between the be-
liefs in IG; and the expected ones. Since the
beliefs in /G, are obtained algorithmically by
means of Bayesian propagation from the back-
ground knowledge, they match precisely the ex-
pectations. Hence, Pr(bel IG;|struc IG;) = 1.

We also make the following simplifying as-
sumptions for situations where the interpretation
is known (given): (1) the probability of the beliefs
in the argument depends only on the beliefs in the
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Table 1: Probability — Basic formalism

Table 2: Probability — More informed model

Model complexity (against background)
1 Pr(struc IG;) T structural complexity
(model size)

Model complexity (against background)
Pr(struc IG;|SC;) structural complexity
LPr(SC;y) Tnumerical discrepancy

Data fit with model
T Pr(struc Arg|struc IG;) | structural discrepancy
Pr(bel Arg|bel IG;) numerical discrepancy

Data fit with model
Pr(struc Arg|struc IG;) structural discrepancy
T Pr(bel Arg|SCj,bel IG;) |numerical discrepancy

interpretation (and not on its structure or the ar-
gument’s structure), and (2) the probability of the
argument structure depends only on the interpreta-
tion structure (and not on its beliefs). This yields

Pr(IG;|Arg) = aPr(struc IG;)x 3)
Pr(bel Arg|bel IG;) x Pr(struc Arglstruc IG;)

Table 1 summarizes the calculation of these
probabilities separated according to model com-
plexity and data fit. It also shows the trade-off
between structural model complexity and struc-
tural data fit. As seen at the start of Section 3,
smaller structures generally have a lower model
complexity than larger ones. However, an increase
in structural model complexity (indicated by the T
next to the structural complexity and the | next
to the resultant probability of the model) may re-
duce the structural discrepancy between the argu-
ment structure and the structure of the interpreta-
tion graph (indicated by the | next to the structural
discrepancy and the T next to the probability of the
structural data-fit). For instance, the smallest pos-
sible interpretation for the argument in Figure 1
consists of a single node, but this interpretation has
a very poor data fit with the argument.

3.2 A more informed model

In order to postulate suppositions that account for
the beliefs in an argument, we expand the basic
model to include supposition configurations (be-
liefs attributed to the user in addition to or instead
of the beliefs shared with the system). Now the
model comprises the pair {SC;, IG;}, and Equa-
tion 2 becomes
aPr(SC;, IG;) x Pr(Arg|SC;, IG;)

Similar probabilistic manipulations to those
performed in Section 3.1 yield
PI'(SC”IGZ‘AI‘g) == (5)
aPr(struc 1G;|SC;) xPr(SC;) x
Pr(bel Arg|SC;,bel IG;) x Pr(struc Arg|struc IG;)

(Recall that suppositions pertain to beliefs only,
i.e., they don’t have a structural component.)

Table 2 summarizes the calculation of these
probabilities separated according to model com-
plexity and data fit (the elements that differ from
the basic model are boldfaced). It also shows the
trade-off between belief model complexity and be-
lief data fit. Making suppositions has a higher
model complexity (lower probability) than not
making suppositions (where SC; matches the be-
liefs in the domain BN). However, as seen in the
example in Figure 1, making a supposition that re-
duces or eliminates the discrepancy between the
beliefs in the argument and those in the interpre-
tation increases the belief data-fit considerably, at
the expense of a more complex belief model.

3.3 Additional background knowledge

An increase in our background knowledge means
that we take into account additional factors about
the world. This extra knowledge in turn may
cause us to prefer interpretations that were pre-
viously discarded. We have considered two ad-
ditions to background knowledge: dialogue his-
tory, and users’ preferences regarding inference
patterns.

Dialogue history

Dialogue history influences the salience of a
node, and hence the probability that it was in-
cluded in a user’s argument. We have modeled
salience by means of an activation function that
decays with time (Anderson, 1983), and used this
function to moderate the probability of including
a node in an interpretation (instead of using a uni-
form distribution). We have experimented with
two activation functions: (1) a function where the
level of activation of a node is based on the fre-
quency and recency of the direct activation of this
node; and (2) a function where the level of activa-
tion of a node depends on its similarity with all the
(activated) nodes, together with the frequency and
recency of their activation (Zukerman and George,
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2005).

To illustrate the influence of salience, com-
pare the preferred interpretation graph in
Figure 1 (in the light gray bubble) with
an alternative path through NbourHeard-
Green&BodyArgueLastNight and  GreenVisit-
BodyLastNight. The preferred path has 4 nodes,
while the alternative one has 5 nodes, and hence
a lower probability. However, if the nodes in the
longer path had been recently mentioned, their
salience could overcome the size disadvantage.
Thus, although the chosen interpretation graph
may have a worse data fit than the smallest graph,
it still may have the best overall probability in
light of the additional background knowledge.

Inference patterns

In a formative evaluation of an earlier version
of our system, we found that people objected
to inferences that had increases in certainty or
large changes in certainty (Zukerman and George,
2005). An example of an increase in certainty is
A [Probably] implies B [VeryProbably].

A large change in certainty is illustrated by
A [VeryProbably] implies B [EvenChance].

We then conducted another survey to deter-
mine the types of inferences considered acceptable
by people (from the standpoint of the beliefs in
the antecedents and the consequent). The results
from our preliminary survey prompted us to dis-
tinguish between three types of inferences: Both-
Sides, SameSide and AlmostSame.

e BothSides inferences have antecedents with be-
liefs on both “sides” of the consequent (in
favour and against), e.g.,

A[VeryProbably] & B[ProbablyNot]| implies
C[EvenChance].

e All the antecedents in SameSide inferences
have beliefs on “one side” of the consequent,
but at least one antecedent has the same belief
level as the consequent, e.g.,

A[VeryProbably] & B[Possibly] implies
C[Possibly].

e All the antecedents in AlmostSame inferences
have beliefs on one side of the consequent, but
the closest antecedent is one level “up” from
the consequent, e.g.,

A[VeryProbably] & B[Possibly] implies
C[EvenChance].

Our survey contained six evaluation sets, which
were done by 50 people. Each set contained an ini-

tial statement (we varied the polarity of the state-
ment in the various sets), three alternative argu-
ments that explain this statement, and the option
to say that no argument is a good explanation. The
respondents were asked to rank these options in
order of preference.

All the evaluation sets contained one argument
that was objectionable according to our prelim-
inary survey (there was an increase in belief or
a large change in belief from the antecedent to
the consequent). The two other arguments, each
of which comprises a single inference, were dis-
tributed among the six evaluation sets as follows.

e Three sets had one BothSides inference and
one SameSide inference, each with two an-
tecedents.

e Two sets had one SameSide inference, and
one AlmostSame inference, each with two an-
tecedents.

e One set had one SameSide inference with two
antecedents, and one BothSides inference com-
prising three antecedents.

In order to reduce the effect of the respondents’
domain bias, we generated two versions of the sur-
vey, where for each evaluation set we swapped the
antecedent propositions in one of the inferences
with the antecedent propositions in the other.

Our survey showed that people prefer BothSides
inferences (which contain antecedents for and
against the consequent). They also prefer Same-
Side to AlmostSame for antecedents with beliefs
in the negative range (VeryProbNot, ProbNot and
PossNot); and they did not distinguish between
SameSide and AlmostSame for antecedents with
beliefs in the positive range. Further, BothSides in-
ferences with three antecedents were preferred to
SameSide inferences with two antecedents. This
indicates that persuasiveness carries more weight
than parsimony.

These general preferences are incorporated into
our background knowledge as expectations for
a range of acceptable beliefs in the consequents
of inferences in light of their antecedents. The
farther the actual beliefs in the consequents are
from the expectations, the lower the probability
of these beliefs. Hence, it is no longer true that
Pr(bel IG;|SC;, struc IG;) = 1 (Section 3.1), as
we now have a belief expectation that goes beyond
Bayesian propagation. As done at the start of Sec-
tion 3, the probability of the beliefs in an inter-
pretation is a function of the discrepancy between
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these beliefs and expected beliefs. We calculate
this probability using a variant of the Zipf distri-
bution adjusted for ranges of beliefs.

Explanatory extensions are added to an inter-
pretation in order to overcome these belief dis-
crepancies, yielding an expanded model that com-
prises the tuple {SC;, IG;, EE;}. Equation 2 now
becomes

« PI‘(SCi, IG“ EEJ X PI‘(AI"g‘SCi, IG“ EEJ

We make simplifying assumptions similar to
those made in Section 3.1, i.e., given the interpre-
tation graph and supposition configuration, the be-
liefs in the argument depend only on the beliefs in
the interpretation, and the argument structure de-
pends only on the interpretation structure. These
assumptions, together with probabilistic manipu-
lations similar to those performed in Section 3.1,
yield
aPr(struc 1G;|SC;) xPr(SC;) x
Pr(bel 1G;|SC;, struc IG;,bel EE;, struc EE;) X
Pr(struc EE;|SC;, struc IG;,bel EE;) x
Pr(bel EE;|SC;, struc IG;, struc EE;) x
Pr(bel Arg|SC;,bel IG;) x Pr(struc Arg|struc IG;)

The calculation of the probability of an ex-
planatory extension is the same as the calcu-
lation for structural model complexity at the
start of Section 3. However, the nodes in
an explanatory extension are selected from the
nodes directly connected to the interpretation
graph. In addition, as for the basic model (Sec-
tion 3.1), the beliefs in the nodes in explana-
tory extensions are obtained algorithmically by
means of Bayesian propagation. Hence, there
is no discrepancy with expected beliefs, i.e.,
Pr(bel EE;|SC;, struc IG;, struc EE;) = 1.

Table 3 summarizes the calculation of these
probabilities (the elements that differ from the ba-
sic model and the enhanced model are boldfaced).
It also shows the trade-off between structural and
belief model complexity. Presenting explana-
tory extensions has a higher structural complex-
ity (lower probability) than not presenting them.
However, explanatory extensions can reduce the
numerical discrepancy between the beliefs in an
interpretation and the beliefs expected from the
background knowledge, thereby increasing the be-
lief probability of the interpretation. For instance,

Table 3: Probability — Additional background
knowledge

Model complexity (against background)
Pr(struc IG;|SC;) structural complexity
Pr(SC;) numerical discrepancy

1 PI‘(StI‘llC EEi|SCi,

struc IGj, bel EE;) T structural complexity
T Pr(bel 1G;|SC;, struc IG;,

bel EE;, struc EE;) | numerical discrepancy

Data fit with model
Pr(struc Arg|struc IG;)  structural discrepancy
Pr(bel Arg|SC;, bel IG;) numerical discrepancy

Table 4: Summary of Trade-offs
| Pr model structure (/G) = T Pr struct. data fit

| Prmodel belief (SC') = T Pr belief data fit
| Pr model structure (F F)=- T Pr model belief

in the example in Figure 1, the added explanatory
extension eliminates the unacceptable jump in be-
lief.

Table 4 summarizes the trade-offs discussed in
this section.

4 Evaluation

We evaluated separately each component of an
interpretation — interpretation graph, supposition
configuration and explanatory extensions.

4.1 Interpretation graph

We prepared four evaluation sets, each of which
was done by about 20 people (Zukerman and
George, 2005). In three of the sets, the partici-
pants were given a simple argument and a few can-
didate interpretations (ranked highly by our sys-
tem). The fourth set featured a complex argument,
and only one interpretation (other candidates had
much lower probabilities). The participants were
asked to give each interpretation a score between
1 (Very UNreasonable) and 5 (Very reasonable).
Table 5 shows the results obtained for the inter-
pretation selected by our formalism for each set,
which was the top scoring interpretation. The first

Table 5: Evaluation results: Interpretation graph

Set # 1 2 3 4
Avg. score 3.38 3.68 3.35 4.00
Std. dev. 1.45 1.11 1.39 1.02
Stat. sig. (p) 0.08 0.15 0.07 NA

140



row shows the average score given by our subjects
to this interpretation, the second row shows the
standard deviation, and the third row the statistical
significance, derived using a paired Z-test against
alternative options (no alternatives were presented
for the fourth set). Our results show that the inter-
pretations generated by our system were generally
acceptable, but that some people gave low scores.
Our subjects’ feedback indicated that these scores
were mainly due to mismatches between beliefs in
the argument and in its interpretation, and due to
belief discontinuities. This led to the addition of
suppositions and explanatory extensions.

4.2 Supposition configuration

We prepared four evaluation sets, each of which
was done by 34 people (George et al., 2005). Each
set consisted of a short argument, plus a list of sup-
position options as follows: (a) four suppositions
that had a reasonably high probability according
to our formalism, (b) the option to make a free-
form supposition in line with the domain BN, and
(c) the option to suppose nothing. We then asked
our subjects to indicate which of these options was
required for the argument to make sense. Specif-
ically, they had to rank their preferred options in
order of preference (but they did not have to rank
options they disliked). Overall, there was strong
support for the supposition preferred by our for-
malism. In three of the evaluation sets, it was
ranked first by most of the trial subjects (30/34,
19/34, 20/34), with no other option a clear second.
Only in the fourth set, the supposition preferred by
our formalism was equal-first with another option,
but still was ranked first 10 times (out of 34).

4.3 Explanatory extensions

We constructed two evaluation sets, each of which
was done by 20 people. Each set consisted of a
short argument and two alternative interpretations
(with and without explanatory extensions). There
was strong support for the explanatory extensions
proposed by our formalism, with 57.5% of our
trial subjects favouring the interpretations with ex-
planatory extensions, compared to 37.5% of the
subjects who preferred the interpretations without
such extensions, and 5% who were indifferent.

5 Related Research

An important aspect of discourse understanding
involves filling in information that was omitted by
the interlocutor. In this paper, we have presented

a probabilistic formalism that balances conflicting
factors when filling in three types of information
omitted from an argument. Interpretation graphs
fill in details in the argument’s inferences, sup-
position configurations make sense of the beliefs
in the argument, and explanatory extensions over-
come belief discontinuities.

Our approach resembles the work of Hobbs et
al. (1993) in several respects. They employed
an abductive approach where a model (interpre-
tation) is inferred from evidence (sentence); they
made assumptions as necessary; and used guid-
ing criteria pertaining to the model and the data
for choosing between candidate models. There are
also significant differences between our work and
theirs. Their interpretation focused on problems of
reference and disambiguation in single sentences,
while ours focuses on a longer discourse and the
relations between the propositions therein. This
distinction also determines the nature of the task,
as they try to find a concise model that explains
as much of the data as possible (e.g., one refer-
ent that fits many clues), while we try to find a
representation for a user’s argument. Additionally,
their domain knowledge is logic-based, while ours
is Bayesian; and they used weights to apply their
hypothesis selection criteria, while our criteria are
embodied in a probabilistic framework.

Plan recognition systems also generate one or
more interpretations of a user’s utterances, em-
ploying different resources to fill in information
omitted by the user, e.g., (Allen and Perrault,
1980; Litman and Allen, 1987; Carberry and Lam-
bert, 1999; Raskutti and Zukerman, 1991). These
plan recognition systems used a plan-based ap-
proach to propose interpretations. The first three
systems applied different types of heuristics to se-
lect an interpretation, while the fourth system used
a probabilistic approach moderated by heuristics
to select the interpretation with the highest prob-
ability. We use a probabilistic domain repre-
sentation in the form of a BN (rather than plan
libraries), and apply a probabilistic mechanism
that represents explicitly the contribution of back-
ground knowledge, model complexity and data fit
to the generation of an interpretation. Our mech-
anism, which can be applied to other domain rep-
resentations, balances different types of complex-
ities and discrepancies to select the interpretation
with the highest posterior probability.

Several researchers used maximum posterior
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probability as the criterion for selecting an inter-
pretation (Charniak and Goldman, 1993; Gertner
et al., 1998; Horvitz and Paek, 1999). They used
BN to represent a probability distribution over the
set of possible explanations for the observed facts,
and selected the explanation (a node in the BN or
a value of a node) with the highest probability. We
also use BNs as our domain representation, but our
“explanation” of the facts (the user’s argument) is
a Bayesian subnet (rather than a single node) sup-
plemented by suppositions. Additionally, we cal-
culate the probability of an interpretation on the
basis of the fit between the argument and the inter-
pretation, and the complexity of the interpretation
in light of the background knowledge.

Our work on positing suppositions is related to
research on presuppositions (Kaplan, 1982; Gur-
ney et al., 1997) — a type of supposition implied
by the wording of a statement. Like our sup-
positions, presuppositions are necessary to make
sense of what is being said, but they operate at
a different knowledge level than our suppositions.
This aspect of our work is also related to research
on the recognition of flawed plans (Quilici, 1989;
Pollack, 1990; Chu-Carroll and Carberry, 2000).
These researchers used a plan-based approach to
identify erroneous beliefs that account for a user’s
statements or plan, while we use a probabilistic ap-
proach. Our approach supports the consideration
of many possible options, and integrates supposi-
tions into a broader reasoning context.

Finally, the research reported in (Joshi et al.,
1984; van Beek, 1987; Zukerman and Mc-
Conachy, 2001) considers the addition of informa-
tion to planned discourse to prevent a user’s erro-
neous inferences from this discourse. Our mech-
anism adds explanatory extensions to an interpre-
tation to prevent inferences that are objectionable
due to discontinuities in belief. Since such non-
sequiturs may also be present in system-generated
arguments, the approach presented here may be in-
corporated into argument-generation systems.

6 Conclusion

We have offered a probabilistic approach to the in-
terpretation of arguments that casts the selection
of an interpretation as a model selection task. In
so doing, our formalism balances conflicting fac-
tors: model complexity against data fit, and struc-
ture complexity against belief reasonableness. We
have demonstrated the use of our basic formalism

for the selection of an interpretation graph, and
shown how a more complex model and additional
background knowledge account respectively for
the inclusion of suppositions and explanatory ex-
tensions in an interpretation. Our user evaluations
show that the interpretation graphs produced by
our formalism are generally acceptable, and that
there is strong support for the suppositions and ex-
planatory extensions it proposes.
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Abstract

We consider here the task of linear the-
matic segmentation of text documents, by
using features based on word distributions
in the text. For this task, a typical and of-
ten implicit assumption in previous stud-
ies is that a document has just one topic
and therefore many algorithms have been
tested and have shown encouraging results
on artificial data sets, generated by putting
together parts of different documents. We
show that evaluation on synthetic data is
potentially misleading and fails to give an
accurate evaluation of the performance on
real data. Moreover, we provide a criti-
cal review of existing evaluation metrics in
the literature and we propose an improved
evaluation metric.

Introduction

Hasan (1976) claim that the text meaning is re-
alised through certain language resources and they
refer to these resources by the term of cohesion.
The major classes of such text-forming resources
identified in (Halliday and Hasan, 1976) are: sub-
stitution, ellipsis, conjunction, reiteration and col-
location. In this paper, we examine one form of
lexical cohesion, namely lexical reiteration.

Following some of the most prominent dis-
course theories in literature (Grosz and Sidner,
1986; Marcu, 2000), a hierarchical representation
of the thematic episodes can be proposed. The
basis for this is the idea that topics can be re-
cursively divided into subtopics. Real texts ex-
hibit a more intricate structure, including ‘seman-
tic returns’ by which a topic is suspended at one
point and resumed later in the discourse. However,
we focus here on a reduced segmentation prob-
lem, which involves identifying non-overlapping
and non-hierarchical segments at a coarse level of
granularity.

The goal of thematic segmentation is to iden- Thematic segmentation is a valuable initial
tify boundaries of topically coherent segmentstool in information retrieval and natural language
in text documents. Giving a rigorous definition processing. For instance, in information ac-
of the notion of topic is difficult, but the task cess systems, smaller and coherent passage re-
of discourse/dialogue segmentation into thematigrieval is more convenient to the user than whole-
episodes is usually described by invoking an “in-document retrieval and thematic segmentation has
tuitive notion of topic” (Brown and Yule, 1998). been shown to improve the passage-retrieval per-
Thematic segmentation also relates to several ndermance (Hearst and Plaunt, 1993). In cases such
tions such as speaker’s intention, topic flow andas collections of transcripts there are no headers
cohesion. or paragraph markers. Therefore a clear separa-
Since it is elusive what mental representationgion of the text into thematic episodes can be used
humans use in order to distinguish a coherentogether with highlighted keywords as a kind of
text, different surface markers (Hirschberg andquick read guide’ to help users to quickly navi-
Nakatani, 1996; Passonneau and Litman, 1997ate through and understand the text. Moreover
and external knowledge sources (Kozima and Fuautomatic thematic segmentation has been shown
rugori, 1994) have been exploited for the purposedo play an important role in automatic summariza-
of automatic thematic segmentation. Halliday andion (Mani, 2001), anaphora resolution and dis-
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course/dialogue understanding. score computed in step 2.

In this paper, we concern ourselves with the task Step 4 consists in smoothing the scores.
of linear thematic segmentation and are interested Step 5 chooses from any potential boundaries
in finding out whether different segmentation sys-those that have the scores smaller than a certain
tems can perform well on artificial and real data‘cutoff function’, based on the average and stan-
sets without specific parameter tuning. In addi-dard deviation of score distribution.
tion, we will refer to the implications of the choice _
of a particular error metric for evaluation results. 2.2 C99Algorithm

This paper is organized as follows. Section 2The C99algorithm (Choi, 2000) makes a linear
and Section 3 describe various systems and, rééegmentation based on a divisive clustering strat-
spectively, different input data selected for ourégy and the cosine similarity measure between any
evaluation. Section 4 presents several existin§vo minimal units. More exactly, the algorithm
evaluation metrics and their weaknesses, as wefionsists of the following steps.
as a new evaluation metric that we propose. Sec- Step 1: after the division of the text into min-
tion 5 presents our experimental set-up and showignal units (in our experiments, the minimal unit
comparisons between the performance of differenis an utteranch, stop words are removed and a
systems. Finally, some conclusions are drawn irstemmer is applied.

Section 6. The second step consists of constructing a sim-
ilarity matrix S,,xm, wherem is the number of
2 Comparison of Systems utterances and an elemesf of the matrix corre-

L ) i sponds to the cosine similarity between the vectors
Combinations of different features (derived for eX-representing the frequencies of the words inithe
ample from linguistic, prosodic information) have th utterance and thgth utterance
been explored in previous studies like (Galley et Step 3: a ‘rank matrixR is. computed, by

. mXm ’
al., 2003) and (Kauchak and Chen, 2005). Indetermining for each pair of utterances, the num-

this paper, we selected for comparison three SYSser of Neighbors iff,,.., with a lower similarity
tems based merely on the lexical reiteration fea

ture: TextTiling (Hearst, 1997), C99 (Choi, 2000)
and TextSeg (Utiyama and Isahara, 2001). In th
following, we briefly review these approaches.

value.

In the final step, the location of thematic bound-
Qries is determined by a divisive top-down cluster-
ing procedure. The criterion for division of the
current segmenB into b1, ...b,,, subsegments is
based on the maximisation of a ‘densify, com-

The TextTiling algorithm was initially developed puted for each potential repartition of boundaries
by Hearst (1997) for segmentation of exposi-gg

tory texts into multi-paragraph thematic episodes D_ > opey sumy,
having a linear, non-overlapping structure (as re- S o areay’

flected by the name of the algorithm). TextTiling wheresum,, andarea,, refers to the sum of rank

is vyldely used as a de-facto sta_ndard in the evalénd area of thé-th segment inB, respectively.
uation of alternative segmentation systems, e.g.

(Reynar, 1998; Ferret, 2002; Galley et al., 2003)2.3 TextSegAlgorithm
The algorithm can briefly be described by the foI—The TextSegalgorithm  (Utiyama and Isahara,

lowing steps. ~2001) implements a probabilistic approach to de-
~ Step 1 includes stop-word removal, lemmatizatermine the most likely segmentation, as briefly

tion and division of the text into ‘token-sequences’ yaccribed below.

(i.e. text blocks having a fixed number of words). 110 segmentation task is modeled as a problem

Step 2 dete.rmines a score for each gap betwge& finding the minimum cost(S) of a segmenta-
two consecutive token-sequences, by computingon s. The segmentation cost is defined as:
thecosine similarityManning and Sciitze, 1999)

between the two vectors representing the frequen- C(S) = —logPr(W|S)Pr(S),

cies of the words in the two blocks. —
Step 3 ¢ ‘depth ' h tok Occasionally within this document we employ the term
€p 5 computes a depth score for each loKeNyyerance to denote either a sentence or an utterance in its

sequence gap, based on the local minima of thgroper sense.

2.1 TextTiling Algorithm
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whereW = wyws...w, represents the text con- of story segmentation, i.e. the task of segmenting
sisting ofn words (after applying stop-words re- a stream of news data into topically cohesive sto-
moval and stemming) anfl = S1.55...5,, isa po- ries. As part of the TDT initiative several datasets
tential segmentation oY in m segments. The of news stories have been created. In our evalua-
probability Pr(WW|S) is defined using Laplace tion, we used a subset of 28 documents randomly
law, while the definition of the probability’»(S)  selected from the TDT Phase 2 (TDT2) collection,
is chosen in a manner inspired by information thewhere a document contains an average of 24.67
ory. segments.

A directed graphg is defined such that a path _ _
in G corresponds to a possible segmentation of-3 Meeting Transcripts
W. Therefore, the thematic segmentation pro-The third dataset used in our evaluation contains
posed by the system is obtained by applying a dy25 meeting transcripts from the ICSI-MR corpus
namic programming algorithm for determining the (Janin et al., 2004). The entire corpus contains

minimum cost path i . high-quality close talking microphone recordings
of multi-party dialogues. Transcriptions at word
3 Input Data level with utterance-level segmentations are also

When evaluating a thematic segmentation systerﬂv‘?‘”able' The gold _standard fpr thematic segmen-
tations has been kindly provided by (Galley et

for an application, human annotators should pro L
vide the gold standard. The problem is that theal" 2003) and has been chosen by considering the

procedure of building such a reference corpus ig_greerréenthbetwien ‘_E‘t tlﬁaSt dt'h_rge dh_urtnan atr_mota—
expensive. That is, the typical setting involves an ONs- Each meeting Is thus divided info contigu-
experiment with several human subjects, who arQUS major topic segments and contains an average

asked to mark thematic segment boundaries basé)é 7.32 segments. ) ) )
on specific guidelines and their intuition. The NOte that thematic segmentation of meeting

inter-annotator agreement provides the referenci@t@ is @ more challenging task as the thematic

segmentation. This expense can be avoided bg;ansmons are subtler than those in TDT data.

constructing a synthetic reference corpus by con, , .
. : 4 Evaluation Metrics
catenation of segments from different documents.

Therefore, the use of artificial data for evaluation|n this section, we will look in detail at the error

is a general trend in many studies, e.g. (Ferreimetrics that have been proposed in previous stud-
2002; Choi, 2000; Utiyama and Isahara, 2001). jes and examine their inadequacies. In addition,

In our experiment, we used artificial and realwe propose a new evaluation metric that we con-
data, i.e. the algorithms have been tested on th&ider more appropriate.

following data sets containing English texts.
4.1 Py Metric

(Passonneau and Litman, 1996; Beeferman et al.,
Choi (2000) designed an artificial dataset, built by1999) underlined that the standard evaluation met-
concatenating short pieces of texts that have beeyics of precision and recall are inadequate for the-
extracted from the Brown corpus. Any test samplematic segmentation, namely by the fact that these
from this dataset consists of ten segments. Eachetrics did not account for how far away is a hy-
segment contains the firstsentences (whei®<  pothesized boundary (i.e. a boundary found by
n < 11) of a randomly selected document from the automatic procedure) from a reference bound-
the Brown corpus. From this dataset, we randomlyry (i.e. a boundary found in the reference data).
chose for our evaluation 100 test samples, wheren the other hand, it is desirable that an algorithm
the length of a segment varied between 3 and 1#hat places for instance a boundary just one utter-
sentences. ance away from the reference boundary to be pe-
nalized less than an algorithm that places a bound-
3.2 TDT Data ary two (or more) utterances away from the ref-
One of the commonly used data sets for topic segerence boundary. Hence (Beeferman et al., 1999)
mentation emerged from the Topic Detection andoroposed a new metric, callegy, that allows for
Tracking (TDT) project, which includes the task a slight vagueness in where boundaries lie. More

3.1 Artificially Generated Data
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specifically, (Beeferman et al., 1999) defiitp be counted inPy, i.e. Py ss Should be in-

as follows: creased.

Pp(ref, hyp) = ZlgigjgND(ivj)[éref(iaj) ©®

Shyp (4, 5)]- e Example 2: Ifr(i,k) = 1 andh(i,k) =
N is the number of words in the reference data. 2 then obviouslyPrq;sc aiarm Should be in-
The functiond,.¢ (4, j) is evaluated to one if the creased.

two reference corpus indices specified by its pa-

rameters and; belong in the same segment, andHowever, considering the first example, we will

zero otherwise. Similarly, the functiah,,, (i, j) ~ OPW@iINdrey (3,7 + k) = 0, dnyp(i,i + k) = 0

is evaluated to one, if the two indices are hypothe@nd consequently’yy;s; is not increased. By tak-

sized by the automatic procedure to belong in thé"d the case from the second example we obtain

same segment, and zero otherwise. Thepera- Oref (i@ + k) = 0 anddp,, (4,7 + k) = 0, involv-

tor is the XNOR function ‘both or neitherD(i, j) NG N0 increase ofPpaise Alarm.-

is a “distance probability distribution over the set I (TDT, 1998), a slightly different defini-

of possible distances between sentences choséfn is given for theP, metric: the definition of

randomly from the corpus”. In practice, a distri- missandfalse alarmprobabilities is replaced with:

bution D having “all its probability mass at a fixed

distance k” (Beeferman et al., 1999) was adopted’/;.s = SN (15, (i) )

. i—1 ref (2

and the metrid’p was thus renameg;,. SNk (1 Gt ooy ()]
In the framework of the TDT initiative, (Allan Pl ararm = == Zj_vhfi G i+1:§f 1,

et al., 1998) give the following formal definition i=t Sresth

of P, and its components: where:

thp(i,i + /{7) = {

SN R L=y (i K] (L0 g (ii+K)]

1, if r(i,k) = h(i, k),
Pk = PMiss . Pseg + PFalseAlarm . (1 - Pseg); 0, otherwise.

We will refer to this new definition ofP, by

where: P[.  Therefore, by taking the definition of

P SN [y (it k)] (1= 8 f (i,i+K)] P/ and the first example above, we obtain
Miss = SN F 1=6ye s (inith)] ’ Oref(i,i+k) = 0andQy,,(i,i+ k) = 0 and thus

P SN R (1 (i k)] [re  (1i4h)] Py, IS correctly increased. However for the case
FalseAlarm = SN F 6o (iritk) ’ of example 2 we will obtair,.f(i,i + k) = 0

andQy,,(i,7 + k) = 0, involving no increase of

and P, is the a priori probability that in :
seg priort 'p y that N pr e, @Nd erroneous increase Bf,
the reference data a boundary occurs within an

interval ofk words. Therefore?; is calculated by 4.2 \WindowDiff metric

moving a window of a certain width, wherek is

usually set to half of the average number of WOI’d? evzner altln?j\lfvt_eac;st (ngfo%s) prkopo§e the alternative
per segment in the gold standard. metric calledWindowDi y keeping our nota-

Pevzner and Hearst (2002) highlighted severa‘iIons conce_rnlng(z, k) and}?(l.’ k) m_troduced N
problems of theP, metric. We illustrate below the subsection 4.WindowDiffis defined as:
what we consider the main problems of th& _ _ Nk 1 k) — R(i
metric, based on two examples. WindowDiff— =11 (Nkzk A,

Let (i, k) be the number of boundaries be- , _ L
tween positions andi + k in the gold standard Similar to both P, and Fy, WindowDiff is
segmentation ant(i, k) be the number of bound- also computed by moving a window of fixed size

aries between positionigndi-+k in the automatic 2CT0Ss the test set and penalizing the algorithm
hypothesized segmentation. misses or erroneous algorithm boundary detec-

tions. However, unlikeP, and P, WindowDiff
e Example 1: Ifr(i,k) = 2 andh(i,k) = 1  takes into account how many boundaries fall
then obviously a missing boundary shouldwithin the window and is penalizing in “how
— _ many discrepancies occur between the reference
Let ref be a correct segmentation ahgpbe a segmen-

tation proposed by a text segmentation system. We will kee@'nd the system r_esults rather_ than “determining
this notations in equations introduced below. how often two units of text are incorrectly labeled

iSs"
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as being in different segments” (Pevzner and0 < Cy, < 1) is the cost of a false alarm,
Hearst, 2002). Pro. = Zﬁi’}v’“_ [I?ref,hyp(ivk)]

Our critique concerningWindowDiff is that Yist Brep(@k)]
misses are less penalised than false alarms angd. S e s nyp(ik)]
we argue this as follows. WindowDiff can be Ja Nk

)

rewritten as: 1, if r(i,k) > h(i,k)
' ff = WD Orefhyp(i- k) = § ’ ’
Wmdotzff - WDMzss + WDFalseAlarmv f,hyp(/[/ ) {O7 otherwise
where: 1" [r(i,k)>h(i k)] 1 k) < h(i, k
SN Ir(4,k) > h(6,k . . i, k) < h(i,
WDMiSS - 1 N—Fk 3 \Il’r‘ef,hyp(,% k) — Zf T(Z ) (Z )
0, otherwise.
—k . .
WD paiseAlarm = Lzl [1;\(;7,’2<h(1’k)] . . 1, if T(i, k‘) >0
Aver(i, k) =
0, otherwise.
Hence both misses and false alarms are weighted
byﬁ. Pr,.;ss could be interpreted as the probability

Note that. on the one hand. there are indeed (Nt_hat the hypothesized segmentation contains less
k) equiprobable possibilities to have a false alarnfoundaries than the reference segmentation in an
in an interval of k units. On the other hand. how-interval of & units®, conditioned by the fact that
ever, the total number of equiprobable possibil—the reference segmentation contains at least one
ities to have a miss in an interval of k units is Poundary in that interval. - Analogouslyr s, is -
smaller than (N-k) since it depends on the numihe probability that the hypothesized segmentation
ber of reference boundaries (i.e. we can have gontains more boundaries than the reference seg-

miss in the interval of k units only if in that interval Mentation in an interval of units.
the reference corpus contains at least one bound- FOr certain applications where misses are more

ary). Therefore misses, being weighted ¥, important than false alarms or vice versa, the

Let B, be the number of thematic boundariest® C'ra @nd Cmiss parameters. In order to have
Prepror € [0,1], we suggest that's, and Ciyiss

in the reference data. Let's say that the refer-

ence data contains about 20% boundaries and 808§ chosen SUChlth&tf a + Cmiss = 1. By choos-
non-boundaries from the total number of potential"9 Cra=Crmiss=3, the penalization of misses and
boundaries. Therefore, since there are relativelf2!S€ alarms is thus balanced. In consequence, a

few boundaries compared with non-boundaries, a‘trategy that places no boundaries at all is penal-

strategy introducing no false alarms, but introduc2€d @s much as a strategy proposing boundaries

ing a maximum number of misses (i.é.- B, everywhere (i.e. after every unit). In other words,

misses) can be judged as being around 80% coRoth such degenerate algorithms will have an error
rect by theWindowDiff measure. On the other &€ Prerror OF @bout 50%. The worst algorithm,
hand, a segmentation with no misses, but with £enalised as having an error rate..,, of 100%
maximum number of false alarms (i.6N — k) whenk: = 2, is the algorithm that places bound-
false alarms) is judged as being 100% erroneou@’€S everywhere except the places where refer-
by the WindowDiff measure. That is, misses and®Nce boundaries exist.
false alarms are not equally penalised.
Another issue regarding/indowDiff is that it is
not clear “how does one interpret the values prog 1  Test Procedure

duced by the metric” (Pevzner and Hearst, 2002). _
For the three datasets we first performed two

4.3 Proposal for a New Metric common preprocessing steps: common words are
) ] eliminated using the same stop-list and remaining
In order to address the inadequaciesigfand \yor4s are stemmed by using Porter's algorithm
V\ﬁqdoan‘t we propose a hew evaluation metrlc,(198o)_ Next, we ran the three segmenters de-
defined as follows: scribed in Section 2, by employing the default val-

P QGTW = Cumiss - Prmiss + Cpa - Prya, ues for any system parameters and by letting the
where:

Chniss (0 < Chiss < 1) is the cost of a misgy, 3A unit can be either a word or a sentence / an utterance.

5 Results
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systems estimate the number of thematic bounds.2.1 Comparison of System Performance
aries. from Avrtificial to Realistic Data

We also considered the fact that C99 and rom the artificial data to the more realistic
TextSeg algorithms can take into account a fixed!ata:; We expect to have more noise and thus the
number of thematic boundaries. Even if the num-2/90rithms to constantly degrade, but as our ex-
ber of segments per document can vary in TpTPeriments show a reversal of the assessment can
and meeting reference data, we consider that in §°Par. More exactly: as can be seen from Figure
real application it is impossible to provide to the 1, both C99 and Te>_<t.Seg algo_nthms S|gn|f|ca_n_tly
systems the exact number of boundaries for eacfutPerformed TextTiling algorithm on the artifi-
document to be segmented. Therefore, we ran cggally created dataset, when the number of seg-
and TextSeg algorithms (for a second time), byMents was determined by the systems. A com-
providing them only the average number of segPa1ison between the error rates given in Figure

ments per document in the reference data, whicft @1d Figure 2 show that C99 and TextSeg have

gives an estimation of the expected level of segf" similar trend, by significantly decreasing their
mentation granularity performance on TDT data, but still giving bet-

ter results than TextTiling on TDT data. When

Four additional naive segmentations were als@omparing the systems Bre,,or, C99 has simi-
used for evaluation, namely:no boundaries |ar performance with TextTiling on meeting data
where the whole text is a single segmemt] (see Figure 3). Moreover, when assessment is
boundariesi.e. a thematic boundary is placed af-done by usingVindowDiff P, or P!, both C99
ter each utteranceandom knowni.e. the same and TextSeg came out worse than TextTiling on
number of boundaries as in gold standard, distribmeeting data. This demonstrates that rankings ob-
uted randomly throughout text; amdndom un- tained when evaluating on artificial data are dif-
known the number of boundaries is randomly ferent from those obtained when evaluating on re-
selected and boundaries are randomly distributegllistic data. An alternative interpretation can be
throughout text. Each of the segmentations wagjiven by taking into account that the degenerative
evaluated withPy, P, and WindowDiff as de- no boundariessegmentation has an error rate of
scribed in Section 4. only 30% by thewindowDiff P, and P{ metrics
on meeting data. That is, we could interpret that
all three systems give completely wrong segmen-
tations on meeting data (due to the fact that topic
shifts are subtler and not as abrupt as in TDT and
artificial data). Nevertheless, we tend to adopt the
) ) firstinterpretation, given the weaknesse$pf P;
The results of applying each segmentation algoznq\windowDiff (where misses are less penalised

rithm to the three distinct datasets are SUMMagan false alarms), as discussed in Section 4.
rized in Figures 1, 2 and 3. Percent error values

are given in the figures and we used the follow-5.2.2 The Influence of the Error Metric on

ing abbreviationsWD to denoteWindowDiff er- Assessment

ror metric; TextSegKAto denote the TextSeg algo- By following the quantitative assessment given
rithm (Utiyama and Isahara, 2001) when the avby the WindowDiff metric, we observe that the
erage number of boundaries in the reference datalgorithm labeledNO is three times better than
was provided to the algorithn§©99.KA to denote the algorithmAll on meeting data (see Figure 3),
the C99 algorithm (Choi, 2000) when the aver-while the same algorithniNO is considered only
age number of boundaries in the reference dathawo times better thaAll on the artificial data (see
was provided to the algorithnNOto denote the al- Figure 1). This verifies the limitation of thé/in-
gorithm proposing a segmentation with no bound-dowDiff metric discussed in Section 4.

aries;All to denote the algorithm proposing the de- The four error metrics described in detail in
generate segmentati@il boundaries RK to de- Section 4 have shown that the effect of knowing
note the algorithm that generatesaadom known the average number of boundaries on C99 is posi-
segmentation; andU to denote the algorithm that tive when testing on meeting data. However if we
generates eandom unknowiegmentation. want to take into account all the four error met-

5.2 Comparative Performance of
Segmentation Systems
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Figure 1: Error rates of the segmentation systems on artificial data, Wheré2 and P, = 0.44.

120
100 -
57
- 80 z
= o :
5 : o R
[} § E: ? §: z
- % N
. B Nz NE
33 R -
: i S N
5% lfsz fgiz
TextTiling Cc9o9 TextSeg C99_KA NO All
B Pk 40.7 21.36 13.97 18.83 36.02 63.93 60.04
B P'k 44.92 29.5 20.37 27.69 36.04 100 89.93
BwWD 44.76 36.28 30.3 40.26 46.69 100 91.92
B Pr_error 34.09 25.69 25.62 27.17 49.96 50 48.31

Figure 2: Error rates of the segmentation systems on TDT data, wherg5 and P,., = 0.3606.
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Abstract

In recent years, the development of intelligent tutoring dialogue systems
has become more prevalent, in an attempt to close the performance gap be-
tween human and computer tutors. Tutoring applications differ in many
ways, however, from the types of applications for which spoken dialogue
systems are typically developed. This talk will illustrate some of the op-
portunities and challenges in this area, focusing on issues such as affective
reasoning, discourse and dialogue analysis, and performance evaluation.
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Abstract the one side and to report on the perceived envi-
ronmental changes on the other side. Otherwise
the robot had to break up the task execution and
there is no way for the user to find out the reason.

The second challenge for HRI dialog manage-
ment is theembodimenbf a robot which changes
the way of interaction. Empirical studies show that
the visual access to the interlocutor’s body affects
ever, are often system-oriented and have the conversation in the way that non-verbal behav-
limited capabilities. We present an agent- iors are used as communicative signals (Nakanq et
based dialog model that are specially de- al., 2003). For example, to refer to a cup that is
signed for human-robot interaction and visible to both dialog partners, the speaker tends
to say “this cup” while pointing to it. The same
strategy is considerably ineffective during a phone
. call. This example shows, an HRI dialog system
1 Introduction must account for multi-modal communication.

Natural language is the most intuitive way to com- The third, probably the unique challenge for
municate for human beings (Allen et al., 2001). ItHRI dialog management is the implication of the
is, therefore, very important to enable dialog capalearning ability of such a robot. Since a personal
bility for personal service robots that should helpservice robot is intended to help human in their
people in their everyday life. However, the inter-individual household it is impossible to hard-code
action with a robot as a mobile, autonomous deall the knowledge it will need into the system, e.qg.,
vice is different than with many other computer where the cup is and what should be served for
controlled devices which affects the dialog modeldunch. Thus, it is essential for such a robot to
ing. Here we want to first clarify the most essen-be able to learn new knowledge and tasks. This
tial requirements for dialog management systemgbility, however, has the implication for the dia-
for human-robot interaction (HRI) and then out-log system that it can not rely on comprehensive,
line state-of-the-art dialog modeling approaches tdard-coded knowledge to do dialog planning. In-
position ourselves. stead, it must be designed in a way that it has a
The first requirement results from tisgéuated- loose relationship with the domain knowledge.

ness(Brooks, 1986) of HRI. A mobile robot is  Many dialog modeling approaches already ex-
situated “here and now” and cohabits the samést. McTear (2002) classified them into three main
physical world as the user. Environmental changegypes:finite state-basedrame-basedandagent-
can have massive influence on the task executiotnased In the first two approaches the dialog struc-
For example, a robot should fetch a cup from theture is closely coupled with pre-defined task steps
kitchen but the door is locked. Under this cir-and can therefore only handle well-structured
cumstance the dialog systemustsupport mixed- tasks for which one-side led dialog styles are suf-
initiative dialog style to receive user commands orficient. In the agent-based approach, the com-

Dialog systems for mobile robots operat-
ing in the real world should enable mixed-
initiative dialog style, handle multi-modal

information involved in the communica-

tion and be relatively independent of the
domain knowledge. Most dialog systems
developed for mobile robots today, how-

provide evidence for its efficiency with our
implemented system.
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munication is viewed as eollaboration between concrete examples from the robot domain to clar-
two intelligent agents Different approaches in- ify the relatively abstract model.
spired by psychology and linguistics are in use
within this category. For example, within the 2.1  Grounding
TRAINS/TRIPS project several complex dialog _ . _
systems for collaborative problem solving have©ne of the most influential theories on the collab-
been developed (Allen et al., 2001). Here the diafrative nature of dialog is the common ground the-
log system is viewed as a conversational agent th&'y of Clark (1992). In his opinion, agents need
performs communicative acts. During a converlo coordinate their mental states based on their
sation, the dialog system selects the communicdhutual understanding about the current tasks, in-
tive goal based on its current belief about the dolentions, and goals during a conversation. Clark
main and general conversational obligations. Suckermed this process agoundingand proposed a
systems make use of communication and domaifontribution model. In this model, “contributions”
model to enable mixed-initiative dialog style andfrom conversational agents are considered to be
to handle more complex tasks. In the HRI field,the basic component of a conversation. Each con-
due to the complexity of the overall systems, usulribution has two phases:Rresentatiorphase and
ally the finite-state-based strategy is employed@nAcceptanc@hase. In the Presentation phase the
(Matsui et al., 1999; Bischoff and Graefe, Zooz;speaker presents an utterance to the listener, in the
Aoyama and Shimomura, 2005). As to the is-Acceptance phase the listener issues an evidence
sue of multi-modality, one strand of the researciPf understanding to the speaker. The speaker can
concerns the fusion and representation of multiOnly be sure that the utterance she presented previ-
modal information such as (Pfleger et al., 2003PUSly has become a part of their common ground
and the other strand focuses on the generalisatidhthis evidence is available.
of human-like conversational behaviors for virtual Although this well established theory provides
agents. In this strand, Cassell (2000) proposes @mprehensive insight into human conversation
general architecture for multi-modal conversationfwo issues in this theory remain critical when be-
and Traum (2002) extends his information-statdng applied to model dialog. The first one is the re-
based dialog model by adding more conversationgtursivity of Acceptance. Clark claimed, since ev-
layers to account for multi-modality. erything said by one agent needs to be understood
In this paper we present an agent-based dialofy her interlocutor, each Acceptance should also
model for HRI. As described in section 2, the twoPlay the role of Presentation which needs to be ac-
main contributions of this model are the new mod-cepted, too. The contributions are thus to be or-
eling approach of Clark's grounding mechanismganized as a graph. However, this implies that the
and the extension of this model to handle multi-9rounding process may never really end (Traum,
modal grounding. In section 3 we outline the ca-1994). The second critical issue is taking con-
pabilities of the implemented system and presenffibutions as the most basgrounding units In

some quantitative evaluation results. Clark’s view, the basic grounding unit, i.e., the unit
of conversation at which grounding takes place,
2 Dialog Model is the contribution. To provide Acceptance for a

contribution agents may need to issue clarification
We view a dialog as a collaboration between twoquestions or repair. But when modeling a dialog,
agents. Agents are subject to common conversaspecially a task-oriented dialog, it is hard to map
tional rules and participate in a conversation byone single contribution from one agentto a domain
issuing multi-modal contributions (e.g., by say-task since tasks are always cooperately done by
ing something or displaying a facial expression).the two agents (Cahn and Brennan, 1999). Traum
In subsection 2.1 we show how we handle con{1994) addressed the first issue by introducing a
versational tasks by modeling the conversationdlinite-state based grounding mechanism and Cahn
rules based on grounding and in subsection 2.2 wand Brennan (1999) used “exchanges™ as the ba-
present how we model individual contributions tosic grounding unit to tackle the second critical is-
tackle the issue of multi-modality. In subsectionsue. We combine the advantages of their work and
2.3 we put these two things together to completgresent a grounding mechanism based on an aug-
the model description. In this section, we also pumented push-down automaton as described below.
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Basic grounding unit: As Cahn and Brennan change because they start an exchange. We identi-
we takeexchangeas the most basic grounding fied 4 types of grounding relationfefault Sup-
unit. An exchange is a pair of contributions ini- port, Correct and Delete In the following we
tiated by the two conversational agents. They replook at these relations in more detail and refer to
resent the idea dddjacency pair{Schegloff and exchanges with relatior to its immediately pre-
Sacks, 1973). The first contribution of the ex-ceding exchang@PE) as %« exchange”, e.g., Sup-
change is the Presentation and the second contiport exchange:

bution is the Acceptance, e.g., if one asks a ques- pefault The current Presentation introduces a
tion and the other answers it, then the question Iﬁew account that is independent of the previous
the Presentation and the answer is the ACCGptanCQXchange in terms of grounding, e.g., what Tom
In our model, a contribution only represermse  saijd to Jane constructs three Presentations that ini-
speech act. For example, if an agent says “Hellogjate three default exchanges. Such exchanges can

my name is Tom, what is your name?” this ut-pe grounded independently of each other.
terances is segmented into three Presentations (aSupport If an agent can not provide Accep-

greeting, a statement, and a question) althougfnce for the given Presentation she will initiate
fth_e_y occur in one turn. These three Presentationg .. exchange to support the grounding process
initiate three exchaqges and each of them needs 9 the ungrounded exchange. A typical exam-
be accepted by the interlocutor. ple of such an exchange is a clarification ques-
Changing status of grounding units: Also as  tion like “I beg your pardon?”. If a Support ex-
proposed by Cahn and Brennan, an exchange h&bange is grounded its initiator will try to ground
two states:not (yet) groundedndgrounded An  the IPE again with the newly collected information
exchange is grounded if the Acceptance of théhrough the supporting exchange.
Presentation is available. Note, the Acceptance Correct Some exchanges are created to correct
can be an implicit one, e.g, in form of “contin- the content of the IPE, e.g., in case that the lis-
ued attention” in Clark’s term. Taking the exam-tener misunderstood the speaker and the speaker
ple above, the other agent would reply “Hello, mycorrects it. Similar to Support, after such an ex-
name is Jane.” without explicitely commenting change is grounded its IPE is updated with new
Tom’s name, yet the three exchanges that Tom iniinformation and has to be grounded again.

tiated were all accepted. Delete Agents can give up their effort to build a

Organization of grounding units: In accor- common ground with her interlocutor, e.g., by say-
dance with Traum we do not think that the Pre-ing “Forgetit.”. If the interlocutor agrees, such ex-
sentation of one exchange should play the r0|é:hanges have the effect that all the ungrounded ex-
of the Acceptance of its pre\/ious exchange. Inchanges from the initial Default exchange up to the
stead, we organize exchanges in a stack. The sta€kirrent state are no longer relevant and the agents
represents the whole ungrounded discourse: urflo not need to ground them any more.
grounded exchanges are pushed onto it and the Note, once an exchange is grounded itisne-
grounded ones are popped out of it. One majodiatelyremoved from the stack so that its IPE be-
question of this representation i¥Vhat has the comes the IPE of the next exchange. This model
grounding status of individual exchange to do withis described as an augmented push-down automa-
the grounding status of the whole stackane’s ton (Fig. 2). It is augmented in so far that transi-
Acceptance of Tom’s greeting has no apparent retions can trigger actions and a variable number of
lation to the remaining two still ungrounded ex- exchanges can be popped or pushed in one step.
changes initiated by Tom. But in theenter em- There are five states in this APDA and they rep-
beddingexample in Fig. 1, the Acceptance of B1 resent the fact what kind of ungrounded exchange
(utterance A2) contributes to the Acceptance ofs on the top of the stack. Along the arrows that
Al (utterance B2). These examples show that theonnect the states the input (denoted as 1), the re-
grounding status of the whole discourse dependsulting stack operation (denoted as S) and the pos-
on (1) the grounding status of the individual ex-sible action that is triggered (denoted as A) are
changes and (2) the relationship between these egiven. The input of this automaton includes Pre-
changes, thgrounding relation These relations sentation (e.g., “defaultP” stands for “Default Pre-
are introduced by the Presentation of each exsentation”) and Acceptance.
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AL: What do you think about Mr. Watton® an Acceptance. If it is a Presentation, the system
B1: Mr. Watton? our music teacher? ) .
A2 Yes. (accept B1) needs further to decide whether it initiates a new
B2: Well, he is OK. (accept A1) account, corrects or supports the current one, or
Figure 1: An example of center embedding deletes it. This issue of intention recognition is a

classical challenge for dialog systems. We present

our solution in section 3. The second point is that
%o, the dialog system needs to know when to create an
Defaul 225 SHOREY: AcoreatlPE) ac: sipop(e) Correct & exchange of certain grounding relation by generat-

ing an appropriate Presentation and when to create

an Acceptance. For that we need to first look at the
structure of individual contributions more closely
in the next subsection.

l:deleteP; S:push(ex)
I defaultP
A

Delete
Top

l:acc; S:pop(ex)
I:deleteP; S:push(ex)

2.2 The structure of agents’ contributions

|[supportP|correctP|
deleteP; S:

To represent the structure of the individual contri-
butions we take into account the whole language
Figure 2: Augmented push-down automaton forgéneration process which enables us to come up
grounding (ex: exchange) with a powerful solution as described below.
The layers of a contribution: What we can
observe in a conversation are only exchanges of
As long as there is an ungrounded exchang@gents’ contributions in verbal or non-verbal form.
at the top of the stack, the addressee will try toBut in fact the contributions are the end-product
ground it by providing Acceptance, unless its va-of 3 complex cognitive process: language produc-
lidity is deleted. For the reason of space, we onlytion. Levelt (1989) identified three phases of lan-
explain the APDA with the center embedding ex-guage productionconceptualizatiorformulation
ample in Fig. 1. Contribution Al introduces a andarticulation. The production of an utterance
question into the discourse which initiates a De-starts from the Conception ofcommunicative in-
fault exchange, say Ex1. This exchange is pushegntionand the semantic organization in the con-
onto the stack. Instead of providing Acceptanceseptualization phase before the utterance can be
to Al, contribution B1 initiates a new exchange,formulated and articulated in the next two phases.
say Ex2, with grounding relation Support to EX1 ntentions can arise from the previous discourse or
and is pushed onto the stack. Then contributiofrom other motivations such as needs for help or
A2 acknowledges B1 so that Ex2 is grounded anghformation. This finding motivates us to set up a
popped out of the stack. The top element of thewo-layered structure of contributions. One layer
stack is now the ungrounded Ex1. Since EX2 supjs the so-calledntention layerwhere communi-
ported Ex1, the Ex1 is updated with the infor- cation intentions are conceived. For a robot the
mation contained in Ex2 (The music teacher wagommunication intentions come from the analysis
meant) and B2 then successfully grounds this upof the previous discourse or from the robot control
dated Ex1. system. The other layer is tlw®nversation layer
In our model, every exchange can be individu-The communication intentions are formulated and
ally grounded and contributes to the grounding ofarticulated here These two layers represent the
the whole ungrounded discourse by acting on théntention conception and the language generation
IPE according to their grounding relations. Thisprocess, respectively. We term this two-layered
way we can organize the discourse in a sequenastructure of contributiomnteraction unit(1U).
without losing the local grounding flexibility. For  The issue of multi-modality: Face-to-face
an implemented system, this means that both theonversations are multi-modal. Speech and body
user and the system can easily take initiative ofanguage (e.g., gesture) can happen simultane-
issue clarification questions. To implement thisously. McNeill (1992) stated that gesture and
model, however, two points are crucial. The firstspeech arise from the same semantic source, the
one is the recognition of the user's contribution——_——— ,
Since most robot systems use speech synthesizer to gen-

type: for every u§er Contr|bUt_|0_n’ the dialog _Sys'erate acoustic output which replaces the articulation process,
tem needs to decide whether it is a Presentation ainly formulation is performed on this layer.
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so-called “idea unit” and are co-expressive. Sincghe self-motivation apart from the fact that, in case
semantic representation is created out of commuaf intentions motivated by conversational needs,
nicative intentions (Levelt, 1989) we assume thehe intention layer of the IU does not import any
communication intentions are the modality inde-robot control system message but creates an inten-
pendent base that governs the multi-modal lantion directly. Note, the IUs that are initiated by the
guage production. We, therefore, extend our strucrobot and by the user have identical structure. But
ture above by introducing two generators on then case of user initiated 1Us we do not make any
conversation layer: ongerbaland onenon-verbal assumption of their underlying intention building
generator that represent the verbal and non-verbgarocess and the intention layer of their IlUs are thus
language generation mechanism based on thEways empty.

communication intentions created on the intention With the IUs, we can integrate the non-verbal
layer. The relationship between these two generayehavior systematically into the communication
tors is variable. For example, Iverson et al. (1999process and model multi-modal dialog. Although
identified three types ohformationalrelationship it is not the focus of our work, our model can also
between speech and gesture: ‘ handle purely non-verbal contributions, since the
reinforcement(gesture rein- 'Conbve;rsa"on Layirl' verbal generator does not always need to be acti-
forces the message conveyed vated if the non-verbal generator already provides

in speech, e.g., emphatic ges; -Inteniontayer- | enough information about the speaker’s intention.
ture), disambiguation (ges- | inenionconcepiin ;| Possible scenarios are: the user looks tired (pre-
ture serves as the precise ref- sentation) and the robot offers “I can do that for

erent of the speech, e.g., deic- Figure 3: IlU  you.” (acceptance) or the user says something
tic gesture accompanying the (presentation) and robot nods (acceptance).

utterance “this cup”), andadding-information

(e.g., saying “The ball is so big.” and shapingo 3 Putting things together
the size with hands). In our work, when process- _ _
ing users’ multi-modal contributions we focus on 11l Now we have discussed our concept of using

the disambiguation relation; when creating multi-& grounding mechanism to organize contributions

ested in other informational relatioAsThe struc- NOW itis time to look at the still open point at the
ture of an 1U is illustrated in Fig. 3. end of the section 2.1: when to create an IU as

Operation flow within an interaction unit; ~ Presentation and when an IU as Acceptance.

During a conversation an agent either initiates Self-motivated intentions usually trigger the
an account or replies to the interlocutor’s ac-creation of an IU as Presentation with Default re-
count. The communication intentions can thus bdation to its IPE. For example, if the robot needs
self-motivatedor other-motivated For a robot, to report something to the user it can create a De-
self-motivated intentions can be triggered by thefault exchange by generating an IU as its Presen-
robot control system, e.g., observed environmentation. The user is then expected to signal her Ac-
tal changes. In this case, an IU is created witifeptance. Other-motivated intentions can, accord-
its intention layer importing the message from thelng to the context, result in either Presentation or
robot control system and exporting an intentionAcceptance. To make the correct decision we de-
This intention is transfered to the conversatiorveloped criteria based on tf@nt intention theory
layer which then formulates a verbal message witt®f Levesque et al. (1990) which predicts that dur-
the verbal generator and/or constructs a body laring a collaboration the partners are committed to
guage expression with the non-verbal generato@ joint goal that they will always try to conform
Other-motivated intentions can be triggered by thdill they reach the goal or give up. Note, this does
needs of the on-going conversation, e.g., the nee@t mean that one will always agree with her inter-
to answer a question, or be triggered by robot’s exlocutor, but they will behave in the way that they
ecution results of the tasks specified previously byhink is the best to achieve the goal. This theory
the user. The operation flow is similar to that ofcan be applied to human-robot dialog in a twofold
— e , o .. sense: Firstly, a dialog can be generally seen as
This policy has a practical reason: it is much more diffi-

cult in computer science to correctly recognize and interpreta coIIaboratlon_as Cl_ark proposed. Sgcondly’_ the
human motion than to simulate it. human-robot dialog is mostly task-oriented, i.e.,
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the human and the rObOt WOI‘k towal‘dS the Same.—»( push Exchange n with the interlocutor’s IU as presemation]
) . . . . '

goal. With this theory in mind we describe how (study verbal info on the interlocutor's CL )

we process other-motivated contributions below. s

: - - no
intention recognized?

(study non-verbal info on the CL)

s intention recognized?
no

create IU as Presentation

create exchange n+1with
Support or Correct relation

push exchange n+1

The precondition of language production based
on other-motivated intentions is language percep-|aecsms st o

tion. Before reacting, i.e., before creating her ownno
IU, an agent first needs to understand the inten- he joint goal’?

tion conveyed by her interlocutor’s IU by study-
ing its conversation layer. Since we focus on dis-
ambiguation function of non-verbal behavior we
assume that agents first study the generated ver-

bal information, if the intention can not be fully Figure 4: Handling other-motivated contribution

recognized here, one will further study the infor-(CL: Conversation layer; IL: Intention Layer)
mation provided by the non-verbal generator (e.g.,

a gesture) and fuse the verbal and non-verbal ir\Nhat the dialog system needs to know from the
formation. If the intention recognitipn is still un- robot control system is what processing results it
successful, the agent can not provide Acceptancgyp produce. The association of these results with
for the given IU. If she is still committed to the |}, jntentions in terms of whether they start a

dialog she will issue a clarification question, i'e"new account, support or correct one, or delete it,
she generates an IU as Presentation that initiatec%n be configured externally and thus easily up-
a Support exchange to the current ungrounded €Xgata o replaced. Based on this configuration IUs
change. If the m_tentlon of her interlocutor IS SUC- 510 generated that operate according to the ground-
cessfully recognized the language perception prog, mechanism as described in section 2.1.

cess ends and the agent tries to create her own 1U.

As described in subsection 2.2 the creation of th@ |Implementation

IU starts from the creation of an intention on the )

intention layer. In case of a robot, the dialog sys-Th'S dialog model was implemented for our robot

tem accesses the robot control system and awaify RON. @ personal robot with learning abilities.

its reaction to the conveyed information (e.g., altcan detect and follow persons, focus on objects

user instruction). Usually, a robot is designated@ccording to human deictic gestures) and store
to do something for the user, i.e., the robot is comcollected information into a memory. Our imple-

mitted to the goal proposed by the user, so we dementation scenario is the so-calladme tour a
fine the robot can only provide acceptance if theUSer SNOWs & new robot her home to prepare it for
task is successfully executed this case, the robot future tasks. The robot should be able to learn and

completes the current 1U with the filled intention '€Member features of objects that the user men-

layer by generating an confirmation on its convertions and it “sees”, e.g., name, color, images etc.
sation layer. Afterwards, this grounded exchangd€Sides, our system was also successtully ported
can be popped from the stack. If the robot can not® @ humanoid robot BARTHOC for studies of

execute the task for some reasons, then the currefiffotional and social factors of HRI (see. Fig. 5).

exchange can not be grounded and the robot will
take the current IU with the filled intention layer
as another Presentation that initiates a Support or
Correct exchange to the current ungrounded ex-
change, similar as the case in Fig. 1. The conversa-
tion layer of this IU can thus formulate something
like “Sorry, | can't do that because...” and present
a sorrowful face. This new Support or Correct ex-
change is pushed onto the stack. Figure 4 illus-
trates this process as a UML activity diagram.

Figure 5: Robots BIRON and BARTHOC

In our model we only do general conversational The dialog manager is linked to a speech under-
planning instead of domain specific task planningstanding system which transforms parts of speech
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from a speech recognizer into a speech-act-basadarks on its own performance (R6). When the
form. To recognize the user’s intention, the dia-robot control system detects a person the dialog
log system classifies this input into 10 categoriesystem initiates a Default exchange to greet her.
of three groups according to heuristics, eig-, BIRON can also measure its own performance by
struction description andqueryinitiate new tasks counting the number of Support exchanges it has
and thus a new Default exchangdeletionand initiated for the current topic. Since the Support
correctioninitiate Delete and Correct exchangesexchanges are only created if BIRON can not pro-
that are related to early exchanges; andfirma- vide Acceptance to the user's Presentation (be-
tion, negation etc. can only be responses andcause it does not understand the user or it can
are, therefore, viewed as user’'s Acceptance of exaot execute a task), the amount of the Support ex-
changes that the robot initiates. The main part othanges thus has direct correlation to the robot's
the dialog system is the Dialog Manager that caroverall performance. On the other hand, the more
ries out grounding analysis and stack operationdDefault exchanges there are, the better is the per-
The Robot Control Manager receives messagefrmance because the agents can proceed to an-
from the robot control system and calls the Dia-other topic only if the current one is grounded (or
log Manager to do relevant operations. This dialogleleted). Based on this performance indication
system enables multi-modal, mixed-initiative dia-BIRON does remarks to motivate users.

log style and can handle complex repair behaviors.

W't.h the example d'?"og n F'g' 6, W_h'Ch IS tran- happens quite frequently in the home tour scenario
scripted from a real interaction session between

d BIRON di the t (i at the user points to some objects and says “This
useran » WE dIScuss the two mostimporss 5 » - BIRON needs to associate its symbolic
tant features of our system.

name (and eventually other features) mentioned by
the user with the image of the object. The reso-

Resolving multi-modal object references:It

fivn R1: Hello human! (looking friendly)

UL Hello! lution of such multi-modal object references (U4-
Who are you? R7 in Table 6) is solved as following: the Dialog

£? R2: My name is BIRON, if you show me - Manager creates an U for the user-initiated utter-
something | can r_erTlember it. (looking friendly) ance (e.g., “this is a CUp") and studies the verbal

— U2: OK, um, look, this is a mug. . .

— R3: I beg your pardon? (looking puzzec) and non-verbal generator on its conversation Ia_yer.

— U3: This is a mug, umm, here. In the verbal generator, what the pronoun “this”

gis R4:Sorry, can you use some other words? (looking sad) refers to is unclear, but it indicates that the user

— U4: This is a mug!
B3 — R5: Sorry, | can't find it. Are you pointing
Ex6 to it with your finger? (looking sad)

might be using a gesture. Therefore, the Dialog
Manager further studies the non-verbal generator.

US: Yes! The responsible robot vision module is activated
R6: | know it is sometimes difficult with me, here to search for a gesture and to identify the ob-

& but don't feel discouraged! (looking ashamed) ject cup. If the cup is found in the scene, this mod-
U6: (laugh)

ule assigns an ID to the image and stores it in the
memory. After the Dialog Manager receives this
ID, the processing of the conversation layer of the
user IU ends, the Dialog Manager proceeds to cre-
ate its own IU to react to the user’s IU. Problems
with the object identification indicate failure of the
d’gtention recog_nition process on the user conversa-
on its back-end application. Since BIRON doestlon layer. In this case, the Dialog Manage_:rcrea_tes
not have a task planner which would be ideal o Support exchange to ask the user which object

demonstrate this ability we implementedexiro- she refers to_ and retries it if she does _not oppose
vertpersonality for it (additionally to itbasicper- (R5-R7). This process and the assoclated multi-

sonality) that takes communication-related initia—mOdallty fusion and representation are described

tives. The basic BIRON behaves in a rather pas'—n (Lietal, 2005) in detail.

sive way and only says something when addressed The evaluation of dialog systems for human
by the user. In contrast, the extrovert BIRONrobot interaction is still an open issue. A robot
greets persons actively (R1 in Table 6) and resystem is usually a complex system including a

L—— RT7: OK, I've found it, it is really nice! (looking happily)

Figure 6: A dialog example with the extrovert
BIRON. (U: user, R: robot, Ex: Exchange)
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Abstract

The goal of this paper is to show how
to accomplish a more enjoyable and en-
thusiastic dialogue through the anaysis
of human-to-human conversational dia-
logues. We first created a conversational
dialogue corpus annotated with two types
of tags:. one type indicates the particu-
lar aspects of the utterance itself, while
the other indicates the degree of enthusi-
asm. We then investigated the relationship
between these tags. Our results indicate
that affective and cooperative utterances
are significant to enthusiastic dialogue.

1 Introduction

For a non-task-oriented conversational dialogue
system (e.g. home robots), we should strive for
a dialogue strategy that is both enjoyable and
enthusiastic, as well as efficient. Many studies
have been conducted on efficient dialogue strate-
gies (Walker et al., 1998; Litman et al., 2000; Ko-
matani et al., 2002), but it is not clear how to ac-
complish a more ”"human-like enthusiasm” for a
conversational dialogue. The goal of this paper is
to show the types of utterances that contribute to
enthusiasm in conversational dial ogues.

2 Corpus Annotation

We created a conversational corpus annotated with
two types of tags: one type indicates particular
aspects of the utterance itself, while the other in-
dicates the degree of enthusiasm in the dialogue.
This section describes our corpus and tagging
scheme in detail.

Ryuta TERASHIMA
Toyota Central R&D Labs., INC.
Nagakute Aichi JAPAN
ryuta@mosk.tytlabs.co.jp

2.1 Corpus Collection

As aresult of previous works, several conversa-
tional dialogue corpora have been collected with
various settings (Graff and Bird, 2000; TSENG,
2001). The largest conversationa dialogue cor-
pus is the Switchboard Corpus, which consists of
about 2400 conversational English dialogues be-
tween two unfamiliar speakers over the telephone
on one of 70 topics (e.g. pets, family life, educa
tion, gun control, etc.).

Our corpus was collected from face-to-face in-
teraction between two unfamiliar speakers. The
reasons were 1) face-to-face interaction increases
the number of enthusiastic utterances, relative to
limited conversational channel interaction such as
over the telephone; 2) the interaction between un-
familiar speakers reduces the enthusiasm resulting
from unobserved reasons during the recording; 3)
the exchange in a twoparty dialogue will be ssim-
pler than that of a multiparty dial ogue.

We created a corpus containing ten conversa
tional dialogues that were spoken by an operator
(thirties, female) and one of ten subjects (twenties
to sixties, equal numbers of males and females).
Before beginning the recording session, the sub-
ject chose three cards from fifteen cards on the fol-
lowing topics:

Food, Travel, Sport, Hobbies, Movies, Prizes,
TV Programs, Family, Books, School, Music,
Pets, Shopping, Recent Purchases, Celebrities

Straying from the selected topic was permitted,
because these topic cards were only ever intended
as a prompt to start the dialogue. Thus, we col-
lected ten dialogues, each about 20 minutes long.
For convenience, in this paper, we refer to the op-
erator as speakerl, and the subject as speaker?2.
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2.2 Annotation of DAs and RRs

2.2.1 Definition of tagging scheme

Dialogue Acts (DAs) and Rhetorical Relations
(RRs) are well-known tagging schemes for anno-
tating an utterance or asentence. DAs are tags that
pertain to the function of an utterance itself, while
RRsindicate the relationship between sentences or
utterances. We adopted both tagsto allow usto an-
alyze the aspects of utterancesin variousways, but
adapted them slightly for our particular needs.

The DA annotations were based on SWBD-
DAMSL and MRDA (Jurafsky et a., 1997,
Dhillon et a., 2004). The SWBD-DAMSL is
the DA tagset for labeling a conversational dia-
logue. The Switchboard Corpus mentioned above
was annotated with SWBD-DAMSL . On the other
hand, MRDA is the DA tagset for labeling the
dialogue of a meeting between multiple partici-
pants. Table 1 shows the correspondence between
SWBD-DAMSL/MRDA and our DAs. We de-
scribe some of the major adaptations bel ow.

The tags pertaining to questions: In SWBD-
DAMSL and MRDA, the tags pertaining to ques-
tions were classified by the type of their form
(e.g. Wh-question). We re-categorized them into
request and confirm in terms of the "act” for
Japanese.

The tags pertaining to responses: We subdivided
Accept and Reject into objective responses (ac-
cept,denial) and subjective responses (agree, dis-
agree).

The emotional tags: We added tags that indicate
the expression of admiration and interest.

The overlap tags with the RRs definition: We
did not use any tags (e.g. Summary), that over-
lapped the RR definition.

Consequently, we defined 47 DAs for analyzing a
conversationa dialogue.

The RR annotations were based on the rhetor-
ica relation defined in Rhetorical Structure The-
ory (RST) (Mann and Thompson, 1988; Stent and
Allen, 2000). Our RR definition was based only
on informational level relation defined in RST be-
cause we annotated the intentional level with DAs.
Table 2 shows the correspondence between the in-
formational relation of RST and our RRs. We de-
scribe some of the major adaptations below.
Subdivide evaluation: The evaluation reflects the
degree of enthusiasm in the dialogue, so we di-

1The tags listed in italics are based on SWBD-DAMSL
while those in boldface are based on MRDA.

Table 1: Dialogue Act Definition
SWBD- Our DAs Definition
DAMSL/MRDA
Statement non | inform  objective | inform non opin-
opinion fact ion
Statement opin- | inform subjective | inform opinion
ion element
Wh-Question request objective | request non opin-
fact ion
Yes-No- request agreement | request agreement
question opinion
Open- confirm objective | confirm non opin-
Question fact ion
Or-Question confirm agreement | confirm agreement
opinion
Accept accept accept non opinion
agree accept opinion
Reject denia denial non opinion
disagree denidl opinion
not marked express admiration | inform admiration
Summary DEL.(markasRR) | —

Table 2: Rhetorical Relation Definition

Mann’'sRST | Our RRs definition
evaluation U2 isapositive evaluation
(positive) about U1

Evaluation evauation U2 is a negative evalua
(negative) tion about U1
evaluation U2 is neutral evauation
(neutral) about U1

Volitional volitional U2 is a valitiona action,

cause cause-effect | and U1 cause U2

Voalitional re-

sult

No Definition | addition U2 consists of apart of U1

vided the Evaluation into three types of evaluation
(positive/negative/neutral).

Integrate the causal relations: We use a di-
rected graph representation for RR annotations, so
that we integrate Non-volitional cause and Non-
volitional result into non-volitional cause-effect,
and Volitional cause and Volitional result into vo-
litional cause-effect.

Add addition relation: The RRs initially repre-
sent the structure of the written text, segmented
into clause-like units. Therefore, they do not cover
those cases in which one clause is uttered by one
speaker, but communicatively completed by an-
other. So, we added an addition to our RRs. The
following is an example of addition.

speaker A: the lunch in our company cafeteria

speaker B: isgood value for money

We defined 16 RRs as aresult of these adaptations.
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Context: The father of speaker2 likes watching movies, and so established a home theater system in their living room.

l:speaker2  [addition]

[that’s why my family really loves movies these days | <inform objective fact>

. [apposition]
2:speakerl [giahoration]

you watch them one after another, don’t yo

" <signal understanding>

3:spesker2 [evaluation

(neutral)]
4:speakerl elaboration]

g <signal understanding><exclamation><confirm objective fact>

<confirm objective fact>

about 2 or 3 movies per week | <accept><inform objective fact>

we sometimes watch many more | <accept><inform objective fact>

6:speaker1 [Volitional

b <signal understanding>

cause-effect]
elaboration]

| suppose it’s nice to watch them in your home
without interruptions, right?

<signa understanding><confirm
agreement><confirm objective fact>

Figure 1: Example of Diaogue annotated with DAs and RRs (Originally in Japanese)

2.2.2 Annotation of DAs and RRs

DAs and RRs are annotated using the MMAX2
Annotation Tool 2 (Muller and Strube, 2003). Fig-
ure 1 shows an example of our corpus annotated
with DAs and RRs. The ( ) symbol in Figure 1
indicates a DA, while the [ ] symbol indicates an
RR. Below, we describe our annotation processfor
DAsand RRs.

Step 1. Utterance Segmentation: All the utter-
ances in the dialogue are segmented into DA seg-
ments, each of which we define as an utterance.
In Figure 1, the utterance is surrounded with a
sguare. In this step, we aso eliminated backchan-
nels from the exchange.

Step 2. Annotation of DAs: DAs are annotated
to all utterances. In those cases in which one DA
alone cannot represent an utterance, two or more
DAs are used (see Figure 1 line 2).

Step 3. Annotation of Adjacency Pairs: Adja
cency pairs (APs) are labeled. An AP consists of
two utterances where each part is produced by a
different speaker. In Figure 1, the solid and dotted
lines correspond to links between the APs.

Step 4. Annotation of RRs: RRson APs are la-
beled. A solid line indicates an AP that islabeled
with RRs, while a dotted line indicates an AP that
is not labeled with RRs. If a single RR cannot
represent the type of the relationship, two or more
RRs are used.

2.3 Annotation of Enthusiasm

2.3.1 Related Work on Annotating the degree
of enthusiasm
Wrede et a. annotated Involvement to the ICS|
Meeting Recorder Corpus (Wrede and Shriberg,
This supports multilevel annotation and the creation

of a relationship between utterances.  http://www.eml-
research.de/english/research/nl p/down-load/mmax.php

... Utterance
... backchannel

POD .- Part Of Dialogue —— "\ POD; > S,
S... Score of enthusiasm POD;,; * Sii1
o hd POD; & S;
POD;; & S ;
° POD;, & S;;
speakerl > [ Oy <O
spesker2 @oe O @ O @

>
Us Uz Uz Ui U Uy Usp U Uss Didogue

Figure 2: Rating the score of the enthusiasm

2003b; Wrede and Shriberg, 2003a). In their
method, a rater judges involvement (agreement,
disagreement, other) or Not especially involved or
Don’t Know, by listening to each utterance with-
out the context of the dialogue. In the exper-
iment, nine raters provided ratings on 45 utter-
ances. Inter-rater agreement between Involved and
Not especially involved yielded a Kappa of x=.59
(p<.01), but 13 of the 45 utterances (28.9%) were
rated as Don’t Know by at least one of the raters.
For automatic detection, it is certainly effective to
rate Involvement without context. However, there-
sults indicate that it is quite difficult to recognize
Involvement from a single utterance. Moreover,
the fluctuation of Involvement can not be recog-
nized by this method because Involvement is cate-
gorized into five categories only.

2.3.2 Our Method of Annotating Enthusiasm

In this section, we propose a method for eval-
uating the degree of enthusiasm. We describe the
process for evaluating the degree of enthusiasm.

Step 1. Rating the score of enthusiasm for POD

A rater estimates a score of the enthusiasm
corresponding to the part of dialogue (POD),
which is a series of five utterances. As men-
tioned above, the backchannels are not re-
garded as utterances. In Figure 2, S; denotes
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the score for the enthusiasm of POD;. The
value of the score can be from 10 to 90.

90 ... Extreme
70 ... Moderate
50 ... Neutra
30.. Low
10... No

When rating the score, a rater must obey the
following four rules.

1. Listen to each POD more than three
times.

2. Perform estimation based on the entire
POD and not just part of the POD.

3. Be sure that own ratings represented a
consistent continuum.

4. Estimate as participants, not as side-
participants.

We did not give any definitions or examples
to rate the enthusiasm, a rater estimated a
score based on their subjective determination.

Step 2. Calculate the score of enthusiasm for an
utterance

The score of enthusiasm for an utterance Uj
is given by the average of the scores of the
PODs that contain utterance U;.

1 2
VU) =z > S (1)
j=i-2
Step 3. Calculate the degree of enthusiasm for an
utterance and an adjacency pair

In this paper, we deal with all the degrees of
enthusiasm as a normalized score, which we
call Enthusiasm, because different raters may
have different absolute levels of enthusiasm.
Then, Enthusiasm for U; is given as follows:

ElU) = ——— (2)

where

n denotes the number of utterancesin the di-
alogue.

In addition, Enthusiasm for AF, is given by
the average of Enthusiasms of the utterances
where are AP,.

1
E(AP) = 3{E(U)) + EU} ()
U; and U}, denote the utterancesin AF,.

3 Estimation of Annotated Corpus

3.1 Reliability of DAs and RRs

We examined the inter-annotator reliability for
two annotators® for DAs, RRs and APs, using four
dialogues mentioned above. Before the start of the
investigation, one annotator segmented a dialogue
into utterances. The number of segmented utter-
ances was 697. The annotaters annotated them as
described in steps 2 to 4 of Section 2.2.2.

DAs annotation: We can not apply the Kappa
statistics since it cannot be applied to multiple tag
annotations. We then apply formula 4 to examine
thereliability.

_ (Agreed DAs) x 2
" Total of DAs annotated by Aland A2

ag. x 100 (4)

The result of agreement was 1542 DAS (65.5%)
from atotal of 2355 DAs. The major reasons for
the disagreement were as follows.

o Disagreement of subjective/objective ... 124(15.3%)
e Disagreement of request/confirm ... 112(13.8%)
e Disagreement of partial/whole ... 72(8.9%)

Building APs: We examined the agreement of
building APs between utterances. The result of
agreement was 536 APs (85.2%) from the total of
the 629 APsthat were built by the annotators. This
result showsthat the building of APsisreliable.
RRs annotation: We also examined the agree-
ment of RRs annotation. We applied formula 5
to this examination.

_ (Agreed RRs) x 2
" Total of RRs annotated by Aland A2

ag. %x 100 (5)

As a result, we found agreement for 576 RRs
(59.6%) out of atotal of 967 RRs.

3We refer to these annotators as A1 and A2. Al isone of
the authors of this paper.
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Table 3: Correlation between random rating and
sequentia rating

correlation coefficient

speakerl | speaker2
twenties,female 0.833 0.881
twenties,;male 0.971 0.950
sixties,female 0.972 0.973
sixtiesmale 0.971 0.958

- =+ -R3(speakerl) —— R3(speaker2)
—— R4(speakerl) - ---R4(speaker2)

Enthusiasm
o

time

Figure 3: Enthusiasm of dialogue of speakerl and
speaker2(thirties,femal e)

3.2 Estimation Context Influence on the
rating of Enthusiasm

In order to examine the influence of the context on
the rating of Enthusiasm, one rater noted Enthusi-
asm under two conditions: 1) Listening to PODs
randomly, and 2) Listening to PODs sequentially
as dialogue. Table 3 shows the correlation be-
tween the random rating and the sequential rating.
The correlation coefficient was calculated for the
Enthusiasm of each of the two participants. The
"gpeakerl” shows the correlation of the Enthusi-
asm rated as speakerl, and "speaker2” shows the
correlation of the Enthusiasm rated as speaker2.
This was found to be approximately 0.9 in both
cases. These results show that Enthusiasm can be
estimated stably and that the context has little in-
fluence.

4 Relationship between DAs/RRs and
Enthusiasm

We investigated the relationship between
DASYRRs and Enthusiasm, using four dia
logues. The DAS/RRs corpus annotated by Al
was used in this analysis because Al is one
of the authors of this paper and has a better
knowledge of the DAs and RRs tagging scheme
than A2. The Enthusiasm corpus annotated by

R3 was used because we found that R4 rated
Enthusiasm based on non-subjective reasons:
after the examination of the rating, R4 said that
speakerl spoke enthusiastically but that it seemed
unnatural because speakerl had to manage the
recording of the dialogue, which appears in the
results as speaker1’s Enthusiasm as annotated by
R4 as a notable difference (see Figure 3).

Figure 4 and 5 show the ratio of the frequency
of DAs and RRs in each of the levels of Enthu-
siasm over arange of 0.5. If DAs and RRs were
evenly annotated for any level of Enthusiasm, the
graph will be completely even. However, the
graph shows the right side as being higher if the
DAs and RRs increase as Enthusiasm increases.
Conversely, the graph shows the left side as being
higher if the DAs and RRs fall as Enthusiasm in-
creases. The number in Figure 4 and 5 indicates
the average Enthusiasm for each DA and RR. If
the averageis positive, it means that the frequency
of the DAs and RRs is high in that part in which
Enthusiasm is positive. In contrast, if the average
isnegative, it means that the frequency of the DAs
and RRsis high in that part in which Enthusiasm
IS negative.

We determined the following two points about
the tendency of the DAs frequency.

Tendency of subjective and objective DAs: The
ratio of the frequency of those DAs related to sub-
jective elements tends to increase as Enthusiasm
increases (see *1 in Figure 4). In contrast, the ra-
tio of the frequency of those DAs pertaining to ob-
jective matters tends to decrease (see *2 in Figure
4) or equilibrate as Enthusiasm increases (see *3
in Figure 4) . We can thus conclude that those ex-
changesrelated to subjective elementsincreasesin
the enthusiastic dialogue, but those related to ob-
jective elements decrease or equilibrate.

Tendency of affective DAs: The ratio of the fre-
guency of those DAs related to the affective con-
tents tends to increase as Enthusiasm increases
(see*4in Figure4). However, express admiration,
which isalso related to affective contents, tendsto
decrease (see *5 in Figure 4). We then analyzed
several instances of admiration. As a result, we
found that the prosodic characteristic of admira-
tion utterance will cause this tendency.

Furthermore, we noted the following two points
about the tendency of the RRs frequency.
Tendency of additional utterances: The ratio of
the frequency of addition, which completes the
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Figure 5: Frequency of RRs per Enthusiasm

Context:Mother of speaker2 does not cook dinner when the
father isout.

1 speakerl: but if he’s there then she

2 speaker2: cooks areally delicious dinner

3 speakerl: wow

Figure 6: Example of addition

other participant’s utterance, tends to increase as
Enthusiasm increases (see *6 in Figure 5). Figure
6 shows a dialogue example. There are addition
relations between lines 1 and 2. This shows that
the participant makes an utterance cooperatively
by completing the other’s utterances in enthusias-
tic dialogues. Such cooperative utterance isa sig-
nificant component of enthusiastic dialogues.

Tendency of positive evaluation: Theratio of the
frequency of positive evaluation tends to increase
at lower Enthusiasm and higher Enthusiasm (see
*7 in Figure 5). We analyzed some instances of

Context:About a hamster and its exercise instrument.

1 speaker2: two hamsters run together in their exercise wheel
2 speaker2: they run up and down and side by side

3 speakerl: but surely they can’t they run together if they aren’t
getting along very well?

exactly

one gets carried aong if it stops when the other
continues to run

isit? doesit lean forward?

yes

sometimes it falls out

that’s so cute

4 speaker2:
5 speaker2:

6 speakerl:
7 speaker2:
8 speaker2:
9 speakerl:

Figure 7: Example of positive evaluation

positive evaluation, we then found that the speaker
tries to arouse the dialogue by an utterance of
positive evaluation at lower Enthusiasm, and the
speaker summarizes the previous discourse with a
positive evaluation at higher Enthusiasm. Figure
7 shows an example of positive evaluation in the
enthusiastic dialogue. In this case, speakerl ex-
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presses positive evaluation on line 9 about the el-
ement on line 8. The utterance on line 9 aso has
the function of expressing an overall positive eval-
uation of the previous discourse.

5 Conclusion and Future Research

We analyzed the relationship between utterances
and the degree of enthusiasm in human-to-human
conversationa dialogue. Wefirst created a conver-
sational dialogue corpus annotated with two types
of tags: DAS/RRs and Enthusiasm. The DA and
RR tagging scheme was adapted from the defini-
tion given in a previous work, and an Enthusiasm
tagging scheme is proposed. Our method of rating
Enthusiasm enables the observation of the fluctu-
ation of Enthusiasm, which enables the detailed
analysis of the relationship between utterances and
Enthusiasm. The result of the analysis shows the
frequency of objective and subjective utterances
related to the level of Enthusiasm. We aso found
that affective and cooperative utterances are sig-
nificant in an enthusiastic dialogue.

In this paper, we only analyzed the relationship
between DAS/RRs and Enthusiasm, but we expect
the non-linguistic-feature related with Enthusiasm
so that we would analyze the relationship in future
research. And, we try to achieve more reliable an-
notation by reviewing our tagging scheme. Fur-
thermore, we would apply the results of the analy-
sisto our conversational dialogue system.
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