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Abstract

However large a hand-crafted wide-
coverage grammar is, there are always go-
ing to be words and constructions that
are not included in it and are going to
cause parse failure. Due to their hetero-
geneous and flexible nature, Multiword
Expressions (MWEs) provide an endless
source of parse failures. As the number
of such expressions in a speaker’s lexi-
con is equiparable to the number of single
word units (Jackendoff, 1997), one ma-
jor challenge for robust natural language
processing systems is to be able to deal
with MWEs. In this paper we propose
to semi-automatically detect MWE can-
didates in texts using some error mining
techniques and validating them using a
combination of the World Wide Web as a
corpus and some statistical measures. For
the remaining candidates possible lexico-
syntactic types are predicted, and they are
subsequently added to the grammar as new
lexical entries. This approach provides
a significant increase in the coverage of
these expressions.

1 Introduction

Hand-crafted large-scale grammars like the En-
glish Resource Grammar (Flickinger, 2000), the
Pargram grammars (Butt et al., 1999) and the
Dutch Alpino Grammar (Bouma et al., 2001)
are extremely valuable resources that have been
used in many NLP applications. However, due
to the open-ended and dynamic nature of lan-
guages, and the difficulties of grammar engineer-
ing, such grammars are likely to contain errors

and be incomplete. An error can be roughly clas-
sified asunder-generating(if it prevents a gram-
matical sentence to be generated/parsed) orover-
generating (if it allows an ungrammatical sen-
tence to be generated/parsed). In the context of
wide-coverage parsing, we focus on theunder-
generatingerrors which normally lead to parsing
failure.

Traditionally, the errors of the grammar are to
be detected manually by the grammar develop-
ers. This is usually done by running the grammar
over a carefully designed test suite and inspecting
the outputs. This procedure becomes less reliable
as the grammar gets larger, and is especially dif-
ficult when the grammar is developed in a dis-
tributed manner. Baldwin et al. (2004), among
many others, for instance, have investigated the
main causes of parse failure, parsing a random
sample of 20,000 strings from the written com-
ponent of the British National Corpus (hencefor-
ward BNC) using the English Resource Gram-
mar (Flickinger, 2000), a broad-coverage preci-
sion HPSG grammar for English. They have found
that the large majority of failures are caused by
missing lexical entries, with 40% of the cases, and
missing constructions, with 39%.

To this effect, as mentioned above, in recent
years, some approaches have been developed in
order to (semi)automatically detect and/or repair
the errors in linguistic grammars. van Noord
(2004), for instance, takes a statistical approach
towards semi-automated error detection using the
parsability metric for word sequences. He reports
on a simple yet practical way of identifying gram-
mar errors. The method is particularly useful for
discovering systematic problems in a large gram-
mar with reasonable coverage. The idea behind it
is that each (under-generating) error in the gram-

36



mar leads to the parsing failure of some specific
grammatical sentences. By running the grammar
over a large corpus, the corpus can be split into
two subsets: the set of sentences covered by the
grammar and the set of sentences that failed to
parse. The errors can be identified by comparing
the statistical differencebetween these two sets
of sentences. Bystatistical difference, any kind
of uneven distribution of linguistic phenomena is
meant. In the case of van Noord (2004), the word
sequences are used, mainly because the cost to
compute and count the word sequences is mini-
mum. The parsability of a sequencewi . . . wj is
defined as:

R(wi . . . wj) =
C(wi . . . wj, OK)

C(wi . . . wj)
(1)

where C(wi . . . wj) is the number of sentences
in which the sequencewi . . . wj occurs, and
C(wi . . . wj , OK) is the number of sentences with
a successful parse which contain the sequence.
A frequency cut is used to eliminate the infre-
quent sequences. With suffix arrays and perfect
hashing automata, the parsability of all word se-
quences (with arbitrary length) can be computed
efficiently. The word sequences are then sorted
according to their parsabilities. Those sequences
with the lowest parsabilities are taken as direct in-
dication of grammar errors.

Among them, one common error, and sub-
sequently very common cause of parse failure
is due to Multiword Expressions (MWEs), like
phrasal verbs (break down), collocations (bread
and butter), compound nouns (coffee machine),
determiner-less PPs (in hospital), as well as so-
called “frozen expressions” (by and large), as dis-
cussed by both Baldwin et al. (2004) and van No-
ord (2004). Indicatively, in the experiments re-
ported in Baldwin et al. (2004), for instance, from
all the errors due to missing lexical entries, one
fifth were due to missing MWEs (8% of total er-
rors). If an MWE is syntactically marked, the stan-
dard grammatical rules and lexical entries cannot
generate the string, as for instance in the case of
a phrasal verb liketake off, even if the individual
words that make up the MWE are contained in the
lexicon.

In this paper we investigate semi-automatic
methods for error mining and detection of miss-
ing lexical entries, following van Noord (2004),
with the subsequent handling of the MWEs among

them. The output of the error mining phase pro-
poses a set of n-grams, which also contain MWEs.
Therefore, the task is to distinguish the MWEs
from the other cases. To do this, first we propose
to use the World Wide Web as a very large corpus
from which we collect evidence that enables us to
rule out noisy cases (due to spelling errors, for in-
stance), following Grefenstette (1999), Keller et
al. (2002), Kilgarriff and Grefenstette (2003) and
Villavicencio (2005). The candidates that are kept
can be semi-automatically included in the gram-
mar, by employing a lexical type predictor, whose
output we use in order to add lexical entries to the
lexicon, with a possible manual check by a gram-
mar writer. This procedure significantly speeds up
the process of grammar development, relieving the
grammar developer of some of the burden by au-
tomatically detecting parse failures and providing
semi-automatic means for handling them.

The paper starts with a discussion of MWEs and
of some of the characteristics that make them so
challenging for NLP, in section 2. This is followed
by a more detailed discussion of the technique
employed for error detection, in section 3. The
approach used for distinguishing noisy sequences
from MWE-related constructions using the World
Wide Web is then presented. How this information
is used for extending the grammar and the results
obtained are then addressed in section 5.

2 Multiword Expressions

The term Multiword Expressions (MWEs) has
been used to describe expressions for which the
syntactic or semantic properties of the whole ex-
pression cannot be derived from its parts ((Sag et
al., 2002), (Villavicencio et al., 2005)), including
a large number of related but distinct phenomena,
such as phrasal verbs (e.g.come along), nomi-
nal compounds (e.g.frying pan), institutionalised
phrases (e.g.bread and butter), and many oth-
ers. They are used frequently in language, and
in English, Jackendoff (1997) estimates the num-
ber of MWES in a speaker’s lexicon to be com-
parable to the number of single words. This is re-
flected in several existing grammars and lexical re-
sources, where almost half of the entries are Mul-
tiword Expressions. However, due to their hetero-
geneous characteristics, MWEs present a tough
challenge for both linguistic and computational
work (Sag et al., 2002). Some MWEs are fixed,
and do not present internal variation, such asad
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hoc, while others allow different degrees of inter-
nal variability and modification, such astouch a
nerve (touch/find a nerve) and spill beans(spill
several/musical/mountains of beans). In terms of
semantics, some MWEs are more opaque in their
meaning (e.g.to kick the bucketasto die), while
others have more transparent meanings that can be
inferred from the words in the MWE (e.g.eat up,
where the particleup adds a completive sense to
eat). Therefore, to provide a unified account for
the detection of these distinct but related phenom-
ena is a real challenge for NLP systems.

3 Detection of Errors: Overview

van Noord (2004) reports on various errors that
have been discovered for the Dutch Alpino Gram-
mar (Bouma et al., 2001) semi-automatically, us-
ing the Twente Nieuws Corpus. The idea pur-
sued by van Noord (2004) has been to locate those
n-grams in the input that might be the cause of
parsing failure. By processing a huge amount
of data, the parsability metrics briefly presented
in section 1 have been used to successfully lo-
cate various errors introduced by the tokenizer,
erroneous/incomplete lexical descriptions, frozen
expressions with idiosyncratic syntax, or incom-
plete grammatical descriptions. However, the re-
covery of these errors has been shown to still re-
quire significant efforts from the grammar devel-
oper. Moreover, there is no concrete data given
about the distribution of the different types of er-
rors discovered.

As also mentioned before, among the n-grams
that usually cause parse failures, there is a large
number of missing MWEs in the lexicon such
as phrasal verbs, collocations, compound nouns,
frozen expressions (e.g.by and large, centre of
attention, put forward by, etc).

For the purpose of the detection of MWEs, we
are interested in seeing what the major types of er-
ror for a typical large-scale deep grammar are. In
this context, we have run the error mining experi-
ment reported by van Noord with the English Re-
source Grammar (ERG; (Flickinger, 2000))1 and
the British National Corpus 2.0 (BNC; (Burnard,
2000)).

We have used a subset of the BNC written com-
ponent. The sentences in this collection contain
no more than 20 words and only ASCII characters.

1ERG is a large-scale HPSG grammar for English. In this
paper, we have used the January 2006 release of the grammar.

That is about 1.8M distinct sentences.
These sentences have then be fed into an effi-

cient HPSG parser (PET; (Callmeier, 2000)) with
ERG loaded. The parser has been configured with
a maximum edge number limit of 100K and has
run in thebest-onlymode so that it does not ex-
haustively find all the possible parses. The result
of each sentence is marked as one of the following
four cases:

• P means at least one parse is found for the
sentence;

• L means the parser halted after the morpho-
logical analysis and has not been able to con-
struct any lexical item for the input token;

• N means the search has finished normally
and there is no parse found for the sentence;

• E means the search has finished abnormally
by exceeding the edge number limit.

It is interesting to notice that when the ambigu-
ity packing mechanism (Oepen and Carroll, 2000)
is used and the unpacking is turned off2, E does
not occur at all for our test corpus. Running the
parsability checking over the entire collection of
sentences has taken the parser less than 2 days on
a 64bit machine with 3GHz CPU. The results are
shown in Table 1.

Result # Sentences Percentage
P 644,940 35.80%
L 969,452 53.82%
N 186,883 10.38%

Table 1: Distribution of Parsing Results

¿From the results shown in Table 1, one can see
that ERG has full lexical span for less than half of
the sentences. For these sentences, about 80% are
successfully parsed. These numbers show that the
grammar coverage has a significant improvement
as compared to results reported by Baldwin et al.
(2004) and Zhang and Kordoni (2006), mainly at-
tributed to the increase in the size of the lexicon
and the new rules to handle punctuations and frag-
ments.

Obviously, L indicates the unknown words in
the input sentence. But forN , it is not clear where

2For the experiment of error mining, only the parsability
checking is necessary. There is no need to record the exact
parses.
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and what kind of error has occurred. In order
to pinpoint the errors, we used the error mining
techniques proposed by van Noord (2004) on the
grammar and corpus. We have taken the sentences
marked asN (because the errors inL sentences
are already determined) and calculate the word se-
quence parsabilities against the sentences marked
asP . The frequency cut is set to be 5. The whole
process has taken no more than 20 minutes, result-
ing in total the parsability scores for 35K n-grams
(word sequences). The distribution of n-grams in
length with parsability below 0.1 is shown in Ta-
ble 2.

Number Percentage
uni-gram 798 20.84%
bi-gram 2,011 52.52%
tri-gram 937 24.47%

Table 2: Distribution of N-gram in Length in Error
Mining Results (R(x) < 0.1)

Although pinpointing the problematic n-grams
still does not tell us what the exact errors are, it
does shed some light on the cause. From Table 2
we see quite a lot of uni-grams with low parsabil-
ities. Table 3 gives some examples of the word
sequences. By intuition, we make the bold as-
sumption that the low parsability of uni-grams is
caused by the missing appropriate lexical entries
for the corresponding word.3

For the bi-grams and tri-grams, we do see a lot
of cases where the error can be repaired by just
adding a multiword lexical entry into the grammar.

N-gram Count
professionals 248
the flat 62
indication of 21
tone of voice 19
as always is 7

Table 3: Some Examples of the N-grams in Error
Mining Results

In order to distinguish those n-grams that can
be added into the grammar as MWE lexical en-
tries from the other cases, we propose to vali-
date them using evidence collected from the World
Wide Web.

3It has later been confirmed with the grammar developer
that almost all of the errors detected by these low parsability
uni-grams can be fixed by adding correct lexical entries.

4 Detection of MWEs and related
constructions

Recently, many researchers have started using the
World Wide Web as an extremely large corpus,
since, as pointed out by Grefenstette (1999), the
Web is the largest data set available for NLP
((Grefenstette, 1999), (Keller et al., 2002), (Kil-
garriff and Grefenstette, 2003) and (Villavicencio,
2005)). For instance, Grefenstette employs the
Web to do example-based machine translation of
compounds from French into English. The method
he employs would suffer considerably from data
sparseness, if it were to rely only on corpus data.
So for compounds that are sparse in the BNC he
also obtains frequencies from the Web. The scale
of the Web can help to minimise the problem of
data sparseness, that is especially acute for MWEs,
and Villavicencio (2005) uses the Web to find ev-
idence to verify automatically generated VPCs.
This work is built on these, in that we propose
to employ the Web as a corpus, using frequencies
collected from the Web to detect MWEs among
the n-grams that cause parse failure. We concen-
trate on the 482 most frequent candidates, to verify
t he method.

The candidate list has been pre-processed to re-
move systematic unrelated entries, like those in-
cluding acronyms, names, dates and numbers, fol-
lowing Bouma and Villada (2002). Using Google
as a search engine, we have looked for evidence
on the Web for each of the candidate MWEs, that
have occurred as an exact match in a webpage. For
each candidate searched, Google has provided us
with a measure of frequency in the form of the
number of pages in which it appears. Table 4
shows the 10 most frequent candidates, and among
these there are parts of formulae, frozen expres-
sions and collocations. Table 5 on the other hand,
shows the 10 least frequent candidates. From the
total of candidates, 311 have been kept while the
other have been discarded as noise.

A manual inspection of the candidates has re-
vealed that indeed the list contains a large amount
of MWEs and frozen expressions liketaking into
account the, good and evil, by and large, put for-
ward by and breach of contract. Some of these
cases, likecome into effect in, have very spe-
cific subcategorisation requirements, and this is re-
flected by the presence of the prepositionsinto and
in in the ngram. Other cases seem to be part of
formulae, likebut also in, as part ofnot only X but
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Table 4: Top 10 Candidate Multiword Expressions

MWE Pages Entropy Prob(%)
the burden of 36600000 0.366 79.4
and cost effective 34400000 0.372 70.7
the likes of 34400000 0.163 93.1
but also in 27100000 0.038 98.9
to bring together 25700000 0.086 96.6
points of view 24500000 0.017 99.6
and the more 23700000 0.512 61.5
with and without 23100000 0.074 97.4
can do for 22300000 0.003 99.9
taking into account the 22100000 0.009 99.6
but what about 21000000 0.045 98.7
the ultimate in 17400000 0.199 90.0

Table 5: Bottom 10 Candidate Multiword Expressions

MWE Pages Entropy Prob (%)
stand by and 1350000 0.399 65.5
discharged from hospital 553000 0.001 99.9
shock of it 92300 0.541 44.6
was woken by 91400 0.001 99.9
telephone rang and 43700 0.026 99.2
glanced across at 36900 0.003 99.9
the citizens charter 22900 0.070 97.9
input is complete 13900 0.086 97.2
from of government 706 0.345 0.1
the to infinitive 561 0.445 1.4
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also Y, but what about, andthe more the(part of
the more the Yer).

However, among the candidates there still re-
main those that are not genuine MWEs, likeof al-
cohol andandthan that in, which contain very fre-
quent words that enable them to obtain a very high
frequency count without being an MWE. There-
fore, to detect these cases, the remainder of the
candidates could be further analysed using some
statistical techniques to try to distinguish them
from the more likely MWEs among the candi-
dates. This is done by Bouma and Villada (2002)
who investigated some measures that have been
used to identify certain kinds of MWEs, focusing
on collocational prepositional phrases, and on the
tests of mutual information, log likelihood andχ2.
One significant difference here is that this work is
not constrained to a particular type of MWEs, but
has to deal with them in general. Moreover, the
statistical measures used by Bouma and Villada
demand the knowledge of single word frequencies
which can be a problem when using Google espe-
cially for common words likeof anda.

In Tables 4 and 5 we present two alternative
measures that combined can help to detect false
candidates. The rational is similar to the statis-
tical tests, without the need of searching for the
frequency of each of the words that make up the
MWE. We assume that if a candidate is just a
result of the random occurrence of very frequent
words most probably the order of the words in the
ngram is not important. Therefore, given a can-
didate, such asthe likes of, we measure the fre-
quency of occurrence of all its permutations (e.g.
the of likes, likes the of, etc) and we calculate the
candidate’s entropy as

S = −
1

log N

N
∑

k=1

Pi log Pi (2)

where Pi is the probability of occurrence of a
given permutation, and N the total number of per-
mutations. The entropy above defined has its max-
imum atS = 1 when all permutations are equally
probably, which indicates a clear signature of a
random nature. On the other hand, when order is
very important and only a single configuration is
allowed the entropy has its minimum,S = 0. An
ngram with low entropy has good chances of being
an MWE. A close inspection on Table 4 shows that
the top two candidate ngrams have relatively high
entropies ( here we consider high entropy when

S > 0.3 ). In the first case this can be explained
by the fact that the wordthe can appear after the
word of without compromising the MWE mean-
ing as inthe burden of the job. In the second case
it shows that the real MWE iscost effectiveand
the wordand can be either in the beginning or in
the end of the trigram. In fact for a trigram with
only two acceptable permutations the entropy is
S = log 2/ log 6 ' 0.39, very close to what is
obtained .

We also show the probability of occurrence
of each candidate ngram among its permutations
(P1). Most of the candidates in the list are more
frequent than their permutations. In Table 4 we
find two exceptions which are clearly spelling er-
rors in the last 2 ngrams. Therefore lowP1 can
be a good indicative of a noisy candidate. Another
good predictor is the relative frequency between
the candidates. Given the occurrence values for
the most frequent candidates, we consider that by
using a threshold of 20,000 occurrences, it is pos-
sible to remove the more noisy cases.

We note that the grammar can also impose some
restrictions in the order of the elements in the
ngram, in the sense that some of the generated
permutations are ungrammatical (e.g.the of likes)
and will most probably have null or very low fre-
quencies. Therefore, on top of the constraints on
the lexical order there are also constraints on the
constituent order of a candidate which will be re-
flected in these measures.4

The remainder candidates can be semi-
automatically included in the grammar, by using
a lexical type predictor, as described in the next
section. With this information, each candidate is
added as a lexical entry, with a possible manual
check by a grammar writer prior to inclusion in
the grammar.

4Google ignores punctuation between the elements of the
ngram. This can lead to some hits being returned for some
of the ungrammatical permuted ngrams, such asone one by
in the sentenceWe’re going to catch people one by one. One
day,... from www.beertravelers.com/lists/drafttech.html. On
the other hand, Google only returns the number of pages
where a given ngram occurred, but not the number of times it
occurred in that page. This can result in a huge underestima-
tion especially for very frequent ngrams and words, which
can be used mo re than once in a given page. Therefore,
a conservative view of these frequencies must be adopted,
given that for some ngrams they might be inflated and for
others deflated.

41



5 Automated Deep Lexical Acquisition

In section (3), we have seen that more than 50%
of the sentences contain one or more unknown
words. And about half of the other parsing failures
are also due to lexicon missing. In this section, we
propose a statistical approach towards lexical type
prediction for unknown words, including multi-
word expressions.

5.1 Atomic Lexical Types

Lexicalist grammars are normally composed of a
limited number of rules and a lexicon with rich
linguistic features attached to each entry. Some
grammar formalisms have a type inheriting system
to encode various constraints, and a flat structure
of the lexicon with each entry mapped onto one
type in the inheritance hierarchy. The following
discussion is based onHead-driven Phrase Struc-
ture Grammar (HPSG)(Pollard and Sag, 1994),
but should be easily adapted to other formalisms,
as well.

The lexicon of HPSG consists of a list of well-
formedTyped Feature Structures (TFSs)(Carpen-
ter, 1992), which convey the constraints on spe-
cific words by two ways: the type compatibility,
and the feature-value consistency. Although it is
possible to use both features and types to con-
vey the constraints on lexical entries, large gram-
mars prefer the use of types in the lexicon because
the inheritance system prevents the redundant def-
inition of feature-values. And the feature-value
constraints in the lexicon can be avoided by ex-
tending the types. Say we haven lexical entries
Li :

t

[

F a1

]

. . . Ln :
t

[

F an

]

. They share the same
lexical typet, but take different values for the fea-
tureF . If a1, . . . , an are the only possible values
for F in the context of typet, we can extend the
type t with subtypes ta1 :

t

[

F a1

]

. . . tan :
t

[

F an

]

and modify the lexical entries to use these new
types, respectively. Based on the fact that large
grammars normally have a very restricted num-
ber of feature-values constraints for each lexical
type, the increase of the types is acceptable. It is
also typical that the types assigned to lexical en-
tries are maximum on the type hierarchy, which
means that they have no further subtypes. We will
call the maximum lexical types after extension the
atomic lexical types. Then the lexicon will be a
multi-valued mapping from the word stems to the
atomic lexical types.

Needless to underline here that all we have

mentioned above is not applicable exclusively to
HPSG, but to many other formalisms based on
TFSs, which makes our assumptions about atomic
lexical types all the more relevant for a wide range
of systems and applications.

5.2 Statistical Lexical Type Predictor

Given that the lexicon of deep grammars can be
modelled by a mapping from word stems to atomic
lexical types, we now go on designing the statisti-
cal methods that can automatically “guess” such
mappings for unknown words.

Similar to Baldwin (2005), we also treat the
problem as a classification task. But there is an im-
portant difference. While Baldwin (2005) makes
predictions for each unknown word, we create a
new lexical entry for each occurrence of the un-
known word. The assumption behind this is that
there should be exactly one lexical entry that cor-
responds to the occurrence of the word in the given
context5.

We use a single classifier to predict the atomic
lexical type. There are normally hundreds of
atomic lexical types for a large grammar. So the
classification model should be able to handle a
large number of output classes. We choose the
Maximum Entropy-based model because it can
easily handle thousands of features and a large
number of possible outputs. It also has the ad-
vantages of general feature representation and no
independence assumption between features. With
the efficient parameter estimation algorithms dis-
cussed by Malouf (2002), the training of the model
is now very fast.

For our prediction model, the probability of a
lexical typet given an unknown word and its con-
text c is:

p(t|c) =
exp(

∑

i θifi(t, c))
∑

t′∈T exp(
∑

i θifi(t′, c))
(3)

where featurefi(t, c) may encode arbitrary char-
acteristics of the context. The parameters<
θ1, θ2, . . . > can be evaluated by maximising the
pseudo-likelihood on a training corpus (Malouf,
2002). The detailed design and feature selec-
tion for the lexical type predictor are described in
Zhang and Kordoni (2006).

5Lexical ambiguity is not considered here for the un-
knowns. In principle, this constraint can be relaxed by allow-
ing the classifier to return more than one results by, settinga
confidence threshold, for example.
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In the experiment described here, we have used
the latest version of the Redwoods Treebank in or-
der to train the lexical type predictor with morpho-
logical features and context words/POS tags fea-
tures 6. We have then extracted from the BNC
6248 sentences, which contain at least one of the
311 MWE candidates verified with World Wide
Web in the way described in the previous section.
For each occurrence of the MWE candidates in
this set of sentences, our lexical type predictor has
predicted a lexical entry candidate. This has re-
sulted in 1936 distinct entries. Only those entries
with at least 5 counts have been added into the
grammar. This has resulted in an extra 373 MWE
lexical entries for the grammar.

This addition to the grammar has resulted in a
significant increase in coverage (table 6) of 14.4%.
This result is very promising, as only a subset of
the candidate MWEs has been analysed, and could
result in an even greater increase in coverage, if
these techniques were applied to the complete set
of candidates.

However, we should also point out that the cov-
erage numbers reported in Table 6 are for a set
of “difficult” sentences which contains a lot of
MWEs. When compared to the numbers reported
in Table 1, the coverage of the parser on this data
set after adding the MWE entries is still signifi-
cantly lower. This indicates that not all the MWEs
can be correctly handled by simply adding more
lexical entries. Further investigation is still re-
quired.

6 Conclusions

One of the important challenges for robust natural
language processing systems is to be able to deal
with the systematic parse failures caused in great
part by Multiword Expressions and related con-
structions. Therefore, in this paper we have pro-
posed an approach for the semi-automatic exten-
sion of grammars by using an error mining tech-
nique for the detection of MWE candidates in texts
and for predicting possible lexico-syntactic types
for them. The approach presented is based on that
of van Noord (2004) and proposes a set of MWE
candidates. For this set of candidates, using the
World Wide Web as a large corpus, frequencies are
gathered for each candidate. These in conjunction
with some statistical measures are employed for
ruling out noisy cases like spelling mistakes (from

6The POS tags are produced with theTnT tagger.

of government) and frequent non-MWE sequences
like input is complete.

With this information the remaining sequences
are analysed by a statistical type predictor that as-
signs the most likely lexical type for each of the
candidates in a given context. By adding these to
the grammar as new lexical entries, a considerable
increase in coverage of 14.4% was obtained.

The approach proposed employs simple and
self-contained techniques that are language-
independent and can help to semi-automatically
extend the coverage of a grammar without rely-
ing on external resources, like electronic dictio-
naries and ontologies that are expensive to obtain
and not available for all languages. Therefore, it
provides an inexpensive and reusable manner of
helping and speeding up the grammar engineer-
ing process, by relieving the grammar developer
of some of the burden of extending the coverage
of the grammar.

As future work we intend to investigate further
statistical measures that can be applied robustly to
different types of MWEs for refining even more
the list of candidates and distinguishing false pos-
itives, like of alcohol andfrom MWEs, like put
forward by. The high frequency with which the
former occur in corpora and the more accute prob-
lem of data sparseness that affects the latter make
this a difficult task.

References

Timothy Baldwin, Emily M. Bender, Dan Flickinger,
Ara Kim, and Stephan Oepen. 2004. Road-testing
the English Resource Grammar over the British Na-
tional Corpus. InProceedings of the Fourth Interna-
tional Conference on Language Resources and Eval-
uation (LREC 2004), Lisbon, Portugal.

Timothy Baldwin. 2005. Bootstrapping deep lexical
resources: Resources for courses. InProceedings
of the ACL-SIGLEX Workshop on Deep Lexical Ac-
quisition, pages 67–76, Ann Arbor, Michigan, June.
Association for Computational Linguistics.

Gosse Bouma and Begońa Villada. 2002. Corpus-
based acquisition of collocational prepositional
phrases. InProceedings of the Computational Lin-
guistics in the Netherlands (CLIN) 2001, University
of Twente.

Gosse Bouma, Gertjan van Noord, and Robert Malouf.
2001. Alpino: Wide-coverage computational anal-
ysis of dutch. InComputational Linguistics in The
Netherlands 2000.

43



Entries Added Item # Covered # Coverage

ERG 0 6246 268 4.3%
ERG+MWE(Web) 373 6246 1168 18.7%

Table 6: Parser coverage on “difficult” sentences before/after adding MWE lexical entries

Lou Burnard. 2000. User Reference Guide for the
British National Corpus. Technical report, Oxford
University Computing Services.

M. Butt, S. Dipper, A. Frank, and T.H. King. 1999.
Writing large-scale parallel grammars for english,
french, and german. InProceedings of the LFG99
Conference. CSLI Publications.

Ulrich Callmeier. 2000. PET – a platform for ex-
perimentation with efficient HPSG processing tech-
niques. Journal of Natural Language Engineering,
6(1):99–108.

Bob Carpenter. 1992. The Logic of Typed Fea-
ture Structures. Cambridge University Press, Cam-
bridge, England.

Dan Flickinger. 2000. On building a more efficient
grammar by exploiting types.Natural Language
Engineering, 6(1):15–28.

Gregory Grefenstette. 1999. The World Wide Web
as a resource for example-based machine transla-
tion tasks. InProceedings of ASLIB, Conference on
Translating and the Computer, London.

Ray Jackendoff. 1997. Twistin’ the night away.Lan-
guage, 73:534–59.

Frank Keller, Maria Lapata, and Olga Ourioupina.
2002. Using the Web to overcome data sparse-
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