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Abstract

We investigate the problem of measuring
phonetic similarity, focusing on the iden-
tification of cognates, words of the same
origin in different languages. We com-
pare representatives of two principal ap-
proaches to computing phonetic similar-
ity: manually-designed metrics, and learn-
ing algorithms. In particular, we consider
a stochastic transducer, a Pair HMM, sev-
eral DBN models, and two constructed
schemes. We test those approaches on
the task of identifying cognates among
Indoeuropean languages, both in the su-
pervised and unsupervised context. Our
results suggest that the averaged context
DBN model and the Pair HMM achieve
the highest accuracy given a large training
set of positive examples.

1 Introduction

The problem of measuring phonetic similarity be-
tween words arises in various contexts, including
speech processing, spelling correction, commercial
trademarks, dialectometry, and cross-language in-
formation retrieval (Kessler, 2005). A number of
different schemes for computing word similarity
have been proposed. Most of those methods are de-
rived from the notion of edit distance. In its simplest
form, edit distance is the minimum number of edit
operations required to transform one word into the
other. The set of edit operations typically includes

substitutions, insertions, and deletions, and may in-
corporate more complex transformations.

By assigning variable weights to various edit op-
erations depending on the characters involved in
the operations, one can design similarity schemes
that are more sensitive to a given task. Such vari-
able weight schemes can be divided into two main
groups. One approach is to manually design edit op-
eration weights on the basis of linguistic intuition
and/or physical measurements. Another approach
is to use machine learning techniques to derive the
weights automatically from training data composed
of a set of word pairs that are considered similar.
The manually-designed schemes tend to be some-
what arbitrary, but can be readily applied to diverse
tasks. The learning approaches are also easily adapt-
able to various tasks, but they crucially require train-
ing data sets of reasonable size. In general, the more
complex the underlying model, the larger the data
sets needed for parameter estimation.

In this paper, we focus on a few representatives
of both approaches, and compare their performance
on the specific task of cognate identification. Cog-
nate identification is a problem of finding, in distinct
languages, words that can be traced back to a com-
mon word in a proto-language. Beyond historical
linguistics, cognate identification has applications
in other areas of computational linguistics (Mackay
and Kondrak, 2005). Because the likelihood that
two words across different languages are cognates is
highly correlated with their phonetic similarity, cog-
nate identification provides an objective test of the
quality of phonetic similarity schemes.

The remainder of this paper is organized as fol-
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lows. Section 2 discusses the two manually designed
schemes: the ALINE algorithm and a linguistically-
motivated metric. Section 3 discusses various learn-
ing approaches. In Section 4, we describe Dynamic
Bayesian Nets. Finally, in Section 5, we discuss the
results of our experiments.

2 Two manually constructed schemes

In this section, we first describe two different con-
structed schemes and then compare their properties.

2.1 ALINE

The ALINE algorithm (Kondrak, 2000) assigns a
similarity score to pairs of phonetically-transcribed
words on the basis of the decomposition of phone-
mes into elementary phonetic features. The algo-
rithm was originally designed to identify and align
cognates in vocabularies of related languages. Nev-
ertheless, thanks to its grounding in universal pho-
netic principles, the algorithm can be used for esti-
mating the similarity of any pair of words.

The principal component of ALINE is a function
that calculates the similarity of two phonemes that
are expressed in terms of about a dozen multi-valued
phonetic features (Place, Manner, Voice, etc.). The
phonetic features are assigned salience weights that
express their relative importance. Feature values
are encoded as floating-point numbers in the range
[0,1]. For example, the feature Manner can take any
of the following seven values: stop = 1.0, affricate
= 0.9, fricative = 0.8, approximant = 0.6, high vowel
= 0.4, mid vowel = 0.2, and low vowel = 0.0. The
numerical values reflect the distances between vocal
organs during speech production.

The overall similarity score is the sum of individ-
ual similarity scores between pairs of phonemes in
an optimal alignment of two words, which is com-
puted by a dynamic programming algorithm (Wag-
ner and Fischer, 1974). A constant insertion/deletion
penalty is applied for each unaligned phoneme.
Another constant penalty is set to reduce relative
importance of vowel—as opposed to consonant—
phoneme matches. The similarity value is normal-
ized by the length of the longer word.

ALINE’s behavior is controlled by a number of
parameters: the maximum phonemic score, the in-
sertion/deletion penalty, the vowel penalty, and the

feature salience weights. The parameters have de-
fault settings for the cognate matching task, but
these settings can be optimized (tuned) on a devel-
opment set that includes both positive and negative
examples of similar words.

2.2 A linguistically-motivated metric

Phonetically natural classes such as /p b m/ are much
more common among world’s languages than unnat-
ural classes such as /o z g/. In order to show that the
bias towards phonetically natural patterns of phono-
logical classes can be modeled without stipulating
phonological features, Mielke (2005) developed a
phonetic distance metric based on acoustic and ar-
ticulatory measures. Mielke’s metric encompasses
63 phonetic segments that are found in the invento-
ries of multiple languages. Each phonetic segment
is represented by a 7-dimensional vector that con-
tains three acoustic dimensions and four articulatory
dimensions (perceptual dimensions were left out be-
cause of the difficulties involved in comparing al-
most two thousand different sound pairs). The pho-
netic distance between any two phonetic segments
were then computed as the Euclidean distance be-
tween the corresponding vectors.

For determining the acoustic vectors, the record-
ings of 63 sounds were first transformed into wave-
form matrices. Next, distances between pairs of
matrices were calculated using the Dynamic Time
Warping technique. These acoustic distances were
subsequently mapped to three acoustic dimensions
using multidimensional scaling. The three dimen-
sions can be interpreted roughly as (a) sonorous vs.
sibilant, (b) grave vs. acute, and (c) low vs. high
formant density.

The articulatory dimensions were based on ultra-
sound images of the tongue and palate, video im-
ages of the face, and oral and nasal airflow measure-
ments. The four articulatory dimensions were: oral
constriction location, oral constriction size, lip con-
striction size, and nasal/oral airflow ratio.

2.3 Comparison

When ALINE was initially designed, there did not
exist any concrete linguistically-motivated similarity
scheme to which it could be compared. Therefore, it
is interesting to perform such a comparison with the
recently proposed metric.
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The principal difficulty in employing the metric
for computing word similarity is the limited size
of the phonetic segment set, which was dictated by
practical considerations. The underlying database
of phonological inventories representing 610 lan-
guages contains more than 900 distinct phonetic seg-
ments, of which almost half occur in only one lan-
guage. However, because a number of complex
measurements have to be performed for each sound,
only 63 phonetic segments were analyzed, which is
a set large enough to cover only about 20% of lan-
guages in the database. The set does not include
such common phones as dental fricatives (which oc-
cur in English and Spanish), and front rounded vow-
els (which occur in French and German). It is not
at all clear how one to derive pairwise distances in-
volving sounds that are not in the set.

In contrast, ALINE produces a similarity score for
any two phonetic segment so long as they can be ex-
pressed using the program’s set of phonetic features.
The feature set can in turn be easily extended to in-
clude additional phonetic features required for ex-
pressing unusual sounds. In practice, any IPA sym-
bol can be encoded as a vector of universal phonetic
features.

Another criticism that could be raised against
Mielke’s metric is that it has no obvious reference
point. The choice of the particular suite of acous-
tic and articulatory measurements that underlie the
metric is not explicitly justified. It is not obvious
how one would decide between different metrics for
modeling phonetic generalizations if more than one
were available.

On the other hand, ALINE was designed with a
specific reference in mind, namely cognate identi-
fication. The “goodness” of alternative similarity
schemes can be objectively measured on a test set
containing both cognates and unrelated pairs from
various languages.

A perusal of individual distances in Mielke’s met-
ric reveals that some of them seem quite unintuitive.
For example, [t] is closer to [j] than it is to [ � ], [ � ]
is closer to [n] than to [i], [ � ] is closer to [e] than
to [g]. etc. This may be caused either by the omis-
sion of perceptual features from the underlying set
of features, or by the assignment of uniform weights
to different features (Mielke, personal communica-
tion).

It is difficult to objectively measure which pho-
netic similarity scheme produces more “intuitive”
values. In order to approximate a human evalua-
tion, we performed a comparison with the perceptual
judgments of Laver (1994), who assigned numerical
values to pairwise comparisons of 22 English conso-
nantal phonemes on the basis of “subjective auditory
impressions”. We counted the number of perceptual
conflicts with respect to Laver’s judgments for both
Mielke’s metric and ALINE’s similarity values. For
example, the triple ([� ], [j], [k]) is an example of a
conflict because [� ] is considered closer to [j] than to
[k] in Mielke’s matrix but the order is the opposite
in Laver’s matrix. The program identified 1246 con-
flicts with Mielke’s metric, compared to 1058 con-
flicts with ALINE’s scheme, out of 4620 triples. We
conclude that in spite of the fact that ALINE is de-
signed for identifying cognates, rather than directly
for phonetic similarity, it is more in agreement with
human perceptual judgments than Mielke’s metric
which was explicitly designed for quantifying pho-
netic similarity.

3 Learning algorithms

In this section, we briefly describe several ma-
chine learning algorithms that automatically derive
weights or probabilities for different edit operations.

3.1 Stochastic transducer

Ristad and Yianilos (1998) attempt to model edit
distance more robustly by using Expectation Max-
imization to learn probabilities for each of the pos-
sible edit operations. These probabilities are then
used to create a stochastic transducer, which scores
a pair of words based on either the most probable
sequence of operations that could produce the two
words (Viterbi scoring), or the sum of the scores of
all possible paths that could have produced the two
words (stochastic scoring). The score of an individ-
ual path here is simply the product of the probabili-
ties of the edit operations in the path. The algorithm
was evaluated on the task of matching surface pro-
nunciations in the Switchboard data to their canoni-
cal pronunciations in a lexicon, yielding a significant
improvement in accuracy over Levenshtein distance.
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3.2 Levenshtein with learned weights

Mann and Yarowsky (2001) applied the stochastic
transducer of Ristad and Yianilos (1998) for induc-
ing translation lexicons between two languages, but
found that in some cases it offered no improvement
over Levenshtein distance. In order to remedy this
problem, they they proposed to filter the probabili-
ties learned by EM into a few discrete cost classes,
which are then used in the standard edit distance
algorithm. The LLW approach yielded improve-
ment over both regular Levenshtein and the stochas-
tic transducer.

3.3 CORDI

CORDI (Kondrak, 2002) is a program for detect-
ing recurrent sound correspondences in bilingual
wordlists. The idea is to relate recurrent sound cor-
respondences in wordlists to translational equiva-
lences in bitexts. A translation model is induced be-
tween phonemes in two wordlists by combining the
maximum similarity alignment with the competitive
linking algorithm of Melamed (2000). Melamed’s
approach is based on the one-to-one assumption,
which implies that every word in the bitext is aligned
with at most one word on the other side of the bitext.
In the context of the bilingual wordlists, the cor-
respondences determined under the one-to-one as-
sumption are restricted to link single phonemes to
single phonemes. Nevertheless, the method is pow-
erful enough to determine valid correspondences in
wordlists in which the fraction of cognate pairs is
well below 50%.

The discovered phoneme correspondences can be
used to compute a correspondence-based similar-
ity score between two words. Each valid corre-
spondence is counted as a link and contributes a
constant positive score (no crossing links are al-
lowed). Each unlinked segment, with the exception
of the segments beyond the rightmost link, is as-
signed a smaller negative score. The alignment with
the highest score is found using dynamic program-
ming (Wagner and Fischer, 1974). If more than one
best alignment exists, links are assigned the weight
averaged over the entire set of best alignments. Fi-
nally, the score is normalized by dividing it by the
average of the lengths of the two words.

3.4 Pair HMM

Mackay and Kondrak (2005) propose to computing
similarity between pairs of words with a technique
adapted from the field of bioinformatics. A Pair Hid-
den Markov Model differs form a standard HMM by
producing two output streams in parallel, each corre-
sponding to a word that is being aligned. The model
has three states that correspond to the basic edit op-
erations: substitution, insertion, and deletion. The
parameters of the model are automatically learned
from training data that consists of word pairs that
are known to be similar. The model is trained using
the Baum-Welch algorithm (Baum et al., 1970).

4 Dynamic Bayesian Nets

A Bayesian Net is a directed acyclic graph in which
each of the nodes represents a random variable.
The random variable can be either deterministic, in
which case the node can only take on one value for a
given configuration of its parents, or stochastic, in
which case the configuration of the parents deter-
mines the probability distribution of the node. Arcs
in the net represent dependency relationships.

Filali and Bilmes (2005) proposed to use Dy-
namic Bayesian Nets (DBNs) for computing word
similarity. A DBN is a Bayesian Net where a set
of arcs and nodes are maintained for each point in
time in a dynamic process. This involves set of pro-
logue frames denoting the beginning of the process,
chunk frames which are repeated for the middle of
the process, and epilogue frames to end the process.
The conditional probability relationships are time-
independent. DBNs can encode quite complex in-
terdependencies between states.

We tested four different DBN models on the task
of cognate identification. In the following descrip-
tion of the models, Z denotes the current edit opera-
tion, which can be either a substitution, an insertion,
or a deletion.

MCI The memoriless context-independent model
(Figure 1) is the most basic model, which is
meant to be equivalent to the stochastic trans-
ducer of Ristad and Yianilos (1998). Its lack
of memory signifies that the probability of Z
taking on a given value does not depend in any
way on what previous values of Z have been.
The context-independence refers to the fact that
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Figure 1: The MCI model.

the probability of Z taking on a certain value
does not depend on the letters of the source or
target word. The a and b nodes in Figure 1 rep-
resent the current position in the source and tar-
get words, respectively. The s and t nodes rep-
resent the current letter in the source and target
words. The end node is a switching parent of Z
and is triggered when the values of the a and b
nodes move past the end of both the source and
target words. The sc and tc nodes are consis-
tency nodes which ensure that the current edit
operation is consistent with the current letters
in the source and target words. Consistency
here means that the source side of the edit oper-
ation must either match the current source letter
or be ε, and that the same be true for the target
side. Finally, the send and tend nodes appear
only in the last frame of the model, and are only
given a positive probability if both words have
already been completely processed, or if the
final edit operation will conclude both words.
The following models all use the MCI model
as a basic framework, while adding new depen-
dencies to Z.

MEM In the memory model, the probability of the
current operation being performed depends on
what the previous operation was.

CON In the context-dependent model, the probabil-
ity that Z takes on certain values is dependent
on letters in the source word or target word.

The model that we test in Section 5, takes into
account the context of two letters in the source
word: the current one and the immediately
preceding one. We experimented with several
other variations of context sets, but they either
performed poorly on the development set, or re-
quired inordinate amounts of memory.

LEN The length model learns the probability dis-
tribution of the number of edit operations to
be performed, which is the incorporated into
the similarity score. This model represents an
attempt to counterbalance the effect of longer
words being assigned lower probabilities.

The models were implemented with the GMTK
toolkit (Bilmes and Zweig, 2002). A more detailed
description of the models can be found in (Filali and
Bilmes, 2005).

5 Experiments

5.1 Setup

We evaluated various methods for computing word
similarity on the task of the identification of cog-
nates. The input consists of pairs of words that
have the same meaning in distinct languages. For
each pair, the system produces a score represent-
ing the likelihood that the words are cognate. Ide-
ally, the scores for true cognate pairs should always
be higher than scores assigned to unrelated pairs.
For binary classification, a specific score thresh-
old could be applied, but we defer the decision on
the precision-recall trade-off to downstream applica-
tions. Instead, we order the candidate pairs by their
scores, and evaluate the ranking using 11-point in-
terpolated average precision (Manning and Schutze,
2001). Scores are normalized by the length of the
longer word in the pair.

Word similarity is not always a perfect indicator
of cognation because it can also result from lexical
borrowing and random chance. It is also possible
that two words are cognates and yet exhibit little sur-
face similarity. Therefore, the upper bound for aver-
age precision is likely to be substantially lower than
100%.
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Languages Proportion Method
of cognates EDIT MIEL ALINE R&Y LLW PHMM DBN

English German 0.590 0.906 0.909 0.912 0.894 0.918 0.930 0.927
French Latin 0.560 0.828 0.819 0.862 0.889 0.922 0.934 0.923
English Latin 0.290 0.619 0.664 0.732 0.728 0.725 0.803 0.822
German Latin 0.290 0.558 0.623 0.705 0.642 0.645 0.730 0.772
English French 0.275 0.624 0.623 0.623 0.684 0.720 0.812 0.802
French German 0.245 0.501 0.510 0.534 0.475 0.569 0.734 0.645
Albanian Latin 0.195 0.597 0.617 0.630 0.568 0.602 0.680 0.676
Albanian French 0.165 0.643 0.575 0.610 0.446 0.545 0.653 0.658
Albanian German 0.125 0.298 0.340 0.369 0.376 0.345 0.379 0.420
Albanian English 0.100 0.184 0.287 0.302 0.312 0.378 0.382 0.446

AVERAGE 0.2835 0.576 0.597 0.628 0.601 0.637 0.704 0.709

Table 1: 11-point average cognate identification precision for various methods.

5.2 Data

The training data for our cognate identification ex-
periments comes from the Comparative Indoeuro-
pean Data Corpus (Dyen et al., 1992). The data con-
tains word lists of 200 basic meanings representing
95 speech varieties from the Indoeuropean family
of languages. Each word is represented in an or-
thographic form without diacritics using the 26 let-
ters of the Roman alphabet. Approximately 180,000
cognate pairs were extracted from the corpus.

The development set was composed of three lan-
guage pairs: Italian-Croatian, Spanish-Romanian,
and Polish-Russian. We chose these three language
pairs because they represent very different levels of
relatedness: 25.3%, 58.5%, and 73.5% of the word
pairs are cognates, respectively. The percentage of
cognates within the data is important, as it provides
a simple baseline from which to compare the success
of our algorithms. If our cognate identification pro-
cess were random, we would expect to get roughly
these percentages for our recognition precision (on
average).

The test set consisted of five 200-word lists repre-
senting English, German, French, Latin, and Alba-
nian, compiled by Kessler (2001). The lists for these
languages were removed from the training data (ex-
cept Latin, which was not part of the training set), in
order to keep the testing and training data as sepa-
rate as possible. For the supervised experiments, we
converted the test data to have the same orthographic
representation as the training data.

The training process for the DBN models con-
sisted of three iterations of Expectation Maximiza-
tion, which was determined to be optimal on the de-
velopment data. Each pair was used twice, once in
each source-target direction, to enforce the symme-
try of the scoring, One of the models, the context-
dependent model, remained asymmetrical despite to
two-way training. In order to remove the undesir-
able asymmetry, we averaged the scores in both di-
rections for each word pair.

5.3 Results

Table 1 shows the average cognate identification
precision on the test set for a number of meth-
ods. EDIT is a baseline edit distance with uniform
costs. MIEL refers to edit distance with weights
computed using the approach outlined in (Mielke,
2005). ALINE denotes the algorithm for aligning
phonetic sequences (Kondrak, 2000) described in
Section 2.1. R&Y is the stochastic transducer of
Ristad and Yianilos (1998). LLW stands for Lev-
enshtein with learned weights, which is a modifi-
cation of R&Y proposed by Mann and Yarowsky
(2001). The PHMM column provides the results
reported in (Mackay and Kondrak, 2005) for the
best Pair HMM model, which uses log odds scor-
ing. Finally, DBN stands for our best results ob-
tained with a DBN model, in this case the averaged
context model.

Table 2 show the aggregate results for various
DBN models. Two different results are given for
each model: the raw score, and the score normal-
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Model Raw Score Normalized
MCI 0.515 0.601
MEM 0.563 0.595
LEN 0.516 0.587
CON-FOR 0.582 0.599
CON-REV 0.624 0.619
CON-AVE 0.629 0.709

Table 2: Average cognate identification precision for
various DBN models.

ized by the length of the longer word. The mod-
els are the memoriless context-independent model
(MCI), memory model (MEM), length model (LEN)
and context model (CON). The context model re-
sults are split as follows: results in the original di-
rection (FOR), results with all word pairs reversed
(REV), and the results of averaging the scores for
each word pair in the forward and reverse directions
(AVE).

Table 3 shows the aggregate results for the un-
supervised approaches. In the unsupervised tests,
the training set was not used, as the models were
trained directly on the testing data without access
to the cognation information. For the unsupervised
tests, the original, the test set was in its original pho-
netic form. The table compares the results obtained
with various DBN models and with the CORDI al-
gorithm described in Section 3.3.

5.4 Discussion

The results in Table 1 strongly suggest that the
learning approaches are more effective than the
manually-designed schemes for cognate identifica-
tion. However, it has to be remembered that the
learning process was conducted on a relatively large
set of Indoeuropean cognates. Even though there
was no overlap between the training and the test
set, the latter also contained cognate pairs from the
same language family. For each of the removed lan-
guages, there are other closely related languages that
are retained in the training set, which may exhibit
similar or even identical regular correspondences.

The manually-designed schemes have the advan-
tage of not requiring any training sets after they
have been developed. Nevertheless, Mielke’s met-
ric appears to produce only small improvement over

Model Raw Score Normalized
MCI 0.462 0.430
MEM 0.351 0.308
LEN 0.464 0.395
CON-AVE 0.433 0.414
CORDI — 0.629

Table 3: Phonetic test results.

simple edit distance. ALINE outperforms Mielke’s
metric, which is not surprising considering that
ALINE was developed specifically for identifying
cognates, and Mielke’s substitution matrix lacks
several phonemes that occur in the test set.

Among the DBN models, the average context
model performs the best. The averaged context
model is clearly better than either of the unidirec-
tional models on which it is based. It is likely that
the averaging allows the scoring to take contextual
information from both words into account, instead
of just one or the other. The averaged context DBN
model performs about as well as on average as the
Pair HMM approach, but substantially better than
the R&Y approach and its modification, LLW.

In the unsupervised context, all DBN models fail
to perform meaningfully, regardless of whether the
scores are normalized or not. In view of this, it is re-
markable that CORDI achieves a respectable perfor-
mance just by utilizing discovered correspondences,
having no knowledge of phonetics nor identity of
phonemes. The precision of CORDI is at the same
level as the phonetically-based ALINE. In fact, a
method that combines ALINE and CORDI achieves
the average precision of 0.681 on the same test set
(Kondrak, in preparation).

In comparison with the results of Filali and
Bilmes (2005), certain differences are apparent. The
memory and length models, which performed better
than the memoriless context-independent model on
the pronunciation task, perform worse overall here.
This is especially notable in the case of the length
model which was the best overall performer on their
task. The context-dependent model, however, per-
formed well on both tasks.

As mentioned in (Mann and Yarowsky, 2001),
it appears that there are significant differences be-
tween the pronunciation task and the cognate iden-
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tification task. They offer some hypotheses as to
why this may be the case, such as noise in the data
and the size of the training sets, but these issues are
not apparent in the task presented here. The train-
ing set was quite large and consisted only of known
cognates. The two tasks are inherently different, in
that scoring in the pronunciation task involves find-
ing the best match of a surface pronunciation with
pronunciations in a lexicon, while the cognate task
involves the ordering of scores relative to each other.
Certain issues, such as length of words, may become
more prominent in this setup. We countered this by
normalizing all scores, which was not done in (Filali
and Bilmes, 2005). As can be seen in Table 2, the
normalization by length appears to improve the re-
sults on average. It notable that normalization even
helps the length model on this task, despite the fact
that it was designed to take word length into account.

6 Conclusion

We have compared the effectiveness of a number of
different methods, including the DBN models, on
the task of cognate identification. The results sug-
gest that some of the learning methods, namely the
Pair HMMs and the averaged context DBN model,
outperform the manually designed methods, pro-
vided that large training sets are available.

In the future, we would like to apply DBNs
to other tasks involving computing word similarity
and/or alignment. An interesting next step would be
to use them for tasks involving generation, for ex-
ample the task of machine transliteration.
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