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Abstract

We present results on the relation discov-
ery task, which addresses some of the
shortcomings of supervised relation ex-
traction by applying minimally supervised
methods. We describe a detailed experi-
mental design that compares various con-
figurations of conceptual representations
and similarity measures across six differ-
ent subsets of the ACE relation extraction
data. Previous work on relation discovery
used a semantic space based on a term-by-
document matrix. We find that represen-
tations based on term co-occurrence per-
form significantly better. We also observe
further improvements when reducing the
dimensionality of the term co-occurrence
matrix using probabilistic topic models,
though these are not significant.

1 Introduction

This paper describes work that aims to improve
upon previous approaches to identifying relation-
ships between named objects in text (e.g., people,
organisations, locations). Figure 1 contains sev-
eral example sentences from the ACE 2005 cor-
pus that contain relations and Figure 2 summarises
the relations occurring in these sentences. So, for
example, sentence 1 contains anemploymentrela-
tion between Lebron James and Nike, sentence 2
contains asports-affiliationrelation between Stig
Toefting and Bolton and sentence 4 contains a
businessrelation between Martha Stewart (she)
and the board of directors (of Martha Stewart Liv-
ing Omnimedia).

Possible applications include identifying com-
panies taking part in mergers/acquisitions from

1 As for that $90 million shoe contract with Nike,
it may be a good deal for James.

2 Toefting transferred to Bolton in February 2002
from German club Hamburg.

3 Toyoda founded the automaker in 1937 ... .
4 In a statement, she says she’s stepping aside in

the best interest of the company, but she will
stay on the board of directors.

Figure 1: Example sentences from ACE 2005.

Sent Entity1 Entity2 Relation
1 Lebron James Nike Employ
2 Stig Toefting Bolton Sports-Aff
2 Stig Toefting Hamburg Sports-Aff
3 Kiichiro Toyoda Toyota Corp Founder
4 Martha Stewart board Business

Figure 2: Example entity pairs and relation types.

business newswire, which could be inserted into a
corporate intelligence database. In the biomedical
domain, we may want to identify relationships be-
tween genes and proteins from biomedical publi-
cations, e.g. Hirschman et al. (2004), to help scien-
tists keep up-to-date on the literature. Or, we may
want to identify disease and treatment relations in
publications and textbooks, which can be used to
help formalise medical knowledge and assist gen-
eral practitioners in diagnosis, treatment and prog-
nosis (Rosario and Hearst, 2004).

Another application scenario involves building
networks of relationships from text collections that
indicate the important entities in a domain and
can be used to visualise interactions. The net-
works could provide an alternative to searching
when interacting with a document collection. This
could prove beneficial, for example, in investiga-
tive journalism. It might also be used for social
science research using techniques from social net-
work analysis (Marsden and Lin, 1982). In previ-
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ous work, relations have been used for automatic
text summarisation as a conceptual representation
of sentence content in a sentence extraction frame-
work (Filatova and Hatzivassiloglou, 2004).

In the next section, we motivate and introduce
the relation discovery task, which addresses some
of the shortcomings of conventional approaches to
relation extraction (i.e. supervised learning or rule
engineering) by applying minimally supervised
methods.1 A critical part of the relation discov-
ery task is grouping entity pairs by their relation
type. This is a clustering task and requires a ro-
bust conceptual representation of relation seman-
tics and a measure of similarity between relations.
In previous work (Hasegawa et al., 2004; Chen et
al., 2005), the conceptual representation has been
limited to term-by-document (TxD) models of re-
lation semantics. The current work introduces a
term co-occurrence (TxT) representation for the
relation discovery task and shows that it performs
significantly better than the TxD representation.
We also explore dimensionality reduction tech-
niques, which show a further improvement.

Section 3 presents a parameterisation of similar-
ity models for relation discovery. For the purposes
of the current work, this consists of the semantic
representation for terms (i.e. how a term’s context
is modelled), dimensionality reduction technique
(e.g. singular value decomposition, latent Dirich-
let allocation), and the measure used to compute
similarity.

We also build on the evaluation paradigm for
relation discovery with a detailed, controlled ex-
perimental setup. Section 4 describes the experi-
ment design, which compares the various system
configurations across six different subsets of the
relation extraction data from the automatic con-
tent extraction (ACE) evaluation. Finally, Section
5 presents results and statistical analysis.

2 The Relation Discovery Task

Conventionally, relation extraction is considered
to be part of information extraction and has been
approached through supervised learning or rule
engineering (e.g., Blaschke and Valencia (2002),
Bunescu and Mooney (2005)). However, tradi-
tional approaches have several shortcomings. First

1The relation discovery task is minimally supervised in
the sense that it relies on having certain resources such as
named entity recognition. The focus of the current paper is
the unsupervised task of clustering relations.

and foremost, they are generally based on pre-
defined templates of what types of relations ex-
ist in the data and thus only capture information
whose importance was anticipated by the template
designers. This poses reliability problems when
predicting new data in the same domain as the
training data will be from a certain epoch in the
past. Due to language change and topical varia-
tion, as time passes, it is likely that the new data
will deviate more and more from the trained mod-
els. Additionally, there are cost problems asso-
ciated with the conventional supervised approach
when updating templates or transferring to a new
domain, both of which require substantial effort in
re-engineering rules or re-annotating training data.

The goal of the relation discovery task is to
identify the existence of associations between en-
tities, to identify the kinds of relations that oc-
cur in a corpus and to annotate particular associ-
ations with relation types. These goals correspond
to the three main steps in a generalised algorithm
(Hasegawa et al., 2004):

1. Identify co-occurring pairs of named entities

2. Group entity pairs using the textual context

3. Label each cluster of entity pairs

The first step is the relation identification task.
In the current work, this is assumed to have been
done already. We use the gold standard relations
in the ACE data in order to isolate the performance
of the second step. The second step is a clustering
task and as such it is necessary to compute simi-
larity between the co-occurring pairs of named en-
tities (relations). In order to do this, a model of re-
lation similarity is required, which is the focus of
the current work.

We also assume that it is possible to perform the
third step.2 The evaluation we present here looks
just at the quality of the clustering and does not
attempt to assess the labelling task.

3 Modelling Relation Similarity

The possible space of models for relation similar-
ity can be explored in a principled manner by pa-
rameterisation. In this section, we discuss several

2Previous approaches select labels from the collection of
context words for a relation cluster (Hasegawa et al., 2004;
Zhang et al., 2005). Chen et al. (2005) use discriminative
category matching to make sure that selected labels are also
able to differentiate between clusters.
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parameters including the term context representa-
tion, whether or not we apply dimensionality re-
duction, and what similarity measure we use.

3.1 Term Context

Representing texts in such a way that they can be
compared is a familiar problem from the fields
of information retrieval (IR), text mining (TM),
textual data analysis (TDA) and natural language
processing (NLP) (Lebart and Rajman, 2000).
The traditional model for IR and TM is based
on a term-by-document (TxD) vector representa-
tion. Previous approaches to relation discovery
(Hasegawa et al., 2004; Chen et al., 2005) have
been limited to TxD representations, usingtf*idf
weighting and the cosine similarity measure. In
information retrieval, the weighted term represen-
tation works well as the comparison is generally
between pieces of text with large context vectors.
In the relation discovery task, though, the term
contexts (as we will define them in Section 4) can
be very small, often consisting of only one or two
words. This means that a term-based similarity
matrix between entity pairs is very sparse, which
may pose problems for performing reliable clus-
tering.

An alternative method widely used in NLP
and cognitive science is to represent a term con-
text by its neighbouring words as opposed to the
documents in which it occurs. This term co-
occurrence (TxT) model is based on the intu-
ition that two words are semantically similar if
they appear in a similar set of contexts (see e.g.
Pado and Lapata (2003)). The current work ex-
plores such a term co-occurrence (TxT) represen-
tation based on the hypothesis that it will provide
a more robust representation of relation contexts
and help overcome the sparsity problems asso-
ciated with weighted term representations in the
relation discovery task. This is compared to a
baseline term-by-document (TxD) representation
which is a re-implementation of the approach used
by Hasegawa et al. (2004) and Chen et al. (2005).

3.2 Dimensionality Reduction

Dimensionality reduction techniques for docu-
ment and corpus modelling aim to reduce descrip-
tion length and model a type of semantic similar-
ity that is more linguistic in nature (e.g., see Lan-
dauer et al.’s (1998) discussion of LSA and syn-
onym tests). In the current work, we explore sin-
gular value decomposition (Berry et al., 1994), a

technique from linear algebra that has been ap-
plied to a number of tasks from NLP and cogni-
tive modelling. We also explore latent Dirichlet
allocation, a probabilistic technique analogous to
singular value decomposition whose contribution
to NLP has not been as thoroughly explored.

Singular value decomposition (SVD) has been
used extensively for the analysis of lexical seman-
tics under the name of latent semantic analysis
(Landauer et al., 1998). Here, a rectangular matrix
is decomposed into the product of three matrices
(Xw×p = Ww×nSn×n(Pp×n)T ) with n ’latent se-
mantic’ dimensions. The resulting decomposition
can be viewed as a rotation of then-dimensional
axes such that the first axis runs along the direction
of largest variation among the documents (Man-
ning and Scḧutze, 1999). W and P represent
terms and documents in the new space. AndS is
a diagonal matrix of singular values in decreasing
order.

Taking the productWw×kSk×k(Pp×k)T over
the firstD columns gives the best least square ap-
proximation of the original matrixX by a matrix
of rankD, i.e. a reduction of the original matrix to
D dimensions. SVD can equally be applied to the
word co-occurrence matrices obtained in the TxT
representation presented in Section 2, in which
case we can think of the original matrix as being a
term× co-occurring term feature matrix.

While SVD has proved successful and has been
adapted for tasks such as word sense discrimi-
nation (Scḧutze, 1998), its behaviour is not easy
to interpret. Probabilistic LSA (pLSA) is a gen-
erative probabilistic version of LSA (Hofmann,
2001). This models each word in a document as
a sample from a mixture model, but does not pro-
vide a probabilistic model at the document level.
Latent Dirichlet Allocation (LDA) addresses this
by representing documents as random mixtures
over latent topics (Blei et al., 2003). Besides hav-
ing a clear probabilistic interpretation, an addi-
tional advantage of these models is that they have
intuitive graphical representations.

Figure 3 contains a graphical representation
of the LDA model as applied to TxT word
co-occurrence matrices in standard plate nota-
tion. This models the word featuresf in the
co-occurrence context (sizeN ) of each wordw
(wherew ∈ W and|W| = W ) with a mixture of
topicsz. In its generative mode, the LDA model
samples a topic from the word-specific multino-
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Figure 3: Graphical representation of LDA.

mial distributionθ. Then, each context feature is
generated by sampling from a topic-specific multi-
nomial distributionφz.3 In a manner analogous to
the SVD model, we use the distribution over top-
ics for a wordw to represent its semantics and we
use the average topic distribution over all context
words to represent the conceptual content of an en-
tity pair context.

3.3 Measuring Similarity

Cosine (Cos) is commonly used in the literature to
compute similarities betweentf*idf vectors:

Cos(p, q) =
∑

i piqi√∑
p2

√∑
q2

In the current work, we use cosine over term
and SVD representations of entity pair context.
However, it is not clear which similarity measure
should be used for the probabilistic topic models.
Dagan et al. (1997) find that the symmetric infor-
mation radius measure performs best on a pseudo-
word sense disambiguation task, while Lee (1999)
find that the asymmetric skew divergence – a gen-
eralisation of Kullback-Leibler divergence – per-
forms best for improving probability estimates for
unseen word co-occurrences.

In the current work, we compare KL divergence
with two methods for deriving a symmetric mea-

3The hyperparametersα andβ are Dirichlet priors on the
multinomial distributions for word features (φ ∼ Dir(β))
and topics (θ ∼ Dir(α)). The choice of the Dirichlet is
explained by its conjugacy to the multinomial distribution,
meaning that if the parameter (e.g.φ, θ) for a multinomial
distribution is endowed with a Dirichlet prior then the poste-
rior will also be a Dirichlet. Intuitively, it is a distribution over
distributions used to encode prior knowledge about the pa-
rameters (φ andθ) of the multinomial distributions for word
features and topics. Practically, it allows efficient estimation
of the joint distribution over word features and topicsP (~f, ~z)
by integrating outφ andθ.

sure. The KL divergence of two probability dis-
tributions (p andq) over the same event space is
defined as:

KL(p||q) =
∑

i

pi log
pi

qi

In information-theoretic terms, KL divergence is
the average number of bits wasted by encoding
events from a distributionp with a code based on
distribution q. The symmetric measures are de-
fined as:

Sym(p, q) =
1
2

[KL(p||q) + KL(q||p)]

JS(p, q) =
1
2

[
KL

(
p||p + q

2

)
+ KL

(
q||p + q

2

)]
The first is termed symmetrised KL divergence
(Sym) and the second is termed Jensen-Shannon
(JS) divergence. We explore KL divergence as
well as the symmetric measures as it is not known
in advance whether a domain is symmetric or not.

Technically, the divergence measures are dis-
similarity measures as they calculate the differ-
ence between two distributions. However, they
can be converted to increasing measures of simi-
larity through various transformations. We treated
this as a parameter to be tuned during develop-
ment and considered two approaches. The first is
from Dagan et al. (1997). For KL divergence, this
function is defined asSim(p, q) = 10−βKL(p||q),
whereβ is a free parameter, which is tuned on the
development set (as described in Section 4.2). The
same procedure is applied for symmetric KL di-
vergence and JS divergence. The second approach
is from Lee (1999). Here similarity for KL is de-
fined asSim(p, q) = C −KL(p||q), whereC is
a free parameter to be tuned.

4 Experimental Setup

4.1 Materials

Following Chen et al. (2005), we derive our rela-
tion discovery data from the automatic content ex-
traction (ACE) 2004 and 2005 materials for eval-
uation of information extraction.4 This is prefer-
able to using the New York Times data used by
Hasegawa et al. (2004) as it has gold standard an-
notation, which can be used for unbiased evalua-
tion.

The relation clustering data is based on the gold
standard relations in the information extraction

4http://www.nist.gov/speech/tests/ace/
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data. We only consider data from newswire or
broadcast news sources. We constructed six data
subsets from the ACE corpus based on four of the
ACE entities: persons (PER), organisations (ORG),
geographical/social/political entities (GPE) and fa-
cilities (FAC). The six data subsets were chosen
during development based on a lower limit of 50
for the data subset size (i.e. the number of entity
pairs in the domain), ensuring that there is a rea-
sonable amount of data. We also set a lower limit
of 3 for the number of classes (relation types) in a
data subset, ensuring that the clustering task is not
too simple.

The entity pair instances for clustering were
chosen based on several criteria. First, we do not
use ACE’sdiscourserelations, which are relations
in which the entity referred to is not an official en-
tity according to world knowledge. Second, we
only use pairs with one or more non-stop words
in the intervening context, that is the context be-
tween the two entity heads.5 Finally, we only keep
relation classes with 3 or more members. Table
4.1 contains the full list of relation types from the
subsets of ACE that we used. (Refer to Table 4.2
for definition of the relation type abbreviations.)

We use the Infomap tool6 for singular value
decomposition of TxT matrices and compute the
conceptual content of an entity pair context as the
average over the reducedD-dimensional represen-
tation of the co-occurrence vector of the terms in
the relation context. For LDA, we use Steyvers
and Griffiths’ Topic Modeling Toolbox7). The in-
put is produced by a version of Infomap which
was modified to output the TxT matrix. Again, we
compute the conceptual content of an entity pair
as the average over the topic vectors for the con-
text words. As documents are explicitly modelled
in the LDA model, we input a matrix with raw fre-
quencies. In the TxD, unreduced TxT and SVD
models we usetf*idf term weighting.

We use the same preprocessing when prepar-
ing the text for building the SVD and probabilistic
topic models as we use for processing the interven-
ing context of entity pairs. This consisted of Mx-
Terminator (Reynar and Ratnaparkhi., 1997) for
sentence boundary detection, the Penn Treebank

5Following results reported by Chen et al. (2005), who
tried unsuccessfully to incorporate words from the surround-
ing context to represent a relation’s semantics, we use only
intervening words.

6http://infomap.stanford.edu/
7http://psiexp.ss.uci.edu/research/

programs_data/toolbox.htm

sed script8 for tokenisation, and the Infomap stop
word list. We also use an implementation of the
Porter algorithm (Porter, 1980) for stemming.9

4.2 Model Selection

We used the ACE 2004 relation data to perform
model selection. Firstly, dimensionality (D) needs
to be optimised for SVD and LDA. SVD was
found to perform best with the number of dimen-
sions set to10. For LDA, dimensionality inter-
acts with the divergence-to-similarity conversion
so they were tuned jointly. The optimal con-
figuration varies by the divergence measure with
D = 50 andC = 14 for KL divergence,D = 200
andC = 4 for symmetrised KL, andD = 150
andC = 2 for JS divergence. For all divergence
measures, Lee’s (1999) method outperformed Da-
gan et al.’s (1997) method. Also for all divergence
measures, the model hyper-parameterβ was found
to be optimal at0.0001. The α hyper-parameter
was always set to50/T following Griffiths and
Steyvers (2004).

Clustering is performed with the CLUTO soft-
ware10 and the technique used is identical across
models. Agglomerative clustering is used for
comparability with the original relation discovery
work of Hasegawa et al. (2004). This choice was
motivated because as it is not known in advance
how many clusters there should be in a new do-
main.

One way to view the clustering problem is as
an optimisation process where an optimal cluster-
ing is chosen with respect to a criterion function
over the entire solution. The criterion function
used here was chosen based on performance on
the development data. We compared a number of
criterion functions including single link, complete
link, group average,I1, I2, E1 andH1. I1 is a
criterion function that maximises sum of pairwise
similarities between relation instances assigned to
each cluster,I2 is an internal criterion function
that maximises the similarity between each rela-
tion instance and the centroid of the cluster it is as-
signed to,E1 is an external criterion function that
minimises the similarity between the centroid vec-
tor of each cluster and the centroid vector of the

8http://www.cis.upenn.edu/˜treebank/
tokenizer.sed

9http://www.ldc.usb.ve/˜vdaniel/
porter.pm

10http://glaros.dtc.umn.edu/gkhome/
cluto/cluto/overview
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ORG-GPE ORG-ORG PER-FAC PER-GPE PER-ORG PER-PER

basedin 54 subsidiary 36 located 127 located 222 staff 121 business 81
subsidiary 27 emporgothr 14 owner 14 resident 79 executive 100 family 20
located 15 partner 8 near 4 executive 42 member 44 persocothr 16
gpeaffothr 3 member 6 staff 30 emporgothr 27 perorgothr 9

employgen 7 employgen 9 near 7
located 4 ethnic 5

executive 3
ideology 3
member 3

Total 99 Total 64 Total 145 Total 380 Total 305 Total 147

Table 1: Relation distributions for entity pair domains.

Type Subtype Abbr
AGENT-ARTIFACT User-or-Owner owner
EMPLOY/MEMBER Employ-Executive executive

Employ-Staff staff
Employ-Undet’d employgen
Member-of-Group member
Other artothr
Partner partner
Subsidiary subsidiary

GPE AFFILIATION Based-In basedin
Citizen-or-Resdent resident
Other gpeaffothr

PER/ORG AFFIL’ N Ethnic ethnic
Ideology ideology
Other perorgothr

PERSONAL-SOC’ L Business business
Family family
Other persocothr

PHYSICAL Located located
Near near

Table 2: Overview of ACE relations with abbrevi-
ations used here.

entire collection, andH1 is a combined criterion
function that consists of the ration ofI1 overE1.

TheI2, H1 andH2 criterion functions outper-
formed single link, complete link and group aver-
age on the development data. We useI2, which
performed as well asH1 andH2 and is superior
in terms of computational complexity (Zhao and
Karypis, 2004).

5 Experiment

5.1 Method

This section describes experimental setup, which
uses relation extraction data from ACE 2005 to an-
swer four questions concerning the effectiveness
of similarity models based on term co-occurrence
and dimensionality reduction for the relation dis-
covery task:

1. Do term co-occurrence models provide a bet-
ter representation of relation semantics than
standard term-by-document vector space?

2. Do textual dimensionality reduction tech-
niques provide any further improvements?

3. How do probabilistic topic models perform
with respect to SVD on the relation discovery
task?

4. Does one similarity measure (for probability
distributions) outperform the others on the re-
lation discovery task?

System configurations are compared across
six different data subsets (entity type pairs, i.e.,
organisation-geopolitical entity, organisation-
organisation, person-facility, person-geopolitical
entity, person-organisation, person-person)
and evaluated following suggestions by
Dem̌sar (2006) for statistical comparison of
classifiers over multiple data sets.

The dependent variable is the clustering perfor-
mance as measured by the F-score. F-score ac-
counts for both the amount of predictions made
that are true (Precision) and the amount of true
classes that are predicted (Recall). We use the
CLUTO implementation of this measure for eval-
uating hierarchical clustering. Based on (Larsen
and Aone, 1999), this is a balanced F-score
(F = 2RP

R+P ) that computes the maximum per-class
score over all possible alignments of gold stan-
dard classes with nodes in the hierarchical tree.
The average F-score for the entire hierarchical tree
is a micro-average over the class-specific scores
weighted according to the relative size of the class.

5.2 Results

Table 3 contains F-score performance on the test
set (ACE 2005). The columns contain results from
the different system configurations. The column
labels in the top row indicate the different repre-
sentations of relation similarity. The column la-
bels in the second row indicate the dimensional-
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Sem Space TxD TxT TxT TxT TxT TxT
Dim Red’n None None SVD LDA LDA LDA
Similarity Cos Cos Cos KL Sym JS

ORG-GPE 0.644 0.673 0.645 0.680 0.670 0.673
ORG-ORG 0.879 0.922 0.879 0.904 0.900 0.904
PER-FAC 0.811 0.827 0.831 0.832 0.826 0.820
PER-GPE 0.595 0.637 0.627 0.664 0.642 0.670
PER-ORG 0.520 0.551 0.532 0.569 0.552 0.569
PER-PER 0.534 0.572 0.593 0.633 0.553 0.618
Micro Ave 0.627 0.661 0.652 0.683 0.658 0.681
Macro Ave 0.664 0.697 0.684 0.714 0.689 0.709
RankAve 5.917 3.083 4.250 1.500 4.000 2.250

Table 3: F-score performance on the test data (ACE 2005) using agglomerative clustering with theI2

criterion function.

ity reduction technique used. The column labels
in the third row indicated the similarity measure
used, i.e. cosine (Cos) and KL (KL), symmetrised
KL (Sym) and JS (JS) divergence. The rows con-
tain results for the different data subsets. While
we do not use them for analysis of statistical sig-
nificance, we include micro and macro averages
over the data subsets.11 We also include the aver-
age ranks, which show that the LDA system using
KL divergence performed best.

Initial inspection of the table shows that all sys-
tems that use the term co-occurrence semantic
space outperform the baseline system that uses the
term-by-document semantic space. To test for sta-
tistical significance, we use non-parametric tests
proposed by Dem̌sar (2006) for comparing clas-
sifiers across multiple data sets. The use of non-
parametric tests is safer here as they do not as-
sume normality and outliers have less effect. The
first test we perform is a Friedman test (Friedman,
1940), a multiple comparisons technique which
is the non-parametric equivalent of the repeated-
measures ANOVA. The null hypothesis is that all
models perform the same and observed differences
are random. With a Friedman statistic (χ2

F ) of
21.238, we reject the null hypothesis atp < 0.01.

The first question we wanted to address is
whether term co-occurrence models outperform
the term-by-document representation of relation
semantics. To address this question, we continue
with post-hoc analysis. The objective here is to

11Averages over data sets are unreliable where it is not
clear whether the domains are commensurable (Webb, 2000).
We present averages in our results but avoid drawing conclu-
sions based on them.

compare several conditions to a control (i.e., com-
pare the term co-occurrence systems to the term-
by-document baseline) so we use a Bonferroni-
Dunn test. At a significance level ofp < 0.05,
the critical difference for the Bonferroni-Dunn test
for comparing 6 systems across 6 data sets is
2.782. We conclude that the unreduced term co-
occurrence system and the LDA systems with KL
and JS divergence all perform significantly better
than baseline, while the SVD system and the LDA
system with symmetrised KL divergence do not.

The second question asks whether SVD and
LDA dimensionality reduction techniques provide
any further improvement. We observe that the sys-
tems using KL and JS divergence both outperform
the unreduced term co-occurrence system, though
the difference is not significant.

The third question asks how the probabilistic
topic models perform with respect to the SVD
models. Here, Holm-correct Wilcoxon signed-
ranks tests show that the KL divergence system
performs significantly better than SVD while the
symmetrised KL divergence and JS divergence
systems do not.

The final question is whether one of the diver-
gence measures (KL, symmetrised KL or JS) out-
performs the others. With a statistic ofχ2

F =
9.336, we reject the null hypothesis that all sys-
tems are the same atp < 0.01. Post-hoc analysis
with Holm-corrected Wilcoxon signed-ranks tests
show that the KL divergence system and the JS
divergence system both perform significantly bet-
ter than the symmetrised KL system atp < 0.05,
while there is no significant difference between the
KL and JS systems.
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6 Discussion

An interesting aspect of using the ACE corpus is
the wealth of linguistic knowledge encoded. With
respect to named entities, this includes class infor-
mation describing the kind of reference the entity
makes to something in the world (i.e.,specific ref-
erential, generic referential, under-specified ref-
erential) and it includes mention type informa-
tion (i.e., names, quantified nominal construc-
tions, pronouns). It also includes information de-
scribing the lexical condition of a relation (i.e.,
possessive, preposition, pre-modifier, formulaic, ,
verbal). Based on a mapping between gold stan-
dard and predicted clusters, we assigned each case
a value of 1 or 0 to indicate whether it is a correct
or incorrect classification. We then carried out de-
tailed statistical analysis12 to test for effects of the
entity and relation information described above on
each system in each domain.

Overall, the effects were fairly small and do not
generalise across domains or systems very well.
However, there were some observable tendencies.
With respect to entity class, relations withspecific
referentialentities tend to correlate positively with
correct classifications whileunder-specified refer-
entialentities tend to correlate negatively with cor-
rect classifications. With respect to entity men-
tion type, relations entities that consist ofnames
tend to correlate positively with correct classifica-
tions whilepronounstend to correlate negatively
with correct classifications. Though, this is only
reliably observed in thePER-GPE domain. Fi-
nally, with respect to lexical condition, we observe
that possessiveconditioned relations tend to cor-
relate negatively, especially in thePER-GPE and
PER-ORG domains with thePER-PERdomain also
showing some effect.Pre-modifierconditioned re-
lations also tend to correlate negatively in thePER-
GPEdomain. The effect withverballyconditioned
relations is mixed. This is probably due to the
fact that verbal relations tend to have more words
occurring between the entity pair, which provides
more context but can also be misleading when the
key terms describing the relation do not occur be-
tween the entity pair (e.g., the first sentence in Fig-
ure 1).

It is also informative to look at overall proper-
ties of the entity pair domains and compare this

12For this analysis, we used the Phi coefficient, which is
a measure of relatedness for binomial variables that is inter-
preted like correlation.

Domain Score TTR Entrpy

ORG-GPE 0.680 0.893 1.554
ORG-ORG 0.904 0.720 1.642
PER-FAC 0.832 0.933 0.636
PER-GPE 0.664 0.933 1.671
PER-ORG 0.569 0.973 2.001
PER-PER 0.633 0.867 2.179

Table 4: System score, type-to-token ratio (TTR)
and relation type entropy (Entrpy) for entity pair
domains.

to the system performance. Table 6 contains, for
each domain, the F-score of the LDA+KL system,
the type-to-token ratio, and the entropy of the re-
lation type distribution for each domain. Type-to-
token ratio (TTR) is the number of words divided
by the number of word instances and indicates
how much repetition there is in word use. Since
TTR can vary depending on the size of the text,
we compute it on a random sample of 75 tokens
from each domain. Entropy can be interpreted as
a measure of the uniformity of a distribution. Low
entropy indicates a more spiked distribution while
high entropy indicates a more uniform distribu-
tion. Though there is not enough data to make a
reliable conclusion, it seems that the system does
poorly on domains that have both a high type-to-
token ratio and a high entropy (uniform relation
type distribution), while it performs very well on
domains that have low TTR or low entropy.

7 Conclusions and Future Work

This paper presented work on the relation dis-
covery task. We tested several systems for the
clustering subtask that use different models of the
conceptual/semantic similarity of relations. These
models included a baseline system based on a
term-by-document representation of term context,
which is equivalent to the representation used in
previous work by Hasegawa et al. (Hasegawa et
al., 2004) and Chen et al. (Chen et al., 2005). We
hypothesised that this representation suffers from
a sparsity problem and showed that models that
use a term co-occurrence representation perform
significantly better.

Furthermore, we investigated the use of singular
value decomposition and latent Dirichlet alloca-
tion for dimensionality reduction. It has been sug-
gested that representations using these techniques
are able to model a similarity that is less reliant on
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specific word forms and therefore more semantic
in nature. Our experiments showed an improve-
ment over a term co-occurrence baseline when us-
ing LDA with KL and JS divergence, though it
was not significant. We also found that LDA with
KL divergence performs significantly better than
SVD.

Comparing the different divergence measures
for LDA, we found that KL and JS perform sig-
nificantly better than symmetrised KL divergence.
Interestingly, the performance of the asymmetric
KL divergence and the symmetric JS divergence
is very close, which makes it difficult to con-
clude whether the relation discovery domain is a
symmetric domain or an asymmetric domain like
Lee’s (1999) task of improving probability esti-
mates for unseen word co-occurrences.

A shortcoming of all the models we will de-
scribe here is that they are derived from the basic
bag-of-words models and as such do not account
for word order or other notions of syntax. Related
work on relation discovery by Zhang et al. (2005)
addresses this shortcoming by using tree kernels to
compute similarity between entity pairs. In future
work we will extend our experiment to explore the
use of syntactic and semantic features following
the frame work of Pado and Lapata (2003). We
are also planning to look at non-parametric ver-
sions of LDA that address the model order selec-
tion problem and perform an extrinsic evaluation
of the relation discovery task.
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