The stages of event extraction

David Ahn
Intelligent Systems Lab Amsterdam
University of Amsterdam
ahn@science.uva.nl

Abstract events (in line with the increased complexity of

ACE events), involving detection of event anchors,

Event detection and recognition is a com-  assignment of an array of attributes, identification
plex task consisting of multiple sub-tasks  of arguments and assignment of roles, and deter-
of varying difficulty. In this paper, we mination of event coreference. In this paper, we
present a simple, modular approach to  present a modular system for ACE event detection

event extraction that allows us to exper-  and recognition. Our focus is on the difficulty and
iment with a variety of machine learning  jmportance of each sub-task of the extraction task.
methods for these sub-tasks, as well as to  To this end, we isolate and perform experiments
evaluate the impact on performance these  on each stage, as well as evaluating the contribu-

sub-tasks have on the overall task. tion of each stage to the overall task.

In the next section, we describe events in the

ACE program in more detail. In section 3, we pro-

Events are undeniably temporal entities, but theyide an overview of our approach and some infor-
also possess a rich non-temporal structure that #ation about our corpus. In sections 4 through 7,
important for intelligent information access sys-We describe our experiments for each of the sub-
tems (information retrieval, question answering,taSkS of event extraction. In section 8, we compare
summarization, etc.). Without information aboutthe contribution of each stage to the overall task,
whathappenedwhere and towhom temporal in- and in section 9, we conclude.

formation about an event may not be very useful. ]

In the available annotated corpora geared to2 EVentsin the ACE program

ward information extr_ac_:tlon, we ;ee two mOd'The ACE prograr’h provides annotated data, eval-
els of events, emphasizing these different aspectyion tols, and periodic evaluation exercises for
On the one hand, there is the TimeML model, i, \ 4 ety of information extraction tasks. There are
which an event is a word that points t0 a nodeqy e pagic kinds of extraction targets supported by
In a network_ of temporal relatlo_ns. Qn the OtherACE: entities, times, values, relations, and events.
hand, there is the ACE model, in which an eventrpo AcE tasks for 2005 are more fully described
is a complex structure, relating arguments that arg, (ACE, 2005). In this paper, we focus on events,
themselves complex structures, but with only Nyt since ACE events are complex structures in-
cillary temporal information (in the form of tem- volving entities, times, and values, we briefly de-
poral arguments, which are only noted when eX5eribe these, as well.

plicitly given). In the TimeML model, every evgnt ACE entities fall into seven types (person, or-
is annotated, because every event takes par'f‘_ln tQ;eanization, location, geo-political entity, facility,
tempqral network. In the ACE quel, only “in- vehicle, weapon), each with a number of subtypes.
teresting” events (events that fall into one of 34Withinthe ACE program, a distinction is made be-

predefined categories) arg annotated. i tween entities and entity mentions (similarly be-
The task of automatically extracting ACE

events is more complex than extracting TimeML  hitp://www.nist.gov/speech/tests/ace/

1 Introduction
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tween event and event mentions, and so on). An Events, like entities, are distinguished from
entity mention is a referring expression in text (atheir mentions in text. An event mention is a span
name, pronoun, or other noun phrase) that refersf text (anextent usually a sentence) with a dis-
to something of an appropriate type. An entity,tinguishedanchor(the word that “most clearly ex-
then, is either the actual referent, in the world,presses [an event’s] occurrence” (LDC, 2005)) and
of an entity mention or the cluster of entity men-zero or more arguments, which are entity men-
tions in a text that refer to the same actual entitytions, timexes, or values in the extent. An event is
The ACE Entity Detection and Recognition taskeither an actual event, in the world, or a cluster of
requires both the identification of expressions inevent mentions that refer to the same actual event.
text that refer to entities (i.e., entity mentions) andNote that the arguments of an event are the enti-
coreference resolution to determine which entityties, times, and values corresponding to the entity
mentions refer to the same entities. mentions, timexes, and values that are arguments

There are also ACE tasks to detect and recogPf the event mentions that make up the event.
nize times and a limited set of values (contact in- The official evaluation metric of the ACE pro-
formation, numeric values, job titles, crime types,9ram is ACE value, a cost-based metric which
and sentence types). Times are annotated accor@ssociates a normalized, weighted cost to system
ing to the TIMEX2 standard, which requires nor- €rrors and subtracts that cost from a maximum

malization of temporal expressions (timexes) to arfcore of 100%. For events, the associated costs
1SO-8601-like value. are largely determined by the costs of the argu-

ACE events, like ACE entities, are restrictedments’.sO that errors n eryuty, timex, and value
recognition are multiplied in event ACE value.

to a range of types. Thus, not all events in a

text are annotated—only those of an appropriatgince it is useful to evaluate the performance of
type. The eight event types (with subtypes inevent detection and recognition independently of

parentheses) are Life (Be-Born, Marry, Divorce the recognitioq of entitie_s, timeg, and val_ues, _the
Injure, Die), Movement (Transport), TransactionACE, program mcludgs dlagn_ostl_c taskg, in which
(Transfer-Ownership, Transfer-Money), Busines artial ground truth information is provided. Of

(Start-Org Merge—Or’g Declare—Bankru’ptcy EnOI_particular interest here is the diagnostic task for
Org) Cor;ﬂict (Attack1 Demonstrate) Cc;ntact event detection and recognition, in which ground

(Meet, Phone-Write), Personnel (Start—Position;LUth em't_'ej’ va:cut(;s, and times are ptrﬁ_vu(jj(_ed. For
End-Position, Nominate, Elect), Justice (Arrest- € remainder ot this paper, we use this diagnos-

Jail, Release-Parole, Trial-Hearing, Charge-Indic ',['C methodology, and we extend it to sub-tasks

Sue, Convict, Sentence, Fine, Execute, Extr<';1diteV,V'thln the task, evaluating components of our

Acquit, Appeal, Pardon). Since there is nothingevem recognition system using ground truth out-

inherent in the task that requires the two levels OPUt of upstream components. Furthermore, in our

type and subtype, for the remainder of the paper?valuatmg our system components, we use the

we will refer to the combination of event type and more transpzrent metrics of precision, recall, F-
subtype (e.g., Life:Die) as the event type. Measure, and accuracy.

In addition to their type, events have four other3 Our approach to event extraction
attributes (possible values in parentheses): modal- o . o
ity (Asserted, Other), polarity (Positive, Nega—g'1 A:/plnptelme for detecting and recognizing
tive), genericity (Specific, Generic), tense (Past, events
Present, Future, Unspecified). Extracting ACE events is a complex task. Our goal
with the approach we describe in this paper is to
(unlike entities, times, and values, but like rela_establlsh baseline performance in this task using a

tions) is that they have arguments. Each event typ'é'EI""t'V('}Iy simple, modular syst_em. We b'reak down
has a set of possible argument roles, which may b@? ta_sk of extracting events 'nFO a series of clas-
filled by entities, values, or times. In all, there ares'f'c"’r‘]t,'On Isub-tazksl, ea_(;'h of which is handled by a
35 role types, although no single event can have affrachine-leamned classitier.

35roles. A complete description of which rolesgo 1. Anchor identification: finding event anchors
with which event types can be found in the anno- (the basis for event mentions) in text and as-
tation guidelines for ACE events (LDC, 2005). signing them an event type;

The most distinctive characteristic of events



2. Argument identification: determining which vectors. Since we are interested only in perfor-
entity mentions, timexes, and values are armance on event extraction, we follow the method-
guments of each event mention; ology of the ACE diagnostic tasks and use the

ground truth entity, timex2, and value annotations

both for training and testing. Additionally, each
and tense document is tokenized and split into sentences us-
ing a simple algorithm adapted from (Grefenstette,
4. Event coreference: determining which eventl994, p. 149). These sentences are parsed using
mentions refer to the same event. the August 2005 release of the Charniak parser
(Charniak, 2000 The parses are converted into
In principle, these four sub-tasks are highly inter-gependency relations using a method similar to
dependent, but for the approach described hergcollins, 1999; Jijkoun and de Rijke, 2004). The
we do not model all these dependencies. Anchogyntactic annotations thus provide access both to
identification is treated as an independent task. Arconstituency and dependency information. Note
gument finding and attribute assignment are eacthat with respect to these two sources of syntactic
dependent only on the results of anchor identificainformation, we use the wotlteadambiguously to
tion, while event coreference depends on the rerefer poth to the head of a constituent (i.e., the dis-
sults of all of the other three sub-tasks. tinguished word within the constituent from which
To learn classifiers for the first three tasks, wehe constituent inherits its category features) and
experiment with TIMBIZ, a memory-based (near- g the head of a dependency relation (i.e., the word
est neighbor) learner (Daelemans et al., 2004)yn which the dependent in the relation depends).
and MegaM, a maximum entropy learner (Daém  since parses and entity/timex/value annotations

I, 2004). For event coreference, we use onlyare produced independently, we need a strategy for

MegaM, since our approach requires probabilitiesmatching (entity/timex/value) mentions to parses.

In addition to comparing the performance of thesegjven a mention, we first try to find a single con-

two learners on the various sub-tasks, we also exstituent whose offsets exactly match the extent of

periment with the structure of the learning prob-the mention. In the training and development data,
lems for the first two tasks. there is an exact-match constituent for 89.2% of

Inthe remainder of this paper, we present expefihe entity mentions. If there is no such constituent,
iments for each of these sub-tasks (sections 4— 7)ye |ook for a sequence of constituents that match
focusing on each task in isolation, and then 00Kk athe mention extent. If there is no such sequence,

how the sub-tasks affect performance in the overye pack off to a single word, looking first for a

all task (section 8). First, we discuss the preproygrd whose start offset matches the start of the

cessing of the corpus required for our experimentsmention, then for a word whose end offset matches
the end of the mention, and finally for a word that

T ] ~ contains the entire mention. If all these strategies

Because of restrictions imposed by the organizzyj| then no parse information is provided for the

ers on the 2005 ACE program data, we use onlyantion. Note that when a mention matches a se-

the ACE 2005 training corpus, which contains 599;,ence of constituents, the head of the constituent

documents, for our experiments. We split this cory, the sequence that is shallowest in the parse tree
pus into training and test sets at the documenty taren to be the (constituent) head of the entire
level, with 539 training documents and 60 testgequence. Given a parse constituent, we take the
documents. From the training set, another 60 docéntity type of that constituent to be the type of the

uments are reserved as a development set, whichy,4jjest entity mention overlapping with it.
is used for parameter tuning by MegaM. For the

remainder of the paper, we will refer to the 5394 Identifying event anchors
training documents as the training corpus and th
9 9 P %.1 Task structure
60 test documents as the test corpus.
For our machine |earning experiment& we nee(yve model anchor identification as a word classifi-

a range of information in order to build feature cation task. Although an event anchor may in prin-
- ciple be more than one word, more than 95% of

3. Attribute assignment: determining the value
of the modality, polarity, genericity,
attributes for each event mention;

3.2 Preprocessing the corpus

2http:/filk.uvt.nl/timbl/
3http://www.isi.edu/"hdaume/megam/ “ftp://ftp.cs.brown.edu/pub/niparser/



the anchors in the training data consist of a single  the dependency head word, its POS tag, and
word. Furthermore, in the training data, anchors its entity type

are restricted in part of speech (to nouns: NN, _

NNS. NNP: verbs: VB. VBZ. VBP. VBG. VBN e Related entity features: for each en-

VBD, AUX, AUXG, MD; adjectives: JJ; adverbs: tity/timex/value type!:
RB, WRB; pronouns: PRP, WP; determiners: DT, — Number of dependents of candidate
WDT, CD; and prepositions: IN). Thus, anchor word of typet

identification for a document is reduced to the task
of classifying each word in the document with an
appropriate POS tag into one of 34 classes (the 33
event types plus a None class for words that are
not an event anchor).

The class distribution for these 34 classes is
heavily skewed. In the 202,135 instances in
the training data, the None class has 197,261
instances, while the next largest class (Con- — Length of path to closest entity mention
flict:Attack) has only 1410 instances. Thus, in ad- of typet
dition to modeling anchor identification as a sin-

. . 4.3 Results

gle multi-class classification task, we also try to

break down the problem into two stages: first, an table 1, we present the results of our anchor
binary classifier that determines whether or not #lassification experiments (precision, recall and F-
word is an anchor, and then, a multi-class classimeasure). The all-at-once conditions refer to ex-
fier that determines the event type for the positivePeriments with a single multi-class classifier (us-
instances from the first task. For this staged taskng either MegaM or TiMBL), while the split con-
we train the second classifier on the ground truttflitions refer to experiments with two staged clas-

— Label(s) of dependency relation(s) to
dependent(s) of type

— Constituent head word(s) of depen-
dent(s) of type

— Number of entity mentions of type t
reachable by some dependency path
(i.e., in same sentence)

positive instances. sifiers, where we experiment with using MegaM
and TiMBL for both classifiers, as well as with
4.2 Features for event anchors using MegaM for the binary classification and

We use the following set of features for all config- IMBL for the multi-class classification. In ta-

urations of our anchor identification experiments. P& 2, we present the results of the two first-stage
binary classifiers, and in table 3, we present the

e Lexical features: full word, lowercase word, results of the two second-stage multi-class classi-
lemmatized word, POS tag, depth of word infiers on ground truth positive instances. Note that
parse tree we always use the default parameter settings for

MegaM, while for TiMBL, we setk (humber of

o WordNet features: for each WordNet POSneighbors to consider) to 5, we use inverse dis-
categoryc (from N, V, ADJ, ADV): tance weighting for the neighbors and weighted

overlap, with information gain weighting, for all

non-numeric features.

; . Both for the all-at-once condition and for multi-

the synset of first sense is a feature value e o

) ) _ class classification of positive instances, the near-

— Otherwise, if the word has an entry in oot neighbor classifier performs substantially bet-
WordNet that is morphologically related (o than the maximum entropy classifier. For bi-
to a synset of category, the ID of the 51 cjassification, though, the two methods per-
related synset is a feature value form similarly, and staging either binary classi-

fier with the nearest neighbor classifier for posi-

tive instances vyields the best results. In practical

e Right context (3 words): lowercase, POS tagterms, using the maximum entropy classifier for

binary classification and then the TiMBL classifier

e Dependency features: if the candidate wordo classify only the positive instances is the best
is the dependent in a dependency relation, theolution, since classification with TIMBL tends to
label of the relation is a feature value, as arebe slow.

— If the word is in catgory: and there is a
corresponding WordNet entry, the ID of

o Left context (3 words): lowercase, POS tag



Precision Recall F Precision Recall F
All-at-once/megam 0.691 0.239 0.355 All-at-once/megam  0.708 0.430 0.535

All-at-once/timbl 0.666 0.540 0.596 All-at-once/timbl 0.509 0.453 0.480
Splitmegam 0.589 0.417 0.489 CPET/megam 0.689 0.490 0.573
Split/timbl 0.657 0.551 0.599 CPET/timbl 0.504 0.535 0.519

Splitymegam-+timbl 0.725 0.513 0.601
Table 4: Results for arguments

Table 1: Results for anchor detection and classifi-

cation e Event type of event mention
Precision Recall F . . .
- Constit t head d of entit tion:
Binary/megam  0.756 0535 0.626 ) fu(ljlnlsoi/vueergaseeaPOVg?[;g Oanzndle};trzn;nggpse
Binary/timbl 0.685 0.574 0.625 ’ ’ ’

tree

Table 2: Results for anchor detection (i.e., binary

L ) Determiner of entity mention, if an
classification of anchor instances) y y y

e Entity type and mention type (name, pro-

5 Argument identification noun, other NP) of entity mention

e Dependency path between anchor word and

o ] ] o constituent head word of entity mention, ex-
Identifying event argumen_ts Isa palr_classn‘lcatlon pressed as a sequence of labels, of words, and
task. Each event mention is paired with each ofthe  r pog tags

entity/timex/value mentions occurring in the same
sentence to form a single classification instance5.3 Results

There are 36 classes in total: 35 role types and f table 4, we present the results for argument

Nkone Zlashs. Arg];aln, thehdlstr!IbUt'O”f of ﬂassesh'ﬁdentification. The all-at-once conditions refer
skewed, though not as heavlly as for the anchog, experiments with a single classifier for all in-

task, with 20,556 None instances out of 29,450,005 The CPET conditions refer to experi-

_training inst_ances. One additional consideratioqnents with a separate classifier for each event
is that no §|ngle event type allows argumgnts Of[ype. Note that we use the same parameter settings
all 36 possible roles; each evgnt_type_ has its OWlor MegaM and TiMBL as for anchor classifica-
set'of aIIow'abIe rolgs. With this '_n m"?(?i’ W_e ex- tion, except that for TIMBL, we use the modified
periment with treating argument identification as, olue difference metric for the three dependency
a single multi-class classification task and with ath features.

training a separate multi-class classifier for eac Note that splitting the task into separate tasks
_event type. Note that all cIa;sifiers are trained UStor each event type yields a substantial improve-
ing ground truth event mentions. ment over using a single classifier. Unlike in the
anchor classification task, maximum entropy clas-
sification handily outperforms nearest-neighbor
We use the following set of features for all our ar-¢|assification. This may be related to the binariza-
gument classifiers. tion of the dependency-path features for maximum
entropy training: the word and POS tag sequences
(but not the label sequences) are broken down into
their component steps, so that there is a separate
binary feature corresponding to the presence of a

5.1 Task structure

5.2 Features for argument identification

e Anchor word of event mention: full, lower-
case, POS tag, and depth in parse tree

Accuracy given word or POS tag in the dependency path.
Multi/megam 0.649 Table 5 presents results of each of the classi-
Multi/timbl 0.824 fiers restricted to Time-* arguments (Time-Within,

Time-Holds, etc.). These arguments are of partic-
Table 3: Accuracy for anchor classification (i.e.,ular interest not only because they provide the link
multi-class classification of positive anchor in- petween events and times in this model of events,
stances) but also because Time-* roles, unlike other role



Precision Recall F Accuracy
All-at-once/megam  0.688 0.477 0.564 megam 0.750
All-at-once/timbl 0.500 0.482 0.491 timbl 0.759
CPET/megam 0.725 0.451 0.556 baseline 0.738
CPET/timbl 0.357 0.404 0.379 majority (in training) 0.749

Table 5: Results for Time-* arguments Table 7: Modality

Accuracy Acgugggy
megam 0.795 megam :
: timbl 0.955
timbl 0.793 baseli 0.950
baseline 0.802 ase |_?e in traini 0567
majority (in training) 0.773 majority (in training) :

Table 6: Genericity Table 8: Polarity

7 Event coreference
types, are available to all event types. We see that,
in fact, the all-at-once classifiers perform better/-1 Task structure
for these role types, which suggests that it may b&or event coreference, we follow the approach
worthwhile to factor out these role types and buildto entity coreference detailed in (Florian et al.,
a classifier specifically for temporal arguments. 2004). This approach uses a mention-pair coref-
erence model with probabilistic decoding. Each
event mention in a document is paired with ev-
ery other event mention, and a classifier assigns
to each pair of mentions the probability that the
paired mentions corefer. These probabilities are
used in a left-to-right entity linking algorithm in
In addition to the event type and subtype attributesynich each mention is compared with all already-
(the event associated with) each event mentioRgiaplished events (i.e., event mention clusters) to
must also be assigned values for genericity, modalyetermine whether it should be added to an exist-
ity, polarity, and tense. We train a separate classig event or start a new one. Since the classifier
fier for each attribute. Genericity, modality, and needs to output probabilities for this approach, we

polarity are each binary classification tasks, whileys not use TiMBL, but only train a maximum en-
tense is a multi-class task. We use the same fegzqpy classifier with MegaM.

tures as for the anchor identification task, with the
exception of the lemmatized anchor word and the7.2 Features for coreference classification
WordNet features.

6 Assigning attributes

6.1 Task structure

We use the following set of features for our
mention-pair classifier. Theandidateis the ear-
lier event mention in the text, and tlamaphoris
the later mention.

The results of our classification experiments are

6.2 Results

also

given in tables 6, 7, 8, and 9. Note that modal-
ity, polarity, and genericity are skewed tasks where
it is difficult to improve on the baseline majority
classification (Asserted, Positive, and Specific, re-
spectively) and where maximum entropy and near-
est neighbor classification perform very similarly.
For tense, however, both learned classifiers per-
form substantially better than the majority base-
line (Past), with the maximum entropy classifier
providing the best performance.

e CandidateAnchorAnaphorAnchaor
POS tag and lowercase

Accuracy
megam 0.633
timbl 0.613
baseline 0.535
majority (in training) 0.512

Table 9: Tense



Precision Recall F classifier for the anchor sub-task, then there is no
megam 0.761 0.580 0.658 ground truth for the corresponding argument and
baseline 0.167 1.0 0.286 attribute sub-tasks.

The learned coreference classifier provides a
small boost to performance over doing no coref-
erence at all (7.5% points for the condition in
e CandidateEventTypénaphorEventType  which all the other sub-tasks use ground truth (1
vs. 8), 0.6% points when all the other sub-tasks

* Depth of candidate anchor word in parse treeuse learned classifiers (7 vs. 12)). From perfect

e Depth of anaphor anchor word in parse tree coreference, using ground truth for the other sub-
tasks, the loss in value is 11.4% points (recall that
e Distance between candidate and anchor, meanaximum ACE value is 100%). Note that the dif-
sured in sentences ference between perfect coreference and no coref-
erence is only 18.9% points.
e Number, heads, and roles of shared argu- . y 0 P
o Looking at the attribute sub-tasks, the effects on
ments (same entity/timex/value w/same role) )
ACE value are even smaller. Using the learned
e Number, heads, and roles of candidate argu@ttribute classifiers (with ground truth anchors and
ments that are not anaphor arguments arguments) results in 4.8% point loss in value from
ground truth attributes (1 vs. 5) and only a 0.5%
e Number, heads, and roles of anaphor argupoint gain in value from majority class attributes
ments that are not candidate arguments (4 vs. 5). With learned anchors and arguments, the
Head d 1ol ¢ s shared b learned attribute classifiers result in a 0.4% loss in
¢ rieads and roles ot arguments shared by can;, e from even majority class attributes (3 vs. 7).
didate and anaphor in different roles .
Arguments clearly have the greatest impact on

e CandidateModalityVatAnaphorModalityVal ACE value (which is unsurprising, given that ar-

Table 10: Coreference

also for polarity, genericity, and tense guments are weighted heavily in event value). Us-
ing ground truth anchors and attributes, learned ar-
7.3 Results guments result in a loss of value of 35.6% points

In table 10, we present the performance of ouffom ground truth arguments (1 vs. 2). When the
event coreference pair classifier. Note that thdearned coreference classifier is used, the loss in
distribution for this task is also skewed: only valué from ground truth arguments to learned ar-
3092 positive instances of 42,736 total training in-9UMents is even greater (42.5%, 8 vs. 10).

stances. Simple baseline of taking event mentions Anchor identification also has a large impact on
of identical type to be coreferent does quite poorlyACE value. Without coreference but with learned

arguments and attributes, the difference between
8 Evaluation with ACE value using ground truth anchors and learned anchors is
. 22.2% points (6 vs. 7). With f , the dif-
Table 11 presents results of performing the full 6 points (6 vs. 7). With coreference, the di

event detection and recognition task, swappin igerence s still 21.0% points (11 vs. 12).
9 ' bpIng Overall, using the best learned classifiers for

ground truth (gold) or learned classifiers (Iearned)the various subtasks. we achieve an ACE value
for the various sub-tasks (we also swap in major- ’

o ; o
ity classifiers for the attribute sub-task). For theSCOre of 22.3%, which falls within the range of

: : cores for the 2005 diagnostic event extraction
anchor sub-task, we use the splltlmegam+t|mbfask (19.79%-32.796). Note, though, that these

classifier; for the argument sub-task, we use the : .
e . scores are not really comparable, since they in-
CPET/megam classifier; for the attribute sub- L . )
e ]yolve training on the full training set and testing
tasks, we use the megam classifiers; for the coref-
. on a separate set of documents (as noted above,

erence sub-task, we use the approach outlined |tn . . .

. . . he 2005 ACE testing data is not available for fur-
section 7. Since in our approach, the argument an ) ) .

: ther experimentation, so we are using 90% of the
attribute sub-tasks are dependent on the anch%rri inal training data for training/development and
sub-task and the coreference sub-task is depen- g g 9 P
dent O!’l all of the other SUb'taskS' we cannot freely” sgor e diagnostic task, ground truth entities, values, and
swap in ground truth—e.g., if we use a learnedimes, are provided, as they are in our experiments.



anchors  args attrs coref  ACE value

gold gold gold learned 88.6%
gold gold learned learned 79.4%
10 gold learned gold learned 46.1%
11  gold learned learned learned 43.3%
12 learned learned learned learned 22.3%

1 gold gold gold none 81.1%
2 gold learned gold none 45.5%
3 learned learned maj none 22.1%
4 gold gold maj none 75.8%
5 gold gold learned none 76.3%
6 gold learned learned none 43.9%
7 learned learned learned none 21.7%
8

9

Table 11: ACE value

10% for the results presented here). References
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