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Preface

Workshop Description

The computational analysis of time is a challenging and very topical problem, as the needs of applications
based on information extraction techniques expand to include varying degrees of time stamping and
temporal ordering of events and/or relations within a narrative. The challenges derive from the combined
requirements of a mapping process (text to a rich representation of temporal entities), representational
framework (ontologically-grounded temporal graph), and reasoning capability (combining common-
sense inference with temporal axioms).

Usually contextualized in question-answering applications (with obvious dependencies of answers on
time), temporal awareness directly impacts numerous areas of NLP and AI: text summarization over
events and their participants; making inferences from events in a text; overlaying timelines on document
collections; commonsense reasoning in narrative and story understanding.

Interest in temporal analysis and event-based reasoning has spawned a number of important meetings,
particularly as applied to IE and QA tasks (cf. at COLING 2000; ACL 2001; LREC 2002; TERQAS
2002; TANGO 2003, Dagstuhl 2005). Significant progress has been made in these meetings, leading to
developing a standard for a specification language for events and temporal expressions and their orderings
(TimeML). While recent research in the broader community (as indicated, for instance, in the most
recent symposium on Annotating and Reasoning about Time and Events) highlights TimeML’s status
as an interchange format, this workshop, however, is not intended to focus on TimeML exclusively.
Likewise, while the ultimate goal of temporal analysis is to facilitate reasoning about time and events,
the formal aspects of this problem are being addressed by other meetings (see, for instance, the TIME
2006 Symposium). Instead, the workshop will explore largely the linguistic implications for temporal-
analytical frameworks.

The goal of the meeting, therefore, is to address issues already raised, but not fully explored – including
but not limited to the following:

• infrastructure questions: temporal annotation methodology, tools; reliable measures of inter-
annotator agreement; community resources.

• analytical frameworks: temporal information extraction; approaches to temporal expression
normalization; relationship between named entity recognition and temporal entities analysis;
dependency (or not) upon syntactic and discourse structure.

• mapping to time ontology(ies): completeness of the representation framework; formalization of
the process; additional temporal reasoning capabilities required.

• reasoning over time: in particular, (robust) reasoning within representational schemes
demonstrably derivable with current IE/analytical frameworks.

• applications of temporal analytics and reasoning: in addition to NL tasks, of particular interest are
studies of temporal information as it manifests in, and impacts, different domains: beyond news,
time is intrinsically essential in e.g., legal, health-care, intelligence, financial contexts.

• national language: relationship between language characteristics and representational frameworks;
generalizations of temporal analytics across multiple languages; multi-/cross-lingual resource
development.
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Target Audience and Participants

This workshop will be of interest to those creating or exploiting temporally annotated corpora; those
developing information extraction, question answering, and summarization systems relying on temporal
and event ordering information; researchers involved in creating chronicles and timelines from textual
data (legal, health-care, intelligence); semantic web designers and developers wanting to link web
ontologies and standards to temporal markup from natural language; researchers interested in temporal
properties of discourse and narrative structure; and those interested in annotation environments and
development tools. For more details, refer to http://www.acl2006time.org.
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The stages of event extraction

David Ahn
Intelligent Systems Lab Amsterdam

University of Amsterdam
ahn@science.uva.nl

Abstract

Event detection and recognition is a com-
plex task consisting of multiple sub-tasks
of varying difficulty. In this paper, we
present a simple, modular approach to
event extraction that allows us to exper-
iment with a variety of machine learning
methods for these sub-tasks, as well as to
evaluate the impact on performance these
sub-tasks have on the overall task.

1 Introduction

Events are undeniably temporal entities, but they
also possess a rich non-temporal structure that is
important for intelligent information access sys-
tems (information retrieval, question answering,
summarization, etc.). Without information about
whathappened,where, and towhom, temporal in-
formation about an event may not be very useful.

In the available annotated corpora geared to-
ward information extraction, we see two mod-
els of events, emphasizing these different aspects.
On the one hand, there is the TimeML model, in
which an event is a word that points to a node
in a network of temporal relations. On the other
hand, there is the ACE model, in which an event
is a complex structure, relating arguments that are
themselves complex structures, but with only an-
cillary temporal information (in the form of tem-
poral arguments, which are only noted when ex-
plicitly given). In the TimeML model, every event
is annotated, because every event takes part in the
temporal network. In the ACE model, only “in-
teresting” events (events that fall into one of 34
predefined categories) are annotated.

The task of automatically extracting ACE
events is more complex than extracting TimeML

events (in line with the increased complexity of
ACE events), involving detection of event anchors,
assignment of an array of attributes, identification
of arguments and assignment of roles, and deter-
mination of event coreference. In this paper, we
present a modular system for ACE event detection
and recognition. Our focus is on the difficulty and
importance of each sub-task of the extraction task.
To this end, we isolate and perform experiments
on each stage, as well as evaluating the contribu-
tion of each stage to the overall task.

In the next section, we describe events in the
ACE program in more detail. In section 3, we pro-
vide an overview of our approach and some infor-
mation about our corpus. In sections 4 through 7,
we describe our experiments for each of the sub-
tasks of event extraction. In section 8, we compare
the contribution of each stage to the overall task,
and in section 9, we conclude.

2 Events in the ACE program

The ACE program1 provides annotated data, eval-
uation tools, and periodic evaluation exercises for
a variety of information extraction tasks. There are
five basic kinds of extraction targets supported by
ACE: entities, times, values, relations, and events.
The ACE tasks for 2005 are more fully described
in (ACE, 2005). In this paper, we focus on events,
but since ACE events are complex structures in-
volving entities, times, and values, we briefly de-
scribe these, as well.

ACE entities fall into seven types (person, or-
ganization, location, geo-political entity, facility,
vehicle, weapon), each with a number of subtypes.
Within the ACE program, a distinction is made be-
tween entities and entity mentions (similarly be-

1http://www.nist.gov/speech/tests/ace/
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tween event and event mentions, and so on). An
entity mention is a referring expression in text (a
name, pronoun, or other noun phrase) that refers
to something of an appropriate type. An entity,
then, is either the actual referent, in the world,
of an entity mention or the cluster of entity men-
tions in a text that refer to the same actual entity.
The ACE Entity Detection and Recognition task
requires both the identification of expressions in
text that refer to entities (i.e., entity mentions) and
coreference resolution to determine which entity
mentions refer to the same entities.

There are also ACE tasks to detect and recog-
nize times and a limited set of values (contact in-
formation, numeric values, job titles, crime types,
and sentence types). Times are annotated accord-
ing to the TIMEX2 standard, which requires nor-
malization of temporal expressions (timexes) to an
ISO-8601-like value.

ACE events, like ACE entities, are restricted
to a range of types. Thus, not all events in a
text are annotated—only those of an appropriate
type. The eight event types (with subtypes in
parentheses) are Life (Be-Born, Marry, Divorce,
Injure, Die), Movement (Transport), Transaction
(Transfer-Ownership, Transfer-Money), Business
(Start-Org, Merge-Org, Declare-Bankruptcy, End-
Org), Conflict (Attack, Demonstrate), Contact
(Meet, Phone-Write), Personnel (Start-Position,
End-Position, Nominate, Elect), Justice (Arrest-
Jail, Release-Parole, Trial-Hearing, Charge-Indict,
Sue, Convict, Sentence, Fine, Execute, Extradite,
Acquit, Appeal, Pardon). Since there is nothing
inherent in the task that requires the two levels of
type and subtype, for the remainder of the paper,
we will refer to the combination of event type and
subtype (e.g., Life:Die) as the event type.

In addition to their type, events have four other
attributes (possible values in parentheses): modal-
ity (Asserted, Other), polarity (Positive, Nega-
tive), genericity (Specific, Generic), tense (Past,
Present, Future, Unspecified).

The most distinctive characteristic of events
(unlike entities, times, and values, but like rela-
tions) is that they have arguments. Each event type
has a set of possible argument roles, which may be
filled by entities, values, or times. In all, there are
35 role types, although no single event can have all
35 roles. A complete description of which roles go
with which event types can be found in the anno-
tation guidelines for ACE events (LDC, 2005).

Events, like entities, are distinguished from
their mentions in text. An event mention is a span
of text (anextent, usually a sentence) with a dis-
tinguishedanchor(the word that “most clearly ex-
presses [an event’s] occurrence” (LDC, 2005)) and
zero or more arguments, which are entity men-
tions, timexes, or values in the extent. An event is
either an actual event, in the world, or a cluster of
event mentions that refer to the same actual event.
Note that the arguments of an event are the enti-
ties, times, and values corresponding to the entity
mentions, timexes, and values that are arguments
of the event mentions that make up the event.

The official evaluation metric of the ACE pro-
gram is ACE value, a cost-based metric which
associates a normalized, weighted cost to system
errors and subtracts that cost from a maximum
score of 100%. For events, the associated costs
are largely determined by the costs of the argu-
ments, so that errors in entity, timex, and value
recognition are multiplied in event ACE value.
Since it is useful to evaluate the performance of
event detection and recognition independently of
the recognition of entities, times, and values, the
ACE program includes diagnostic tasks, in which
partial ground truth information is provided. Of
particular interest here is the diagnostic task for
event detection and recognition, in which ground
truth entities, values, and times are provided. For
the remainder of this paper, we use this diagnos-
tic methodology, and we extend it to sub-tasks
within the task, evaluating components of our
event recognition system using ground truth out-
put of upstream components. Furthermore, in our
evaluating our system components, we use the
more transparent metrics of precision, recall, F-
measure, and accuracy.

3 Our approach to event extraction

3.1 A pipeline for detecting and recognizing
events

Extracting ACE events is a complex task. Our goal
with the approach we describe in this paper is to
establish baseline performance in this task using a
relatively simple, modular system. We break down
the task of extracting events into a series of clas-
sification sub-tasks, each of which is handled by a
machine-learned classifier.

1. Anchor identification: finding event anchors
(the basis for event mentions) in text and as-
signing them an event type;
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2. Argument identification: determining which
entity mentions, timexes, and values are ar-
guments of each event mention;

3. Attribute assignment: determining the values
of the modality, polarity, genericity, and tense
attributes for each event mention;

4. Event coreference: determining which event
mentions refer to the same event.

In principle, these four sub-tasks are highly inter-
dependent, but for the approach described here,
we do not model all these dependencies. Anchor
identification is treated as an independent task. Ar-
gument finding and attribute assignment are each
dependent only on the results of anchor identifica-
tion, while event coreference depends on the re-
sults of all of the other three sub-tasks.

To learn classifiers for the first three tasks, we
experiment with TiMBL2, a memory-based (near-
est neighbor) learner (Daelemans et al., 2004),
and MegaM3, a maximum entropy learner (Daumé
III, 2004). For event coreference, we use only
MegaM, since our approach requires probabilities.
In addition to comparing the performance of these
two learners on the various sub-tasks, we also ex-
periment with the structure of the learning prob-
lems for the first two tasks.

In the remainder of this paper, we present exper-
iments for each of these sub-tasks (sections 4– 7),
focusing on each task in isolation, and then look at
how the sub-tasks affect performance in the over-
all task (section 8). First, we discuss the prepro-
cessing of the corpus required for our experiments.

3.2 Preprocessing the corpus

Because of restrictions imposed by the organiz-
ers on the 2005 ACE program data, we use only
the ACE 2005 training corpus, which contains 599
documents, for our experiments. We split this cor-
pus into training and test sets at the document-
level, with 539 training documents and 60 test
documents. From the training set, another 60 doc-
uments are reserved as a development set, which
is used for parameter tuning by MegaM. For the
remainder of the paper, we will refer to the 539
training documents as the training corpus and the
60 test documents as the test corpus.

For our machine learning experiments, we need
a range of information in order to build feature

2http://ilk.uvt.nl/timbl/
3http://www.isi.edu/˜hdaume/megam/

vectors. Since we are interested only in perfor-
mance on event extraction, we follow the method-
ology of the ACE diagnostic tasks and use the
ground truth entity, timex2, and value annotations
both for training and testing. Additionally, each
document is tokenized and split into sentences us-
ing a simple algorithm adapted from (Grefenstette,
1994, p. 149). These sentences are parsed using
the August 2005 release of the Charniak parser
(Charniak, 2000)4. The parses are converted into
dependency relations using a method similar to
(Collins, 1999; Jijkoun and de Rijke, 2004). The
syntactic annotations thus provide access both to
constituency and dependency information. Note
that with respect to these two sources of syntactic
information, we use the wordheadambiguously to
refer both to the head of a constituent (i.e., the dis-
tinguished word within the constituent from which
the constituent inherits its category features) and
to the head of a dependency relation (i.e., the word
on which the dependent in the relation depends).

Since parses and entity/timex/value annotations
are produced independently, we need a strategy for
matching (entity/timex/value) mentions to parses.
Given a mention, we first try to find a single con-
stituent whose offsets exactly match the extent of
the mention. In the training and development data,
there is an exact-match constituent for 89.2% of
the entity mentions. If there is no such constituent,
we look for a sequence of constituents that match
the mention extent. If there is no such sequence,
we back off to a single word, looking first for a
word whose start offset matches the start of the
mention, then for a word whose end offset matches
the end of the mention, and finally for a word that
contains the entire mention. If all these strategies
fail, then no parse information is provided for the
mention. Note that when a mention matches a se-
quence of constituents, the head of the constituent
in the sequence that is shallowest in the parse tree
is taken to be the (constituent) head of the entire
sequence. Given a parse constituent, we take the
entity type of that constituent to be the type of the
smallest entity mention overlapping with it.

4 Identifying event anchors

4.1 Task structure

We model anchor identification as a word classifi-
cation task. Although an event anchor may in prin-
ciple be more than one word, more than 95% of

4ftp://ftp.cs.brown.edu/pub/nlparser/
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the anchors in the training data consist of a single
word. Furthermore, in the training data, anchors
are restricted in part of speech (to nouns: NN,
NNS, NNP; verbs: VB, VBZ, VBP, VBG, VBN,
VBD, AUX, AUXG, MD; adjectives: JJ; adverbs:
RB, WRB; pronouns: PRP, WP; determiners: DT,
WDT, CD; and prepositions: IN). Thus, anchor
identification for a document is reduced to the task
of classifying each word in the document with an
appropriate POS tag into one of 34 classes (the 33
event types plus a None class for words that are
not an event anchor).

The class distribution for these 34 classes is
heavily skewed. In the 202,135 instances in
the training data, the None class has 197,261
instances, while the next largest class (Con-
flict:Attack) has only 1410 instances. Thus, in ad-
dition to modeling anchor identification as a sin-
gle multi-class classification task, we also try to
break down the problem into two stages: first, a
binary classifier that determines whether or not a
word is an anchor, and then, a multi-class classi-
fier that determines the event type for the positive
instances from the first task. For this staged task,
we train the second classifier on the ground truth
positive instances.

4.2 Features for event anchors

We use the following set of features for all config-
urations of our anchor identification experiments.

• Lexical features: full word, lowercase word,
lemmatized word, POS tag, depth of word in
parse tree

• WordNet features: for each WordNet POS
categoryc (from N, V, ADJ, ADV):

– If the word is in catgoryc and there is a
corresponding WordNet entry, the ID of
the synset of first sense is a feature value

– Otherwise, if the word has an entry in
WordNet that is morphologically related
to a synset of categoryc, the ID of the
related synset is a feature value

• Left context (3 words): lowercase, POS tag

• Right context (3 words): lowercase, POS tag

• Dependency features: if the candidate word
is the dependent in a dependency relation, the
label of the relation is a feature value, as are

the dependency head word, its POS tag, and
its entity type

• Related entity features: for each en-
tity/timex/value typet:

– Number of dependents of candidate
word of typet

– Label(s) of dependency relation(s) to
dependent(s) of typet

– Constituent head word(s) of depen-
dent(s) of typet

– Number of entity mentions of type t
reachable by some dependency path
(i.e., in same sentence)

– Length of path to closest entity mention
of typet

4.3 Results

In table 1, we present the results of our anchor
classification experiments (precision, recall and F-
measure). The all-at-once conditions refer to ex-
periments with a single multi-class classifier (us-
ing either MegaM or TiMBL), while the split con-
ditions refer to experiments with two staged clas-
sifiers, where we experiment with using MegaM
and TiMBL for both classifiers, as well as with
using MegaM for the binary classification and
TiMBL for the multi-class classification. In ta-
ble 2, we present the results of the two first-stage
binary classifiers, and in table 3, we present the
results of the two second-stage multi-class classi-
fiers on ground truth positive instances. Note that
we always use the default parameter settings for
MegaM, while for TiMBL, we setk (number of
neighbors to consider) to 5, we use inverse dis-
tance weighting for the neighbors and weighted
overlap, with information gain weighting, for all
non-numeric features.

Both for the all-at-once condition and for multi-
class classification of positive instances, the near-
est neighbor classifier performs substantially bet-
ter than the maximum entropy classifier. For bi-
nary classification, though, the two methods per-
form similarly, and staging either binary classi-
fier with the nearest neighbor classifier for posi-
tive instances yields the best results. In practical
terms, using the maximum entropy classifier for
binary classification and then the TiMBL classifier
to classify only the positive instances is the best
solution, since classification with TiMBL tends to
be slow.

4



Precision Recall F
All-at-once/megam 0.691 0.239 0.355
All-at-once/timbl 0.666 0.540 0.596
Split/megam 0.589 0.417 0.489
Split/timbl 0.657 0.551 0.599
Split/megam+timbl 0.725 0.513 0.601

Table 1: Results for anchor detection and classifi-
cation

Precision Recall F
Binary/megam 0.756 0.535 0.626
Binary/timbl 0.685 0.574 0.625

Table 2: Results for anchor detection (i.e., binary
classification of anchor instances)

5 Argument identification

5.1 Task structure

Identifying event arguments is a pair classification
task. Each event mention is paired with each of the
entity/timex/value mentions occurring in the same
sentence to form a single classification instance.
There are 36 classes in total: 35 role types and a
None class. Again, the distribution of classes is
skewed, though not as heavily as for the anchor
task, with 20,556 None instances out of 29,450
training instances. One additional consideration
is that no single event type allows arguments of
all 36 possible roles; each event type has its own
set of allowable roles. With this in mind, we ex-
periment with treating argument identification as
a single multi-class classification task and with
training a separate multi-class classifier for each
event type. Note that all classifiers are trained us-
ing ground truth event mentions.

5.2 Features for argument identification

We use the following set of features for all our ar-
gument classifiers.

• Anchor word of event mention: full, lower-
case, POS tag, and depth in parse tree

Accuracy
Multi/megam 0.649
Multi/timbl 0.824

Table 3: Accuracy for anchor classification (i.e.,
multi-class classification of positive anchor in-
stances)

Precision Recall F
All-at-once/megam 0.708 0.430 0.535
All-at-once/timbl 0.509 0.453 0.480
CPET/megam 0.689 0.490 0.573
CPET/timbl 0.504 0.535 0.519

Table 4: Results for arguments

• Event type of event mention

• Constituent head word of entity mention:
full, lowercase, POS tag, and depth in parse
tree

• Determiner of entity mention, if any

• Entity type and mention type (name, pro-
noun, other NP) of entity mention

• Dependency path between anchor word and
constituent head word of entity mention, ex-
pressed as a sequence of labels, of words, and
of POS tags

5.3 Results

In table 4, we present the results for argument
identification. The all-at-once conditions refer
to experiments with a single classifier for all in-
stances. The CPET conditions refer to experi-
ments with a separate classifier for each event
type. Note that we use the same parameter settings
for MegaM and TiMBL as for anchor classifica-
tion, except that for TiMBL, we use the modified
value difference metric for the three dependency
path features.

Note that splitting the task into separate tasks
for each event type yields a substantial improve-
ment over using a single classifier. Unlike in the
anchor classification task, maximum entropy clas-
sification handily outperforms nearest-neighbor
classification. This may be related to the binariza-
tion of the dependency-path features for maximum
entropy training: the word and POS tag sequences
(but not the label sequences) are broken down into
their component steps, so that there is a separate
binary feature corresponding to the presence of a
given word or POS tag in the dependency path.

Table 5 presents results of each of the classi-
fiers restricted to Time-* arguments (Time-Within,
Time-Holds, etc.). These arguments are of partic-
ular interest not only because they provide the link
between events and times in this model of events,
but also because Time-* roles, unlike other role

5



Precision Recall F
All-at-once/megam 0.688 0.477 0.564
All-at-once/timbl 0.500 0.482 0.491
CPET/megam 0.725 0.451 0.556
CPET/timbl 0.357 0.404 0.379

Table 5: Results for Time-* arguments

Accuracy
megam 0.795
timbl 0.793
baseline 0.802
majority (in training) 0.773

Table 6: Genericity

types, are available to all event types. We see that,
in fact, the all-at-once classifiers perform better
for these role types, which suggests that it may be
worthwhile to factor out these role types and build
a classifier specifically for temporal arguments.

6 Assigning attributes

6.1 Task structure

In addition to the event type and subtype attributes,
(the event associated with) each event mention
must also be assigned values for genericity, modal-
ity, polarity, and tense. We train a separate classi-
fier for each attribute. Genericity, modality, and
polarity are each binary classification tasks, while
tense is a multi-class task. We use the same fea-
tures as for the anchor identification task, with the
exception of the lemmatized anchor word and the
WordNet features.

6.2 Results

The results of our classification experiments are
given in tables 6, 7, 8, and 9. Note that modal-
ity, polarity, and genericity are skewed tasks where
it is difficult to improve on the baseline majority
classification (Asserted, Positive, and Specific, re-
spectively) and where maximum entropy and near-
est neighbor classification perform very similarly.
For tense, however, both learned classifiers per-
form substantially better than the majority base-
line (Past), with the maximum entropy classifier
providing the best performance.

Accuracy
megam 0.750
timbl 0.759
baseline 0.738
majority (in training) 0.749

Table 7: Modality

Accuracy
megam 0.955
timbl 0.955
baseline 0.950
majority (in training) 0.967

Table 8: Polarity

7 Event coreference

7.1 Task structure

For event coreference, we follow the approach
to entity coreference detailed in (Florian et al.,
2004). This approach uses a mention-pair coref-
erence model with probabilistic decoding. Each
event mention in a document is paired with ev-
ery other event mention, and a classifier assigns
to each pair of mentions the probability that the
paired mentions corefer. These probabilities are
used in a left-to-right entity linking algorithm in
which each mention is compared with all already-
established events (i.e., event mention clusters) to
determine whether it should be added to an exist-
ing event or start a new one. Since the classifier
needs to output probabilities for this approach, we
do not use TiMBL, but only train a maximum en-
tropy classifier with MegaM.

7.2 Features for coreference classification

We use the following set of features for our
mention-pair classifier. Thecandidateis the ear-
lier event mention in the text, and theanaphoris
the later mention.

• CandidateAnchor+AnaphorAnchor, also
POS tag and lowercase

Accuracy
megam 0.633
timbl 0.613
baseline 0.535
majority (in training) 0.512

Table 9: Tense
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Precision Recall F
megam 0.761 0.580 0.658
baseline 0.167 1.0 0.286

Table 10: Coreference

• CandidateEventType+AnaphorEventType

• Depth of candidate anchor word in parse tree

• Depth of anaphor anchor word in parse tree

• Distance between candidate and anchor, mea-
sured in sentences

• Number, heads, and roles of shared argu-
ments (same entity/timex/value w/same role)

• Number, heads, and roles of candidate argu-
ments that are not anaphor arguments

• Number, heads, and roles of anaphor argu-
ments that are not candidate arguments

• Heads and roles of arguments shared by can-
didate and anaphor in different roles

• CandidateModalityVal+AnaphorModalityVal,
also for polarity, genericity, and tense

7.3 Results

In table 10, we present the performance of our
event coreference pair classifier. Note that the
distribution for this task is also skewed: only
3092 positive instances of 42,736 total training in-
stances. Simple baseline of taking event mentions
of identical type to be coreferent does quite poorly.

8 Evaluation with ACE value

Table 11 presents results of performing the full
event detection and recognition task, swapping in
ground truth (gold) or learned classifiers (learned)
for the various sub-tasks (we also swap in major-
ity classifiers for the attribute sub-task). For the
anchor sub-task, we use the split/megam+timbl
classifier; for the argument sub-task, we use the
CPET/megam classifier; for the attribute sub-
tasks, we use the megam classifiers; for the coref-
erence sub-task, we use the approach outlined in
section 7. Since in our approach, the argument and
attribute sub-tasks are dependent on the anchor
sub-task and the coreference sub-task is depen-
dent on all of the other sub-tasks, we cannot freely
swap in ground truth—e.g., if we use a learned

classifier for the anchor sub-task, then there is no
ground truth for the corresponding argument and
attribute sub-tasks.

The learned coreference classifier provides a
small boost to performance over doing no coref-
erence at all (7.5% points for the condition in
which all the other sub-tasks use ground truth (1
vs. 8), 0.6% points when all the other sub-tasks
use learned classifiers (7 vs. 12)). From perfect
coreference, using ground truth for the other sub-
tasks, the loss in value is 11.4% points (recall that
maximum ACE value is 100%). Note that the dif-
ference between perfect coreference and no coref-
erence is only 18.9% points.

Looking at the attribute sub-tasks, the effects on
ACE value are even smaller. Using the learned
attribute classifiers (with ground truth anchors and
arguments) results in 4.8% point loss in value from
ground truth attributes (1 vs. 5) and only a 0.5%
point gain in value from majority class attributes
(4 vs. 5). With learned anchors and arguments, the
learned attribute classifiers result in a 0.4% loss in
value from even majority class attributes (3 vs. 7).

Arguments clearly have the greatest impact on
ACE value (which is unsurprising, given that ar-
guments are weighted heavily in event value). Us-
ing ground truth anchors and attributes, learned ar-
guments result in a loss of value of 35.6% points
from ground truth arguments (1 vs. 2). When the
learned coreference classifier is used, the loss in
value from ground truth arguments to learned ar-
guments is even greater (42.5%, 8 vs. 10).

Anchor identification also has a large impact on
ACE value. Without coreference but with learned
arguments and attributes, the difference between
using ground truth anchors and learned anchors is
22.2% points (6 vs. 7). With coreference, the dif-
ference is still 21.0% points (11 vs. 12).

Overall, using the best learned classifiers for
the various subtasks, we achieve an ACE value
score of 22.3%, which falls within the range of
scores for the 2005 diagnostic event extraction
task (19.7%–32.7%).5 Note, though, that these
scores are not really comparable, since they in-
volve training on the full training set and testing
on a separate set of documents (as noted above,
the 2005 ACE testing data is not available for fur-
ther experimentation, so we are using 90% of the
original training data for training/development and

5For the diagnostic task, ground truth entities, values, and
times, are provided, as they are in our experiments.
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anchors args attrs coref ACE value

1 gold gold gold none 81.1%
2 gold learned gold none 45.5%
3 learned learned maj none 22.1%
4 gold gold maj none 75.8%
5 gold gold learned none 76.3%
6 gold learned learned none 43.9%
7 learned learned learned none 21.7%
8 gold gold gold learned 88.6%
9 gold gold learned learned 79.4%
10 gold learned gold learned 46.1%
11 gold learned learned learned 43.3%
12 learned learned learned learned 22.3%

Table 11: ACE value

10% for the results presented here).

9 Conclusion and future work

In this paper, we have presented a system for ACE
event extraction. Even with the simple breakdown
of the task embodied by the system and the limited
feature engineering for the machine learned classi-
fiers, the performance is not too far from the level
of the best systems at the 2005 ACE evaluation.
Our approach is modular, and it has allowed us to
present several sets of experiments exploring the
effect of different machine learning algorithms on
the sub-tasks and exploring the effect of the differ-
ent sub-tasks on the overall performance (as mea-
sured by ACE value).

There is clearly a great deal of room for im-
provement. As we have seen, improving anchor
and argument identification will have the great-
est impact on overall performance, and the exper-
iments we have done suggest directions for such
improvement. For anchor identification, taking
one more step toward binary classification and
training a binary classifier for each event type (ei-
ther for all candidate anchor instances or only for
positive instances) may be helpful. For argument
identification, we have already discussed the idea
of modeling temporal arguments separately; per-
haps introducing a separate classifier for each role
type might also be helpful.

For all the sub-tasks, there is more feature en-
gineering that could be done (a simple example:
for coreference, boolean features corresponding to
identical anchors and event types). Furthermore,
the dependencies between sub-tasks could be bet-
ter modeled.
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Abstract

Work on the interpretation of temporal ex-
pressions in text has generally been pur-
sued in one of two paradigms: the for-
mal semantics approach, where an attempt
is made to provide a well-grounded theo-
retical basis for the interpretation of these
expressions, and the more pragmatically-
focused approach represented by the de-
velopment of the TIMEX2 standard, with
its origins in work in information extrac-
tion. The former emphasises formal ele-
gance and consistency; the latter empha-
sises broad coverage for practical applica-
tions. In this paper, we report on the de-
velopment of a framework that attempts
to integrate insights from both perspec-
tives, with the aim of achieving broad cov-
erage of the domain in a well-grounded
manner from a formal perspective. We
focus in particular on the development
of a compact notation for representing
the semantics of underspecified tempo-
ral expressions that can be used to pro-
vide component-level evaluation of sys-
tems that interpret such expressions.

1 Introduction

Obtaining a precise semantic representation for ut-
terances related to time is interesting both from a
theoretical point of view, as there are many com-
plex phenomena to be addressed, and for purely
practical applications such as information extrac-
tion, question answering, or the ordering of events
on a timeline.

In the literature, work on the interpretation of
temporal expressions comes from two directions.

On the one hand, work in formal semantics (see,
for example, (Pratt and Francez, 2001)) aims to
provide a formally well-grounded approach to the
representation of the semantics of these expres-
sions, but such approaches are difficult to scale
up to the broad coverage required for practical ap-
plications; on the other hand, work that has its
roots in information extraction, while it empha-
sizes broad coverage, often results in the use of
ad hoc representations. The most developed work
in this direction is focused around the TimeML
markup language1 (described, for example, in
(Pustejovsky et al., 2003) and in the collection
edited by Mani et al. (2005)).

Some work attempts to bring these two tradi-
tions together: notable in this respect is Schilder’s
(2004) work on temporal expressions in German
newswire text, and Hobbs and Pan’s (2004) work
on the axiomatisation in terms of OWL-Time. Sa-
quete et al. (2002) present an approach that views
time expressions as anaphoric references.

We take the view that an important step to-
wards a truly broad coverage yet semantically
well-founded approach is to recognize that there
is a principled distinction to be made between the
interpretation of the semantics of a temporal ex-
pression devoid of its context of use, and the fuller
interpretation of that expression when the context
is taken into account. The first of these, which we
refer to here as thelocal semanticsof a tempo-
ral expression, should be derivable in a composi-
tional manner from the components of the expres-
sion; determining the value of the second, which
we refer to as theglobal semanticsof the expres-
sion, may require arbitrary inference and reason-

1Note that with TimeML one can annotate not only tem-
poral expressions, but also events and relations between
events and temporal expressions.
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ing. Such a distinction is implicit in other ac-
counts: Schilder’s (2004) use of lambda expres-
sions allows representation of partially specified
temporal entities, and the temporary variables that
Negri and Marseglia (2005) construct during the
interpretation of a given temporal expression cap-
ture something of the same notion.

Our proposal here is to reify this level of inter-
mediate representation based on a formalization in
terms of recursive attribute–value matrices. This
has two distinct advantages: it provides a conve-
nient representation of underspecification, and it
leads naturally to a compositional approach to the
construction of the semantics of temporal expres-
sions via unification. We also provide a compact
encoding of this representation that is essentially
an extension of the existing TIMEX2 representa-
tion for temporal expressions. This brings the ad-
vantages that (a) existing tools and machinery for
evaluation can be used to determine how well a
given implementation derives these local semantic
values; and (b) performance in the determination
of local semantics and global semantics can be
tested independently. To ensure breadth of cover-
age, we have developed our representation on the
basis of the 256 examples of temporal expressions
provided in the TIMEX2 guidelines (Ferro et al.,
2005). To make it possible to compare systems on
their performance in producing these intermediate
representations, we make available this set of ex-
amples annotated in-line with the representations
described here.

The rest of this paper is structured as follows. In
Section 2, we describe the architecture of DANTE,
a system which embodies our approach to the de-
tection and normalisation of temporal expressions;
in particular, we focus on the architecture em-
ployed in this approach, and on the particular lev-
els of representation that it makes use of. In Sec-
tion 3, we argue for an intermediate representa-
tional level that captures the semantics of temporal
expressions independent of the context of their in-
terpretation, and introduce the idea of using recur-
sive attribute–value matrices to represent the se-
mantics of temporal expressions. In Section 4, we
provide an encoding of these attribute–value ma-
trices in a compact string-based representation that
is effectively an extension of the ISO-based date–
time format representations used in the TIMEX2
standard, thus enabling easy evaluation of system
performance using existing tools. In Section 5

we discuss how the approach handles construc-
tions that contain one TIMEX embedded within
another. Finally, in Section 6 we draw some con-
clusions and point to future work.

2 The DANTE System

2.1 Processing Steps

In our work, our goal is very close to that for which
the TIMEX2 standard was developed: we want to
annotate each temporal expression in a document
with an indication of its interpretation, in the form
of an extended ISO-format date and time string,
normalised to some time zone. So, for example,
suppose we have the following italicised temporal
expression in an email message that was sent from
Sydney on Monday 10th April 2006:

(1) I expect that we will be able to present this
at the meeting onFriday at 11am.

In the context of our application, this temporal ex-
pression should be marked up as follows:

(2) <TIMEX2 VAL="2006-04-14T01:00GMT">

Friday at 11am</TIMEX2>

We have to do three things to achieve the desired
result:

• First, we have to detect the extent of the tem-
poral expression in the text. We refer to
this process astemporal expression recog-
nition .

• Then, we have to use information from the
document context to turn the recognized ex-
pression into a fully specified date and time.
We refer to this astemporal expression in-
terpretation .

• Finally, we have to normalise this fully spec-
ified date and time to a predefined time zone,
which in the case of the present example is
Greenwich Mean Time. We refer to this as
temporal expression normalisation.2

2Note that this third step is not required by the TIMEX
guidelines, but is an additional requirement in the context of
our particular application. This also means that our use of the
term ‘normalisation’ here is not consistent with the standard
usage in the TIMEX context; however, we would argue that
our distinction between interpretation and normalisation de-
scribes more accurately the nature of the processes involved
here.
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We observe that, at the time that the extent of a
temporal expression within a text is determined, it
is also possible to derive some semantic represen-
tation of that expression irrespective of the wider
context within which it needs to be interpreted:
for example, by virtue of having recognized an
occurrence of the stringFriday in a text, we al-
ready know that this is a reference to a specific day
of the week. Most existing systems for the inter-
pretation of temporal expressions probably make
use of such a level of representation. Schilder’s
(2004) approach captures the semantics here in
terms of a lambda expression likeλxFriday(x);
Negri and Marseglia (2005) capture information
at this stage of processing via a collection of tem-
porary attributes.

In our system, each of the three steps above cor-
responds to a distinct processing component in the
DANTE system architecture. These components
communicate in terms of a number of distinct rep-
resentations, which we now describe.

2.2 The Text

This level of representation corresponds simply to
the strings that constitute temporal expressions in
text. These are understood to be linguistic con-
structions whose referents are entities in the tem-
poral domain: either points in time, or periods of
time. In the above example, the text representation
is simply the stringFriday at 11am.

2.3 Local Semantics

We use this term to refer to a level of representa-
tion that corresponds to the semantic content that
is derivable directly from the text representation;
in the case of temporal expressions that are argu-
ments to prepositions, this includes the interpreta-
tion of the preposition. Such representations are
often incomplete, in that they do not denote a par-
ticular point or period on the time line; however,
usually they do partially specify points or peri-
ods, and constrain the further interpretation of the
string.

2.4 In-Document Semantics

We use this term to refer to the fully explicit in-
terpretation of the text string, to the extent that
this can be determined from the document itself,
in conjunction with any metadata associated with
the document. This level of representation corre-
sponds to the information encoded in the attributes

of the TIMEX2 tag as defined in the TIMEX
guidelines.

2.5 Global Semantics

The TIMEX guidelines do not have anything to
say beyond the representation described in the pre-
vious section. In our application, however, we
are also required to normalise all temporal expres-
sions to a specific time zone. This requires that
some further temporal arithmetic be applied to the
semantics of the found expressions. To calculate
this, we simply have to determine the difference
between the time zone of the document containing
the temporal reference and the target time zone,
here Greenwich Mean Time. The document may
not always be explicitly marked with information
about the time zone of its creation; in such cases,
this has to be inferred from information about the
location of the author or sender of the message.

3 Representing Temporal Expressions

In this section, we describe a conceptualisation of
the semantics of temporal expressions in terms of
recursive attribute–value matrices.

3.1 Temporal Entities

As is conventional in this area of research, we view
the temporal world as consisting of two basic types
of entities, these beingpoints in time anddura-
tions; each of these has an internal hierarchical
structure. We can represent these in the following
manner:3


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


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
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
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


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

The example above corresponds to the semantics
of the temporal expression3pm Thursday 13th
May 2006 GMT; in the ISO date and time format
used in the TIMEX2 standard, this would be writ-
ten as follows:

(3) 2006-05-13T15:00:00Z
3For reasons of limitations of space, we will ignore dura-

tions in the present discussion; their representation is similar
in spirit to the examples provided here.
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Each atomic feature in the attribute–value struc-
ture thus corresponds to a specific position in the
ISO format date–time string.

3.2 Underspecification

Of course, very few temporal expressions in text
are fully specified. The attribute–value matrix rep-
resentation makes it easy to represent the con-
tent of underspecified temporal expressions. For
example, the content of the temporal expression
Thursday in a sentence likeWe will meet on
Thursdaycan be expressed as follows:




point

TIMEANDDATE

[

DATE

[

DAY
[

DAYNAME D4
]

]

]





On the other hand, a reference to13th May in a
sentence likeWe will meet on 13th Mayhas this
representation:








point

TIMEANDDATE

[

DATE

[

DAY
[

DAYNUM 13
]

MONTH 05

]]









In the cases just described, the semantic repre-
sentation corresponds to the entire temporal noun
phrase in each case. The same form of represen-
tation is easy to use in a compositional seman-
tic framework: each constituent in a larger tem-
poral expression provides a structure that can be
unified with the structures corresponding to the
other constituents of the expression to provide a
semantics for the expression as a whole. The val-
ues of the atomic elements in such an expression
come from the lexicon; multiword sequences that
are best considered atomic (such as, for example,
idioms) can also be assigned semantic representa-
tions in the same way. The value of a composite
structure is produced by unifying the values of its
constituents. Unifying the two structures above,
for example, gives us the following representation
for Thursday 13th May:4
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
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























So, these structures provide a convenient repre-
sentation for what we have referred to above as the

4For simplicity here we assume that the syntactic structure
of such an expression is captured by the context-free grammar
rule ’NP→ NP NP’. Other treatments are possible.

local semantics of a temporal expression, and cor-
respond to the output of the recognition stage of
our processing architecture.

3.3 Interpretation

We can now define the task of interpretation in
terms of the content of these structures. We as-
sume agranularity ordering over what we might
think of as thedefining attributes in a temporal
representation:

(4) year > month > daynum > hour >

minute> second

These are, of course, precisely the elements that
are represented explicitly in an ISO date–time ex-
pression.

Interpretation of a partially specified temporal
expression then requires ensuring that there is a
value for every defining attribute that is of greater
granularity than the smallest granularity present in
the partially specified representation. We refer to
this as thegranularity rule in interpretation.

In the case of the example in the previous sec-
tion, the granularity rule tells us that in order to
compute the full semantic value of the expression
we have to determine a value for YEAR, but not
for HOUR, MINS or SECS. This interpretation
process may require a variety of forms of reason-
ing and inference, as discussed below, and is quali-
tatively different from the computation of the local
semantics.

In the context of our application, a third stage,
the normalisation process, then requires taking the
further step of adding a ZONE attribute with a spe-
cific value, and translating the rest of the construc-
tion into this time zone if it represents a time in
another time zone.

4 A Compact Encoding

The structures described in the previous section
are relatively unwieldy in comparison to the sim-
ple string structures used as values in the TIMEX
standard. To enable easy evaluation of a sys-
tem’s ability to construct these intermediate se-
mantic representations, we would like to use a rep-
resentation that is immediately usable by existing
evaluation tools. To achieve this goal, we define
a number of extensions to the standard TIMEX2
string representation for values of the VAL at-
tribute; these extensions allow us to capture the
range of distinctions we need. To save space, we
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also use these representations here to show the
coverage of the annotation scheme that results.

In our implementation, we represent the local
semantic content via an additional set of attributes
on TIMEX elements that mirrors exactly the set of
attributes used by the TIMEX2 standard: thus we
have T-VAL, T-ANCHORVAL and so on. This
means that markup applied to a text distinguishes
intermediate and final semantic values, making it
possible to evaluate on just intermediate values,
just final values, or both. In what follows, we will
also use these intermediate attributes to make clear
which level of representation is under discussion.

4.1 Partially Specified Dates and Times

As noted above, many references to dates or times
are not fully specified in a text, with the result that
some parts will have to be computed from the con-
text during the interpretation stage. Typical exam-
ples are as follows:

(5) a. We’ll see you inNovember.

b. I expect to see you athalf past eight.

In the recursive attribute–value notation intro-
duced above, the missing information in each case
corresponds to those features that are absent in the
structure as determined by the granularity rule in-
troduced in Section 3.3.

In our string-based notation, we use lowercase
xs to indicate those elements for which a value
needs to be found, but which are not available at
the time the local semantics are computed; and
we capture the granularity requirement by omit-
ting from the string representation those elements
that do not require a value.5 Table 1 provides a
range of examples that demonstrate various forms
of underspecification.

A lowercasex thus corresponds to a variable.
By analogy with this extension, we also use a low-
ercaset instead of the normal ISO date–time sep-
arator ofT to indicate that the time may need fur-
ther specification: consider the third and fourth ex-
amples in Table 1, where it is not clear whether the
time specified is a.m. or p.m.

For partially-specified dates and times, the
string-based encoding thus both captures the local

5Note that this does not mean the same thing as the use
of an uppercaseX in the TIMEX2 guidelines: an uppercase
X means effectively that no value can be determined. Of
course, if no value can be found for a variable element during
the interpretation process, then the corresponding lowercase
x will be replaced by an uppercaseX.

String Representation
9 pm xxxx-xx-xxT21
11:59 pm xxxx-xx-xxT23:59
eleven in the morning xxxx-xx-xxT11:00
ten minutes to 3 xxxx-xx-xxt02:50
15 minutes after the hour xxxx-xx-xxtxx:15
the nineteenth xxxx-xx-19
January 3 xxxx-01-03
November xxxx-11
summer xxxx-SU
’63 xx63
the ’60s xx6

Table 1: Underspecified Dates and Times

semantic content of the temporal expression, and
provides a specification of what information the
interpretation process has to add. If the temporal
focus is encoded in the same form of representa-
tion, then producing the final interpretation is of-
ten a simple process of merging the two structures,
with the values already specified in the interme-
diate representation taking precedence over those
in the representation of the temporal focus. Ex-
pressions involving references to named months
require a decision as to whether to look for the
next or previous instance of the month, typically
determined by the tense of the major clause con-
taining the reference.

4.2 Representing Weekdays

In recognition that the year-based calendar and
the week-based calendar are not aligned, our in-
termediate representation embodies a special case
borrowed from the TIMEX2 notation for days of
the week that require context for their specifica-
tion. Consider example (6a), uttered on Friday
14th April 2006; the intermediate semantic repre-
sentation is provided in example (6b), and the final
interpretation is provided in example (6c).

(6) a. We left onTuesday.
b. T-VAL="D2"

c. VAL="2006-04-11"

This is not as convenient as the ISO-like encod-
ing, and requires special case handling in the inter-
preter; however, a more comprehensive single rep-
resentation would require abandoning the ISO-like
encoding and the benefits it brings, so we choose
to use the two formats in concert.
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String Representation
today +0000-00-00
tomorrow +0000-00-01
yesterday −0000-00-01
five days ago −0000-00-05
last month −0000-01
last summer −0001-SU
two weeks ago −0000-W02
this weekend +0000-W00-WE
this year +0000
three years ago −0003
the next century +01

Table 2: Relative dates in ISO-like format.

The same notation supports references to parts
of specific days, as presented in example (7).

(7) a. We left onTuesday morning.
b. T-VAL="D2TMO"

c. VAL="2006-04-11TMO"

4.3 Relative Dates and Times

A relative date or time reference is one that re-
quires a calendar arithmetic operation to be carried
out with respect to some temporal focus in the text.
Typical examples are as follows:

(8) a. We’ll see himtomorrow.

b. We saw himlast year.
c. We’ll see himnext Thursday.
d. We saw himlast November.

We distinguish three subtypes here: relative dates
and times whose local semantics can be expressed
in an ISO-like format; relative references to days
and months by name; and less specific references
to past, present and future times.

For the first of these, we extend the ISO format
with a preceding ‘+’ or ‘−’ to indicate the direc-
tion from the current temporal focus. Some exam-
ples of dates are provided in Table 2, and some ex-
amples of date–time combinations are provided in
Table 3. Note the both the date and time elements
in a relative reference can be independently either
absolute or relative: compare the representations
for in six hours timeandat 6am today.

This representation leads to a very intuitive
coordinate-based arithmetic for computing the fi-
nal semantic interpretation of a given expression:
the interpreter merely adds the temporal focus and

String Representation
sixty seconds later +0000-00-00T+00:00:60
five minutes ago +0000-00-00T−00:05
in six hours time +0000-00-00T+06:00
at 6 a.m. today +0000-00-00T06:00
last night −0000-00-01TNI

Table 3: Relative times in ISO-like format.

String Representation
last Monday <D1
next Wednesday >D3
last March <M03
next March >M03

Table 4: Relative References to Days and Months

the intermediate value element-by-element from
the smallest unit upwards, using carry arithmetic
where appropriate.

Relative references to named days and months
require a different treatment, in line with the no-
tation introduced in Section 4.2. Table 4 shows
the intermediate values used for a number of such
expressions.

A further variation on this notation also allows
us to specify a local semantics for expressions like
the first Tuesdayin temporal expressions likethe
first Tuesday in July, or like the last yearin the last
year of the millenium; see Table 5. To produce
final interpretations of these, the interpreter has to
construct the set of elements that correspond to the
head noun (for example, a list of the ISO dates that
correspond to the Tuesdays in a given month), and
then select thenth element from that set.

5 Handling Embedded Constructions

The TIMEX specification allows for the embed-
ding of one TIMEX within another. Consider an
example like the following:

String Representation
the first Tuesday 1D2
the second day 2D
the last Tuesday $D2
the last day $D

Table 5: Ordinally-specified Elements
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Figure 1: The syntactic structure of an embedded
TIMEX

(9) <TIMEX2>the first Tuesday

in<TIMEX2>July</TIMEX2></TIMEX2>

The bulk of the embedded TIMEXs provided as
examples in the TIMEX guidelines are, like this
one, of the form [NP PP], where the head NP
contains a TIMEX, and the PP contains another
TIMEX that is modified by the head NP. Syntac-
tically, these structures are of the form shown in
Figure 1.

For our purposes, it is convenient to first think
of these structures as consisting of three, rather
than two, TIMEXs, corresponding to the three
subscripted NP nodes in this tree. The outermost
TIMEX, corresponding to NP0, is the one whose
value we are ultimately interested in; this is com-
puted by combining the semantics of the two con-
stituent TIMEXs, corresponding to NP1 and NP2,
and the preposition indicates how this combination
should be carried out.

Structurally, the recognizer may first determine
that there are two separate TIMEXs here:

(10) <TIMEX2>the first

Tuesday</TIMEX2> in

<TIMEX2>July</TIMEX2>

Each of these TIMEXs can be given the appro-
priate local semantics by the recognizer; the rec-
ognizer then reorganizes this structure to mirror
the embedding required by the TIMEX guidelines,
to produce the structure shown in example (10)
above; effectively, NP1 disappears as a distinct
constituent, and its intermediate semantics are in-
herited by NP0.

We then leave it to the interpreter to combine the
intermediate semantics of NP0 with the intermedi-

ate semantics of NP2 to produce a final semantics
for NP0: schematically, we have

(11) NP0(VAL) = NP0(T-VAL)∗ NP2(T-VAL)

where ‘∗’ is the combinatory operation that corre-
sponds to the preposition used. The operation re-
quired is specified by the recognizer as the value of
the temporary attribute T-REL, which represents
the semantics of the preposition.

The following three examples demonstrate a va-
riety of possibilities, showing both the intermedi-
ate (T-VAL) and final (VAL) semantic interpreta-
tions in each case:

(12) <TIMEX2 VAL="1999" T-VAL="$Y"

T-REL="OF">the last year of

<TIMEX2 VAL="1" T-VAL="+0">this

millennium</TIMEX2></TIMEX2>

(13) <TIMEX2 VAL="1998-01-31"

T-VAL="$D" T-REL="OF">the last

day of <TIMEX2 VAL="1998-01"

T-VAL="xxxx-01">January

</TIMEX2></TIMEX2>

(14) <TIMEX2 VAL="1998-01-31"

T-VAL="$D" T-REL="OF">the last

day of <TIMEX2 VAL="1998-01"

T-VAL="1998-01">January

1998</TIMEX2></TIMEX2>

Note that, when the embedded TIMEX is fully
specified, as in the last example here, it would be
possible for the recognizer to calculate the final
value of the whole expression; however, for con-
sistency we leave this task to the interpreter.

The semantics of the indicated T-REL depend
on the types of its arguments. In the cases above,
for example, the operation is one of selecting an
ordinally-specified element of a list; but where the
entity is a period rather than a point, as inthe first
six months of 2005, the operation is one of delim-
iting the period in question.

Of course, other forms of embedding are pos-
sible. In appositions, the syntactic structure can
be thought of as [NP NP]; as in the case of em-
bedded PPs, the TIMEX representation effectively
promotes the semantics of the first NP to be the se-
mantics of the whole. Again, we show both VAL
and T-VAL values here, and the relevant T-REL.

(15) <TIMEX2 VAL="1998-12-29"

T-VAL="xxxx-xx-xx"
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T-REL="EQUAL">my birthday,

<TIMEX2 VAL="1998-12-29"

T-VAL="xxxx-12-29">December

twenty-ninth</TIMEX2></TIMEX2>

(16) <TIMEX2 VAL="196" T-VAL="196"

T-REL="EQUAL">the 1960s, <TIMEX2

VAL="196" T-VAL="PXD">the days of

free love</TIMEX2></TIMEX2>

Here, the fact that the T-REL is EQUAL causes
the interpreter to combine the values of the two
TIMEXs, with points taking precedence over du-
rations.

6 Conclusions

In this paper, we have argued that, in the context of
interpreting temporal expressions, there is value in
identifying a level of semantic representation that
corresponds to the meaning of these expressions
outside of any particular document context. This
idea is not in itself new, and many existing sys-
tems appear to make use of such representations.
However, we have proposed that this level of rep-
resentation be made explicit; and by providing an
encoding of this level of representation that is an
extension of the existing TIMEX2 annotations in
terms of element attributes and their values, we
make it possible to assess the performance of sys-
tems with respect to intermediate values, final val-
ues, or both, using standard evaluation tools.

We have developed the representation described
here on the basis of the set of 265 examples pro-
vided in the TIMEX2 guidelines (Ferro et al.,
2005), and this set of annotated examples is avail-
able to the community.6 The approach described
here is implemented in DANTE, a text process-
ing system which produces normalised values for
all TIMEXs found in a document. The recogni-
tion component of the system, which constructs
the intermediate representations described here, is
implemented via just over 200 rules written in the
JAPE language:7 time expressions are thus recog-
nised using finite state patterns, but we then ap-
ply a syntactic check, using the Connexor parser,
to ensure that we have identified the full extent of
each temporal expression, appropriately extending
the extent when this is not the case.

6Seewww.clt.mq.edu.au/timex.
7JAPE is provided as part of the GATE tools (Cunning-

ham et al., 2002).

We are currently testing this representation and
its means of derivation against the data from the
2004 TERN competition. Our results are broadly
comparable to those achieved by other systems
(for example, Chronos or TempEx), though they
can not be compared directly since the reported
evaluations at the TERN competition use data
which are not public and therefore not available
to us.
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Abstract 

The frequency of occurrence of words in 
natural languages exhibits a periodic and 
a non-periodic component when analysed 
as a time series. This work presents an 
unsupervised method of extracting perio-
dicity information from text, enabling 
time series creation and filtering to be 
used in the creation of sophisticated lan-
guage models that can discern between 
repetitive trends and non-repetitive writ-
ing patterns. The algorithm performs in 
O(n log n) time for input of length n. The 
temporal language model is used to cre-
ate rules based on temporal-word asso-
ciations inferred from the time series. 
The rules are used to guess automatically 
at likely document creation dates, based 
on the assumption that natural languages 
have unique signatures of changing word 
distributions over time. Experimental re-
sults on news items spanning a nine year 
period show that the proposed method 
and algorithms are accurate in discover-
ing periodicity patterns and in dating 
documents automatically solely from 
their content. 

1 Introduction 

Various features have been used to classify 
and predict the characteristics of text and related 
text documents, ranging from simple word count 
models to sophisticated clustering and Bayesian 
models that can handle both linear and non-linear 
classes. The general goal of most classification 
research is to assign objects from a pre-defined 
domain (such as words or entire documents) to 
two or more classes/categories. Current and past 
research has largely focused on solving problems 
like tagging, sense disambiguation, sentiment 

classification, author and language identification 
and topic classification. In this paper, we intro-
duce an unsupervised method that classifies text 
and documents according to their predicted time 
of writing/creation. The method uses a sophisti-
cated temporal language model to predict likely 
creation dates for a document, hence dating it 
automatically. 

This paper presents the main assumption be-
hind this work together some background infor-
mation about existing techniques and the imple-
mented system, followed by a brief explanation 
of the classification and dating method, and fi-
nally concluding with results and evaluation per-
formed on the LDC GigaWord English Corpus 
(LDC, 2003) together with its implications and 
relevance to temporal-analytical frameworks and 
TimeML applications. 

2 Background and Assumptions 

The main assumption behind this work is that 
natural language exhibits a unique signature of 
varying word frequencies over time. New words 
come into popular use continually, while other 
words fall into disuse either after a brief fad or 
when they become obsolete or archaic. Current 
events, popular issues and topics also affect writ-
ers in their choice of words and so does the time 
period when they create documents. This as-
sumption is implicitly made when people try to 
guess at the creation date of a document – we 
would expect a document written in Shake-
speare’s time to contain higher frequency counts 
of words and phrases such as “thou art”, “be-
twixt”, “fain”, “methinks”, “vouchsafe” and so 
on than would a modern 21st century document. 
Similarly, a document that contains a high fre-
quency of occurrence of the words “terrorism”, 
“Al Qaeda”, “World Trade Center”, and so on is 
more likely to be written after 11 September 
2001. New words can also be used to create ab-
solute constraints on the creation dates of docu-
ments, for example, it is highly improbable that a 
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document containing the word “blog” was writ-
ten before July 1999 (it was first used in a news-
group in July 1999 as an abbreviation for “we-
blog”), or a document containing the word 
“Google” to have been written before 1997. 
Words that are now in common use can also be 
used to impose constraints on the creation date; 
for example, the word “bedazzled” has been at-
tributed to Shakespeare, thus allowing docu-
ments from his time onwards to be identifiable 
automatically. Traditional dictionaries often try 
to record the date of appearance of new words in 
the language and there are various Internet sites, 
such as WordSpy.com, devoted to chronicling 
the appearance of new words and their meanings. 
Our system is building up a knowledge base of 
the first occurrences of various words in different 
languages, enabling more accurate constraints to 
be imposed on the likely document creation date 
automatically. 

Commercial trademarks and company names 
are also useful in dating documents, as their reg-
istration date is usually available in public regis-
tries. Temporal information extracted from the 
documents itself is also useful in dating the docu-
ments – for example, if a document contains 
many references to the year 2006, it is quite 
likely that the document was written in 2006 (or 
in the last few weeks of December 2005). 

These notions have been used implicitly by re-
searchers and historians when validating the au-
thenticity of documents, but have not been util-
ised much in automated systems. Similar appli-
cations have so far been largely confined to au-
thorship identification, such as (Mosteller and 
Wallace, 1964; Fung, 2003) and the identifica-
tion of association rules (Yarowsky, 1994; 
Silverstein et al., 1997). 

Temporal information is presently under-
utilised for automated document classification 
purposes, especially when it comes to guessing at 
the document creation date automatically. This 
work presents a method of using periodical tem-
poral-frequency information present in docu-
ments to create temporal-association rules that 
can be used for automatic document dating. 

Past and ongoing related research work has 
largely focused on the identification and tagging 
of temporal expressions, with the creation of tag-
ging methodologies such as TimeML/TIMEX 
(Gaizauskas and Setzer, 2002; Pustejovsky et al., 
2003; Ferro et al., 2004), TDRL (Aramburu and 
Berlanga, 1998) and their associated evaluations 
such as the ACE TERN competition (Sundheim 
et al. 2004). 

Temporal analysis has also been applied in 
Question-Answering systems (Pustejovsky et al., 
2004; Schilder and Habel, 2003; Prager et al., 
2003), email classification (Kiritchenko et al., 
2004), aiding the precision of Information Re-
trieval results (Berlanga et al., 2001), document 
summarisation (Mani and Wilson, 2000), time 
stamping of event clauses (Filatova and Hovy, 
2001), temporal ordering of events (Mani et al., 
2003) and temporal reasoning from text (Bogu-
raev and Ando, 2005; Moldovan et al., 2005). 

A growing body of related work related to the 
computational treatment of time in language has 
also been building up largely since 2000 (COL-
ING 2000; ACL 2001; LREC 2002; TERQAS 
2002; TANGO 2003, Dagstuhl 2005). 

There is also a large body of work on time se-
ries analysis and temporal logic in Physics, Eco-
nomics and Mathematics, providing important 
techniques and general background information. 
In particular, this work uses techniques adapted 
from Seasonal ARIMA (auto-regressive inte-
grated moving average) models (SARIMA). 
SARIMA models are a class of seasonal, non-
stationary temporal models based on the ARIMA 
process. The ARIMA process is further defined 
as a non-stationary extension of the stationary 
ARMA model. The ARMA model is one of the 
most widely used models when analyzing time 
series, especially in Physics, and incorporate 
both auto-regressive terms and moving average 
terms (Box and Jenkins, 1976). Non-stationary 
ARIMA processes are defined by the following 
equation: 

( ) ( ) ( ) tt
d ZBXBB θφ =−1            (1) 

where d is non-negative integer, and ( )Xφ  

( )Xθ  polynomials of degrees p and q respec-
tively. The SARIMA extension adds seasonal 
AR and MA polynomials that can handle season-
ally varying data in time series. 

The exact formulation of the SARIMA model 
is beyond the scope of this paper and can be 
found in various mathematics and physics publi-
cations, such as (Chatfield, 2003; Brockwell et 
al., 1991; Janacek, 2001). 

The main drawback of SARIMA modelling 
(and associated models built on the basic ARMA 
model) is that it requires fairly long time series 
before accurate results are obtained. The major-
ity of authors recommend that a time series of at 
least 50 data points is used to build the SARIMA 
model. 
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Figure 1: Effects of applying the temporal periodical algorithm on time series for "January" (top three 

graphs) and "the" (bottom three graphs) with the original series on the left and the remaining time series 
components after filtering on the right. Y-axis shows frequency count and X-axis shows the day number 

(time). 
 

3 Temporal Periodicity Analysis 

We have created a high-performance system that 
decomposes time series into two parts: a periodic 
component that repeats itself in a predictable 
manner, and a non-periodic component that is 

left after the periodic component has been fil-
tered out from the original time series. Figure 1 
shows an example of the filtering results on time-
series of the words “January” and “the”. The 
original series is presented together with two se-
ries representing the periodic and non-periodic 
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components of the original time series. The time 
series are based on training documents selected 
at random from the GigaWord English corpus. 
10% of all the documents in the corpus were 
used as training documents, with the rest being 
available for evaluation and testing. A total of 
395,944 time series spanning 9 years were calcu-
lated from the GigaWord corpus. The availability 
of 9 years of data also mitigated the negative ef-
fects of using short time series in combination 
with SARIMA models (as up to 3,287 data 
points were available for some words, well above 
the 50 data point minimum recommendation). 
Figure 2 presents pseudo-code for the time series 
decomposition algorithm: 

 
1. Find min/max/mean and standard devia-

tion of time series 
2. Start with a pre-defined maximum win-

dow size (set to 366 days in our pre-
sent system) 

3. While window size bigger than 1 re-
peat steps a. to d. below: 

a. Look at current value in time 
series (starting from first 
value) 

b. Do values at positions cur-
rent, current + window size, 
current + 2 x window size, 
etc. vary by less than half a 
standard deviation? 

c. If yes, mark current 
value/window size pair as be-
ing possible decomposition 
match 

d. Look at next value in time se-
ries until the end is reached 

e. Decrease window size by one 
4. Select the minimum number of decompo-

sition matches that cover the entire 
time series using a greedy algorithm 

 

Figure 2: Time Series Decomposition Algorithm 
 
The time series decomposition algorithm was 

applied to the 395,944 time series, taking an av-
erage of 419ms per series. The algorithm runs in 
O(n log n) time for a time series of length n. 

The periodic component of the time series is 
then analysed to extract temporal association 
rules between words and different “seasons”, 
including Day of Week, Week Number, Month 
Number, Quarter, and Year. The procedure of 
determining if a word, for example, is predomi-
nantly peaking on a weekly basis, is to apply a 
sliding window of size 7 (in the case of weekly 
periods) and determining if the periodic time se-
ries always spikes within this window. Figure 3 
shows the frequency distribution of the periodic 
time series component of the days of week 

names (“Monday”, “Tuesday”, etc.) Note that the 
frequency counts peak exactly on that particular 
day of the week. Thus, for example, the word 
“Monday” is automatically associated with Day 
1, and “April” associated with Month 4. 

The creation of temporal association rules 
generalises the inferences obtained from the pe-
riodic data. Each association rule has the follow-
ing information: 

 
• Word ID 
• Period Type (Week, Month, etc.) 
• Period Number and Score Matrix 

 
The period number and score matrix represent 

a probability density function that shows the 
likelihood of a word appearing on a particular 
period number. Thus, for example, the score ma-
trix for “January” will have a high score for pe-
riod 1 (and period type set to Monthly). Figure 4 
shows some examples of extracted association 
rules. The probability density function (PDF) 
scores are shown in Figure 4 as they are stored 
internally (as multiples of the standard deviation 
of that time series) and are automatically normal-
ised during the classification process at runtime. 
The standard deviation of values in the time se-
ries is used instead of absolute values in order to 
reduce the variance between fluctuations in dif-
ferent time series for words that occur frequently 
(like pronouns) and those that appear relatively 
less frequently. 

Rule generalisation is not possible in such a 
straightforward manner for the non-periodic data. 
In this paper, the use of non-periodic data to op-
timise the results of the temporal classification 
and automatic dating system is not covered. Non-
periodic data may be used to generate specific 
rules that are associated only with particular 
dates or date ranges. Non-periodic data can also 
use information obtained from hapax words and 
other low-frequency words to generate additional 
refinement rules. However, there is a danger that 
relying on rules extracted from non-periodic data 
will simply reflect the specific characteristics of 
the corpus used to train the system, rather than 
the language in general. Ongoing research is be-
ing performed into calculating relevance levels 
for rules extracted from non-periodic data. 

4 Temporal Classification and Auto-
matic Dating 

The periodic temporal association rules are util-
ised to guess automatically the creation date of 
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documents. Documents are input into the system 
and the probability density functions for each 
word are weighted and added up. Each PDF is 
weighted according to the inverse document fre-
quency (idf) of each associated word. Periods 
that obtain high score are then ranked for each 
type of period and two guesses per period type 
are obtained for each document. Ten guesses in 
total are thus obtained for Day of Week, Week 
Number, Month Number, Quarter, and Year (5 
period types x 2 guesses each). 
 
 Su M T W Th F S 
0 22660 10540 7557 772 2130 3264 11672 

1 12461 37522 10335 6599 1649 3222 3414 

2 3394 18289 38320 9352 7300 2543 2261 

3 2668 4119 18120 36933 10427 5762 2147 

4 2052 2602 3910 17492 36094 9098 5667 

5 5742 1889 2481 2568 17002 32597 7849 

6 7994 7072 1924 1428 3050 14087 21468 

        

Av 8138 11719 11806 10734 11093 10081 7782 

St 7357 12711 12974 12933 12308 10746 6930 

 
Figure 3: Days of Week Temporal Frequency Dis-

tribution for extracted Periodic Component 
displayed in a Weekly Period Type format 

 
January 
Week 1 2 3 4 5 
Score 1.48 2.20 3.60 3.43 3.52 
 
Month 1 Score 2.95 
Quarter 1 Score 1.50 
 
Christmas 
Week 2 5 36 42 44 
Score 1.32 0.73 1.60 0.83 1.32 
Week 47 49 50 51 52 
Score 1.32 2.20 2.52 2.13 1.16 
 
Month 1 9 10 11 12 
Score 1.10 0.75 1.63 1.73 1.98 
 
Quarter 4 Score 1.07 
 

Figure 4: Temporal Classification Rules for Peri-
odic Components of "January" and "Christmas" 

4.1 TimeML Output 

The system can output TimeML compliant 
markup tags using TIMEX that can be used by 
other TimeML compliant applications especially 
during temporal normalization processes. If the 
base anchor reference date for a document is un-
known, and a document contains relative tempo-
ral references exclusively, our system output can 
provide a baseline date that can be used to nor-
malize all the relative dates mentioned in the 

document. The system has been integrated with a 
fine-grained temporal analysis system based on 
TimeML, with promising results, especially 
when processing documents obtained from the 
Internet. 

5 Evaluation, Results and Conclusion 

The system was trained using 67,000 news items 
selected at random from the GigaWord corpus. 
The evaluation took place on 678,924 news items 
extracted from items marked as being of type 
“story” or “multi” in the GigaWord corpus. Ta-
ble 1 presents a summary of the evaluation re-
sults. Processing took around 2.33ms per item. 

The actual date was extracted from each news 
item in the GigaWord corpus and the day of 
week (DOW), week number and quarter calcu-
lated from the actual date. 

This information was then used to evaluate the 
system performance automatically. The average 
error for each type of classifier was also calcu-
lated automatically. For a result to be considered 
as correct, the system had to have the predicted 
value ranked in the first position equal to the ac-
tual value (of the type of period). 
 

Type Correct Incorrect Avg. 
Error 

DOW 218,899 
(32.24%) 

 460,025 
(67.75%) 

1.89 
days 

Week 24,660 
(3.53%) 

654,264 
(96.36%) 

14.37 
wks 

Month 122,777 
(18.08%) 

556,147 
(81.91%) 

2.57 
mths 

Quarter 337,384 
(49.69%) 

341,540 
(50.30%) 

1.48 
qts 

Year 596,009  
(87.78%) 

82,915 
(12.21%)  

1.74 
yrs 

 
Table 1: Evaluation Results Summary 

 
The system results show that reasonable accurate 
dates can be guessed at the quarterly and yearly 
levels. The weekly classifier had the worst per-
formance of all classifiers, likely as a result of 
weak association between periodical word fre-
quencies and week numbers. Logical/sanity 
checks can be performed on ambiguous results. 
For example, consider a document written on 4 
January 2006 and that the periodical classifiers 
give the following results for this particular 
document: 

• DOW = Wednesday 
• Week = 52 
• Month = January 
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• Quarter = 1 
• Year = 2006 

These results are typical of the system, as par-
ticular classifiers sometimes get the period incor-
rect. In this example, the weekly classifier incor-
rectly classified the document as pertaining to 
week 52 (at the end of the year) instead of the 
beginning of the year. The system will use the 
facts that the monthly and quarterly classifiers 
agree together with the fact that week 1 follows 
week 52 if seen as a continuous cycle of weeks 
to correctly classify the document as being cre-
ated on a Wednesday in January 2006. 

The capability to automatically date texts and 
documents solely from its contents (without any 
additional external clues or hints) is undoubtedly 
useful in various contexts, such as the forensic 
analysis of undated instant messages or emails 
(where the Day of Week classifier can be used to 
create partial orderings), and in authorship iden-
tification studies (where the Year classifier can 
be used to check that the text pertains to an ac-
ceptable range of years). 

The temporal classification and analysis sys-
tem presented in this paper can handle any Indo-
European language in its present form. Further 
work is being carried out to extend the system to 
Chinese and Arabic. Evaluations will be carried 
out on the GigaWord Chinese and GigaWord 
Arabic corpora for consistency. Current research 
is aiming at improving the accuracy of the classi-
fier by using the non-periodic components and 
integrating a combined classification method 
with other systems.  
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Abstract 

Previous research on temporal anchoring 
and ordering has focused on the annota-
tion and learning of temporal relations 
between events. These qualitative rela-
tions can be usefully supplemented with 
information about metric constraints, 
specifically as to how long events last. 
This paper describes the first steps in ac-
quiring metric temporal constraints for 
events. The work is carried out in the 
context of the TimeML framework for 
marking up events and their temporal re-
lations. This pilot study examines the fea-
sibility of acquisition of metric temporal 
constraints from corpora.  

1 Introduction 

The growing interest in practical NLP applica-
tions such as question-answering and text sum-
marization places increasing demands on the 
processing of temporal information. In multi-
document summarization of news articles, it can 
be useful to know the relative order of events so 
as to merge and present information from multi-
ple news sources correctly. In question-
answering, one would like to be able to ask when 
an event occurs, or what events occurred prior to 
a particular event. A wealth of prior research by 
(Passoneau 1988), (Webber 1988), (Hwang and 
Schubert 1992), (Kamp and Reyle 1993), (Las-
carides and Asher 1993), (Hitzeman et al. 1995), 
(Kehler 2000) and others, has explored the dif-
ferent knowledge sources used in inferring the 
temporal ordering of events, including temporal 
adverbials, tense, aspect, rhetorical relations, 
pragmatic conventions, and background knowl-
edge. For example, the narrative convention of 
events being described in the order in which they 

occur is followed in (1), but overridden by means 
of a discourse relation, Explanation in (2).  

 
(1) Max stood up. John greeted him.  
(2) Max fell. John pushed him. 

 
While there has been a spurt of recent research 

addressing the event ordering problem, e.g., 
(Mani and Wilson 2000) (Filatova and Hovy 
2001) (Schilder and Habel 2001) (Li et al. 2001) 
(Mani et al. 2003) (Li et al. 2004) (Lapata and 
Lascarides 2004) (Boguraev and Ando 2005) 
(Mani et al. 2006), that research relies on qualita-
tive temporal relations. Qualitative relations (e.g., 
event A BEFORE event B, or event A DURING 
time T) are certainly of interest in developing 
timelines of events in news and other genres. 
However, metric constraints can also be poten-
tially useful in this ordering problem. For exam-
ple, in (3), it can be crucial to know whether the 
bomb landed a few minutes to hours or several 
years BEFORE the hospitalization. While hu-
mans have strong intuitions about this from 
commonsense knowledge, machines don’t. 

 
 (3) An elderly Catholic man was 
hospitalized from cuts after a Prot-
estant gasoline bomb landed in his 
back yard.  

 
Fortunately, there are numerous instances such 

as (4), where metric constraints are specified ex-
plicitly: 

 
 (4) The company announced Tuesday 
that third quarter sales had fallen. 
  

In (4), the falling of sales occurred over the 
three-month period of time inferable from the 
speech time. However, while the announcement 
is anchored to a day inferable from the speech 
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time, the length of the announcement is not 
specified.  

These examples suggest that it may be possi-
ble to mine information from a corpus to fill in 
extents for the time intervals of and between 
events, when these are either unspecified or par-
tially specified. Metric constraints can also po-
tentially lead to better qualitative links, e.g., 
events with long durations are more likely to 
overlap with other events.  

This paper describes some preliminary ex-
periments to acquire metric constraints. The ap-
proach extends the TimeML representation 
(Pustejovsky et al. 2005) to include such con-
straints. We first translate a TimeML representa-
tion with qualitative relations into one where 
metric constraints are added. This representation 
may tell us how long certain events last, and the 
length of the gaps between them, given the in-
formation in the text. However, the information 
in the text may be incomplete; some extents may 
be unknown. We therefore need an external 
source of knowledge regarding the typical ex-
tents of events, which we can use when the text 
doesn’t provide it. We accordingly describe an 
initial attempt to bootstrap event durations from 
raw corpora as well as corpora annotated with 
qualitative relations.   

2 Annotation Scheme and Corpora 

TimeML (Pustejovsky et al. 2005) 
(www.timeml.org) is an annotation scheme for 
markup of events, times, and their qualitative 
temporal relations in news articles. The TimeML 
scheme flags tensed verbs, adjectives, and nomi-
nals with EVENT tags with various attributes, 
including the class of event, tense, grammatical 
aspect, polarity (negative or positive), any modal 
operators which govern the event being tagged, 
and cardinality of the event if it’s mentioned 
more than once. Likewise, time expressions are 
flagged and their values normalized, based on an 
extension of the ACE (2004) (tern.mitre.org) 
TIMEX2 annotation scheme (called TIMEX3).  

For temporal relations, TimeML defines a 
TLINK tag that links tagged events to other 
events and/or times. For example, given sentence 
(4), a TLINK tag will anchor the event instance 
of announcing to the time expression Tuesday 
(whose normalized value will be inferred from 
context), with the relation IS_INCLUDED. This 
is shown in (5). 

 
(5) The company <EVENT even-
tID=e1>announced</EVENT> <TIMEX3 

tid=t1 value=1998-01-08>Tuesday 
</TIMEX3> that <TIMEX3 tid=t2 
value=P1Q3 beginPoint=t3 end-
Point=t4>third-quarter</TIMEX3> 
sales <EVENT eventID=e2> had 
fallen</EVENT>.  
<TLINK eventID=e1 relatedToEven-
tID=e2 relType=AFTER/> 
<TLINK eventID=e1 relatedToTimeID=t1 
relType=IS_INCLUDED/> 
<TIMEX3 tid=t3 value=1997-07/> 
<TIMEX3 tid=t4 value=1997-09/> 

 
The representation of time expressions in Ti-

meML uses TIMEX2, which is an extension of 
the TIMEX2 scheme (Ferro et al. 2005). It repre-
sents three different kinds of time values: points 
in time (answering the question “when?”), dura-
tions (answering “how long?”), and frequencies 
(answering “how often?”)1.  

TimeML uses 14 temporal relations in the 
TLINK relTypes. Among these, the 6 inverse 
relations are redundant. In order to have a non-
hierarchical classification, SIMULTANEOUS 
and IDENTITY are collapsed, since IDENTITY 
is a subtype of SIMULTANEOUS. (An event or 
time is SIMULTANEOUS with another event or 
time if they occupy the same time interval. X and 
Y are IDENTICAL if they are simultaneous and 
coreferential). DURING and IS_INCLUDED are 
collapsed since DURING is a subtype of 
IS_INCLUDED that anchors events to times that 
are durations. (An event or time INCLUDES an-
other event or time if the latter occupies a proper 
subinterval of the former.) IBEFORE (immedi-
ately before) corresponds to MEETS in Allen’s 
interval calculus (Allen 1984). Allen’s OVER-
LAPS relation is not represented in TimeML.  

The above considerations allow us to collapse 
the TLINK relations to a disjunctive classifica-
tion of 6 temporal relations TRels = {SIMUL-
TANEOUS, IBEFORE, BEFORE, BEGINS, 
ENDS, INCLUDES}. These 6 relations and their 
inverses map one-to-one to 12 of Allen’s 13 ba-
sic relations (Allen 1984).  

Formally, each TLINK is a constraint of the 
general form x R y, where x and y are intervals, 
and R is a disjunct ∨i=1,..,6(ri), where  ri is a rela-
tion in TRels. In annotating a document for Ti-

                                                 
1 Our representation (using t3 and t4) grounds the fuzzy 
primitive P1Q3 (i.e., a period of one 3rd-quarter) to specific 
months, though this is an application-specific step. In ana-
lyzing our data, we normalize P1Q3 as P3M (i.e., a period 
of 3 months). For conciseness, we omit TimeML EVENT 
and TIMEX3 attributes that aren’t relevant to the discus-
sion. 
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meML, the annotator adds a TLINK iff she can 
commit to the TLINK relType being unambigu-
ous, i.e., having exactly one relType r. 

Two human-annotated corpora have been re-
leased based on TimeML2: TimeBank 1.2 (Puste-
jovsky et al. 2003) with 186 documents and 
64,077 words of text, and the Opinion Corpus 
(www.timeml.org), with 73 documents and 
38,709 words. TimeBank 1.2 (we use 1.2.a) was 
created in the early stages of TimeML develop-
ment, and was partitioned across five annotators 
with different levels of expertise. The Opinion 
Corpus was developed recently, and was parti-
tioned across just two highly trained annotators, 
and could therefore be expected to be less noisy. 
In our experiments, we merged the two datasets 
to produce a single corpus, called OTC. 

3 Translation 

3.1 Introduction 

The first step is to translate a TimeML rep-
resentation with qualitative relations into one 
where metric constraints are added. This transla-
tion needs to produce a consistent metric repre-
sentation. The temporal extents of events, and 
between events, can be read off, when there are 
no unknowns, from the metric representation. 
The problem, however is that the representation 
may have unknowns, and the extents may not be 
minimal. 

3.2 Mapping to Metric Representation 

Let each event or time interval x be repre-
sented as a pair of start and end time points <x1, 
x2>. For example, given sentence (4), and the 
TimeML representation shown in (5), let x be 
fall and y be announce. Then, we have x1 = 
19970701T00, x2 = 19970930T23:59, y1 = 
19980108Tn1, y2 = 19980108Tn2 (here T repre-
sents time of day in hours). 

To add metric constraints, given a pair of 
events or times x and y, where x=<x1, x2> and 
y=<y1, y2>, we need to add, based on the quali-
tative relation between x and y, constraints of the 
general form (xi-yj) ≤ n, for 1 ≤ i, j ≤2. We fol-
low precisely the method ‘Allen-to-metric’ of 
(Kautz and Ladkin 1991) which defines metric 
constraints for each relation R in TRels. For ex-
ample, here is a qualitative relation and its metric 
constraints: 

 
(6) x is BEFORE y iff (x2-y1) < 0.  

                                                 
2More details can be found at timeml.org. 

 
In our example, where x is fall and y is the 

announce, we are given the qualitative relation-
ship that x is BEFORE Y, so the metric con-
straint (x2-y1) < 0 can be asserted. 

Consider another qualitative relation and its 
metric constraint:  

 
(7) z INCLUDES y iff (z1-y1) < 0 and 
(y2-z2) < 0. 

 
Let y be announce in (4), as before, and let 

z=<z1, z2> be the time of Tuesday, where z1 = 
19980108T00, and z2 = 19980108T23:59. Since 
we are given the qualitative relation y 
IS_INCLUDED z, the metric constraints (z1-y1) 
< 0 and (y2-z2) < 0 can be asserted. 

3.3 Consistency Checking 

We now turn to the general problem of check-
ing consistency. The set of TLINKs for a docu-
ment constitutes a graph, where the nodes are 
events or times, and the edges are TLINKs. 
Given such a TimeML-derived graph for a 
document, a temporal closure algorithm (Verha-
gen 2005) carries out a transitive closure of the 
graph. The transitive closure algorithm was in-
spired by (Setzer and Gaizauskas 2000) and is 
based on Allen’s interval algebra, taking into 
account the limitations on that algebra that were 
pointed out by (Vilain et al. 1990). It is basically 
a constraint propagation algorithm that uses a 
transitivity table to model the compositional be-
havior of all pairs of relations in a document. The 
algorithm’s transitivity table is represented by 
745 axioms. An example axiom is shown in (8):  

 
(8) If relation(A, B) = BEFORE && 
   relation(B, C) = INCLUDES 
then infer relation(A, C) = BEFORE. 

 
In propagating constraints, links added by clo-

sure can have a disjunction of one or more rela-
tions in TRels. When the algorithm terminates, 
any TLINK with more than one disjunct is dis-
carded. Thus, a closed graph is consistent and 
has a single relType r in TRels for each TLINK 
edge. The algorithm runs in O(n3) time, where n 
is the number of intervals.  

The closed graph is augmented so that when-
ever input edges a r1 b and b r2 c are composed to 
yield the output edge a r3 c, where r1, r2, and r3 
are in TRels, the metric constraints for r3 are 
added to the output edge. To continue our exam-
ple, since the fall x is BEFORE the Tuesday z 
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and z INCLUDES y (announce), we can infer, 
using rule 8, that x is BEFORE y, i.e., that fall 
precedes announce. Using rule (6), we can again 
assert that (x2-y1) < 0. 

3.4 Reading off Temporal Extents 

 
Figure 1. Metric Constraints 

 
We now have the metric constraints added to 

the graph in a consistent manner. It remains to 
compute, given each event or time x=<x1, x2>, 
the values for x1 and x2. In our example, we 
have fall x=<19970701T00, 19970930T23:59>, 
announce y=<19980108Tn1, 19980108Tn2>, 
and Tuesday z=<19980108T00, 
19980108T23:59>, and the added metric con-
straints that (x2-y1), (z1-y1), and (y2-z2) are all 
negative. Graphically, this can be pictured as in 
Figure 1.  

As can be see in Figure 1, there are still un-
knowns (n1 and n2): we aren’t told exactly how 
long announce lasted -- it could be anywhere up 
to a day. We therefore need to acquire informa-
tion about how long events last when the exam-
ple text doesn’t tell us. We now turn to this prob-
lem. 

4 Acquisition 

We started with the 4593 event-time TLINKs 
we found in the unclosed human-annotated OTC. 
From these, we restricted ourselves to those 
where the times involved were of type TIMEX3 
DURATION. We augmented the TimeBank data 
with information from the raw (un-annotated) 
British National Corpus.  We tried a variety of 
search patterns to try and elicit durations, finally 
converging on the single pattern “lasted”. There 
were 1325 hits for this query in the BNC. (The 
public web interface to the BNC only shows 50 
random results at a time, so we had to iterate.) 
The retrieved hits (sentences and fragments of 
sentences) were then processed with components 
from the TARSQI toolkit (Verhagen et al. 2005) 
to provide automatic TimeML annotations. The 
TLINKs between events and times that were 

TIMEX3 DURATIONS were then extracted. 
These links were then corrected and validated by 
hand and then added to the OTC data to form an 
integrated corpus. An example from the BNC is 
shown in (9). 

 
(9) The <EVENT>storm</EVENT> 
<EVENT>lasted</EVENT> <TIMEX3 
VAL="P5D">five days</TIMEX3>.   

 
Next, the resulting data was subject to mor-

phological normalization in a semi-automated 
fashion to generate more counts for each event. 
Hyphens were removed, plurals were converted 
to singular forms, finite verbs to infinitival forms, 
and gerundive nominals to verbs. Derivational 
ending on nominals were stripped and the corre-
sponding infinitival verb form generated. These 
normalizations are rather aggressive and can lead 
to loss of important distinctions. For example, 
sets of events (e.g., storms or bombings) as a 
whole can have much longer durations compared 
to individual events. In addition, no word-sense 
disambiguation was carried out, so different 
senses of a given verb or event nominal may be 
confounded together.  

5 Results 

 
Number of 

durations 
Number of 
Events 

Normalized 
Form of 
Event 

26 1 lose 
16 1 earn 
10 1 fall 
9 1 rise 
8 1 drop 
7 2 decline, in-

crease 
6 4 end, grow, 

say, sell 
5 2 income, 

stop 
4 9 … 
3 17 … 
2 40 … 
1 176 … 

Table 1. Frequencies of event durations 
 
The resulting dataset had 255 distinct events 

with the number of durations for the events as 
shown in the frequency distribution in Table 1. 
The granularities found in news corpora such as 
OTC and mixed corpora such as BNC are domi-
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nated by quarterly reports, which reflect the in-
fluence of specific information pinpointing the 
durations of financial events. This explains the 
fact that 12 of the top 13 events in Table 1 are 
financial ones, with the reporting verb say being 
the only non-financial event in the top 13.  

The durations for the most frequent event, rep-
resented by the verb to lose, is shown in Table 2. 
Most losses are during a quarter, or a year, be-
cause financial news tends to quantize losses for 
those periods. 
 

Duration Frequency
1 day (P1D) 1 

2 months (P2M) 1 
unspecified weeks (PXW) 1 
unspecified months (PXM) 1 

3 months (P3M) 9 
9 months (P9M) 3 

1 year (P1Y) 6 
5 years (P5Y) 1 

1 decade (P1Y) 1 
TOTAL 26 

Table 2. Distribution of durations for event 
 to lose 

 
Ideally, we would be able to generalize over 

the duration values, grouping them into classes. 
Table 3 shows some hand-aggregated duration 
classes for the data. These classes are ranges of 
durations. It can be seen that the temporal span 
of events across the data is dominated by 
granularities of weeks and months, extending 
into small numbers of years.  

 
Duration Class Count

<1 min 1 
5-15 min 12 
1-<24 hr 20 

1 day 14 
2-14 days 49 

1-3 months 120 
7-9 months 48 
1-6 years 97 

1 decade - < 1 century 30 
1-2 centuries 2 

vague (unspecified 
mins/days/months, continu-
ous present, indefinite fu-

ture, etc.) 

69 

Table 3. Distribution of aggregated durations 
 

   Interestingly, 67 events in the data correspond 
to ‘achievement’ verbs, whose main characteris-
tic is that they can have a near-instantaneous du-
ration (though of course they can be iterated or 
extended to have other durations). We obtained a 
list of achievement verbs from the LCS lexicon 
of (Dorr and Olsen 1997)3. Achievements can be 
marked as having durations of PTXS, i.e., an 
unspecified number of seconds. Such values 
don’t reinforce any of the observed values, in-
stead extending the set of durations to include 
much smaller durations. As a result, these hidden 
values are not shown in our data 

6 Estimating Duration Probabilities 

Given a distribution of durations for events 
observed in corpora, one of the challenges is to 
arrive at an appropriate value for a given event 
(or class of events). Based on data such as Table 
2, we could estimate the probability P(lose, P3M) 
≅ 0.346, while P(lose, P1D) ≅ 0.038, which is 
nearly ten times less likely. Table 2 reveals peak-
ing at 3 months, 6 months, and 9 months, with 
uniform probabilities for all others. Further, we 
can estimate the probability that losses will be 
during periods of 2 months, 3 months, or 9 
months as ≅ 0.46. Of course, we would prefer a 
much large sample to get more reliable estimates.  

One could also infer a max-min time range, 
but the maximum or minimum may not always 
be likely, as in the case of lose, which has rela-
tively low probability of extending for “P1D” or 
“P1E”.  Turning to earnings, we find that P(earn, 
P9M) ≅ 4/16 = 0.25, P(earn, P1Y) ≅ 0.31, but 
P(earn, P3M) ≅ 0.43, since most earnings are 
reported for a quarter. 
 

Figure 2. Distribution of durations 
of event to lose 

 
So far, we have considered durations to be 

discrete, falling into a fixed number of categories. 
These categories could be atomic TimeML DU-
                                                 
3See  www.umiacs.umd.edu/ ~bonnie/ LCS_ Data-
base_Documentation.html. 
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RATION values, as in the examples of durations 
in Table 2, or they could be aggregated in some 
fashion, as in Table 3. In the discrete view, 
unless we have a category of 4 months, the prob-
ability of a loss extending over 4 months is unde-
fined. Viewed this way, the problem is one of 
classification, namely providing the probability 
that an event has a particular duration category.  

The second view takes duration to be continu-
ous, so the duration of an event can have any 
subinterval as a value. The problem here is one 
of regression. We can re-plot the data in Table 2 
as Figure 2, where we have plotted durations in 
days on the x-axis in a natural log scale, and fre-
quency on the y-axis. Since we have plotted the 
durations as a curve, we can interpolate and ex-
trapolate durations, so that we can obtain the 
probability of a loss for 4 months. Of course, we 
would like to fit the best curve possible, and, as 
always, the more data points we have, the better.  

7 Possible Enhancements 

    One of the basic problems with this approach 
is data sparseness, with few examples for each 
event. This makes it difficult to generalize about 
durations. In this section, we discuss enhance-
ments that can address this problem. 

7.1 Converting points to durations 

More durations can be inferred from the OTC 
by coercing TIMEX3 DATE and TIME expres-
sions to DURATIONS; for example, if someone 
announced something in 1997, the maximum 
duration would be one year. Whether this leads 
to reliable heuristics or not remains to be seen.  

7.2 Event class aggregation 

A more useful approach might be to aggregate 
events into classes, as we have done implicitly 
with financial events. Reporting verbs are al-
ready identified as a TimeML subclass, as are 
aspectual verbs such as begin, continue and fin-
ish. Arriving at an appropriate set of classes, 
based on distributional data or resource-derived 
classes (e.g., TimeML, VerbNet, WordNet, etc.) 
remains to be explored. 

7.3 Expanding the corpus sample 

Last but not least, we could expand substan-
tially the search patterns and size of the corpus 
searched against. In particular, we could emulate 
the approach used in VerbOcean (Chklovski and 
Pantel 2004). This resource consists of lexical 
relations mined from Google searches. The min-

ing uses a set of lexical and syntactic patterns to 
test for pairs of verbs strongly associated on the 
Web in a particular semantic relation. For exam-
ple, the system discovers that marriage happens-
before divorce, and that tie happens-before untie. 
Such results are based on estimating the prob-
ability of the joint occurrence of the two verbs 
and the pattern. One can imagine a similar ap-
proach being used for durations. Bootstrapping 
of patterns may also be possible. 

8 Conclusion 

This paper describes the first steps in acquir-
ing metric temporal constraints for events. The 
work is carried out in the context of the TimeML 
framework for marking up events and their tem-
poral relations. We have identified a method for 
enhancing TimeML annotations with metric con-
straints. Although the temporal reasoning re-
quired to carry that out has been described in the 
prior literature, e.g., (Kautz and Ladkin 1991), 
this is a first attempt at lexical acquisition of 
metrical constraints. As a pilot study, it does 
suggest the feasibility of acquisition of metric 
temporal constraints from corpora. In follow-on 
research, we will explore the enhancements de-
scribed in Section 7. 

However, this work is limited by the lack of 
evaluation, in terms of assessing how valid the 
durations inferred by our method are compared 
with human annotations. In ongoing work, Jerry 
Hobbs and his colleagues (Pan et al. 2006) have 
developed an annotation scheme for humans to 
mark up event durations in documents. Once 
such enhancements are carried out, it will cer-
tainly be fruitful to compare the duration prob-
abilities obtained with the ranges of durations 
provided in that corpus.  

In future, we will explore both regression and 
classification models for duration learning. In the 
latter case, we will investigate the use of con-
structive induction e.g., (Bloedorn and Michalski 
1998). In particular, we will avail of operators to 
implement attribute abstraction that will cluster 
durations into coarse-grained classes, based on 
distributions of atomic durations observed in the 
data. We will also investigate the extent to which 
learned durations can be used to constrain 
TLINK ordering. 
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Abstract

The extension to new languages is a well
known bottleneck for rule-based systems.
Considerable human effort, which typi-
cally consists in re-writing from scratch
huge amounts of rules, is in fact required
to transfer the knowledge available to the
system from one language to a new one.
Provided sufficient annotated data, ma-
chine learning algorithms allow to mini-
mize the costs of such knowledge trans-
fer but, up to date, proved to be ineffec-
tive for some specific tasks. Among these,
the recognition and normalization of tem-
poral expressions still remains out of their
reach. Focusing on this task, and still ad-
hering to the rule-based framework, this
paper presents a bunch of experiments on
the automatic porting to Italian of a system
originally developed for Spanish. Differ-
ent automatic rule translation strategies are
evaluated and discussed, providing a com-
prehensive overview of the challenge.

1 Introduction

In recent years, inspired by the success of MUC
evaluations, a growing number of initiatives (e.g.
TREC1, CLEF2, CoNLL3, Senseval4) have been
developed to boost research towards the automatic
understanding of textual data. Since 1999, the Au-
tomatic Content Extraction (ACE) program5 has
been contributing to broaden the varied scenario
of evaluation campaigns by proposing three main

1http://trec.nist.gov
2http://clef-campaign.org
3http://www.cnts.ua.ac.be/conll
4http://www.senseval.org
5http://www.nist.gov/speech/tests/ace

tasks, namely the recognition ofentities, rela-
tions, and events. In 2004, the Timex2 Detec-
tion and Recognition task6 (also known as TERN,
for Time Expression Recognition and Normaliza-
tion) has been added to the ACE program, making
the whole evaluation exercise more complete. The
main goal of the task was to foster research on sys-
tems capable of automatically detecting temporal
expressions (TEs) present in an English text, and
normalizing them with respect to a specifically de-
fined annotation standard.

Within the above mentioned evaluation exer-
cises, the research activity on monolingual tasks
has gradually been complemented by a consid-
erable interest towards multilingual and cross-
language capabilities of NLP systems. This trend
confirms how portability across languages has
now become one of the key challenges for Natu-
ral Language Processing research, in the effort of
breaking the language barrier hampering systems’
application in many real use scenarios. In this di-
rection, machine learning techniques have become
the standard approach in many NLP areas. This
is motivated by several reasons, includingi) the
fact that considerable amounts of annotated data,
indispensable to train ML-based algorithms, are
now available for many tasks, andii) the difficulty,
inherent to rule-based approaches, of porting lan-
guage models from one language to new ones. In
fact, while supervised ML algorithms can be eas-
ily extended to new languages given an annotated
training corpus, rule-based approaches require to
redefine the set of rules, adapting them to each new
language. This is a time consuming and costly
work, as it usually consists in manually rewriting
from scratch huge amounts of rules.

6http://timex2.mitre.org
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In spite of their effectiveness for some tasks,
ML techniques still fall short from providing ef-
fective solutions for others. This is confirmed by
the outcomes of the TERN 2004 evaluation, which
provide a clear picture of the situation. In spite
of the good results obtained in the TErecognition
task (Hacioglu et al., 2005), thenormalization by
means of ML techniques has not been tackled yet,
and still remains an unresolved problem.

Considering the inadequacy of ML techniques
to deal with thenormalization problem, and fo-
cusing on portability across languages, this pa-
per extends and completes the previous work pre-
sented in (Saquete et al., 2006b) and (Saquete et
al., 2006a). More specifically, we address the fol-
lowing crucial issue: how to minimize the costs
of building a rule-based TE recognition system
for a new language, given an already existing sys-
tem for another language. Our goal is to experi-
ment with different automatic porting procedures
to build temporal models for new languages, start-
ing from previously defined ones. Still adhering
to the rule-based paradigm, we analyse different
porting methodologies that automatically learn the
TE recognition model used by the system in one
language, adjusting the set of normalization rules
for the new target language.

In order to provide a clear and comprehen-
sive overview of the challenge, an incremental ap-
proach is proposed. Starting from the architecture
of an existing system developed for Spanish (Sa-
quete et al., 2005), we present a bunch of exper-
iments which take advantage of different knowl-
edge sources to build an homologous system for
Italian. Building on top of each other, such exper-
iments aim at incrementally analyzing the contri-
bution of additional information to attack the TE
normalization task. More specifically, the follow-
ing information will be considered:

• The output of online translators;

• The information mined from a manually an-
notated corpus;

• A combination of the two.

2 The task: TE recognition and
normalization

The TERN task consists in automaticallydetect-
ing, bracketing, andnormalizing all the time ex-
pressions mentioned within an English text. The

recognized TEs are then annotated according to
the TIMEX2 annotation standard described in
(Ferro et al., 2005). Markable TEs include both
absolute (or explicit) expressions (e.g. “April 15,
2006”), andrelative (or anaphoric) expressions
(e.g. “three years ago”). Also markable are du-
rations (e.g. “two weeks”), event-anchored ex-
pressions (e.g. “two days before departure”), and
sets of times (e.g. “every week”). Detection and
bracketing concern systems’ capability to recog-
nize TEs within an input text, and correctly deter-
mine their extension. Normalization concerns the
ability of the system to correctly assign, for each
detected TE, the correct values to the TIMEX2
normalization attributes. The meaning of these at-
tributes can be summarized as follows:

• VAL: contains the normalized value of a TE
(e.g. “2004-05-06” for “May 6th, 2004”)

• ANCHOR VAL: contains a normalized form
of an anchoring date-time.

• ANCHOR DIR: captures the relative
direction-orientation between VAL and
ANCHOR VAL.

• MOD: captures temporal modifiers (pos-
sible values include: “approximately”,
“more than”, “lessthan”)

• SET: identifies expressions denoting sets of
times (e.g. “every year”).

2.1 The evaluation benchmark

Moving to a new language, an evaluation bench-
mark is necessary to test systems performances.
For this purpose, the temporal annotations of the
Italian Content Annotation Bank (I-CAB-temp7)
have been selected.

I-CAB consists of 525 news documents
taken from the Italian newspaper L’Adige
(http://www.adige.it), and contains around
182,500 words. Its 3,830 temporal expressions
(2,393 in thetraining part of the corpus, and 1,437
in the test part) have been manually annotated
following the TIMEX2 standard with some adap-
tations to the specific morpho-syntactic features
of Italian, which has a far richer morphology than
English (see (Magnini et al., 2006) for further
details).

7I-CAB is being developed as part of the three-year
project ONTOTEXT funded by the Provincia Autonoma di
Trento, Italy. See http://tcc.itc.it/projects/ontotext
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3 The starting point: TERSEO

As a starting point for our experiments we used
TERSEO, a system originally developed for the
automatic annotation of TEs appearing in a Span-
ish written text in compliance with the TIMEX2
standard (see (Saquete, 2005) for a thorough de-
scription of TERSEO’s main features and func-
tionalities).
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Figure 1: System’s architecture.

Basically (see Figure 1), the TE recognition
and normalization process is carried out in two
phases. The first phase (recognition) includes a
pre-processing of the input text, which is tagged
with lexical and morphological information that
will be used as input to a temporal parser. The
temporal parser is implemented using an as-
cending technique (chart parser) and relies on a
language-specific temporal grammar. As TEs can
be divided into absolute and relative ones, such
grammar is tuned for discriminating between the
two groups. On the one hand, absolute TEs di-
rectly provide and fully describe a date. On the
other hand, relative TEs require some degree of
reasoning (as in the case of anaphora resolution).

In the second phase of the process, in order to
translate these expressions into their normalized
form, the lexical context in which they occur is

considered. At this stage, a normalization unit
is in charge of determining the appropriate refer-
ence date (anchor) associated to eachanaphoric
TE, calculating its value, and finally generating the
corresponding TIMEX2 tag.

¿From a multilingual perspective, an impor-
tant feature of TERSEO is the distinction between
recognition rules, which are language-specific,
and normalization rules, which are language-
independent and potentially reusable for any other
language. Taking the most from the modular ar-
chitecture of the system, a first multilingual exten-
sion has been evaluated over the English TERN
2004 test set. In that extension, the English
temporal model was automatically obtained from
the Spanish one, through the automatic transla-
tion into English8 of the Spanish TEs recognized
by the system (Saquete et al., 2004). The re-
sulting English TEs were then mapped onto the
corresponding language-independent normaliza-
tion rules, with good results (compared with other
participants to the competition) both in terms of
precision and recall. These results are shown in
Table 1.

Prec Rec F
timex2 0.673 0.728 0.699
anchor dir 0.658 0.877 0.752
anchor val 0.684 0.912 0.782
set 0.800 0.667 0.727
text 0.770 0.620 0.690
val 0.757 0.735 0.746

Table 1: Evaluation ofEnglish-TERSEO over the
TERN 2004 test set

The positive results of this experience demon-
strated the viability of the adopted solutions, and
motivate our further investigation with Italian as a
new target language.

4 Porting TERSEO to Italian

Due to the separation between language-specific
recognition rules and language-independent nor-
malization rules, the bulk of the porting process
relies on the adaptation of the recognition rules
to the new target language. Taking advantage of
different knowledge sources (either alone or in
combination), an incremental approach has been
adopted, in order to determine the contribution of
additional information on the performance of the
resulting system for Italian.

8Altavista Babel Fish Translation has been used for this
purpose (http://world.altavista.com).
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4.1 Using online translators

As a first experiment, the same procedure adopted
for the extension to English has been followed.
This represents the simplest approach for porting
TERSEO to other languages, and will be consid-
ered as a baseline for comparison with the results
achieved in further experiments. The only minor
difference with respect to the original procedure
is that now, since two aligned sets of recognition
rules (i.e. for Spanish and for English) are avail-
able, both models have been used. The reason for
considering both models is the fact that they com-
plement each other: on the one hand, the Span-
ish model was obtained manually and showed high
precision values in detection (88%); on the other
hand, although the English model showed lower
precision results in detection (77%), the on-line
translators from English to Italian perform better
than translators from Spanish to Italian.

The process is carried out in the following four
steps.

1. Eng-Ita translation. All the English TEs
known by the system are translated into Ital-
ian9. Starting English, the probability of ob-
taining higher quality translations is maxi-
mized.

2. Spa-Ita translation. For each English TE
without an Italian translation, the correspond-
ing Spanish expression is translated into Ital-
ian. Also the Spanish TEs that do not have an
English equivalent are translated from Span-
ish10 into Italian. This way, the coverage
of the resulting model is maximized, becom-
ing comparable to the hand-crafted Spanish
model.

3. TE Filtering. A filtering module is used to
guarantee the correctness of the translations.
For this purpose, the translated expressions
are searched in the Web with Google. If an
expression is not found by Google it is given
up; otherwise it is considered as a valid Ital-
ian TE. The inconvenience of adopting this
simple filtering strategy occurs in case of am-
biguous expressions,i.e. when a correct ex-
pression is obtained through translation, and

9Also for English to Italian translation, Altavista Babel
Fish Translation has been used

10Using the Spanish-Italian translator available at
http://www.tranexp.com:2000/Translate/result.shtml

Google returns at least on document contain-
ing it, but the expression is not a tempo-
ral one. In these cases the system will er-
roneously store in its database non-temporal
expressions. In this experiment the results
returned by Google have not been analyzed
(only the number of hits has been taken into
account), nor the impact of these errors has
been estimated. A more precise analysis of
the output of the web search has been left as
a future improvement direction.

4. Normalization rules assignment. Finally,
the resulting Italian translations are mapped
onto the language-independent normalization
rules associated with the original English and
Spanish TEs.

The development of this first automatic porting
procedure required one person/week for software
implementation, and less than an hour to obtain
the new model for Italian. The performance of the
resulting system, evaluated over the test set of I-
CAB, is shown in table 2.

Prec Rec F
timex2 0.725 0.833 0.775
anchor dir 0.211 0.593 0.311
anchor val 0.203 0.571 0.300
set 0.152 1.000 0.263
text 0.217 0.249 0.232
val 0.364 0.351 0.357

Table 2: Porting to Italian based on translations

The results achieved by the translation-based
approach are controversial. On the one hand, we
observe adetection performance in line with the
English version of the system. Thetimex2 at-
tribute, which indicates the proportion of detected
TEs11, has even higher scores, both in terms of
precision (+5%) and recall (+11%), with respect
to the English system. On the other hand, both
bracketing (see thetext attribute, which indicates
the quality of extent recognition) andnormaliza-
tion (described by the other attributes) show a per-
formance drop. Unfortunately, the reasons of this
drop are still unclear. One possible explanation
is that, due to the intrinsic difficulties presented
by the Italian language, the translation-based ap-
proach falls short from providing an adequate cov-
erage of the many possible TE variants. While

11At least one overlapping character in the extent of the
reference and the system output is required for tag aligment.
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the presence oflexical triggers denoting a TE ap-
pearing in a text (e.g. the Italian translations of
“years”, “Monday”, “afternoon”, “yesterday”) can
be easily captured by this approach, the complex-
ity of many language-specific constructs is out of
its reach.

4.2 Using an annotated corpus

In a second experiment, the annotations of the
training portion of I-CAB have been used as a pri-
mary knowledge source. The main purpose of this
approach is to maximize the coverage of the Ital-
ian TEs, starting from language-specific knowl-
edge mined from the corpus. The basic hypothe-
sis is that abottom-up porting methodology, led by
knowledge in the target language, is more effective
than thetop-down approach based on knowledge
derived from models built for other languages.
The former, in fact, is in principle more suitable to
capture language-specific TE variations. In order
to test the validity of ths hypothesis, the following
two-step process has been set up:

1. TE Collection and translation. The Italian ex-
pressions are collected from the I-CAB train-
ing portion, and translated both into Spanish
and English.

2. Normalization rules assignment. Italian TEs
are assigned to the appropriate normalization
rules. For each Italian TE mined from the
corpus, the selection is done considering the
normalization rules assigned to its transla-
tions. If both the Spanish and English ex-
pressions are found in their respective mod-
els, and are associated with the same normal-
ization rule, then this rule is assigned also to
the Italian expression. Also, when only one
of the translated expressions is found in the
existing models, the normalization rule is as-
signed. In case of discrepancies,i.e. if both
expressions are found, but are not associated
to the same normalization rule, then one of
the languages must be prioritized. Since the
manually obtained Spanish model has shown
a higher precision, Spanish rules are pre-
ferred.

As the corpus-based approach is mostly built on
the same software used for the translation-based
porting procedure, it did not require additional
time for implementation. Also in this case, the
new model for Italian has been obtained in less

than one hour. Performance results calculated over
the I-CAB test set are reported in Table 3.

Prec Rec F
timex2 0.730 0.839 0.781
anchor dir 0.412 0.414 0.413
anchor val 0.339 0.340 0.339
set 0.030 1.000 0.059
text 0.222 0.255 0.238
val 0.285 0.274 0.279

Table 3: Porting based on corpus annotations

These results partially confirm our working hy-
pothesis, showing a performance increase in terms
of the Italian TEs correctly recognized by the sys-
tem. In fact, both thetimex2 attribute, which
indicates the coverage of the system (detection),
and the text attribute, which refers to the TEs
extent determination (bracketing), are slightly in-
creased. This may lead to the conclusion that auto-
matic porting procedures can actually benefit from
language-specific knowledge derived from a cor-
pus.

However, looking at the other TIMEX2 at-
tributes, the situation is not so clear due to the less
coherent behaviour of the system on normaliza-
tion. While for two attributes (anchor dir andan-
chor val) the system performs better, for the other
two (setandval) a performance drop is observed.
A possible reason for that could be related to the
limited number of TE examples that can be ex-
tracted from the Italian corpus (whose dimensions
are relatively small compared to the annotated cor-
pora available for English). In fact, compared to
the sum of English and Spanish examples used for
the translation-based porting procedure, the Ital-
ian expressions present in the corpus are fewer and
repetitive. For instance, with 131, 140, and 30 oc-
currences, the expressions “oggi” (“today”), “ ieri”
(“yesterday”), and “domani” (“tomorrow”) repre-
sent around 12.5% of the 2,393 Italian TEs con-
tained in the I-CAB training set.

4.3 Combining online translators and an
annotated corpus

In light of the previous considerations, a third ex-
periment has been conducted combining thetop-
down approach proposed in Section 4.1 and the
bottom-up approach proposed in Section 4.2. The
underlying hypothesis is that the induction of an
effective temporal model for Italian can bene-
fit from the combination of the large amount of
examples coming from translations on the one
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side, and from the more precise language-specific
knowledge derived from the corpus on the other.

To check the validity of this hypothesis, the pro-
cess described in Section 4.2 has been modified
adding an additional phase. In this phase, the set
of TEs derived from I-CAB is augmented with the
expressions already available in the Spanish and
English TE sets. The new porting process is car-
ried out in the following steps:

1. TE Collection and translation. The Italian ex-
pressions are collected from the I-CAB train-
ing portion, and translated both into Spanish
and English.

2. Normalization rules assignment. With the
same methodology described in Section 4.2
(step 2), the Italian TEs mined from the cor-
pus are mapped onto the appropriate normal-
ization rules assigned to their translations.

3. TE set augmentation. The set of Italian TEs
is automatically augmented with new expres-
sions derived from the Spanish and English
TE sets. As described in Section 4.1, these
expressions are first translated into Italian us-
ing on-line translators, then filtered through
Web searches. The remaining TEs are in-
cluded in the Italian model, and related to the
same normalization rules assigned to the cor-
responding Spanish or English TEs.

Also this porting experiment was carried out
with minimal modifications of the existing code.
The automatic acquisition of the new model for
Italian required around one hour. Evaluation re-
sults, calculated over the I-CAB test set are pre-
sented in Table 4.

Prec Rec F
timex2 0.726 0.834 0.776
anchor dir 0.578 0.475 0.521
anchor val 0.516 0.424 0.465
set 0.182 1.000 0.308
text 0.258 0.296 0.276
val 0.564 0.545 0.555

Table 4: Porting based on corpus annotations and
online translators

As can be seen from the table, the combina-
tion of the two approaches leads to an overall per-
formance improvement with respect to the previ-
ous experiments. Apart from a slight decrease in
terms ofdetection (timex2 attribute), both brack-
eting and normalization performance benefit from

such combination. The improvement onbracket-
ing (text attribute) is around 4% with respect to
both the previous experiments. On average, the
improvement for thenormalization attributes is
around 15% with respect to the translation-based
method (ranging from +4,5% for thesetattribute,
to +20% for theval attribute), and 20% with re-
spect to the corpus-based method (ranging from
+11% for theanchor dir attribute, to +30% for
the set attribute). These performance improve-
ments are summarized in Table 5, which reports
the F-Measure scores achieved by the three port-
ing approaches.

F-Tran. F-Corpus F-Comb.
timex2 0.775 0.781 0.776
anchor dir 0.311 0.413 0.521
anchor val 0.300 0.339 0.465
set 0.152 0.059 0.308
text 0.263 0.238 0.276
val 0.232 0.279 0.555

Table 5: F-Measure scores comparison

These results confirm the validity of our work-
ing hypothesis, showing that:

• taken in isolation, both the knowledge de-
rived from models built for other languages,
and the language-specific knowledge derived
from an annotated corpus, have a limited im-
pact on the system’s performance;

• taken in combination, thetop-down and the
bottom-up approaches can complement each
other, allowing to cope with the complexity
of the porting task.

5 Comparing TERSEO with a
language-specific system

For the sake of completeness, the results achieved
by our combined porting procedure have been
compared with those achieved, over the I-CAB
test set, by a system specifically designed for
Italian. The ITA-Chronos system (Negri and
Marseglia, 2004), a multilingual system for the
recognition and normalization of TEs in Italian
and English, has been used for this purpose. Up to
date, being among the two top performing systems
at TERN 2004, Chronos represents the state-of-
the-art with respect to the TERN task. In addition,
to the best of our knowledge, this is the only sys-
tem effectively dealing with the Italian language.
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Like all the other state-of-the-art systems ad-
dressing the recognition/normalization task,ITA-
Chronos is a rule-based system. From a design
point of view, it shares with TERSEO a rather
similar architecture which relies on different sets
of rules. These are regular expressions that check
for specific features of the input text, such as the
presence of particular word senses, lemmas, parts
of speech, symbols, or strings satisfying specific
predicates12. Each set of rules is in charge of
dealing with different aspects of the problem. In
particular, a set of around 350 rules is designed
for TE recognition and is capable of recognizing
with high Precision/Recall rates a broad variety of
TEs. Other sets of regular expressions, for a total
of around 700 rules, are used in the normalization
phase, and are in charge of handling each specific
TIMEX2 normalization attribute. The results ob-
tained by the Italian version of Chronos over the
I-CAB test set are shown in Table 6.

Prec Rec F F-Comb
timex2 0.925 0.908 0.917 0.776 (-14%)
anchor dir 0.733 0.636 0.681 0.521 (-16%)
anchor val 0.495 0.462 0.478 0.465 (-1.3%)
set 0.616 0.500 0.552 0.308 (-24%)
text 0.859 0.843 0.851 0.276 (-57%)
val 0.636 0.673 0.654 0.555 (-10%)

Table 6: Evaluation ofITA-Chronos over the I-
CAB test set

As expected, the distance between the results
obtained byITA-Chronos and the best Italian sys-
tem automatically obtained from TERSEO (F-
Comb) is considerable. On average, in terms of
F-Measure, the scores obtained byITA-TERSEO
are 20% lower, ranging from -1.3% for thean-
chor val attribute, to -57% for thetext attribute.
However, going beyond the raw numbers, a com-
prehensive evaluation must also take into account
the great difference, in terms of the required time,
effort, and resources deployed in the development
of the two systems. While the implementation of
the manual one took several months, the automatic
porting procedure of TERSEO to Italian (in all the
three modalities described in this paper) is a very
fast process that can be accomplished in less than
an hour. Considering the trade-off between per-
formance and effort required for system’s devel-

12For instance, the predicates “Weekday-p” and
“Time Unit-p” are respectively satisfied by strings such
as “Monday”, “Tuesday”, ..., “Sunday”, and “second”,
“minute”, “hour”, “day”, ..., “century”. Of course, this also
holds for the Italian equivalents of these expressions

opment, the proposed methodology represents a
viable solution to attack the porting problem.

6 Conclusions

In this paper, the problem of automatically extend-
ing to new languages a rule-based system for TE
recognition and normalization has been addressed.
Adopting an incremental approach, different port-
ing strategies, for the creation of an Italian system
starting from an already available Spanish system,
have been evaluated and discussed. Each exper-
iment has been carried out considering the con-
tribution of different knowledge sources for rules
translation. Firstly, the contribution given by the
output of online translators has been evaluated,
showing detection performances in line with a pre-
viously developed English extension of the sys-
tem, but a performance drop in terms of normal-
ization performance. Then, the contribution of
knowledge mined from an annotated corpus has
been considered. Results show a performance in-
crease in terms of detection and bracketing, but
a less coherent behaviour in terms of normaliza-
tion. Finally, a combined approach has been ex-
perimented, resulting in an overall performance
increase. System’s performance is still far from
the results obtained by a state-of-the-art system for
Italian but, considering the trade-off between per-
formance and effort required for system’s devel-
opment, results are encouraging.
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Abstract 

In this paper, we demonstrate how to ex-
tend TimeML, a rich specification lan-
guage for event and temporal expressions 
in text, with the implicit typical durations 
of events, temporal information in text 
that has hitherto been largely unexploited. 
Event duration information can be very 
important in applications in which the 
time course of events is to be extracted 
from text. For example, whether two 
events overlap or are in sequence often 
depends very much on their durations.     

1 Introduction 

Temporal information processing has become 
more and more important in many natural lan-
guage processing (NLP) applications, such as 
question answering (Harabagiu and Bejan, 2005; 
Moldovan et. al., 2005; Saurí et. al., 2005), 
summarization (Mani and Schiffman, 2005), and 
information extraction (Surdeanu et. al., 2003). 

Temporal anchoring and event ordering are 
among the most important kinds of temporal in-
formation needed for NLP applications. Al-
though there has been much work on extracting 
and inferring such information from texts 
(Hitzeman et al., 1995; Mani and Wilson, 2000; 
Filatova and Hovy, 2001; Boguraev and Ando, 
2005), none of this work has exploited the im-
plicit event duration information from the text.  

Consider the sentence from a news article: 

George W. Bush met with Vladimir Putin in 
Moscow. 

How long was the meeting?  Our first reaction 
to this question might be that we have no idea.  
But in fact we do have an idea.  We know the 
meeting was longer than 10 seconds and less 
than a year.  How much tighter can we get the 

bounds to be?  Most people would say the meet-
ing lasted between an hour and three days. 

There is much temporal information in text 
that has hitherto been largely unexploited, en-
coded in the descriptions of events and relying 
on our knowledge of the range of usual durations 
of types of events, which can be very important 
in applications in which the time course of events 
is to be extracted from news.  For example, 
whether two events overlap or are in sequence 
often depends very much on their durations.  If a 
war started yesterday, we can be pretty sure it is 
still going on today.  If a hurricane started last 
year, we can be sure it is over by now. 

To extract such implicit event duration infor-
mation from texts automatically, we developed a 
corpus annotated with typical durations of events 
(Pan et al., 2006a) which currently contains all 
the 48 non-Wall-Street-Journal (non-WSJ) news 
articles (a total of 2132 event instances), as well 
as 10 WSJ articles (156 event instances), from 
the TimeBank corpus annotated in TimeML 
(Pustejovky et al., 2003).  

Because the annotated corpus is still fairly 
small, we cannot hope to learn to make fine-
grained judgments of event durations that are 
currently annotated in the corpus, but as we show 
in greater detail in (Pan et al., 2006b), it is possi-
ble to learn useful coarse-grained judgments that 
considerably outperform a baseline and approach 
human performance. 

This paper describes our work on extending 
TimeML with annotations of typical durations of 
events, which can enrich the expressiveness of 
TimeML, and provides NLP applications that 
exploit TimeML with this additional implicit 
event duration information for their temporal 
information processing tasks. 

In Section 2 we first describe the corpus of 
typical durations of events, including the annota-
tion guidelines, the representative event classes 
with examples, the inter-annotator agreement 
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study, and the machine learning results. TimeML 
and its event classes will be described in Section 
3, and we will discuss how to integrate event du-
ration annotations into TimeML in Section 4.  

2 Annotating and Learning Typical Du-
ration of Events 

In the corpus of typical durations of events, every 
event to be annotated was already identified in 
the TimeBank corpus.  Annotators are asked to 
provide lower and upper bounds on the duration 
of the event, and a judgment of level of confi-
dence in those estimates on a scale from one to 
ten. An interface was built to facilitate the anno-
tation. Graphical output is displayed to enable us 
to visualize quickly the level of agreement 
among different annotators for each event. For 
example, here is the output of the annotations (3 
annotators) for the “finished” event (in bold) in 
the sentence 

After the victim, Linda Sanders, 35, had fin-
ished her cleaning and was waiting for her 
clothes to dry,... 

 
 

This graph shows that the first annotator believes 
that the event lasts for minutes whereas the sec-
ond annotator believes it could only last for sev-
eral seconds. The third annotates the event to 
range from a few seconds to a few minutes. A 
logarithmic scale is used for the output. 

2.1 Annotation Instructions 

Annotators are asked to identify upper and lower 
bounds that would include 80% of the possible 
cases, excluding anomalous cases.   

The judgments are to be made in context.  
First of all, information in the syntactic environ-
ment needs to be considered before annotating, 
and the events need to be annotated in light of 
the information provided by the entire article. 
Annotation is made easier and more consistent if 
coreferential and near-coreferential descriptions 
of events are identified initially. 

When the articles were completely annotated 
by the three annotators, the results were analyzed 
and the differences were reconciled. Differences 
in annotation could be due to the differences in 

interpretations of the event; however, we found 
that the vast majority of radically different judg-
ments can be categorized into a relatively small 
number of classes. Some of these correspond to 
aspectual features of events, which have been 
intensively investigated (e.g., Vendler, 1967; 
Dowty, 1979; Moens and Steedman, 1988; Pas-
sonneau, 1988). We then developed guidelines to 
cover those cases (see the next section). 

2.2 Event Classes 

Action vs. State: Actions involve change, such 
as those described by words like "speaking", 
"gave", and "skyrocketed". States involve things 
staying the same, such as being dead, being dry, 
and being at peace. When we have an event in 
the passive tense, sometimes there is an ambigu-
ity about whether the event is a state or an action. 
For example, 

Three people were injured in the attack. 

Is the “injured” event an action or a state? This 
matters because they will have different dura-
tions. The state begins with the action and lasts 
until the victim is healed. Besides the general 
diagnostic tests to distinguish them (Vendler, 
1967; Dowty, 1979), another test can be applied 
to this specific case: Imagine someone says the 
sentence after the action had ended but the state 
was still persisting. Would they use the past or 
present tense? In the “injured” example, it is 
clear we would say “Three people were injured 
in the attack”, whereas we would say “Three 
people are injured from the attack.” Our annota-
tion interface handles events of this type by al-
lowing the annotator to specify which interpreta-
tion he is giving. If the annotator feels it’s too 
ambiguous to distinguish, annotations can be 
given for both interpretations. 
 
Aspectual Events:  Some events are aspects of 
larger events, such as their start or finish. Al-
though they may seem instantaneous, we believe 
they should be considered to happen across some 
interval, i.e., the first or last sub-event of the lar-
ger event. For example,   

 After the victim, Linda Sanders, 35, had fin-
ished her cleaning and was waiting for her 
clothes to dry,… 

The “finished” event should be considered as the 
last sub-event of the larger event (the “cleaning” 
event), since it actually involves opening the 
door of the washer, taking out the clothes, clos-
ing the door, and so on. All this takes time. This 
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interpretation will also give us more information 
on typical durations than simply assuming such 
events are instantaneous. 
 
Reporting Events: These are everywhere in the 
news. They can be direct quotes, taking exactly 
as long as the sentence takes to read, or they can 
be summarizations of long press conferences. We 
need to distinguish different cases: 

Quoted Report: This is when the reported 
content is quoted. The duration of the event 
should be the actual duration of the utterance of 
the quoted content. The time duration can be eas-
ily verified by saying the sentence out loud and 
timing it. For example, 

"It looks as though they panicked," a detective 
said of the robbers. 

This probably took between 1 and 3 seconds; it’s 
very unlikely it took more than 10 seconds. 

Unquoted Report: This is when the reporting 
description occurs without quotes that could be 
as short as just the duration of the actual utter-
ance of the reported content (lower bound), and 
as long as the duration of a briefing or press con-
ference (upper bound). 

If the sentence is very short, then it's likely 
that it is one complete sentence from the 
speaker's remarks, and a short duration should be 
given; if it is a long, complex sentence, then it's 
more likely to be a summary of a long discussion 
or press conference, and a longer duration should 
be given. For example, 

The police said it did not appear that anyone 
else was injured. 

A Brooklyn woman who was watching her 
clothes dry in a laundromat was killed Thursday 
evening when two would-be robbers emptied 
their pistols into the store, the police said. 

If the first sentence were quoted text, it would be 
very much the same. Hence the duration of the 
“said” event should be short. In the second sen-
tence everything that the spokesperson (here the 
police) has said is compiled into a single sen-
tence by the reporter, and it is unlikely that the 
spokesperson said only a single sentence with all 
this information. Thus, it is reasonable to give 
longer duration to this “said” event. 
 
Multiple Events: Many occurrences of verbs 
and other event descriptors refer to multiple 
events, especially, but not exclusively, if the sub-
ject or object of the verb is plural.  For example,   

Iraq has destroyed its long-range missiles.  

Both single (i.e., destroyed one missile) and ag-
gregate (i.e., destroyed all missiles) events hap-
pened. This was a significant source in dis-
agreements in our first round of annotation. 
Since both judgments provide useful informa-
tion, our current annotation interface allows the 
annotator to specify the event as multiple, and 
give durations for both the single and aggregate 
events.  

 
Events Involving Negation: Negated events 
didn't happen, so it may seem strange to specify 
their duration. But whenever negation is used, 
there is a certain class of events whose occur-
rence is being denied. Annotators should con-
sider this class, and make a judgment about the 
likely duration of the events in it. In addition, 
there is the interval during which the nonoccur-
rence of the events holds. For example,  

He was willing to withdraw troops in ex-
change for guarantees that Israel would not be 
attacked. 

There is the typical amount of time of “being 
attacked”, i.e., the duration of a single attack, and 
a longer period of time of “not being attacked”. 
Similarly to multiple events, annotators are asked 
to give durations for both the event negated and 
the negation of that event.   
 
Positive Infinite Durations: These are states 
which continue essentially forever once they be-
gin. For example, 

He is dead. 

Here the time continues for an infinite amount 
of time, and we allow this as an annotation. 

2.3 Inter-Annotator Agreement 

Although the graphical output of the annotations 
enables us to visualize quickly the level of agree-
ment among different annotators for each event, 
a quantitative measurement of the agreement is 
needed. The kappa statistic (Krippendorff, 1980; 
Carletta, 1996) has become the de facto standard 
to assess inter-annotator agreement. It is com-
puted as: 

)(1
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−
−
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P(A) is the observed agreement among the an-
notators, and P(E) is the expected agreement,  
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Figure 1: Overlap of Judgments of [10 minutes, 
30 minutes] and [10 minutes, 2 hours]. 

 
which is the probability that the annotators agree 
by chance.  

2.3.1  What Should Count as Agreement? 

Determining what should count as agreement is 
not only important for assessing inter-annotator 
agreement, but is also crucial for later evaluation 
of machine learning experiments.  

We first need to decide what scale is most ap-
propriate. One possibility is just to convert all the 
temporal units to seconds. However, this would 
not correctly capture our intuitions about the 
relative relations between duration ranges. For 
example, the difference between 1 second and 20 
seconds is significant; while the difference be-
tween 1 year 1 second and 1 year 20 seconds is 
negligible. In order to handle this problem, we 
use a logarithmic scale for our data. After first 
converting from temporal units to seconds, we 
then take the natural logarithms of these values. 
This logarithmic scale also conforms to the half 
orders of magnitude (HOM) (Hobbs and Kreino-
vich, 2001) which was shown to have utility in 
several very different linguistic contexts. 

In the literature on the kappa statistic, most au-
thors address only category data; some can han-
dle more general data, such as data in interval 
scales or ratio scales (Krippendorff, 1980; Car-
letta, 1996). However, none of the techniques 
directly apply to our data, which are ranges of 
durations from a lower bound to an upper bound. 

In fact, what coders were instructed to anno-
tate for a given event is not just a range, but a 
duration distribution for the event, where the 
area between the lower bound and the upper 
bound covers about 80% of the entire distribution 
area. Since it’s natural to assume the most likely 
duration for such distribution is its mean (aver-
age) duration, and the distribution flattens out 
toward the upper and lower bounds, we use the  
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Figure 2: Distribution of Means of Annotated 
Durations. 

 
normal or Gaussian distribution to model our 
duration distributions. 

In order to determine a normal distribution, we 
need to know two parameters: the mean and the 
standard deviation. For our duration distributions 
with given lower and upper bounds, the mean is 
the average of the bounds. Under the assumption 
that the area between lower and upper bounds 
covers 80% of the entire distribution area, the 
lower and upper bounds are each 1.28 standard 
deviations from the mean.  

With this data model, the agreement between 
two annotations can be defined as the overlap-
ping area between two normal distributions. The 
agreement among many annotations is the aver-
age overlap of all the pairwise overlapping areas. 
For example, the overlap of judgments of [10 
minutes, 30 minutes] and [10 minutes, 2 hours] 
are as in Figure 1. The overlap or agreement is 
0.508706. 

2.3.2  Expected Agreement 

As in (Krippendorff, 1980), we assume there ex-
ists one global distribution for our task (i.e., the 
duration ranges for all the events), and “chance” 
annotations would be consistent with this distri-
bution. Thus, the baseline will be an annotator 
who knows the global distribution and annotates 
in accordance with it, but does not read the spe-
cific article being annotated. Therefore, we must 
compute the global distribution of the durations, 
in particular, of their means and their widths. 
This will be of interest not only in determining 
expected agreement, but also in terms of what it 
says about the genre of news articles and about 
fuzzy judgments in general. 

We first compute the distribution of the means 
of all the annotated durations. Its histogram is 
shown in Figure 2, where the horizontal axis 
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Figure 3: Distribution of Widths of Annotated 
Durations. 
 
represents the mean values in the natural loga-
rithmic scale and the vertical axis represents the 
number of annotated durations with that mean. 

We also compute the distribution of the widths 
(i.e., upper bound – lower bound) of all the anno-
tated durations, and its histogram is shown in 
Figure 3, where the horizontal axis represents the 
width in the natural logarithmic scale and the 
vertical axis represents the number of annotated 
durations with that width. 

Two different methods were used to compute 
the expected agreement (baseline), both yielding 
nearly equal results. These are described in detail 
in (Pan et al., 2006a). For both, P(E) is about 
0.15. 

Experimental results show that the use of the 
annotation guidelines resulted in about 10% im-
provement in inter-annotator agreement, meas-
ured as described in this section, see (Pan et al., 
2006a) for details. 

2.4 Machine Learning Experiments 

2.4.1  Features 

Local Context. For a given event, the local con-
text features include a window of n tokens to its 
left and n tokens to its right, as well as the event 
itself. The best n was determined via cross vali-
dation. A token can be a word or a punctuation 
mark. For each token in the local context, includ-
ing the event itself, three features are included: 
the original form of the token, its lemma (or root 
form), and its part-of-speech (POS) tag. 

Syntactic Relations. The information in the 
event’s syntactic environment is very important 
in deciding the durations of events. For a given 
event, both the head of its subject and the head of 
its object are extracted from the parse trees gen-
erated by the CONTEX parser (Hermjakob and 

Mooney, 1997). Similarly to the local context 
features, for both the subject head and the object 
head, their original form, lemma, and POS tags 
are extracted as features. 

 WordNet Hypernyms. Events with the same 
hypernyms may have similar durations. But 
closely related events don’t always have the 
same direct hypernyms. We extract the hy-
pernyms not only for the event itself, but also for 
the subject and object of the event, since events 
related to a group of people or an organization 
usually last longer than those involving individu-
als, and the hypernyms can help distinguish such 
concepts. For our learning experiments, we ex-
tract the first 3 levels of hypernyms from Word-
Net (Miller, 1990). 

2.4.2  Learning Coarse-grained Binary 
Event Durations 

The distribution of the means of the annotated 
durations in Figure 2 is bimodal, dividing the 
events into those that take less than a day and 
those that take more than a day. Thus, in our first 
machine learning experiment, we have tried to 
learn this coarse-grained event duration informa-
tion as a binary classification task. 

Data. The original annotated data can be 
straightforwardly transformed for this binary 
classification task. For each event annotation, the 
most likely (mean) duration is calculated first by 
averaging (the logs of) its lower and upper bound 
durations. If its most likely (mean) duration is 
less than a day (about 11.4 in the natural loga-
rithmic scale), it is assigned to the “short” event 
class, otherwise it is assigned to the “long” event 
class. (Note that these labels are strictly a con-
venience and not an analysis of the meanings of 
“short” and “long”.) 

We divide the total annotated non-WSJ data 
(2132 event instances) into two data sets: a train-
ing data set with 1705 event instances (about 
80% of the total non-WSJ data) and a held-out 
test data set with 427 event instances (about 20% 
of the total non-WSJ data). The WSJ data (156 
event instances) is kept for further test purposes. 

Results. The learning results in Figure 4 show 
that among all three learning algorithms explored 
(Naïve Bayes (NB), Decision Trees C4.5, and 
Support Vector Machines (SVM)), SVM with 
linear kernel achieves the best overall precision 
(76.6%). Compared with the baseline (59.0%) 
and human agreement (87.7%), this level of per-
formance is very encouraging, especially as the 
learning is from such limited training data. 
 

42



 
Figure 4: Overall Test Precision on non-WSJ 
Data. 

 
Feature evaluation in (Pan et al., 2006b) shows 

that most of the performance comes from event 
word or phrase itself. A significant improvement 
above that is due to the addition of information 
about the subject and object. Local context does 
not help and in fact may hurt, and hypernym in-
formation also does not seem to help. It is grati-
fying to see that the most important information 
is that from the predicate and arguments describ-
ing the event, as our linguistic intuitions would 
lead us to expect. 

In order to evaluate whether the learned model 
can perform well on data from different news 
genres, we tested it on the unseen WSJ data (156 
event instances). A precision of 75.0%, which is 
very close to the test performance on the non-
WSJ data, proves the great generalization capac-
ity of the learned model. 

Some preliminary experimental results of 
learning the more fine-grained event duration 
information, i.e., the most likely temporal unit 
(cf. (Rieger 1974)’s ORDERHOURS, ORDERDAYS), 
are shown in (Pan et al., 2006b). SVM again 
achieves the best performance with 67.9% test 
precision (baseline 51.5% and human agreement 
79.8%) in “approximate agreement” where tem-
poral units are considered to match if they are the 
same temporal unit or an adjacent one. 

3 TimeML and Its Event Classes 

TimeML (Pustejovsky et al., 2003) is a rich 
specification language for event and temporal 
expressions in natural language text. Unlike most 
previous attempts at event and temporal specifi-
cation, TimeML separates the representation of 
event and temporal expressions from the anchor-
ing or ordering dependencies that may exist in a 
given text. 

TimeML includes four major data structures: 
EVENT, TIMEX3, SIGNAL, AND LINK. 

EVENT is a cover term for situations that happen 
or occur, and also those predicates describing 
states or circumstances in which something ob-
tains or holds true. TIMEX3, which extends 
TIMEX2 (Ferro, 2001), is used to mark up ex-
plicit temporal expressions, such as time, dates, 
and durations. SIGNAL is used to annotate sec-
tions of text, typically function words that indi-
cate how temporal objects are related to each 
other (e.g., “when”, “during”, “before”). The set 
of LINK tags encode various relations that exist 
between the temporal elements of a document, 
including three subtypes: TLINK (temporal 
links), SLINK (subordination links), and ALINK 
(aspectual links). 

Our event duration annotations can be inte-
grated into the EVENT tag. In TimeML each 
event belongs to one of the seven event classes, 
i.e., reporting, perception, aspectual, I-action, I-
state, state, occurrence. TimeML annotation 
guidelines1 give detailed description for each of 
the classes: 

Reporting. This class describes the action of a 
person or an organization declaring something, 
narrating an event, informing about an event, etc 
(e.g., say, report, tell, explain, state). 

Perception. This class includes events involv-
ing the physical perception of another event (e.g., 
see, watch, view, hear). 

Aspectual. In languages such as English and 
French, there is a grammatical device of aspec-
tual predication, which focuses on different fac-
ets of event history, i.e., initiation, reinitiation, 
termination, culmination, continuation (e.g., be-
gin, stop, finish, continue). 

I-Action. An I-Action is an Intensional Action. 
It introduces an event argument (which must be 
in the text explicitly) describing an action or 
situation from which we can infer something 
given its relation with the I-Action (e.g., attempt, 
try, promise). 

I-State.  This class of events are similar to the 
previous class. This class includes states that re-
fer to alternative or possible worlds (e.g., believe, 
intend, want). 

State. This class describes circumstances in 
which something obtains or holds true (e.g., on 
board, kidnapped, peace). 

Occurrence. This class includes all the many 
other kinds of events describing something that 
happens or occurs in the world (e.g., die, crash, 
build, sell). 

                                                 
1http://www.cs.brandeis.edu/~jamesp/arda/time/time
MLdocs/annguide12wp.pdf 
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4 Integrating Event Duration Annota-
tions into TimeML 

Our event duration annotations can be integrated 
into TimeML by adding two more attributes to 
the EVENT tag for the lower bound and upper 
bound duration annotations (e.g., “lowerBound-
Duration” and “upperBoundDuration” attributes). 

To minimize changes of the existing TimeML 
specifications caused by the integration, we can 
try to share as much as possible our event classes 
as described in Section 2.2 with the existing ones 
in TimeML as described in Section 3.  

We can see that four event classes are shared 
with very similar definitions, i.e., reporting, as-
pectual, state, and action/occurrence. For the 
other three event classes that only belong to Ti-
meML (i.e., perception, I-action, I-state), the I-
action and perception classes can be treated as 
special subclasses of the action/occurrence class, 
and the I-state class as a special subclass of the 
state class. 

However, there are still three classes that only 
belong to the event duration annotations (i.e., 
multiple, negation, and positive infinite). The 
positive infinite class can be treated as a special 
subclass of the state class with a special duration 
annotation for positive infinity.  

Each multiple event has two annotations. For 
example, for 

Iraq has destroyed its long-range missiles.  

there is the time it takes to destroy one missile 
and the duration of the interval in which all the 
individual events are situated – the time it takes 
to destroy all its missiles.  

Since the single event is usually more likely to 
be encountered in multiple documents, and thus 
the duration of the single event is usually more 
likely to be shared and re-used, to simplify the 
specification, we can take only the duration an-
notation of the single events for the multiple 
event class, and the single event can be assigned 
with one of the seven TimeML event classes. For 
example, the “destroyed” event in the above ex-
ample is assigned with the occurrence class in 
TimeBank. 

The events involving negation can be simpli-
fied similarly. Since the event negated is usually 
more likely to be encountered in multiple docu-
ments, we can take only the duration annotation 
of the negated event for this class. For example, 
in 

He was willing to withdraw troops in ex-
change for guarantees that Israel would not be 
attacked. 

the event negated is the “being attacked” event 
and it is assigned with the occurrence class in 
TimeBank.  Alternatively, TimeML could be 
extended to treat negations of events as states. 

The format used for annotated durations is 
consistent with that for the value of the DURA-
TION type in TimeML. For example, the sen-
tence 

The official said these sites could only be vis-
ited by a special team of U.N. monitors and dip-
lomats. 

can be marked up in TimeML as: 
 

The official <EVENT eid="e63" 
class="REPORTING"> said </EVENT> 
these sites <SIGNAL sid="s65" 
>could</SIGNAL> only be <EVENT 
eid="e64" class="OCCURRENCE"> 
visited </EVENT> by a special team 
of <ENAMEX TYPE="ORGANIZATION"> U.N. 
</ENAMEX> monitors and diplomats. 

 
If we annotate the “said” event with the dura-

tion annotation of [5 seconds, 5 minutes], and the 
“visited” event with [10 minutes, 1 day], the ex-
tended mark-up becomes: 

 
The official <EVENT eid="e63" 
class="REPORTING" lowerBoundDura-
tion="PT5S" upperBoundDura-
tion="PT5M"> said </EVENT> these 
sites <SIGNAL sid="s65" 
>could</SIGNAL> only be <EVENT 
eid="e64" class="OCCURRENCE" lower-
BoundDuration="PT10M" upperBoundDu-
ration="P1D"> visited </EVENT> by a 
special team of <ENAMEX 
TYPE="ORGANIZATION"> U.N. </ENAMEX> 
monitors and diplomats. 

5 Conclusion 

In this paper we have demonstrated how to ex-
tend TimeML with typical durations of events. 
We can see that the extension is very straight-
forward. Other interesting temporal information 
can be extracted or learned. For example, for 
each event class, we can generate its own mean 
and widths graphs, and learn their durations 
separately from other classes, which may capture 
different duration characteristics associated with 
each event class.   
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Abstract

Current research in developmental biology
aims to link developmental genetic path-
ways with the processes going on at cel-
lular and tissue level. Normal processes
will only take place under specific sequen-
tial conditions at the level of the pathways.
Disrupting or altering pathways may mean
disrupted or altered development.
This paper is part of a larger work explor-
ing methods of detecting and extracting in-
formation on developmental events from
free text and on their relations in space and
time.

1 Introduction

Most relation extraction work to date on biomedi-
cal articles has focused on genetic and protein in-
teractions, e.g. the extraction of the fact that ex-
pression of Gene A has an effect on the expression
of Gene B. However where genetic interactions are
tissue- or stage-specific, the conditions that govern
the types of interactions often depend on where in
the body the interaction is happening (space) and
at what stage of life/development (time).

For genetic pathways involved in development,
it is critical to link what is happening at the molec-
ular level to changes in the developing tissues,
usually described in terms of processes such as
tubulogenesis and epithelialization (both involved
in the development of the kidney) and where they
are happening.

The processes themselves are usually linked
to stages rather than precise time points and
spans like “6.15pm EST”, “March 3”, “last year”.
Within the developmental mouse community,
there are at least two different ways of specifying

the developmental stage of an embryo - Theiler
stages (TS), and days post coitum/embryonic
day (d.p.c./E). However, these cannot be simply
mapped to one another as can days, weeks and
years. Embryonic days are real time stages in-
dependent of the state of the embryo and dated
from an assumption about when (approximately)
the relevant coitus must have taken place, while
Theiler stages are relative stages dependent on the
processes an embryo is undergoing.

Developmental stages can be also be referred to
implicitly, by the state of the embryo or the pro-
cesses currently taking place within it. This is be-
cause during development, tissues form, change,
merge or even disappear. So if the embryo is un-
dergoing tubulogenesis, one can assume that its
developmental stage is (loosely) somewhere be-
tween TS20 and birth. If the text refers to induced
mesenchyme during a description of tubulogene-
sis, one can assume that this change in the mes-
enchyme is the (normal) consequence of the Wolf-
fian duct invading the metanephric mesenchyme.
The invasion is known to occur around 10.5 d.p.c
so the induced mesenchyme must come into exis-
tence soon after this time.

Temporal links between developmental events
may be indicated explicitly (e.g. first, a tubule de-
velops into a comma-shaped body, which then de-
velops into an S-shaped body), but they are more
likely to be indicated implicitly by their order-
ing in the text and by associative (or “bridging”)
anaphora where the anaphor refers to the result of
a previously mentioned process, e.g. the induction
of metanephric mesenchyme as one event, and a
subsequent mention of induced mesenchyme (an
“associative” or “bridging” reference) within an-
other event, suggesting the former event occurred
before the latter.
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Figure 1: Partial genetic pathway for early kid-
ney morphogenesis. The arrows show directed in-
teractions between genes that are required for the
specified processes. E.g Pax2 interacts with (acti-
vates) Six2 which, together with Sall1 and Wt1,
is required for differentiation of the mesenchy-
mal cells in the metanephric mesenchyme. Image
taken from (Ribes et al., 2003).

This work on linking molecular and develop-
mental events mentioned in text on development
is also meant to deal with the problem that no
one article ever fully describes a topic. The par-
tial genetic interaction network in Figure 1 has
been built from several different studies and not
determined from just a single experiment. So
not only does the information within one article
need to be mined for useful information - the in-
formation across articles needs to be associated
with each other with respect to temporal, spatial
and experimental grounding. Eccles et al. (2002)
states that Pax2 is required for differentiation of
mesenchymal cells during kidney morphogenesis,
while Sajithlal et al. (2005) states that Eya1 is re-
quired. However these two results by themselves
do not help us determine whether these require-
ments are independent of one another or whether
they are required at different stages or in different
parts of metanephric mesenchyme or whether the
two genes interact. The conditions involved in the
experiments, most importantly the temporal con-
ditions, can help to link the two events.

This work aims to develop methods for extract-
ing information from text that will ground ge-
netic pathways (molecular events) with regard to
tissue location, developmental process and stage
of embryonic development - that is, their spatio-
temporal context. The task at hand is to recognise
how biologists write about developmental events
and then adapt existing or formulate new natu-
ral language processing techniques to extract these
events and temporally relate them to each other.
The resultant information can then be used both
for database curation purposes and for visualisa-
tion, i.e. to enrich pathway diagrams such as Fig-
ure 1, with information such as when and where
the interactions take place, what type of inter-
actions are involved (physical, activation, inhibi-
tion), the origin of this information and other as-
sociated information.

2 Notions of Time

As previously mentioned, there are different ways
of calibrating for developmental stages, and they
cannot simply be mapped to one another. The two
most common stage notations for mouse develop-
ment are Theiler stages, TS, and Embryonic days,
E (equivalent to days post coitum, d.p.c.). The lat-
ter are self explanatory in that they denote the 24
hour day and can be considered real-time staging.
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The convention was originally that E11 would rep-
resent the 24 hour period of the 11th day. It is,
however, now common to find E11.5 representing
the same time period, but this is merely a change
in convention due to standard practices of experi-
mentation.

A Theiler stage on the other hand represents
a non-fixed relative time period defined by the
progress of development rather than directly in
terms of the passage of time. Theiler Stages
(Theiler, 1989) divide mouse development into 26
prenatal and 2 postnatal stages. In general, Theiler
used external features that can be directly assessed
by visual inspection of the live embryo as devel-
opmental landmarks to define stages. The Edin-
burgh Mouse Atlas Project (EMAP)1 uses Theiler
stages to organise anatomical terms in their Mouse
Atlas Nomenclature (MAN). EMAP gives a brief
description of each Theiler stage with TS25 as an
example as follows:

Skin wrinkled
The skin has thickened and formed wrinkles and
the subcutaneous veins are less visible. The fin-
gers and toes have become parallel and the um-
bilical hernia has disappeared. The eyelids have
fused. Whiskers are just visible.
Absent: ear extending over auditory meatus, long
whiskers.

An embryo is in TS25 at approximately 17 d.p.c.
As can be seen in Figure 2, an embryo at E11
could be considered in Theiler stage 17, 18 or 19,
i.e. Theiler stages can overlap one another with
respect to Embryonic day. Indeed, here, TS17 can
fully encompass TS18 in the dpc timeline.

The development of internal structures is ap-
proximately correlated with external develop-
ments, so except for fine temporal differences,
the Theiler stages can be assumed to apply to the
whole embryo. Theiler stages provide only gross
temporal resolution of developmental events, and
the development of internal structures often take
place within the boundaries of one of these stages
or overlapping stage boundaries. Thus, internal
developmental processes can also have their own
finer relative timeline or staging.

There is no ontology or reference book that
comprehensively specifies this finer staging and
the knowledge of the biologist as the reader of ar-

1Edinburgh Mouse Atlas Project -
http://genex.hgu.mrc.ac.uk/

Figure 2: Graphic of kidney morphogenesis an-
notated with the two standard staging notations
for mouse development. At E10.5 the Wolffian
duct invades the metanephric mesenchyme form-
ing the ureteric bud around E11. The bud then
branches around E11.5 and continues to do so un-
til birth, forming the ultimate functional units of
the kidney - the nephrons. TS = Theiler Stage, E
= Embryonic day/dpc. This image is adapted from
http://www.sciencemuseum.org.uk/

ticles is relied upon. This work will contribute to
making this deeper staging criteria explicit.

3 Annotation

3.1 Event Classification

As a first step, a Gold Standard corpus of 988 sen-
tences was developed with each sentence being
classified as containing the description of a devel-
opmental and/or molecular event or not. 385 sen-
tences were classified as positive, with 603 neg-
ative. Named entities within all these sentences
were also annotated. Among these element types
were stage, process and tissue. A Naive Bayes
automatic classifier for sentence classification was
developed using this Gold Standard resulting in
a balanced F-score of 72.3% for event classifica-
tion. (A manual rule-based approach resulted in
an F-score of 86.6%, but this has yet to be fully
investigated for automation. Guessing positive for
all sentences would give a balanced F-score of
58.4%)

3.2 Event Specifications

Two event types are of interest in this work -
molecular and tissue events. The former involve
the action (and possible effect) of molecules dur-
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ing development and the latter involves the devel-
opment of the tissues themselves. A description of
an event can be expected to contain the following
elements:

� molecular or tissue event type (e.g. expres-
sion, inhibition)

� stage or temporal expression (e.g. after X,
subsequent to X, E11)

� at least one of

– molecule name, anatomical term, bio-
logical process term

The informational elements included within an
event description can then be used to relate events
to each other. Specifically, processes involve
known tissues and are known to happen during
certain stages, just as the relative order of pro-
cesses, tissue formations and stages are known.

While an initial specification of an event may
be associated with a single sentence, clause or
phrase, not all the elements of relevance to this
work may be specified there. In particular, an in-
formational element of the event may be explic-
itly and fully stated in this initial event specifica-
tion, or it may be underspecified or it may be miss-
ing. For those that are underspecified or missing,
background knowledge about other elements and
events may need to be taken into consideration in
order for them to be fully resolved (see Section
4.2).

The following is a straightforward example
where the given sentence specifies all the main el-
ements required for a molecular event.

1. At E11, the integrin α8 subunit was expressed
throughout the mesenchyme of the nephro-
genic cord.

� Molecular Event : expression
� molecule name: integrin α8
� anatomical term: mesenchyme of the

nephrogenic cord
� stage: E11

Example 2 shows that a single sentence may
specify more than one event.

2. Prior to formation of the ureteric bud,
no α8 expression was evident within the
mesenchyme that separates the urogenital
ridge from the metanephric mesenchyme and
within the metanephric mesenchyme itself.

� EVENT-0
– Tissue Event : formation of anatom-

ical term
– anatomical term: ureteric bud
– stage/temporal expression = missing

� EVENT-1
– Molecular Event: absence of expres-

sion
– molecule name: α8
– anatomical term: mesenchyme that

separates the urogenital ridge from
the metanephric mesenchyme

– temporal expression:Prior to
EVENT-0

� EVENT-2
– Molecular Event: absence of expres-

sion
– molecule name: α8
– anatomical term: metanephric mes-

enchyme
– temporal expression: Prior to

EVENT-0

EVENT-0 is not the focus of this sentence, but
rather a reference event. Its attributes need to be
recorded so that the stage of the other events can
be determined.

TimeML (Pustejovsky et al., 2004) is a spec-
ification language designed for the annotation
of temporal and event information. Although
TimeML is not currently being used as a method
of representation for this work, Example 1 above
could be represented as follows:

� SIGNAL sid=“s1” type=“temporal” �
At

� /SIGNAL �
� TIMEX tid=“t1” type=“STAGE”
value=“E11” �
E11

� /TIMEX �
the integrin α8

� EVENT eid=“e1” class=“molecular” �
was expressed

� /EVENT �
throughout the mesenchyme of the

� SIGNAL sid=“s2” type=“tissue” �
nephrogenic cord

� /SIGNAL �
nephrogenic cord can be considered a signal of
type “tissue” as it does not exist throughout the
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whole of development and so can indicate or rule
out time periods for this event description.

3.3 Event Time-Stamping

The relative timing of any biological processes
mentioned in the event descriptions first needs to
be determined before we can work out when the
actual events described are taking place.

Schilder and Habel (2001) looked beyond the
core temporal expressions and into prepositional
phrases that contained temporal relations, i.e. be-
fore, during, etc and introduced the notion of noun
phrases as event-denoting expressions. An event
that is described as occurring ”after the election”
does not have an explicit time-stamp attached to it,
but the knowledge about the timing of the election
mentioned gives the reader a notion of when in ab-
solute time the event occurred. This is similar to
Example 2 above where Event-0 is the reference
event, thus biological processes can be considered
event-denoting expressions.

While Schilder and Habel rely on prepositional
phrases to designate their event-denoting noun
phrases, for this work propositional phrases are
not necessarily required. The mention of a noun
phrase by itelf may be enough. In developmen-
tal biology, tissues may only be extant for a lim-
ited period before they form into some other tissue
and these can also be used as event-denoting ex-
pressions - for example, comma-shaped bodies are
structures within the developing kidney that are
only in existence for a relatively short time period -
before the existence of the S-shaped bodies and af-
ter epithelialization. Therefore the mention of tis-
sues as well as processes can help to pinpoint the
timing of the event being described. While they
may not ultimately bring us to the exact stage the
event is occurring in, it can at least rule out some
spans of time. We discuss this further in Section
4.2.

In order for events to be linked to one another,
it is necessary to uniquely index each event and its
elements. Mapping across indices will be utilised
so that known relationships between elements can
be represented. For example, E10 comes before
E12, tubulogenesis occurs during kidney morpho-
genesis, and the proximal tubule is part of the
nephron.

Of the elements types listed in Section 3.2, only
the molecule element cannot be used to resolve
developmental stage while tissue, process, stage

and, of course, temporal expression can. Other el-
ements are also of interest to the biologist and inte-
gral to development and molecular function, how-
ever they are not of use in the grounding of events
in time.

4 Initial Investigations

This section demonstrates that one must look be-
yond the sentence in order to resolve the temporal
aspects of events.

4.1 Evidence for Developmental Stage

Evidence sufficient to resolve developmental stage
can come from many places. 314 positive sen-
tences from the Gold Standard corpus and their
context were examined, and the evidence required
to resolve developmental stage for each of the
events mentioned there was determined as shown
in Table 1.

As can be seen from the table, only 48 out of
the 314 event sentences (i.e. 15%) have the de-
velopmental stage in which the event is occurring
explicitly stated in the given sentence, (e.g. Ex-
ample 1 in Section 3). So other means need to be
explored in order to ground events with respect to
developmental stage. An event sentence may be a
continuation of a topic, and so the specific devel-
opmental stage involved may well be stated in the
immediately surrounding or related text.

Information in the immediately surrounding
text (rows labelled Following Sentence, Previous
Sentence and Current Paragraph) resolves the de-
velopmental stage of the event in 64 cases (i.e.
21%). This most commonly occurs by looking for
the immediately previously mentioned stage, and
in one case the next encountered stage.

Event sentences also often refer to figures, and
so the stage being described in the caption (i.e.
legend) of the referenced figure will often be the
same as the one relevant to the sentence. (This was
true of all sentences looked at that referenced a fig-
ure.) Figures, however, are generally only found in
the Results sections and so this type of evidence is
not often going to be of use for sentences found in
other sections of an article.

Similarly, events can be described within the
figure legends themselves. The concise and simple
way in which legends are generally written mean
that the explicit stage is commonly referred to, and
so stage can be resolved using this referenced in-
formation(43 out of 47 cases, i.e. 91%).
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Source of Evidence Abstract Introduction Results Discussion Methods Totals
Time Irrelevant 7 12 22 23 1 65

Prior Knowledge 17 33 31 45 0 126
Following Sentence 0 0 1 0 0 1
Previous Sentence 0 0 7 0 0 7
Current Paragraph 0 0 18 1 0 19

Reference to Figure 0 0 38 0 0 38
Within Fig Legend 0 0 43 0 0 43
(time not resolved) 0 3 1 0 0 4
Explicitly Stated 0 1 41 5 1 48

(not relevant) 0 0 1 0 0 1
Totals 24 49 165 74 2 314

Table 1: Location and type of evidence sufficient to resolve developmental stage in sentences. Time
Irrelevant indicates that the event being described is not time critical, i.e. event is a constant over devel-
opmental timeline, or end result. Prior knowledge means temporal information other than that found in
the current paragraph but associated with current event such as tissue and process is required for temporal
resolution. This may be found in the current article or from previously curated information (assuming
accurate terminology mapping.) Text from outside the current paragraph cannot be relied upon to be rel-
evant to the current sentence without additional information. time not resolved means the stage could not
be pinpointed using the figure legend. not relevant indicates that although an explicit stage was referred
to within the sentence, this was not relevant to the event being described, e.g. event and stage in different
clauses of the sentence.

Table 2 shows a similar table to Table 1, but
deals only with those sentences found within fig-
ure legends. It shows where within the figure leg-
end the required evidence for developmental stage
can be found. As can be seen, in 80% of these
cases the relevant developmental stage can be as-
certained directly from the legend. It should be
noted that figure legends in biological articles tend
to be much lengthier than those from NLP articles.

In 21% of the event sentences, a specific devel-
opmental stage is not relevant to the fact being de-
scribed (first row of Table 1), e.g. the kidneys of
the double mutants were located more caudal and
medial than normal. This sentence is describing
an end result, i.e. an affected or normal kidney
at birth (although this could, of course, be con-
sidered a developmental stage.) Alternatively, the
time-irrelevant event being described could be a
non-event, e.g. the fact that a gene is never ex-
pressed in a particular tissue. Similarly, this could
be considered as the developmental stage range
from conception to birth.

The significantly small proportion of event sen-
tences located in Abstracts (24 of 314 total event
sentences, less than 8%) demonstrates the need to
use full text. Even where an event is described
within an Abstract, it is rarely accompanied by
associated processes or tissues specific enough to

suggest the stage of development never mind an
explicit timestamp, as it is, by necessity, only gen-
erally describing the whole article. The majority
of BioNLP work is being done with the use of Ab-
stracts only. This is because of their relative ease
of access compared with full text, but methods de-
veloped using Abstracts only will not necessarily
be as effective when applied to full text.

As can be seen, the majority of temporally-
underspecified event sentences are situated in the
Results section of the articles. Indeed, this is
the section where most event sentences are to be
found. This work is initially focussing on event
descriptions found in Results sections of articles as
these will focus on the work done by the authors
and their findings and will not generally include
modality in the event descriptions as Introduction
and Discussion sections might. As shown above,
the Methods section rarely contains event descrip-
tions and when they do they are usually about what
the experiment aims to show and so this should be
repeated in the Results section.

4.2 Prior Knowledge

As mentioned earlier, if none of the above sources
reveal the relevant stage of an event, then other el-
ements within the sentence, such as tissue or pro-
cess, need to be looked at so that prior knowledge
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Source of Evidence Figure Legends
Time Irrelevant 4

Prior Knowledge 4
Following Sentence 0
Previous Sentence 14
Current Paragraph 13
Explicitly Stated 11

Total 47

Table 2: Location and type of evidence sufficient to resolve developmental stage in sentences within
figure legends. Rows as in Table 1, with Current Paragraph being equal to the whole of the legend.

about those elements can be exploited for devel-
opmental stage to be resolved. For example, given
the sentence

Prior to formation of the ureteric bud,
no α8 expression was evident within the
mesenchyme that separates the urogen-
ital ridge from the metanephric mes-
enchyme and within the metanephric
mesenchyme itself.

the developmental stage can be resolved if we
know when the ureteric bud forms (TS17/E10.5).
It could also be the case that the other tissues
or processes mentioned have a specific lifetime
within development and these could help to fur-
ther pinpoint the timeline involved for the lack of
α8 expression. For example,

Pax2 was initiating in the metanephric
mesenchyme undergoing induction.

It is not so straightforward to assign a stage here,
since the mesenchyme is constantly being induced
from E11 (TS18) until birth (TS26), but we have
at least discounted E1-E10 (TS1-TS17) as relevant
stages.

Resources such as the Mouse Atlas Nomencla-
ture (MAN) (Ringwald et al., 1994) will provide
the initial prior knowledge in order to resolve de-
velopmental stage of events. This describes the
different stages of development and the tissues in
evidence at each stage, giving what is known as the
abstract mouse. From this abstract mouse, we can
ascertain the normal stage ranges where tissues ex-
ist and use this knowledge for temporal resolution,
taking care not to assume that tissues do not neces-
sarily exist within the same stage range in mutant
mice than in wild-type. The prior knowledge data-
bank can be recursively added to with facts from

events already extracted from papers for use in fur-
ther event extraction and their anchoring in time.

5 Future Work

5.1 Term Normalisation

There is no point extracting events descriptions if
we cannot relate the events and their elements to
each other. The event-denoting expressions iden-
tified need to be normalised so that it can be recog-
nised when two terms are referring to the same el-
ement.

Inconsistent terminology in the biomedical field
is a known problem (Sinclair et al., 2002). One
gene can have several names (synonymy) just as
the same name can be used for more than one gene
(homonymy). Very often the synonyms bear no re-
lation to one another since they were perhaps con-
currently discovered in different laboratories and
named. For example, the gene insomnia can also
be known as cheap date, since experiments found
that organisms without this gene have a tendency
to fall asleep and are particularly susceptible to
alcohol. The same anatomical part can also be
referred to by different terms, e.g. the Wolffian
duct is also known as the nephric duct, and the
metanephros is another name for the kidney. There
is also a lineage issue, where a tissue with one
name (or perhaps more) develops into something
with another name (e.g. the intermediate meso-
derm gives rise to both the Wolffian duct and the
metanephric mesenchyme which in turn both de-
velop into the metanephros. The MAN includes
this type of information.

Term normalisation is particularly important for
the process and tissue elements. If these terms
are not normalised, temporal knowledge about the
terms may not be exploited and it may not be de-
termined that events involving them are linked.
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5.2 Event Elements

If the elements required to fully describe an event
are explicitly stated within a simple sentence, then
temporal grounding will be straightforward. How-
ever, this is unlikely to often be the case. More
complex sentences will dictate the need for de-
pendency relations to be determined so that each
event’s elements can be identified. Methods for
dealing with missing or underspecified elements
that are not resolved within the event description
itself will be investigated.

A naive approach will first be investigated to
fill these gaps: find the closest appropriate ele-
ment in the previous context (varying the size of
the window for how far back to look, such as cur-
rent paragraph or last 3 sentences). An error anal-
ysis on this simple method will help to guide the
amount of further work necessary to achieve equal
success across all elements. For those elements
that this method is ineffective, other methods will
be developed incorporating features such as sen-
sitivity to syntax, event type and location within
article. Similarly, it will be established whether
different techniques are required for missing infor-
mation than for underspecified information. They
will first be treated in the same manner with anal-
ysis determining whether they should be treated
differently.

6 Conclusion

This ongoing work has shown the importance of
relative time lines in order to link events to one
another. The identification of event elements and
their normalisation will then form a basis for rea-
soning over these elements with regards to first
time-stamping of events and then temporally relat-
ing the events. The aim of many BioNLP studies
is ultimately to reason over extracted events and,
as such, the relative timing of these events is cru-
cial. For example, if we know
1. tissue X is transformed into tissue Y at stage S
and
2. molecule M is expressed in X at stage S-1,
then it can be reasoned that event 2 has an im-
pact on event 1. This reasoning can be made more
successful if we know as much about the events
as possible, not just that tissue Y is formed and
molecule M is expressed.

It has also been demonstrated that we not only
need to look beyond the sentence level for tempo-
ral resolution but also beyond the article in order to

replicate the reader’s assumed level of background
knowledge.
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