
Proceedings of the Workshop on How Can Computational Linguistics Improve Information Retrieval?, pages 33–40,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Exploring Semantic Constraints for Document Retrieval

Hua Cheng, Yan Qu, Jesse Montgomery, David A. Evans

Clairvoyance Corporation
5001 Baum Blvd., Suite 700, Pittsburgh, PA 15213, U.S.A.

{H.Cheng, Y.Qu, J.Montgomery, dae}@clairvoyancecorp.com

Abstract

In this paper, we explore the use of struc-
tured content as semantic constraints for
enhancing the performance of traditional
term-based document retrieval in special
domains. First, we describe a method for
automatic extraction of semantic content
in the form of attribute-value (AV) pairs
from natural language texts based on
domain models constructed from a semi-
structured web resource. Then, we ex-
plore the effect of combining a state-of-
the-art term-based IR system and a sim-
ple constraint-based search system that
uses the extracted AV pairs. Our evalua-
tion results have shown that such combi-
nation produces some improvement in IR
performance over the term-based IR sys-
tem on our test collection.

1 Introduction

The questions of where and how sophisticated
natural language processing techniques can im-
prove traditional term-based information re-
trieval have been explored for more than a dec-
ade. A considerable amount of work has been
carried out that seeks to leverage semantic in-
formation for improving traditional IR. Early
TREC systems such as INQUERY handled both
natural language and semi-structured queries and
tried to search for constraint expressions for
country and time etc. in queries (Croft et al.,
1994). Later work, as discussed in (Strzalkowski
et al., 1996), has focused on exploiting semantic
information at the word level, including various
attempts at word-sense disambiguation, e.g.,
(Voorhees, 1998), or the use of special-purpose
terms; other approaches have looked at phrase-
level indexing or full-text query expansion. No
approaches to date, however, have sought to em-
ploy semantic information beyond the word

level, such as that expressed by attribute-value
(AV) pairs, to improve term-based IR.

Attribute-value pairs offer an abstraction for
instances of many application domains. For ex-
ample, a person can be represented by a set of
attributes such as name, date-of-birth, job title,
and home address, and their associated values; a
house has a different set of attributes such as ad-
dress, size, age and material; many product
specifications can be mapped directly to AV
pairs. AV pairs represent domain specific seman-
tic information for domain instances.

Using AV pairs as semantic constraints for re-
trieval is related to some recent developments in
areas such as Semantic Web retrieval, XML
document retrieval, and the integration of IR and
databases. In these areas, structured information
is generally assumed. However, there is abundant
and rich information that exists in unstructured
text only. The goal of this work includes first to
explore a method for automatically extracting
structured information in the form of AV pairs
from text, and then to utilize the AV pairs as se-
mantic constraints for enhancing traditional
term-based IR systems.

The paper is organized as follows. Section 2
describes our method of adding AV annotations
to text documents that utilizes a domain model
automatically extracted from the Web. Section 3
presents two IR systems using a vector space
model and semantic constraints respectively, as
well as a system that combines the two. Section 4
describes the data set and topic set for evaluating
the IR systems. In Section 5, we compare the
performance of the three IR systems, and draw
initial conclusions on how NLP techniques can
improve traditional IR in specific domains.

2 Domain-Driven AV Extraction

This section describes a method that automati-
cally discovers attribute-value structures from
unstructured texts, the result of which is repre-
sented as texts annotated with semantic tags.

33

We chose the digital camera domain to illus-
trate and evaluate the methodology described in
this paper. We expect this method to be applica-
ble to all domains whose main features can be
represented as a set of specifications.

2.1 Construction of Domain Model

A domain model (DM) specifies a terminology
of concepts, attributes and values for describing
objects in a domain. The relationships between
the concepts in such a model can be heterogene-
ous (e.g., the link between two concepts can
mean inheritance or containment). In this work,
a domain model is used for establishing a vo-
cabulary as well as for establishing the attribute-
value relationship between phrases.

For the digital camera domain, we automati-
cally constructed a domain model from existing
Web resources. Web sites such as epinions.com
and dpreview.com generally present information
about cameras in HTML tables generated from
internal databases. By querying these databases
and extracting table content from the dynamic
web pages, we can automatically reconstruct the
databases as domain models that could be used
for NLP purposes. These models can optionally
be organized hierarchically. Although domain
models generated from different websites of the
same domain are not exactly the same, they often
share many common features.

From the epinions.com product specifications
for 1157 cameras, we extracted a nearly compre-
hensive domain model for digital cameras, con-
sisting of a set of attributes (or features) and their
possible values. A portion of the model is repre-
sented as follows:

{Digital Camera}

 <Brand> <Price> <Lens>

{Brand}

 (57) Canon

 (33) Nikon

{Price} $

 (136) 100 - 200

 (100) >= 400

{Lens}

 <Optical Zoom> <Focus Range>

{Optical Zoom} x

 (17) 4

 (3) 2.5

{Focus Range} in., ”

 (2) 3.9 - infinity

 (1) 12 - infinity

In this example, attributes are shown in curly
brackets and sub-attributes in angle brackets.
Attributes are followed by possible units for their
numerical values. Values come below the attrib-
utes, headed by their frequencies in all specifica-

tions. The frequency information (in parentheses)
is used to calculate term weights of attributes and
values.

Specifications in HTML tables generally do
not specify explicitly the type restrictions on val-
ues (even though the types are typically defined
in the underlying databases). As type restrictions
contain important domain information that is
useful for value extraction, we recover the type
restrictions by identifying patterns in values. For
example, attributes such as price or dimension
usually have numerical values, which can be ei-
ther a single number (“$300”), a range (“$100 -
$200”), or a multi-dimensional value (“4 in. x 3
in. x 2 in.”), often accompanied by a unit, e.g., $
or inches, whereas attributes such as brand and
accessory usually have string values, e.g.,
“Canon” or “battery charger”.

We manually compile a list of units for identi-
fying numerical values, which is partially do-
main general. We identify range and multi-
dimensional values using such patterns as “A –
B”, “A to B”, “less than A”, and “A x B”, etc.
Numerical values are then normalized to a uni-
form format.

2.2 Identification of AV Pairs

Based on the constructed domain model, we can
identify domain values in unstructured texts and
assign attribute names and domains to them. We
focus on extracting values of a domain attribute.
Attribute names appearing by themselves are not
of interest here because attribute names alone
cannot establish attribute-value relations. How-
ever, identification of attribute names is neces-
sary for disambiguation.

The AV extraction procedure contains the fol-
lowing steps:

1. Use MINIPAR (Lin, 1998) to generate
dependency parses of texts.

2. For all noun phrase chunks in parses, it-
eratively match sub-phrases of each
chunk with the domain model to find all
possible matches of attribute names and
values above a threshold:

• A chunk contains all words up to
the noun head (inclusive);

• Post-head NP components (e.g.,
PP and clauses) are treated as
separate chunks.

3. Disambiguate values with multiple at-
tribute assignments using the sentence
context, with a preference toward closer
context based on dependency.

34

4. Mark up the documents with XML tags
that represent AV pairs.

Steps 2 and 3 are the center of the AV extrac-
tion process, where different strategies are em-
ployed to handle values of different types and
where ambiguous values are disambiguated. We
describe these strategies in detail below.

Numerical Value

Numerical values are identified based on the unit
list and the range and multi-dimensional number
patterns described earlier in Section 2.1. The
predefined mappings between units and attrib-
utes suggest attribute assignment. It is possible
that one unit can be mapped to multiple attrib-
utes. For example, “x” can be mapped to either
optical zoom or digital zoom, both of which are
kept as possible candidates for future disam-
biguation. For range and multi-dimensional
numbers, we find all attributes in the domain
model that have at least one matched range or
multi-dimensional value, and keep attributes
identified by either a unit or a pattern as candi-
dates. Numbers without a unit can only be
matched exactly against an existing value in the
domain model.

String Value

Human users often refer to a domain entity in
different ways in text. For example, a camera
called “Canon PowerShot G2 Black Digital
Camera” in our domain model is seldom men-
tioned exactly this way in ads or reviews, but
rather as “Canon PowerShot G2”, “Canon G2”,
etc. However, a domain model generally only
records full name forms rather than their all pos-
sible variations. This makes the identification of
domain values difficult and invalidates the use of
a trained classifier that needs training samples
consisting of a large variety of name references.

An added difficulty is that web texts often
contain grammatical errors and incomplete sen-
tences as well as large numbers of out-of-
vocabulary words and, therefore, make the de-
pendency parses very noisy. As a result, effec-
tiveness of extraction algorithms based on certain
dependency patterns can be adversely affected.

Our approach makes use of the more accurate
parser functionalities of part-of-speech tagging
and phrase boundary detection, while reducing
the reliance on low level dependency structures.
For noun phrase chunks extracted from parse
trees, we iteratively match all sub-phrases of

each chunk with the domain model to find
matching attributes and values above a threshold.
It is often possible to find multiple AV pairs in a
single NP chunk.

Assigning domain attributes to an NP is essen-
tially a classification problem. In our domain
model, each attribute can be seen as a target class
and its values as the training set. For a new
phrase, the idea is to find the value in the domain
model that is most similar and then assign the
attribute of this nearest neighbor to the phrase.
This motivates us to adopt K Nearest Neighbor
(KNN) (Fix and Hodges, 1951) classification for
handling NP values. The core of KNN is a simi-
larity metric. In our case, we use word editing
distance (Wagner and Fischer, 1974) that takes
into account the cost of word insertions, dele-
tions, and substitutions. We compute word edit-
ing distance using dynamic programming tech-
niques.

Intuitively, words do not carry equal weights
in a domain. In the earlier example, words such
as “PowerShot” and “G2” are more important
than “digital” and “camera”, so editing costs for
such words should be higher. This draws an
analogy to the metric of Inverse Document Fre-
quency (IDF) in the IR community, used to
measure the discriminative capability of a term
in a document collection. If we regard each value
string as a document, we can use IDF to measure
the weight of each term in a value string to em-
phasize important domain terms and de-
emphasize more general ones. The normalized
cost is computed as:

)log(/)/log(TNNTN

where TN is the total number of values for an
attribute, and N is the number of values where a
term occurs. This equation assigns higher cost to
more discriminative terms and lower cost to
more general terms. It is also used to compute
costs of terms in attribute names. For words not
appearing in a class the cost is 1, the maximum
cost.

The distance between a new phrase and a DM
phrase is then calculated using word editing cost
based on the costs of substitution, insertion, and
deletion, where

Costsub = (CostDM + Costnew) / 2
Costins = Costnew
Costdel = CostDM
Costedit = min(Costsub, Costins, Costdel)

where CostDM is the cost of a word in a domain
value (i.e., its normalized IDF score), and Costnew

35

is that of a word in the new phrase. The cost is
also normalized by the larger of the weighted
lengths of the two phrases. We use a threshold
of 0.6 to cut off phrases with higher cost.

For a phrase that returns only a couple of
matches, the similarity, i.e., the matching prob-
ability, is computed as 1 - Costedit; otherwise, the
similarity is the maximum likelihood of an at-
tribute based on the number of returned values
belonging to this attribute.

Disambiguation by Sentence Context

The AV identification process often returns mul-
tiple attribute candidates for a phrase that needs
to be further disambiguated. The words close to
the phrase usually provide good indications of
the correct attribute names. Motivated by this
observation, we design the disambiguation pro-
cedure as follows. First we examine the sibling
nodes of the target phrase node in the depend-
ency structure for a mention of an attribute name
that overlaps with a candidate. Next, we recur-
sively traverse upwards along the dependency
tree until we find an overlap or reach the top of
the tree. If an overlap is found, that attribute be-
comes the final assignment; otherwise, the at-
tribute with the highest probability is assigned.
This method gives priority to the context closest
(in terms of dependency) to the target phrase. For
example, in the sentence “The 4x stepless digital
zoom lets you capture intricate details” (parse
tree shown below), “4x” can be mapped to both
optical zoom and digital zoom, but the sentence
context points to the second candidate.

3 Document Retrieval Systems

This section introduces three document retrieval
systems: the first one retrieves unstructured texts
based on vector space models, the second one
takes advantage of semantic structures con-
structed by the methods in Section 2, and the last
one combines the first two systems.

3.1 Term-Based Retrieval (S1)

Our system for term-based retrieval from un-
structured text is based on the CLARIT system,
implementing a vector space retrieval model (Ev-

ans and Lefferts, 1995; Qu et al., 2005). The
CLARIT system identifies terms in documents
and constructs its index based on NLP-
determined linguistic constituents (NPs, sub-
phrases and words). The index is built upon full
documents or variable-length subdocuments. We
used subdocuments in the range of 8 to 12 sen-
tences as the basis for indexing and scoring
documents in our experiments.

Various similarity measures are supported in
the model. For the experiments described in the
paper, we used the dot product function for com-
puting similarities between a query and a docu-
ment:

where WQ(t) is the weight associated with the
query term t and WD(t) is the weight associated
with the term t in the document D. The two
weights were computed as follows:

where IDF and TF are standard inverse docu-
ment frequency and term frequency statistics,
respectively. IDF(t) was computed with the tar-
get corpus for retrieval. The coefficient C(t) is an
“importance coefficient”, which can be modified
either manually by the user or automatically by
the system (e.g., updated during feedback).

For term-based document retrieval, we have
also experimented with pseudo relevance feed-
back (PRF) with various numbers of retrieved
documents and various numbers of terms from
such documents for query expansion. While PRF
did result in improvement in performance, it was
not significant. This is probably due to the fact
that in this restricted domain, there is not much
vocabulary variation and thus the advantage of
using query expansion is not fully realized.

3.2 Constraint-Based Retrieval (S2)

The constraint-based retrieval approach searches
through the AV-annotated document collection
based on the constraints extracted from queries.
Given a query q, our constraint-based system
scores each document in the collection by com-
paring the extracted AV pairs with the con-
straints in q. Suppose q has a constraint c(a, v)
that restricts the value of the attribute a to v,
where v can be either a concrete value (e.g., 5
megapixels) or a range (e.g., less than $400). If a

)()()()(tIDFtTFtCtW QQ ⋅⋅=

).()()(tIDFtTFtW DD ⋅=

).()(),(tWtWDQsim D

DQt

Q ⋅= ∑
∩∈

36

is present in a document d with a value v’ that
satisfies v, that is, v’= v if v is a concrete value or
v’ falls in the range defined by v, d is given a
positive score w. However, if v’ does not satisfy
v, then d is given a negative score -w. No men-
tion of a does not change the score of d, except
that, when c is a string constraint, we use a back-
off model that awards d a positive score w if it
contains v as a substring. The final score of d
given q is the sum of all scores for each con-
straint in q, normalized by the maximum score

for q: ∑
=

n

i

iiwc
1

, where ci is one of the n con-

straints specified in q and wi its score.
We rank the documents by their scores. This

scoring schema facilitates a sensible cutoff point,
so that a constraint-based retrieval system can
return 0 or fewer than top N documents when a
query has no or very few relevant documents.

3.3 Combined Retrieval (S3)

Lee (1997) analyzed multiple post-search data
fusion methods using TREC3 ad hoc retrieval
data and explained the combination of different
search results on the grounds that different runs
retrieve similar sets of relevant documents, but
different sets of non-relevant documents. The
combination methods therefore boost the ranks
of the relevant documents. One method studied
was the summation of individual similarities,
which bears no significant difference from the
best approach (i.e., further multiply the summa-
tion with the number of nonzero similarities).

Our system therefore adopts the summation
method for its simplicity. Because the scores
from term-based and constraint-based retrieval
are normalized, we simply add them together for
each document retrieved by both approaches and
re-rank the documents based on their new scores.
More sophisticated combination methods can be
explored here, such as deciding which score to
emphasize based on the characterizations of the
queries, e.g., whether a query has more numeri-
cal values or string values.

4 Experimental Study

In this section, we describe the experiments we
performed to investigate combining terms and
semantic constraints for document retrieval.

4.1 Data Sets

To construct a domain corpus, we used search
results from craigslist.org. We chose the “for

sale – electronics” section for the “San Francisco
Bay Area”. We then submitted the search term
“digital camera” in order to retrieve advertise-
ments. After manually removing duplicates and
expired ads, our corpus consisted of 437 ads
posted between 2005-10-28 and 2005-11-07. A
typical ad is illustrated below, with a small set of
XML tags specifying the fields of the title of the
ad (title), date of posting (date), ad body (text),
ad id (docno), and document (doc). The length
of the documents varies considerably, from 5 or
6 sentences to over 70 (with specifications cop-
ied from other websites). The ads have an aver-
age length of 230 words.

<doc>
<docno>docid519</docno>
<title>brand new 12 mega pixel digital cam-
era</title>
<date>2005-11-07, 8:27AM PST</date>
<text>

BRAND NEW 12 mega pixel digital cam-
era..............only $400,
-12 Mega pixels (4000x3000) Max Resolution
-2.0 Color LCD Display
-8x Digital Zoom
-16MB Built-In (internal) Memory
-SD or MMC card (external) Memory
-jpeg picture format

ALSO COMES WITH SOFTWARE & CABLES
</text>

</doc>

The test queries were constructed based on
human written questions from the Digital Pho-
tography Review website (www.dpreview.com)
Q&A forums, which contain discussions from
real users about all aspects of digital photogra-
phy. Often, users ask for suggestions on purchas-
ing digital cameras and formulate their needs as a
set of constraints. These queries form the base of
our topic collection.

The following is an example of such a topic
manually annotated with the semantic constraints
of interest to the user:

<topic>
<id>1</id>
<query>

I wanted to know what kind of Digital SLR cam-
era I should buy. I plan to spend nothing higher
than $1500. I was told to check out the Nikon
D70.

</query>
<constraint>

<hard: type = “SLR” />
<hard: price le $1500 />
<soft: product_name = “Nikon D70” />

</constraint>
</topic>

37

In this example, the user query text is in the
query field and the manually extracted AV con-
straints based on the domain model are in the
constraint field. Two types of constraints are
distinguished: hard and soft. The hard constraints
must be satisfied while the soft constraints can be
relaxed. Manual determination of hard vs. soft
constraints is based on the linguistic features in
the text. Automatic constraint extraction goes
one step beyond AV extraction for the need to
identify relations between attributes and values,
for example, “nothing higher than” indicates a
“<=” relationship. Such constraints can be ex-
tracted automatically from natural text using a
pattern-based method. However, we have yet to
produce a rich set of patterns addressing con-
straints. In addition, such query capability can be
simulated with a form-based parametric search
interface.

In order to make a fair comparison between
systems, we use only phrases in the manually
extracted constraints as queries to system S1. For
the example topic, S1 extracted the NP terms
“SLR”, “1500” and “Nikon D70”. During re-
trieval, a term is further decomposed into its sub-
terms for similarity matching. For instance, the
term “Nikon D70” is decomposed into subterms
“Nikon” and “D70” and thus documents that
mention the individual subterms can be retrieved.

For this topic, the system S2 produced annota-
tions as those shown in the constraint field.

Table 1 gives a summary of the distribution
statistics of terms and constraints for 30 topics
selected from the Digital Photography Review
website.

 Average Min Max

No. of terms 13.2 2 31

No. of constraints 3.2 1 7

No. of hard constraints 2.4 1 6

No. of soft constraints 0.8 0 3

No. of string constraints 1.4 0 5

No. of numerical constraints 1.8 0 4

Table 1: Summary of the distribution statistics of

terms and constraints in the test topics

4.2 Relevance Judgments

Instead of using human subjects to give rele-
vance judgments for each document and query
combination, we use a human annotator to mark
up all AV pairs in each document, using the
GATE annotation tool (Cunningham et al, 2002).
The attribute set contains the 40 most important
attributes for digital cameras based on automati-

cally computed term distributions in our data set.
The inter-annotator agreement (without annotator
training) as measured by Kappa is 0.72, which
suggests satisfactory agreement.

Annotating AV pairs in all documents gives us
the capability of making relevance judgments
automatically, based on the number of matches
between the AV pairs in a document and the
constraints in a topic. This automatic approach is
reasonable because unlike TREC queries which
are short and ambiguous, the queries in our ap-
plication represent very specific information
needs and are therefore much longer. The lack of
ambiguity makes our problem closer to boolean
search with structured queries like SQL than tra-
ditional IR search. In this case, a human assessor
should give the same relevance judgments as our
automatic system if they follow the same instruc-
tions closely. An example instruction could be “a
document is relevant if it describes a digital cam-
era whose specifications satisfy at least one con-
straint in the query, otherwise it is not relevant”
(similar to the narrative field of a TREC topic).

We specify two levels of relevance: strict and
relaxed. Strict means that all hard constraints of a
topic have to be satisfied for a document to be
relevant to the topic, whereas relaxed means that
at least half of the hard constraints have to be
satisfied. Soft constraints play no role in a rele-
vance judgment. The advantage of the automatic
approach is that when the levels of relevance are
modified for different application purposes, the
relevance judgment can be recomputed easily,
whereas in the manual approach, the human as-
sessor has to examine all documents again.

0

20

40

60

80

100

120

140

160

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29

Topic Number

N
u
m
b
e
r
o
f
R
e
le
v
a
n
t
D
o
c
s

strict_judgments relaxed_judgments

Figure 1: Distribution of relevant documents

across topics for relaxed and strict judgments

Figure 1 shows the distributions of the rele-
vant documents for the test topic set. With strict
judgments, only 20 out of the 30 topics have
relevant documents, and among them 6 topics

38

have fewer than 10 relevant documents. The top-
ics with many constraints are likely to result in
low numbers of relevant documents. The average
numbers of relevant documents for the set are
57.3 for relaxed judgments, and 18 for strict
judgments.

5 Results and Discussion

Our goal is to explore whether using semantic
information would improve document retrieval,
taking into account the errors introduced by se-
mantic processing. We therefore evaluate two
aspects of our system: the accuracy of AV ex-
traction and the precision of document retrieval.

5.1 Evaluate AV Extraction

We tested the AV extraction system on a portion
of the annotated documents, which contains 253
AV pairs. Of these pairs, 151 have string values,
and the rest have numerical values.

The result shows a prediction accuracy of
50.6%, false negatives (missing AV pairs)
35.2%, false positives 11%, and wrong predica-
tions 3%. Some attributes such as brand and
resolution have higher extraction accuracy than
other attributes such as shooting mode and di-
mension. An analysis of the missing pairs reveals
three main sources of error: 1) an incomplete
domain model, which misses such camera Con-
dition phrases as “minor surface scratching”; 2) a
noisy domain model, due to the automatic nature
of its construction; 3) parsing errors caused by
free-form human written texts. Considering that
the predication accuracy is calculated over 40
attributes and that no human labor is involved in
constructing the domain model, we consider our
approach a satisfactory first step toward explor-
ing the AV extraction problem.

5.2 Evaluate AV-based Document Retrieval

The three retrieval systems (S1, S2, and S3) each
return top 200 documents for evaluation. Figure
2 summarizes the precision they achieved against
both the relaxed and strict judgments, measured
by the standard TREC metrics (PN – Precision at
N, MAP – Mean Average Precision, RP – R-
Precision)1. For both judgments, the combined

1 Precision at N is the precision at N document cutoff point;
Average Precision is the average of the precision value ob-
tained after each relevant document is retrieved, and Mean
Average Precision is the average of AP over all topics; R-
Precision is the precision after R documents have been re-
trieved, where R is the number of relevant documents for
the topic.

system S3 achieved higher precision and recall
than S1 and S2 by all metrics. In the case of re-
call, the absolute scores improve at least nine
percent. Table 2 shows a pairwise comparison of
the systems on three of the most meaningful
TREC metrics, using paired T-Test; statistically
significant results are highlighted. The table
shows that the improvement of S3 over S1 and
S2 is significant (or very nearly) by all metrics
for the relaxed judgment. However, for the strict
judgment, none of the improvements are signifi-
cant. The reason might be that one third of the
topics have no relevant documents in our data set.
This reduces the actual number of topics for
evaluation. In general, the performance of all
three systems for the strict judgment is worse
than that for the relaxed, likely due to the lower
number of relevant documents for this category
(averaged at 18 per topic), which makes it a
harder IR task.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

P10 MAP RP Recall

S1_strict S2_strict S3_strict S1_relaxed S2_relaxed S3_relaxed

Figure 2: System performance as measured by

TREC metrics, averaged over all topics with non-

zero relevant documents

Paired T-Test (p) P10 AP RP

(S1,S2) .22 .37 .65

(S2,S3) 1 .004 .10

strict

(S1,S3) .17 .48 .45

(S1,S2) .62 .07 .56

(S2,S3) .056 <.0001 .0007

relaxed

(S1,S3) .04 .02 .03

Table 2: Paired T-Test (with two-tailed distribu-

tion) between systems over all topics

The constraint-based system S2 produces

higher initial precision than S1 as measured by
P10. However, semantic constraints contribute
less and less as more documents are retrieved.
The performance of S2 is slightly worse than S1
as measured by AP and RP, which is likely due
to errors from AV extraction. None of the met-
rics is statistically significant.

39

Topic-by-topic analysis gives us a more de-
tailed view of the behavior of the three systems.
Figure 3 shows the performance of the systems
measured by P10, sorted by that of S3. In gen-
eral, the performance of S1 and S2 deviates sig-
nificantly for individual topics. However, the
combined system, S3, seems to be able to boost
the good results from both systems for most top-
ics. We are currently exploring the factors that
contribute to the performance boost.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

16 8 15 18 4 26 30 11 24 28 7 10 2 5 13 20 21 27 3 25 1 12 17 29 19 6 23 14 22

Topic Numbers

P
re
c
is
io
n
 @
 1
0

S1_relaxed S2_relaxed S3_relaxed

Figure 3: Precision@10 for relaxed judgment

A closer look at topics where S3 improves
significantly over S1 and S2 at P10 reveals that
the combined lists are biased toward the docu-
ments returned by S2, probably due to the higher
scores assigned to documents by S2 than those
by S1. This suggests the need for better score
normalization methods that take into account the
advantage of each system.

In conclusion, our results show that using se-
mantic information can improve IR results for
special domains where the information need can
be specified as a set of semantic constraints. The
constraint-based system itself is not robust
enough to be a standalone IR system, and has to
be combined with a term-based system to
achieve satisfactory results. The IR results from
the combined system seem to be able to tolerate
significant errors in semantic annotation, consid-
ering that the accuracy of AV-extraction is about
50%. It remains to be seen whether similar im-
provement in retrieval can be achieved in general
domains such as news articles.

6 Summary

This paper describes our exploratory study of
applying semantic constraints derived from at-
tribute-value pair annotations to traditional term-
based document retrieval. It shows promising
results in our test domain where users have spe-
cific information needs. In our ongoing work, we

are expanding the test topic set for the strict
judgment as well as the data set, improving AV
extraction accuracy, analyzing how the combined
system improves upon individual systems, and
exploring alternative ways of combining seman-
tic constraints and terms for better retrieval.

References

Hamish Cunningham, Diana Maynard, Kalina
Bontcheva and Valentin Tablan. 2002. GATE: A
Framework and Graphical Development Environ-
ment for Robust NLP Tools and Applications. Pro-
ceedings of the 40th Anniversary Meeting of the

Association for Computational Linguistics

(ACL'02). Philadelphia.

Bruce Croft, James Callan and John Broglio. 1994.
TREC-2 Routing and Ad-Hoc Retrieval Evaluation
Using the INQUERY System. In Proceedings of
the 2nd Text Retrieval Conference, NIST Special
Putlication 500-215.

David A. Evans and Robert Lefferts. 1995. CLARIT-
TREC experiments. Information Processing and
Management, 31(3), 385-395.

E. Fix and J. Hodges. 1951. Discriminatory Analysis,
Nonparametric Discrimination: Consistency Prop-

erties. Technical Report, USAF School of Aviation
Medicine, Texas.

Joon Ho Lee. 1997. Analyses of Multiple Evidence
Combination. Proceedings of the 20th Annual In-
ternational ACM-SIGIR Conference on Research
and Development in Information Retrieval. Phila-
delphia, pp. 267-276.

Dekang Lin. 1998. Dependency-based Evaluation of
MINIPAR. Workshop on the Evaluation of Parsing
Systems, Spain.

Yan Qu, David A. Hull, Gregory Grefenstette, David
A. Evans, et al. 2005. Towards Effective Strategies
for Monolingual and Bilingual Information Re-
trieval: Lessons Learned from NTCIR-4. ACM
Transactions on Asian Language Information

Processing, 4(2): 78-110.

Robert Wagner and Michael Fischer. 1974. The
String-to-string Correction Problem. Journal of the
Association for Computing Machinery, 21(1):168-
173.

Tomek Strzalkowski, Louise Guthrie, Jussi Karigren,
Jim Leistensnider, et al. 1996. Natural language in-
formation retrieval, TREC-5 report. In Proceedings
of the 5th Text Retrieval Conference (TREC-5), pp.
291-314, Gaithersburg, Maryland.

Ellen Voorhees. 1998. Using WordNet for text re-
trieval. In Wordnet, an Electronic Lexical Data-
base, pp 285-303. The MIT Press.

40

