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Abstract Rigau, 1996; Yarowsky, 1995), where the sense
for a word is chosen from a much larger inventory
of word senses.

We will employ a probabilistic model that's
been used successfully in NER (Conditional Ran-
dom Fields) and use this with an extensive inven-
tory of word senses (the WordNet lexical database)
to perform entity detection.

In section 2 we describe WordNet and it's use
for entity categorization. Section 3 gives an
overview of Conditional Random Fields and sec-
tion 4 explains how the parameters of this model
are estimated during training. We will drastically
reduce the computational complexity of training in
section 5. Section 6 describes the implementation
of this method, section 7 the obtained results and

finally section 8 future work.
The work described in this paper was carried out

during the CLASS projeét The central objec- 2 WordNet
tive of this project is to develop advanced IearninngdNet (Fellbaum et al., 1998) is a lexical

methods that allow images, video and assoplategatabase whose design is inspired by psycholin-
text to be analyzed and st_ructgred au'Fom""t'calIyguistictheories of human lexical memory. English
One of the goals of the project is the alignment Ofnouns, verbs, adjectives and adverbs are organized

V'Isu"lil andt:]extual mformc?tlon. \éVet wil, fc])cr exam- in synsets. A synset is a collection of words that
p€, learn the correspondence between 1aces In il q 5 close meaning and that represent an under-

image and persons desc_ribed in surroundi_ng tgxﬁying concept. An example of such a synset is
The role of the authors in the CLASS project is “person, individual, someone, somebody, mortal,

mainly on information extraction from text. soul”. All these words refer to a human being.

In the first phase of the project we build a clas- WordNet (v2.1) contains 155.327 words, which
sifier for automatic identification and categoriza- organized in 117.597 synsets. WordNet de-
tion of entities in texts which we report here. This fines a number of relations between synsets. For
classifier extracts entities from text, and assigns s the most important relation is the hyper-
label to these entities chosen from an inventorynym/hyponym relation. A noun X is a hypernym
of possible labels. This task is closely related 00t a noun Y if Y is a subtype or instance of X. For
both named entity recognition (NER), which tra- example, “bird” is a hypernym of “penguin” (and
ditionally assigns nouns to a small number of Cate“penguin” is a hyponym of “bird"). This relation

gories and word sense disambiguation (Agirre an%rganizes the synsets in a hierarchical tree (Hayes,
http:/iclass.inrialpes.fr/ 1999), of which a fragment is pictured in fig. 1.

In this paper we develop an automatic
classifier for a very large set of labels, the
WordNet synsets. We employ Conditional
Random Fields (CRFs) because of their
flexibility to include a wide variety of non-
independent features. Training CRFs on a
big number of labels proved a problem be-
cause of the large training cost. By tak-
ing into account the hypernym/hyponym
relation between synsets in WordNet, we
reduced the complexity of training from
O(TM?NG) to O(T (logM)*NG) with
only a limited loss in accuracy.

1 Introduction
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Figure 1: Fragment of the hypernym/hyponym Figure 2: Number of synsets per level in WordNet
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_ _ which the nodes corresponding to elements of
This tree has a depth of 18 levels and maximunorm a simple first-order Markov chain.

width of 17837 synsets (fig. 2). A CRF defines a conditional probability distri-

We will build_ a classifigr usin_g CRFs that tags bution p(Y'|X) of label sequences given input se-
noun phrases in a text with their WordNet synsety ences. We assume that the random variable se-
This ywll enable_:'us Fo recognize entities, and toquencesX andY have the same length and use
classify the entities in certain groups. Moreover,, _ (z1,....z7) andy = (y1,...,yr) for an input
it allows learning the context pattern of a certainSequence and label sequence respectively. Instead

meaning of aword. Take for example the Sentenc gefining a joint distribution over both label and

“The ambulance took the remains of the bombefysenyation sequences, the model defines a condi-

to the morgue.” Having every noun phrase taggediona probability over labeled sequences. A novel
with it's WordNet synset reveals that in this sen- pcarvation sequenceis labeled withy, so that

tence, "bomber” is "a person who plants bombs"yhe congitional probabilitys(y|x) is maximized.
(and not “a military aircraft that drops bombs dur- \y,a define a set of binary-valued features or

ing flight”). Using the hypernym/hyponym rela- et re functionsfy,(ye_1, v, x) that each express
tions from WordNet, we can also easily find outgqme characteristic of the empirical distribution of
that "ambulance” is a kind of “car”, which in tumn e training data that should also hold in the model
is a kind of “conveyance, transport” which in tum gigiinytion. An example of such a feature is
is a “physical object”.

if z has POS ‘NN’ and

y; IS concept ‘entity’
0 otherwise

3 Conditional Random Fields _
fk(yt—h Y, X) -

Conditional random fields (CRFs) (Lafferty et al.,
2001; Jordan, 1999; Wallach, 2004) is a statistical (1)
method based on undirected graphical models. Ldteature functions can depend on the previous
X be a random variable over data sequences to dg:—1) and the currenty;) state. Considerinds<
labeled and” a random variable over correspond- feature functions, the conditional probability dis-
ing label sequences. All componentsof Y are tribution defined by the CRF is
assumed to range over a finite label alphakiet . oK
In this paperX will range over the sentences of _
a text, tagged with POS-labels afidranges over Plylx) = Z(x)"" {; 192:21 Moy, X)}
the synsets to be recognized in these sentences. (2)
We defineG = (V,FE) to be an undirected where )\; is a parameter to model the observed
graph such that there is a nodes V correspond- statistics andZ (x) is a normalizing constant com-
ing to each of the random variables representing aputed as
elementy,, of Y. If each random variabl¥, obeys
the Markov property with respect to G (e.g., in a
first order model the transition probability depends
only on the neighboring state), then the model
(Y, X) is a Conditional Random Field. Although This method can be thought of a generalization
the structure of the graph G may be arbitrary, weof both the Maximum Entropy Markov model
limit the discussion here to graph structures in(MEMM) and the Hidden Markov model (HMM).

T K
Z(x) = Z exrp {Z Z )\kfk(yt—luytyx)}
t=1k=1

yey
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It brings together the best of discriminative mod-lihood (3), we get the following expression:
els and generative models: (1) It can accommo-
date many statistically correlated features of the

— oSy e (i) (i)
l(9> DY Ak:fk(yt 1Y X )

inputs, contrasting with generative models, which iS1i=1 =1
often require conditional independent assumptions sz: log Z(x(0)
in order to make the computations tractable and (2) i=1 g

it has the possibility of context-dependent learning

by trading off decisions at different sequence posi-The function/(¢) cannot be maximized in closed
tions to obtain a global optimal labeling. Becauseform, so numerical optimization is used. The par-
CRFs adhere to the maximum entropy principle tial derivates are:

they offer a valid solution when learning from in-

complete information. Given that in information

: . N
- ol(o ;
gxtractlon tasks, we often I_ack an ann_otated train agk) - Y% fk( y! ’yt 17X(z))
ing set that covers all possible extraction patterns, i=1 ]%=1T
this is a valuable asset. -3 Z Fe(@ y, xD) ply, y|x@D)
Lafferty et al. (Lafferty et al., 2001) have shown ==ty .
that CRFs outperform both MEMM and HMM )

on synthetic data and on a part-of-speech taggin
task. Furthermore, CRFs have been used succes
fully in information extraction (Peng and McCal-

lum, 2004), named entity recognition (Li and Mc-

Callum, 2003; McCallum and Li, 2003) and sen-P(¥/sy/z"). This can be done, as for the Hid-
tence parsing (Sha and Pereira, 2003) den Markov Model, using the forward-backward

algorithm (Baum and Petrie, 1966; Forney, 1996).

This algorithm has a computational complexity of
4 Parameter estimation O(TM?) (whereT is the length of the sequence

and M the number of the labels). We have to exe-
In this section we’'ll explain to some detail how to cute the forward-backward algorithm once for ev-

derive the parametes = {\;}, given the train- €ry training instance during every iteration. The
ing data. The problem can be considered as a cortotal cost of training a linear-chained CRFs is thus:
strained optimization problem, where we have to

find a set of parameters which maximizes the log O(TM?NG)

likelihood of the conditional distribution (McCal-

lum, 2003). We are confronted with the problemwhereN is the number of training examples afid

of efficiently calculating the expectation of eachthe number of iterations. We've experienced that
feature function with respect to the CRF modelthis complexity is an important delimiting factor
distribution for every observation sequence X inwhen learning a big collection of labels. Employ-
the training data. Formally, we are glven a seting CRFsto learn the 95076 WordNet synsets with
of training examples) — {X() yli )} where 20133 training examples was not feasible on cur-

. G @) () =1 rent hardware. In the next section we’ll describe
eachx() = {xl LTy xT} is a sequence

e parameter® (with Limited-Memory BFGS
Byrd et al., 1994)) until(#) has reached an opti-
mum. During each iteration we have to calculate

g’sing these derivates, we can iteratively adjust

A the method we've implemented to drastically re-
of inputs andy® = {y( >,y; ),. .,y$>} is a se- duce this complexity.

quence of the desired labels. We will estimate the

parameters by penalized maximum likelihood, op5 Reducing complexity

timizing the function: . i
In this section we’ll see how we create groups of

features for every label that enable an important
B @)1 () reduction in complexity of both labeling and train-
0) = Zlogp(y <) (3 ing. We'll first discuss how these groups of fea-
tures are created (section 5.1) and then how both
labeling (section 5.2) and training (section 5.3) are
After substituting the CRF model (2) in the like- performed using these groups.
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collection of featureg (y:—1, v+, x) for which itis
possible to find a node;_; and inputx for which
fr(vi—1,v,%x) # 0. If v is a non-leaf node, we de-
fine F, as the collection of features, (y;_1, y:, X)
[physical entityj [ thing j [abstract entityj (1) which are elements dfv* for every Ch”d node
\ v~ of v and (2) for everyv; andw, , children of
_ v, itis valid that for every previous labe}_, and
Figure 3: Fragment of the tree used for labeling input x Fe(vi1, vy, %) =fr(vi_1,v5 ,X).
Informally, F, is the collection of features
which are useful to evaluate for a certain node. For

the leaf-nodes, this is the collection of features that

To reduce the complexity of CRFs, we assign &5, nossibly return a non-zero value. For non-leaf

selection of features to every node in the h'erar'nodes, it's useful to evaluate features belonging to

chical tree. As discussed in section 2 WordNet deFv when they have the same value for all the de-
fines a relation between synsets which organises.andants of that node (which we can put to good
the synsets in a tree. In its current form this treeuse, see further).

does not meet our needs: we need a tree where We defineF!, = F,\ F,: wherev™ is the parent
every label used for labeling corresponds to eXof label v. Forvthe top ngd@top we defineF”,, —
actly one leaf-node, and no label corresponds tg, We also set vier

a non-leaf node. We therefor modify the existing” * 5

tree. We create a new top node (“top”) and add the {

5.1 Hierarchical feature selection

original tree as defined by WordNet as a subtree 1@ (s 1, y:,X) = exp
this top-node. We add leaf-nodes corresponding

to the labels “NONE”, “ADJ", “ADV”, “VERB"

to the top-node and for the other labels (the noutWe've now organised the collection of features in
synsets) we add a leaf-node to the node represerguch a way that we can use the hierarchical rela-
ing the corresponding synset. For example, weions defined by WordNet when determining the
add a node corresponding to the label “ENTITY” probability of a certain labeling;. We first see

to the node “entity”. Fig. 3 pictures a fraction of that

this tree. Nodes corresponding to a label have an

> /\kfk(yt—lyytax)}

TkeFy,

uppercase name, nodes not corresponding to a I% B

bel have a lowercase hame. (e-196%) = expq D Aefulye-1,96,%)
We usev to denote nodes of the tree. We call Je€lu

the top concept!°? and the concepi™ the parent = Gy—1.92)G (-1, 41, @)

of v, which is the parent of~. We call 4, the = ..

collection of ancestors of a conceptincludingv = H G (yi—1,v, )

itself. vEAy,

We will now show how we transform a regular
CRF in a CRF that uses hierarchical feature selecwe can now determine the probability of a labeling
tion. We first notice that we can rewrite eq. 2 as ¥y, given inputx

1 T
p(ylx) = 7% 11 Ge-1,11,%) T
t=1

p(y!x)=$ﬂ IT G ©

t=1

K
with G (yr-1, 41, x) = exp(,;::l Aefe(-1,96%))  This formula has exactly the same result as eq. 2.

We rewrite this equation because it will enableBecause we assigned a collection of features to ev-
us to reduce the complexity of CRFs and it hasery node, we can discard parts of the search space
the property thab(y:|y:—1,%x) ~ G(v:—1,y:,x)  when searching for possible labelings, obtaining
which we will use in section 5.3. an important reduction in complexity. We elab-

We now define a collection of featurds, for  orate this idea in the following sections for both
every nodev. If v is leaf-node, we defing, asthe labeling and training.
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5.2 Labeling

The standard method to label a sentence with
CRFs is by using the Viterbi algorithm (Forney,
1973; Viterbi, 1967) which has a computational
complexity ofO(T'M?). The basic idea to reduce
this computational complexity is to select the best
labeling in a number of iterations. In the first itera-
tion, we label every word in a sentence with a labelFigure 4: Nodes that need to be taken into account
chosen from the top-level labels. After choosingduring the forward-backward algorithm

the best labeling, we refine our choice (choose a

child Ia_tbel O_f the previous chosen label) in SUb_Se'the Viterbi algorithm. Ifg is the average number
quent iterations until we arrive at a synset which

. . _ of children of a concept, the depth of the tree is
has no children. In every iteration we only havelogq(M)_ On every level we have to execute the
to chqose from a very small number_of labels, thus\/iterbi algorithm for ¢ labels, thus resulting in a
breaking down the problem of selecting the correct .| complexity of

label from a large number of labels in a number of
smaller problems.

Formally, when labeling a sentence we find the
label sequence such thaty has the maximum 53 Training
probability of all labelings. We will estimate the
best labeling in an iterative way: we start with

O(T logy(M)q?) (6)

We will now discuss how we reduce the compu-
tational complexity of training. As explained in

f top—1 _ top—1 top—1
the bgst labelingy . o to li"’yT } section 4 we have to estimate the paramefgrs
choosing only from the childrep,””” " of the top

that optimize the functiof(#). We will show here
how we can reduce the computational complex-
ity of the calculation of the partial derivaté?é%)
(eq. 4). The predominant factor with regard to
the computational complexity in the evaluation of
this equation is the calculation fy;_1,y[x(").
Recall we do this with the forward-backward al-
gorithm, which has a computational complexity
of O(TM?). We reduce the number of labels to
improve performance. We will do this by mak-
ing the same assumption as in the previous sec-
tion: for every conceptv at level s, for which
v # Y, we setG(y;_1,v; ,x) = 0 for
After selecting a labeling/*°?~2 with maximum every childv~ of v. Since (as noted in sect.
probability, we proceed by selecting a labeling5.2) p(v|yi—1,%x) ~ G(y1—1,v¢,x), this has the
yt°P=3 with maximum probability etc.. We pro- consequence thgb(v:|y:—1,x) 0 and that
ceed using this method until we reach a labelingo(v, y:—1|x) = 0. Fig. 4 gives a graphical repre-
in which everyy, is a node which has no children sentation of this reduction of the search space. The
and return this labeling as the final labeling. correct label here is “LABEL1" , the grey nodes
The assumption we make here is that if a nodéave a non-zerp(v;, y;—1|x) and the white nodes
v is selected at positiohof the most probable la- have a zerg (v, yi—1|x).

node. The probability of this labelingt?—! is

T

1 1
G (Y1, i

Z'(x) t:l_‘g t

Py~ x) = ,X)
where Z'(x) is an appropriate normalizing con-
stant. We now select a labeling®”—2 so that on
every positiont nodey/”~% is a child of "'
The probabilty of this labeling is (following eq. 5)

T
H H G'(yt,hv,x)

t=1veA top—2
Yt

top—2x — 1
p(y" " 7|x) 7

beling y?°P—* the childrenv~ have a larger prob-
ability of being selected at positionin the most
probable labeling/?—*—1. We reduce the num-

In the forward backward algorithm we only
have to account every nodethat has a non-zero
p(v,y:—1|x). As can be easily seen from fig. 4,

ber of labels we take into consideration by statingthe number of nodes iglog,M, wheregq is the

that for every concept for which v # y/?~*, we

setG'(yi—1,v; ,x) = 0 for every childv™ of v.

average number of children of a concept. The to-
tal complexity of running the forward-backward

This reduces the space of possible labelings drasigorithm isO(T'(qlog,M)?). Since we have to
tically, reducing the computational complexity of run this algorithm once for every gradient compu-
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Figure 5: Time needed for one training cycle Figure 6: Time needed for labeling

tation for every training instance we find the total 7 Results

training cost _ _ _
The major goal of this paper was to build a clas-

O(T(q long)2NG) (7) sifier that could learn all the WordNet synsets in a
reasonable amount of time. We will first discuss
6 Implementation the improvement in time needed for training and

_ _ labeling and then discuss accuracy.
To implement the described method we need two \ye want to test the influence of the number of

components: an interface to the WordNet databasgpe|s on the time needed for training. Therefor,

and an implementation of CRFs using a hieraryye created different training sets, all of which had
chical model. JWordNet is a Java interface e same input (246 sentences tagged with POS la-
WordNet developed by Oliver Steele (which CaNpels), but a different number of labels. The first

be found onhttp://jwn. sourceforge.  gjning set only had 5 labels (‘ADJ”, “ADV”,
net /). We used this interface to extract the Word-«,grpg" “entity” and “NONE”). The second had
Net hlgrarchy. _ _ _ the same labels except we replaced the label “en-
An implementation of CRFs using the hierar- ity ith either “physical entity”, “abstract entity”
chical model was obtained by adapting the Mallet “thing”. We continued this procedure, replac-
package. The Mallet package (McCallum, 2002)ing parent nouns labels with their children (i.e.
is an integrated collection of Java code useful forhyponyms) for subsequent training sets. We then
statistical natural language processing, documentained hoth a CRF using a hierarchical feature se-
classification, clustering, and information extrac-|ection and a standard CRF on these training sets.
tion. It also offers an efficient implementation of Fig. 5 shows the time needed for one iteration
CRFs. We've adapted this implementation SO ilyf raining with different numbers of labels. We
creates hierarchical selections of features which o4 see how the time needed for training slowly
are then used for training and labeling. increases for the CRF using hierarchical feature

We used the Semcor corpus (Fellbaum et al.gg|ection but increases fast when using a standard
1998; Landes et al., 1998) for training. This cor-cRE, This is conform to eq. 7.

pus, which was created by the Princeton Univer- Fig. 6 shows the average time needed for la-

sity, is a subset of the English Brown cOrpus onygjing a sentence. Here again the time increases

taining almost 700,000 words. Every sentence iryjqy for a CRF using hierarchical feature selec-

the corpus is noun phrase chunked. The chunkg,, Yyt increases fast for a standard CRF, con-
are tagged by POS and both noun and verb phrasgs,, o eq. 6.

are tagged with their WordNet sense. Since we do Finally

e fig 7 shows the error rate (on the train-
not want to learn a classification for verb synsets

. ing data) after each training cycle. We see that a
we repjace the tags of the verbs with one tads ngard CRF and a CRF using hierarchical fea-
VERB". ture selection perform comparable. Note that fig

2http://mallet.cs.umass.edu/ 7 gives the error rate on the training data but this
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can differ considerable from the error rate on un-
seen data. =]
After these tests on a small section of the Sem
cor corpus, we trained a CRF using hierarchi-
cal feature selection on 7/8 of the full corpus.
We trained for 23 iterations, which took approx-
imately 102 hours. Testing the model on the re- ]
maining 1/8 of the corpus resulted in an accuracy ] .
of 77.82%. Asreported in (McCarthy et al., 2004), "] sefection
a baseline approach that ignors context but simph ] e
assigns the most likely sense toagivenwordob ~ © = 6 0 s 0 T
tains a accuracy of 67%. We did not have the pos-
sibility to compare the accuracy of this model with
a standard CRF, since as already stated, training
such a CRF takes impractically long, but we can
compare our systems with existing WSD-systemssome a of beam-search (Bisiani, 1992), keeping
Mihalcea and Moldovan (Mihalcea and Moldovan,a number of best labelings at every level. We
1999) use the semantic density between words tetrongly suspect this will have a positive impact
determine the word sense. They achieve an a@n the accuracy of our algorithm.
curacy of 86.5% (testing on the first two tagged As already mentioned, this work is carried out
files of the Semcor corpus). Wilks and Stevensorguring the CLASS project. In the second phase
(Wilks and Stevenson, 1998) use a combinatiorof this project we will discover classes and at-
of knowledge sources and achieve an accuracy afibutes of entities in texts. To accomplish this
929. Note that both these methods use additionalve will not only need to label nouns with their
knowledge apart from the WordNet hierarchy.  synset, but we also need to label verbs, adjec-
The sentences in the training and testing setsives and adverbs. This can become problem-
were already (perfectly) POS-tagged and nouratic as WordNet has no hypernym/hyponym rela-
chunked, and that in a real-life situation addi-tion (or equivalent) for the synsets of adjectives
tional preprocessing by a POS-tagger (such as thend adverbs. WordNet has an equivalent relation
LT-POS-taggel) and noun chunker (such as de-for verbs (hypernym/troponym), but this structures
scribed in (Ramshaw and Marcus, 1995)) whichthe verb synsets in a big number of loosely struc-

arror rate

Figure 7: Error rate during training

will introduce additional errors. tured trees, which is less suitable for the described
method. VerbNet (Kipper et al., 2000) seems a
8 Future work more promising resource to use when classify-

In this section we'll discuss some of the work we'Nd Verbs, and we will also investigate the use

plan to do in the future. First of all we wish to of other lexical databases, such as ThoughtTrea-
evaluate our algorithm on standard test sets, suckre (Mueller, 1998), Cyc (Lenat, 1995), Open-

as the data of the Senseval conferénaghich mind Commonsense (Stork, 1999) and FrameNet
tests performance on word sense disambiguatior(,Balker etal., 1998).

and the data of the CoNLL 2003 shared &sin

named entity recognition.

An important weakness of our algorithm is the-l-he work reported in this paper was supported
fact that, to label a sentence, we have to traverssy the EU-IST project CLASS (Cognitive-Level

the hierarchy tree and choose the correct synselg,,qtation using Latent Statistical Structure, 1ST-
at every level. An error at a certain level can not027978)_

be recovered. Therefor, we would like to perform
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