
Proceedings of the 2nd Workshop on Ontology Learning and Population, pages 33–40,
Sydney, July 2006.c©2006 Association for Computational Linguistics

Efficient Hierarchical Entity Classifier Using Conditional Random Fields

Koen Deschacht
Interdisciplinary Centre for Law & IT

Katholieke Universiteit Leuven
Tiensestraat 41, 3000 Leuven, Belgium

koen.deschacht@law.kuleuven.ac.be

Marie-Francine Moens
Interdisciplinary Centre for Law & IT

Katholieke Universiteit Leuven
Tiensestraat 41, 3000 Leuven, Belgium
marie-france.moens@law.kuleuven.be

Abstract

In this paper we develop an automatic
classifier for a very large set of labels, the
WordNet synsets. We employ Conditional
Random Fields (CRFs) because of their
flexibility to include a wide variety of non-
independent features. Training CRFs on a
big number of labels proved a problem be-
cause of the large training cost. By tak-
ing into account the hypernym/hyponym
relation between synsets in WordNet, we
reduced the complexity of training from
O(TM2NG) to O(T (logM)2NG) with
only a limited loss in accuracy.

1 Introduction

The work described in this paper was carried out
during the CLASS project1. The central objec-
tive of this project is to develop advanced learning
methods that allow images, video and associated
text to be analyzed and structured automatically.
One of the goals of the project is the alignment of
visual and textual information. We will, for exam-
ple, learn the correspondence between faces in an
image and persons described in surrounding text.
The role of the authors in the CLASS project is
mainly on information extraction from text.

In the first phase of the project we build a clas-
sifier for automatic identification and categoriza-
tion of entities in texts which we report here. This
classifier extracts entities from text, and assigns a
label to these entities chosen from an inventory
of possible labels. This task is closely related to
both named entity recognition (NER), which tra-
ditionally assigns nouns to a small number of cate-
gories and word sense disambiguation (Agirre and

1http://class.inrialpes.fr/

Rigau, 1996; Yarowsky, 1995), where the sense
for a word is chosen from a much larger inventory
of word senses.

We will employ a probabilistic model that’s
been used successfully in NER (Conditional Ran-
dom Fields) and use this with an extensive inven-
tory of word senses (the WordNet lexical database)
to perform entity detection.

In section 2 we describe WordNet and it’s use
for entity categorization. Section 3 gives an
overview of Conditional Random Fields and sec-
tion 4 explains how the parameters of this model
are estimated during training. We will drastically
reduce the computational complexity of training in
section 5. Section 6 describes the implementation
of this method, section 7 the obtained results and
finally section 8 future work.

2 WordNet

WordNet (Fellbaum et al., 1998) is a lexical
database whose design is inspired by psycholin-
guistic theories of human lexical memory. English
nouns, verbs, adjectives and adverbs are organized
in synsets. A synset is a collection of words that
have a close meaning and that represent an under-
lying concept. An example of such a synset is
“person, individual, someone, somebody, mortal,
soul”. All these words refer to a human being.

WordNet (v2.1) contains 155.327 words, which
are organized in 117.597 synsets. WordNet de-
fines a number of relations between synsets. For
nouns the most important relation is the hyper-
nym/hyponym relation. A noun X is a hypernym
of a noun Y if Y is a subtype or instance of X. For
example, “bird” is a hypernym of “penguin” (and
“penguin” is a hyponym of “bird”). This relation
organizes the synsets in a hierarchical tree (Hayes,
1999), of which a fragment is pictured in fig. 1.

33



Figure 1: Fragment of the hypernym/hyponym
tree

This tree has a depth of 18 levels and maximum
width of 17837 synsets (fig. 2).

We will build a classifier using CRFs that tags
noun phrases in a text with their WordNet synset.
This will enable us to recognize entities, and to
classify the entities in certain groups. Moreover,
it allows learning the context pattern of a certain
meaning of a word. Take for example the sentence
“The ambulance took the remains of the bomber
to the morgue.” Having every noun phrase tagged
with it’s WordNet synset reveals that in this sen-
tence, “bomber” is “a person who plants bombs”
(and not “a military aircraft that drops bombs dur-
ing flight”). Using the hypernym/hyponym rela-
tions from WordNet, we can also easily find out
that “ambulance” is a kind of “car”, which in turn
is a kind of “conveyance, transport” which in turn
is a “physical object”.

3 Conditional Random Fields

Conditional random fields (CRFs) (Lafferty et al.,
2001; Jordan, 1999; Wallach, 2004) is a statistical
method based on undirected graphical models. Let
X be a random variable over data sequences to be
labeled andY a random variable over correspond-
ing label sequences. All componentsYi of Y are
assumed to range over a finite label alphabetK.
In this paperX will range over the sentences of
a text, tagged with POS-labels andY ranges over
the synsets to be recognized in these sentences.

We defineG = (V,E) to be an undirected
graph such that there is a nodev ∈ V correspond-
ing to each of the random variables representing an
elementYv of Y . If each random variableYv obeys
the Markov property with respect to G (e.g., in a
first order model the transition probability depends
only on the neighboring state), then the model
(Y,X) is a Conditional Random Field. Although
the structure of the graph G may be arbitrary, we
limit the discussion here to graph structures in

Figure 2: Number of synsets per level in WordNet

which the nodes corresponding to elements ofY

form a simple first-order Markov chain.
A CRF defines a conditional probability distri-

butionp(Y |X) of label sequences given input se-
quences. We assume that the random variable se-
quencesX andY have the same length and use
x = (x1, ..., xT ) andy = (y1, ..., yT ) for an input
sequence and label sequence respectively. Instead
of defining a joint distribution over both label and
observation sequences, the model defines a condi-
tional probability over labeled sequences. A novel
observation sequencex is labeled withy, so that
the conditional probabilityp(y|x) is maximized.
We define a set ofK binary-valued features or
feature functionsfk(yt−1, yt,x) that each express
some characteristic of the empirical distribution of
the training data that should also hold in the model
distribution. An example of such a feature is

fk(yt−1, yt,x) =











1
if x has POS ‘NN’ and
yt is concept ‘entity’

0 otherwise
(1)

Feature functions can depend on the previous
(yt−1) and the current (yt) state. ConsideringK
feature functions, the conditional probability dis-
tribution defined by the CRF is

p(y|x) =
1

Z(x)
exp

{

T
∑

t=1

K
∑

k=1

λkfk(yt−1, yt,x)

}

(2)
where λj is a parameter to model the observed
statistics andZ(x) is a normalizing constant com-
puted as

Z(x) =
∑

y∈Y

exp

{

T
∑

t=1

K
∑

k=1

λkfk(yt−1, yt,x)

}

This method can be thought of a generalization
of both the Maximum Entropy Markov model
(MEMM) and the Hidden Markov model (HMM).

34



It brings together the best of discriminative mod-
els and generative models: (1) It can accommo-
date many statistically correlated features of the
inputs, contrasting with generative models, which
often require conditional independent assumptions
in order to make the computations tractable and (2)
it has the possibility of context-dependent learning
by trading off decisions at different sequence posi-
tions to obtain a global optimal labeling. Because
CRFs adhere to the maximum entropy principle,
they offer a valid solution when learning from in-
complete information. Given that in information
extraction tasks, we often lack an annotated train-
ing set that covers all possible extraction patterns,
this is a valuable asset.

Lafferty et al. (Lafferty et al., 2001) have shown
that CRFs outperform both MEMM and HMM
on synthetic data and on a part-of-speech tagging
task. Furthermore, CRFs have been used success-
fully in information extraction (Peng and McCal-
lum, 2004), named entity recognition (Li and Mc-
Callum, 2003; McCallum and Li, 2003) and sen-
tence parsing (Sha and Pereira, 2003).

4 Parameter estimation

In this section we’ll explain to some detail how to
derive the parametersθ = {λk}, given the train-
ing data. The problem can be considered as a con-
strained optimization problem, where we have to
find a set of parameters which maximizes the log
likelihood of the conditional distribution (McCal-
lum, 2003). We are confronted with the problem
of efficiently calculating the expectation of each
feature function with respect to the CRF model
distribution for every observation sequence x in
the training data. Formally, we are given a set

of training examplesD =
{

x
(i),y(i)

}N

i=1
where

eachx
(i) =

{

x
(i)
1 , x

(i)
2 , ..., x

(i)
T

}

is a sequence

of inputs andy(i) =
{

y
(i)
1 , y

(i)
2 , ..., y

(i)
T

}

is a se-
quence of the desired labels. We will estimate the
parameters by penalized maximum likelihood, op-
timizing the function:

l(θ) =
N

∑

i=1

log p(y(i)|x(i)) (3)

After substituting the CRF model (2) in the like-

lihood (3), we get the following expression:

l(θ) =
N
∑

i=1

T
∑

t=1

K
∑

k=1
λkfk(y

(i)
t−1, y

(i)
t ,x(i))

−
N
∑

i=1
log Z(x(i))

The functionl(θ) cannot be maximized in closed
form, so numerical optimization is used. The par-
tial derivates are:

∂l(θ)
∂λk

=
N
∑

i=1

T
∑

t=1
fk(y

(i)
t , y

(i)
t−1,x

(i))

−
N
∑

i=1

T
∑

t=1

∑

y,y
′

fk(y
′, y,x(i)) p(y′, y|x(i))

(4)
Using these derivates, we can iteratively adjust
the parametersθ (with Limited-Memory BFGS
(Byrd et al., 1994)) untill(θ) has reached an opti-
mum. During each iteration we have to calculate
p(y′, y|x(i)). This can be done, as for the Hid-
den Markov Model, using the forward-backward
algorithm (Baum and Petrie, 1966; Forney, 1996).
This algorithm has a computational complexity of
O(TM2) (whereT is the length of the sequence
andM the number of the labels). We have to exe-
cute the forward-backward algorithm once for ev-
ery training instance during every iteration. The
total cost of training a linear-chained CRFs is thus:

O(TM2NG)

whereN is the number of training examples andG

the number of iterations. We’ve experienced that
this complexity is an important delimiting factor
when learning a big collection of labels. Employ-
ing CRFs to learn the 95076 WordNet synsets with
20133 training examples was not feasible on cur-
rent hardware. In the next section we’ll describe
the method we’ve implemented to drastically re-
duce this complexity.

5 Reducing complexity

In this section we’ll see how we create groups of
features for every label that enable an important
reduction in complexity of both labeling and train-
ing. We’ll first discuss how these groups of fea-
tures are created (section 5.1) and then how both
labeling (section 5.2) and training (section 5.3) are
performed using these groups.

35



Figure 3: Fragment of the tree used for labeling

5.1 Hierarchical feature selection

To reduce the complexity of CRFs, we assign a
selection of features to every node in the hierar-
chical tree. As discussed in section 2 WordNet de-
fines a relation between synsets which organises
the synsets in a tree. In its current form this tree
does not meet our needs: we need a tree where
every label used for labeling corresponds to ex-
actly one leaf-node, and no label corresponds to
a non-leaf node. We therefor modify the existing
tree. We create a new top node (“top”) and add the
original tree as defined by WordNet as a subtree to
this top-node. We add leaf-nodes corresponding
to the labels “NONE”, “ADJ”, “ADV”, “VERB”
to the top-node and for the other labels (the noun
synsets) we add a leaf-node to the node represent-
ing the corresponding synset. For example, we
add a node corresponding to the label “ENTITY”
to the node “entity”. Fig. 3 pictures a fraction of
this tree. Nodes corresponding to a label have an
uppercase name, nodes not corresponding to a la-
bel have a lowercase name.

We usev to denote nodes of the tree. We call
the top conceptvtop and the conceptv+ the parent
of v, which is the parent ofv−. We call Av the
collection of ancestors of a conceptv, includingv

itself.
We will now show how we transform a regular

CRF in a CRF that uses hierarchical feature selec-
tion. We first notice that we can rewrite eq. 2 as

p(y|x) =
1

Z(x)

T
∏

t=1

G(yt−1, yt,x)

with G(yt−1, yt,x) = exp(
K
∑

k=1
λkfk(yt−1, yt,x))

We rewrite this equation because it will enable
us to reduce the complexity of CRFs and it has
the property thatp(yt|yt−1,x) ≈ G(yt−1, yt,x)
which we will use in section 5.3.

We now define a collection of featuresFv for
every nodev. If v is leaf-node, we defineFv as the

collection of featuresfk(yt−1, yt,x) for which it is
possible to find a nodevt−1 and inputx for which
fk(vt−1, v,x) 6= 0. If v is a non-leaf node, we de-
fineFv as the collection of featuresfk(yt−1, yt,x)
(1) which are elements ofFv− for every child node
v− of v and (2) for everyv−1 andv−2 , children of
v, it is valid that for every previous labelvt−1 and
inputx fk(vt−1, v

−

1 ,x) =fk(vt−1, v
−

2 ,x).
Informally, Fv is the collection of features

which are useful to evaluate for a certain node. For
the leaf-nodes, this is the collection of features that
can possibly return a non-zero value. For non-leaf
nodes, it’s useful to evaluate features belonging to
Fv when they have the same value for all the de-
scendants of that node (which we can put to good
use, see further).

We defineF ′

v = Fv\Fv+ wherev+ is the parent
of labelv. For the top nodevtop we defineF ′

vtop =
Fvtop . We also set

G′(yt−1, yt,x) = exp







∑

fk∈F ′

yt

λkfk(yt−1, yt,x)







We’ve now organised the collection of features in
such a way that we can use the hierarchical rela-
tions defined by WordNet when determining the
probability of a certain labelingy. We first see
that

G(yt−1, yt,x) = exp







∑

fk∈Fyt

λkfk(yt−1, yt,x)







= G(yt−1, y
+
t , x)G′(yt−1, yt, x)

= ...

=
∏

v∈Ayt

G′(yt−1, v, x)

we can now determine the probability of a labeling
y, given inputx

p(y|x) =
1

Z(x)

T
∏

t=1

∏

v∈Ayt

G′(yt−1, v,x) (5)

This formula has exactly the same result as eq. 2.
Because we assigned a collection of features to ev-
ery node, we can discard parts of the search space
when searching for possible labelings, obtaining
an important reduction in complexity. We elab-
orate this idea in the following sections for both
labeling and training.

36



5.2 Labeling

The standard method to label a sentence with
CRFs is by using the Viterbi algorithm (Forney,
1973; Viterbi, 1967) which has a computational
complexity ofO(TM2). The basic idea to reduce
this computational complexity is to select the best
labeling in a number of iterations. In the first itera-
tion, we label every word in a sentence with a label
chosen from the top-level labels. After choosing
the best labeling, we refine our choice (choose a
child label of the previous chosen label) in subse-
quent iterations until we arrive at a synset which
has no children. In every iteration we only have
to choose from a very small number of labels, thus
breaking down the problem of selecting the correct
label from a large number of labels in a number of
smaller problems.

Formally, when labeling a sentence we find the
label sequencey such thaty has the maximum
probability of all labelings. We will estimate the
best labeling in an iterative way: we start with
the best labelingytop−1 = {ytop−1

1 , ..., y
top−1
T }

choosing only from the childrenytop−1
t of the top

node. The probability of this labelingytop−1 is

p(ytop−1|x) =
1

Z ′(x)

T
∏

t=1

G′(yt−1, y
top−1
t ,x)

whereZ ′(x) is an appropriate normalizing con-
stant. We now select a labelingytop−2 so that on
every positiont nodey

top−2
t is a child ofytop−1

t .
The probabilty of this labeling is (following eq. 5)

p(ytop−2|x) =
1

Z ′(x)

T
∏

t=1

∏

v∈A
y

top−2

t

G′(yt−1, v,x)

After selecting a labelingytop−2 with maximum
probability, we proceed by selecting a labeling
y

top−3 with maximum probability etc.. We pro-
ceed using this method until we reach a labeling
in which everyyt is a node which has no children
and return this labeling as the final labeling.

The assumption we make here is that if a node
v is selected at positiont of the most probable la-
belingy

top−s the childrenv− have a larger prob-
ability of being selected at positiont in the most
probable labelingytop−s−1. We reduce the num-
ber of labels we take into consideration by stating
that for every conceptv for which v 6= y

top−s
t , we

setG′(yt−1, v
−

t ,x) = 0 for every childv− of v.
This reduces the space of possible labelings dras-
tically, reducing the computational complexity of

Figure 4: Nodes that need to be taken into account
during the forward-backward algorithm

the Viterbi algorithm. Ifq is the average number
of children of a concept, the depth of the tree is
logq(M). On every level we have to execute the
Viterbi algorithm forq labels, thus resulting in a
total complexity of

O(T logq(M)q2) (6)

5.3 Training

We will now discuss how we reduce the compu-
tational complexity of training. As explained in
section 4 we have to estimate the parametersλk

that optimize the functionl(θ). We will show here
how we can reduce the computational complex-
ity of the calculation of the partial derivates∂l(θ)

∂λk

(eq. 4). The predominant factor with regard to
the computational complexity in the evaluation of
this equation is the calculation ofp(yt−1, y|x

(i)).
Recall we do this with the forward-backward al-
gorithm, which has a computational complexity
of O(TM2). We reduce the number of labels to
improve performance. We will do this by mak-
ing the same assumption as in the previous sec-
tion: for every conceptv at level s, for which
v 6= y

top−s
t , we setG′(yt−1, v

−

t ,x) = 0 for
every child v− of v. Since (as noted in sect.
5.2) p(vt|yt−1,x) ≈ G(yt−1, vt,x), this has the
consequence thatp(vt|yt−1,x) = 0 and that
p(vt, yt−1|x) = 0. Fig. 4 gives a graphical repre-
sentation of this reduction of the search space. The
correct label here is “LABEL1” , the grey nodes
have a non-zerop(vt, yt−1|x) and the white nodes
have a zerop(vt, yt−1|x).

In the forward backward algorithm we only
have to account every nodev that has a non-zero
p(v, yt−1|x). As can be easily seen from fig. 4,
the number of nodes isqlogqM , whereq is the
average number of children of a concept. The to-
tal complexity of running the forward-backward
algorithm isO(T (q logqM)2). Since we have to
run this algorithm once for every gradient compu-

37



Figure 5: Time needed for one training cycle

tation for every training instance we find the total
training cost

O(T (q logqM)2NG) (7)

6 Implementation

To implement the described method we need two
components: an interface to the WordNet database
and an implementation of CRFs using a hierar-
chical model. JWordNet is a Java interface to
WordNet developed by Oliver Steele (which can
be found on http://jwn.sourceforge.
net/). We used this interface to extract the Word-
Net hierarchy.

An implementation of CRFs using the hierar-
chical model was obtained by adapting the Mallet2

package. The Mallet package (McCallum, 2002)
is an integrated collection of Java code useful for
statistical natural language processing, document
classification, clustering, and information extrac-
tion. It also offers an efficient implementation of
CRFs. We’ve adapted this implementation so it
creates hierarchical selections of features which
are then used for training and labeling.

We used the Semcor corpus (Fellbaum et al.,
1998; Landes et al., 1998) for training. This cor-
pus, which was created by the Princeton Univer-
sity, is a subset of the English Brown corpus con-
taining almost 700,000 words. Every sentence in
the corpus is noun phrase chunked. The chunks
are tagged by POS and both noun and verb phrases
are tagged with their WordNet sense. Since we do
not want to learn a classification for verb synsets,
we replace the tags of the verbs with one tag
“VERB”.

2http://mallet.cs.umass.edu/

Figure 6: Time needed for labeling

7 Results

The major goal of this paper was to build a clas-
sifier that could learn all the WordNet synsets in a
reasonable amount of time. We will first discuss
the improvement in time needed for training and
labeling and then discuss accuracy.

We want to test the influence of the number of
labels on the time needed for training. Therefor,
we created different training sets, all of which had
the same input (246 sentences tagged with POS la-
bels), but a different number of labels. The first
training set only had 5 labels (“ADJ”, “ADV”,
“VERB”, “entity” and “NONE”). The second had
the same labels except we replaced the label “en-
tity” with either “physical entity”, “abstract entity”
or “thing”. We continued this procedure, replac-
ing parent nouns labels with their children (i.e.
hyponyms) for subsequent training sets. We then
trained both a CRF using a hierarchical feature se-
lection and a standard CRF on these training sets.

Fig. 5 shows the time needed for one iteration
of training with different numbers of labels. We
can see how the time needed for training slowly
increases for the CRF using hierarchical feature
selection but increases fast when using a standard
CRF. This is conform to eq. 7.

Fig. 6 shows the average time needed for la-
beling a sentence. Here again the time increases
slowly for a CRF using hierarchical feature selec-
tion, but increases fast for a standard CRF, con-
form to eq. 6.

Finally, fig 7 shows the error rate (on the train-
ing data) after each training cycle. We see that a
standard CRF and a CRF using hierarchical fea-
ture selection perform comparable. Note that fig
7 gives the error rate on the training data but this

38



can differ considerable from the error rate on un-
seen data.

After these tests on a small section of the Sem-
cor corpus, we trained a CRF using hierarchi-
cal feature selection on 7/8 of the full corpus.
We trained for 23 iterations, which took approx-
imately 102 hours. Testing the model on the re-
maining 1/8 of the corpus resulted in an accuracy
of 77.82%. As reported in (McCarthy et al., 2004),
a baseline approach that ignors context but simply
assigns the most likely sense to a given word ob-
tains a accuracy of 67%. We did not have the pos-
sibility to compare the accuracy of this model with
a standard CRF, since as already stated, training
such a CRF takes impractically long, but we can
compare our systems with existing WSD-systems.
Mihalcea and Moldovan (Mihalcea and Moldovan,
1999) use the semantic density between words to
determine the word sense. They achieve an ac-
curacy of 86.5% (testing on the first two tagged
files of the Semcor corpus). Wilks and Stevenson
(Wilks and Stevenson, 1998) use a combination
of knowledge sources and achieve an accuracy of
92%3. Note that both these methods use additional
knowledge apart from the WordNet hierarchy.

The sentences in the training and testing sets
were already (perfectly) POS-tagged and noun
chunked, and that in a real-life situation addi-
tional preprocessing by a POS-tagger (such as the
LT-POS-tagger4) and noun chunker (such as de-
scribed in (Ramshaw and Marcus, 1995)) which
will introduce additional errors.

8 Future work

In this section we’ll discuss some of the work we
plan to do in the future. First of all we wish to
evaluate our algorithm on standard test sets, such
as the data of the Senseval conference5, which
tests performance on word sense disambiguation,
and the data of the CoNLL 2003 shared task6, on
named entity recognition.

An important weakness of our algorithm is the
fact that, to label a sentence, we have to traverse
the hierarchy tree and choose the correct synsets
at every level. An error at a certain level can not
be recovered. Therefor, we would like to perform

3This method was tested on the Semcore corpus, but use
the word senses of the Longman Dictionary of Contemporary
English

4http://www.ltg.ed.ac.uk/software/
5http://www.senseval.org/
6http://www.cnts.ua.ac.be/conll2003/

Figure 7: Error rate during training

some a of beam-search (Bisiani, 1992), keeping
a number of best labelings at every level. We
strongly suspect this will have a positive impact
on the accuracy of our algorithm.

As already mentioned, this work is carried out
during the CLASS project. In the second phase
of this project we will discover classes and at-
tributes of entities in texts. To accomplish this
we will not only need to label nouns with their
synset, but we also need to label verbs, adjec-
tives and adverbs. This can become problem-
atic as WordNet has no hypernym/hyponym rela-
tion (or equivalent) for the synsets of adjectives
and adverbs. WordNet has an equivalent relation
for verbs (hypernym/troponym), but this structures
the verb synsets in a big number of loosely struc-
tured trees, which is less suitable for the described
method. VerbNet (Kipper et al., 2000) seems a
more promising resource to use when classify-
ing verbs, and we will also investigate the use
of other lexical databases, such as ThoughtTrea-
sure (Mueller, 1998), Cyc (Lenat, 1995), Open-
mind Commonsense (Stork, 1999) and FrameNet
(Baker et al., 1998).

Acknowledgments

The work reported in this paper was supported
by the EU-IST project CLASS (Cognitive-Level
Annotation using Latent Statistical Structure, IST-
027978).

References

Eneko Agirre and German Rigau. 1996. Word sense
disambiguation using conceptual density. InPro-
ceedings of the 16th International Conference on

39



Computational Linguistics (Coling’96), pages 16–
22, Copenhagen, Denmark.

C. F. Baker, C. J. Fillmore, and J. B. Lowe. 1998. The
Berkeley Framenet project. InProceedings of the
COLING-ACL.

L. E. Baum and T. Petrie. 1966. Statistical in-
ference for probabilistic functions of finite state
markov chains.Annals of Mathematical Statistics,,
37:1554–1563.

R. Bisiani. 1992. Beam search. In S. C. Shapiro,
editor, Encyclopedia of Artificial Intelligence, New
York. Wiley-Interscience.

Richard H. Byrd, Jorge Nocedal, and Robert B. Schn-
abel. 1994. Representations of quasi-newton matri-
ces and their use in limited memory methods.Math.
Program., 63(2):129–156.

C. Fellbaum, J. Grabowski, and S. Landes. 1998. Per-
formance and confidence in a semantic annotation
task. In C. Fellbaum, editor,WordNet: An Elec-
tronic Lexical Database. The MIT Press.

G. D. Forney. 1973. The viterbi algorithm. InPro-
ceeding of the IEEE, pages 268 – 278.

G. D. Forney. 1996. The forward-backward algo-
rithm. In Proceedings of the 34th Allerton Confer-
ence on Communications, Control and Computing,
pages 432–446.

Brian Hayes. 1999. The web of words.American
Scientist, 87(2):108–112, March-April.

Michael I. Jordan, editor. 1999.Learning in Graphical
Models.The MIT Press, Cambridge.

K. Kipper, H.T. Dang, and M. Palmer. 2000. Class-
based construction of a verb lexicon.Proceedings
of the Seventh National Conference on Artificial In-
telligence (AAAI-2000).

J. Lafferty, A. McCallum, and F. Pereira. 2001. Con-
ditional random fields: Probabilistic models for seg-
menting and labeling sequence data. InProceed-
ings of the 18th International Conference on Ma-
chine Learning.

S. Landes, C. Leacock, and R.I. Tengi. 1998. Build-
ing semantic concordances. In C. Fellbaum, editor,
WordNet: An Electronic Lexical Database. The MIT
Press.

D. B. Lenat. 1995. Cyc: A large-scale investment in
knowledge infrastructure.Communications of the
ACM, 38(11):32–38.

Wei Li and Andrew McCallum. 2003. Rapid develop-
ment of hindi named entity recognition using con-
ditional random fields and feature induction.ACM
Transactions on Asian Language Information Pro-
cessing (TALIP), 2(3):290–294.

Andrew McCallum and Wei Li. 2003. Early results
for named entity recognition with conditional ran-
dom fields, feature induction and web-enhanced lex-
icons. In Walter Daelemans and Miles Osborne, ed-
itors, Proceedings of CoNLL-2003, pages 188–191.
Edmonton, Canada.

Andrew Kachites McCallum. 2002. Mal-
let: A machine learning for language toolkit.
http://mallet.cs.umass.edu.

A. McCallum. 2003. Efficiently inducing features of
conditional random fields. InProceedings of the
Nineteenth Conference on Uncertainty in Artificial
Intelligence.

D. McCarthy, R. Koeling, J. Weeds, and J. Carroll.
2004. Using automatically acquired predominant
senses for word sense disambiguation. InProceed-
ings of the ACL SENSEVAL-3 workshop, pages 151–
154, Barcelona, Spain.

R. Mihalcea and D.I. Moldovan. 1999. A method
for word sense disambiguation of unrestricted text.
In Proceedings of the 37th conference on Associa-
tion for Computational Linguistics, pages 152–158.
Association for Computational Linguistics Morris-
town, NJ, USA.

Erik T. Mueller. 1998. Natural language processing
with ThoughtTreasure. Signiform, New York.

F. Peng and A. McCallum. 2004. Accurate infor-
mation extraction from research papers using con-
ditional random fields. InProceedings of Human
Language Technology Conference and North Amer-
ican Chapter of the Association for Computational
Linguistics (HLT-NAACL), pages 329–336.

L.A. Ramshaw and M.P. Marcus. 1995. Text chunking
using transformation-based learning. InProceed-
ings of the Third ACL Workshop on Very Large Cor-
pora, pages 82–94. Cambridge MA, USA.

F. Sha and F. Pereira. 2003. Shallow parsing with con-
ditional random fields. InProceedings of Human
Language Technology, HLT-NAACL.

D. Stork. 1999. The openmind initiative.IEEE Intelli-
gent Systems & their applications, 14(3):19–20.

A. J. Viterbi. 1967. Error bounds for convolutional
codes and an asymptotically optimal decoding algo-
rithm. IEEE Trans. Informat. Theory, 13:260–269.

Hanna M. Wallach. 2004. Conditional random fields:
An introduction. Technical Report MS-CIS-04-21.,
University of Pennsylvania CIS.

Y. Wilks and M. Stevenson. 1998. Word sense disam-
biguation using optimised combinations of knowl-
edge sources.Proceedings of COLING/ACL, 98.

D. Yarowsky. 1995. Unsupervised word sense disam-
biguation rivaling supervised methods. InProceed-
ings of the 33rd Annual Meeting of the Association
for Computational Linguistics, pages 189–196.

40


