
S. Werner (ed.), Proceedings of the 15th NODALIDA conference, Joensuu 2005, Ling@JoY 1, 2006, pp. 88–93
ISBN 952-458-771-8, ISSN 1796-1114. http://ling.joensuu.fi/lingjoy/
© by the authors

An analytical relation between

analogical modeling and memory based learning

Christer Johansson & Lars G. Johnsen

Dept. of Linguistics and Literature

University of Bergen

N-5007 Bergen, Norway

{christer.johansson, lars.johnsen}@lili.uib.no

Abstract

Analogical modeling (AM) is a mem-

ory based model. Known algorithms

implementing AM depend on investi-

gating all combinations of matching

features, which in the worst case is

exponential (O(2n)). We formulate a

representation theorem on analogical

modeling which is used for implement-

ing a range of approximations to AM

with a much lower complexity. We will

demonstrate how our model can be

modified to reach better performance

than the original AM model a popular

categorization task (chunk tagging).

1 Introduction

Analogical modeling (AM) is a method to evalu-

ate the analogical support for a classification

(Skousen, 1989; Skousen, 1992; Skousen et

al., 2002), which is compatible with psycho-

linguistic data (Chandler, 2002; Eddington,

2002; Mudrow, 2002, inter al.). Chandler

(1993) propose it as an alternative to rule based

and connectionist models of language process-

ing and acquisition.

AM has also been used within Optimality

Theory (Myers, 2002) and similar exemplar-

based studies have looked at the development

of phonological regularities with the number of

exemplars (Pierrehumbert, 2001). AM defines a

natural statistic, which can be implemented by

comparisons of subsets of linguistic variables,

without numerical calculations (Skousen, 1992;

Skousen, 2002).

The original AM model compares all subsets

of investigated variables. This causes an expo-

nential explosion in the number of comparisons.

This has made it difficult to investigate large

models with many variables (> 10) and large

databases. Johnsen & Johansson (2005) gives

an accurate approximation of AM, which con-

siders all analogical support from the database.

The analytical upper and lower bounds of the

approximation is also provided (ibid.).

The essential simplification (ibid.) is that

each exemplar in the database only contributes

with its most specific match to the incoming

pattern to be classified. This provides a ba-

sis for directly comparing Skousen’s model to

other models of memory based learning (MBL).

In MBL, an example E is classified as belong-

ing to category C by computing the score of

E by going through the whole database. Sk-

ousen’s model require the computation of the

full analogical set for E. We can show this com-

putation to be approximated with resources

that are close to a linear search through the

database.

The Johnsen & Johansson approximation re-

duces the time complexity of the analogical al-

gorithm. The results imply that AM and many

MBL models are related by different evalua-

tions of the nearest match set. MBL typically

selects nearest neighbors, whereas AM attempt

to look at all support from the entire database,

thus not needing to specify how many neigh-

bors to look for.

Full AM and the proposed approximation

has both been tested on predicting chunk tags

(Tjong Kim Sang and Buchholz, 2000), as well

as some test sets provided by Skousen (1989;

1992), and the approximation agrees very well

with full AM results. However, the initial re-

sults for the chunk tagging task where dis-

appointing for both AM models. The perfor-

mance of AM and MBL has previously been

compared favourably (Daelemans, 2002; Ed-

dington, 2002, inter al.), but for some reason

the initial AM model does not do very well

on the chunk tasks, presumably because this
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task involves many heterogeneous patterns, i.e.

patterns with more than one outcome. MBL

relates to AM through the Johnsen & Johans-

son(2005) approximation of AM with an alter-

native weighting of contexts; a weighting that

favors homogeneous contexts for AM, whereas

MBL look at a weighted majority of outcomes

from nearest neighbors, without concern for

which patterns are homogeneous or not.

2 Background on AM

We will not go into details of analogical mod-

eling, beyond what is necessary for compar-

ing it with memory based learning. Johnsen &

Johansson (2005) showed that the outcome in

AM can be determined by summing up scores

for each match pattern, where we only have to

match the input once with all the examples in

the database.

Examples in the database and each new in-

put are expressed by a vector of feature val-

ues, similar to standard MBL. The operation of

AM depends on matches. Each feature value

may either match, between an example and the

new input, or not. This creates a match vector

where matches are encoded with a 1 and non-

matches with 0, for example < 0, 1, 0, 1, 1 > for

five features.

We may imagine these vectors as a pointer

to a box where we collect all the corresponding

outcomes in the database. After we have gone

through the database, we can look in all the

non-empty boxes (which typically is of a much

lower number than the number of examples),

and observe the distribution of the outcomes.

We are interested in those boxes that contain

only one outcome. We call these boxes first

stage homogeneous. Boxes with more than one

outcome are less important, and may be dis-

carded if we find homogeneous boxes pointed

to by a more specific context, i.e. a match vec-

tor with more matches. The remaining (non-

empty) boxes need to be sorted according to

how many matches the index pattern contains.

A more general pattern (e.g. < 0, 0, 1 > is

either homogeneous for the same outcome as

the more specific pattern that it dominates (e.g.

< 1, 0, 1 >, < 0, 1, 1 >, or < 1, 1, 1 >), or it is in-

deed heterogeneous and should be discarded.

A score(θ(x)) is summed up for the number

of homogeneous elements it dominates. Each

part in the summation corresponds to looking

in one of the above mentioned "boxes" (x). Each

score for each box has an associated constant

cx, which would give us the exact value for full

analogical modeling, if it was known.

The scoring of the analogical set expressed in

mathematical notation is:

∑

x∈M

cxscore(θ(x)) (1)

where M is the match set, and x is a context in

the match set.

The implication of the work in (Johnsen

and Johansson, 2005) is that the match set

M, which is simple to calculate, contains all

the results necessary for computing the over-

all effect, without actually building the whole

analogical structure. In order to accurately

weigh each context we need to estimate how

many extensions each homogeneous pattern

has. Johnsen and Johansson (2005) develops

a maximum and minimum bound for this, and

also discusses the possibilities for using Monte

Carlo methods for discovering a closer fit.

Let us start with a simple and hypothetical

case where M has exactly

two members x and y with a different out-

come. Any supracontextual label shared be-

tween x and y will be heterogeneous. The num-

ber of these heterogeneous labels are exactly

the cardinality of the power set of the intersec-

tion between x and y. To see this, consider an

example

τ = (c, a, t, e, g, o, r, y)

and let x and y be defined as (using supra-

contextual notation):

x = (c,−, t,−,−, o, r,−)

with unique score(θ(x)) = (3, 0) ≈ 3 r

y = (c, a,−,−,−, o,−,−)

with score(θ(y)) = (0, 8) ≈ 8 e

(2)

Their common and therefore heterogeneous

supracontextual labels are

(c,−,−,−,−, o,−,−)

(c,−,−,−,−,−,−,−)

(−,−,−,−,−, o,−,−)

(−,−,−,−,−,−,−,−)















(3)

The total number of elements that dominate x

is sixteen; the homogeneous labels out of these

sixteen are those that dominate x and no other
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element with a different outcome; in this case

y. The labels x shares with y are the four labels

in (3), and x has 16-4=12 homogeneous labels

above it. How is that number reached using

sets?

Viewed as sets, the elements x and y are rep-

resented as:

x = {c1, t3, o6, r7} and y = {c1, a2, o6}.
Their shared supracontexts are given by the

power set of their common variables.

x ∩ y = {c1, t3, o6, r7} ∩ {c1, a2, o6} = {c1, o6}
P(x ∩ y) =

P({c1, o6}) = {∅, {c1, o6} , {o6} , {c1}}
(4)

This set has four elements all in all, which

all are equivalent to the labels in (3). The sets

in (4) represent the heterogeneous supracon-

textual labels more general than either x or y

and these are the only heterogeneous supra-

contexts in the lattice Λ of supracontextual la-

bels, given the assumptions made above.

The power sets for x and y have 16 and 8

elements respectively, so the total number of

homogeneous supracontextual labels more gen-

eral than either x or y is the value for the coef-

ficients cx and cy from (1) calculated as:

cx = ‖P(x) − P(x ∩ y)‖ = 16 − 4 = 12

cy = ‖P(y) − P(x ∩ y)‖ = 8 − 4 = 4

}

(5)

Plugging these numbers into the formula (1)

gives the score of the analogical set for this

case:

∑

x∈M

cxscore(θ(x)) =

= 12score(θ(x)) + 4score(θ(y))

= 12 (3, 0) + 4 (0, 8)

= (36, 0) + (0, 32)

= (36, 32)

(6)

In the general case however, the set M con-

sists of more elements, complicating the com-

putation somewhat. Each x ∈ M may share a

number of supracontextual elements with other

elements of M that have a different outcome.

The situation may be as depicted in the follow-

ing table, where columns are labelled by ele-

ments of M (in boldface) with their associated

hypothetical outcomes (in italics).

Each cell in table 1 is associated with the

power set P(x ∩ y). This power set is only com-

puted if the outcome of x is not equal to the out-

come of y, and both outcomes are unique. The

M ar ge hr df

ar P(a∩g) P(a∩d)

ge P(g∩a) P(g∩h)

hr P(h∩g) P(h∩d)

df P(d∩a) P(d∩g) P(d∩h)

Table 1: Accessing disagreement in M×M

intersection is computed for all labels with a

non-unique outcome, even for those with iden-

tical outcomes. If two elements are non-unique,

any label that is a subset of both will match

up with their respective and disjoint data sets

(see propositions 1 and 2 in (Johnsen and Jo-

hansson, 2005)), thereby increasing the num-

ber of disagreements, and consequently turn-

ing any such label into a heterogeneous label.

Note that a and h have the same outcome in

this table making their intersective cells empty.

Each non-empty cell corresponds to the sim-

ple case above. The complication stems from

the fact that different cells may have non-empty

intersections, i.e., it is possible that

P(a ∩ g) ∩ P(a ∩ d) 6= ∅

Arithmetic difference of the cardinality of the

cells may be way off the mark, due to the pos-

sibility that supracontexts may be subtracted

more than once. Something more sophisticated

is needed to compute the desired coefficients

cx. A couple of approximations are given in the

following.

The approximations are gotten at by first col-

lecting all subcontexts different from ain a set

δ(a):

δ(a) = {x ∈ M|o(a) 6= o(x)}

This equation represents the column labels for

the row for a. The total number of homogeneous

supracontexts (=ca) more general than a is the

cardinality of the set difference

P(a) −
⋃

x∈δ(a)

P(a ∩ x) (7)

The second term in (7) corresponds to the

value of the function H in JJ, and is the union

of the power sets in the row for a. It repre-

sents the collection of supracontextual labels

Johansson & Johnsen: Analogical modeling and memory based learning 90



Proceedings of the 15th NODALIDA conference, Joensuu 2005 Ling@JoY 1, 2006

more general than a, which also are shared

with another subcontext, thus making all of

them heterogeneous. The first term, Π(a), is

the set of all supracontextual labels more gen-

eral than a. Therefore, the difference between

these two sets is equal to the collection of ho-

mogeneous supracontextual labels more gen-

eral than a. However, it is not the content of

these sets that concerns us here; the goal is to

find the cardinality of this difference.

The cardinality of P(a) is given the normal

way as

‖P(a)‖ = 2‖a‖

but how are the behemoth union to be com-

puted? This raises the question of computing

the union of power sets:

⋃

x∈δ(a)

P(a ∩ x) (8)

The exponential order of the analogical algo-

rithm lies in trying to compute this set. The

union is bounded both from below and above.

A lower bound is:

P(max({a ∩ x|x ∈ δ(a)})

and a higher bound is:

P(
⋃

x∈δ(a)

a ∩ x)

Both these bounds are fairly simple to calcu-

late. In the implementation (written in C), we

have chosen a weighted average between the

lower bound and the higher bound as a good

approximation. We found that values that are

weighted in favor of the higher bound gave bet-

ter performance. This is not equivalent to say

that the true AM values are closer to the higher

bound.

3 Results from the

implementation

We have evaluated the performance of our

implementation using the chunk identification

task from CoNLL–2000 (Tjong Kim Sang and

Buchholz, 2000). The best performance was ob-

tained by a Support Vector Machine (Kudoh and

Matsumoto, 2000, F=93.48). This implemen-

tation has the disadvantage that it is computa-

tionally very intensive, and it might not be ap-

plicable to much larger data sets. Their results

have later improved even more for the same

task. The standard for memory based learn-

ing on this task is an F value of 91.54 (Veen-

stra and Bosch, 2000), a value which can be im-

proved upon slightly, as is shown by using a sys-

tem combining several different memory-based

learners (Tjong Kim Sang, 2000, F=92.5). Jo-

hansson (2000) submitted an NGRAM model

which used only 5 parts-of-speech tags , cen-

tered around the item to be classified. That

model (ibid.) used a backdown strategy to se-

lect the largest context attested in the train-

ing data, and gave the most frequent class of

that context. It used a maximum of 4 look-

ups from a table, and is most likely the fastest

submitted model. The table could be created

by sorting the database. The advantage be-

ing that it could handle very large databases

(as long as they could be sorted in reasonable

time). The model gives a minimum baseline for

what a modest NGRAM -model could achieve

(F=87.23) on the chunking task.

The implementation deviates slightly from

the discussed, theoretical model. First, it

implements a "sloppy" version of homogene-

ity check, which does not account for non-

deterministic homogeneity (Skousen, 1989; Sk-

ousen, 1992; Skousen et al., 2002). We tried

to implement this in an earlier version, but the

results actually deteriorated, so we decided to

go for the "sloppy" version. Second, it allows

feedback of the last classification, and thirdly

it allows centering on some central feature po-

sitions. The positions containing a) the parts-

of-speech tags and b) the words that are to

be given a chunk tag are given a high weight

(100), and their immediate left and right con-

text are given weight as well (3 and 2 respec-

tively). The weights are multiplied together for

every matching feature position. The highest

weight is thus 3∗100∗2∗3∗100∗2 = 600∗600 =

360000. A method for automatically setting the

focus weights is under development. From ta-

ble 2 we can see that using only lexical fea-

tures (i.e. 5 lex and 6 lex), performs below

baseline (F=87.23). The implementation with-

out anything extra, performs as the base line

for five parts-of-speech features (F=87.13), and

centering improves that to 88.87. Feedback

on its own does not improve results (87.02; 6

pos), while feedback + centering (F=89.36) im-

proves results more than just centering. Feed-

back on its own rather seems to deteriorate re-

sults. The model approaches MBL–results with
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only centering using both lexical and parts-

of-speech features, and performs slightly bet-

ter with feedback and centering (F=92.05), al-

though not as good as the SVM-implementation

(Kudoh and Matsumoto, 2000), and not as good

as the system combining several memory based

learners (Tjong Kim Sang, 2000). A system that

used 11 word features, and 11 parts-of-speech

features, as well as a feedback feature was also

trained, but did not perform better. The test-

ing time for that 23-feature model was about

30 hours, making systematic testing difficult.

# F+C C F 0

5 lex 82.91 80.40

5 pos 88.87 87.13

6 lex 86.33 83.17

6 pos 89.36 87.02

10 91.16 89.48

11 92.05 89.41

Table 2: Results: F–scores. Number of features,

Feedback + Centering, Centering only, Feed-

back only, nothing extra.

3.1 Computational complexity

The test were made using a 867MHz PowerPC

G4, with 1 MB L3 cache and 256 MB SDRAM

memory using Mac OS X version 10.3.9. When

the number of features changed, the number of

unique patterns varied. The time to process all

test patterns were therefor divided by the num-

ber of unique database items and reported as

how many milliseconds per database item the

processing took. The results are shown in ta-

ble 3. This shows an almost linear increase with

the number of features, which has to do with a)

that more comparisons are made because there

are more features to compare, and b) that the

match set M grows faster when there are more

features. When the size of the database is ac-

counted for, the main contribution to complex-

ity is proportional to the square of the size of

the match set times the number of features.

That complexity does not grow faster is an in-

dication that the match set does not grow very

fast for this task. However, when using 23 fea-

tures, computing demanded more time than ac-

counted for by the trend shown for less fea-

tures. We speculate that this is mainly because

of the limited RAM memory available. The val-

ues in table 3 are approximated by the formula:

time = 0.05 ∗ f2 + f + 11.5, with R2 > 0.98; f

= number of feature positions (variables), and

time is in ms per database item, for processing

all 49393 instances in the test set.

# D ms

5 lex 213532 17.44

5 pos 92392 17.84

6 lex 213562 19.14

6 pos 92392 19.80

10 213562 26.07

11 213591 28.68

Table 3: Results: Processing time needed to

solve the full task, per item in the database.

4 Future research

We are trying to invent a method for automat-

ically focussing on the relevant variables (fea-

ture positions), set optimal weights for these

variables. The goal is to get even better re-

sults from this method, than from using the

rather ad hoc weights used in this presentation.

The focus on central variables reminds of the

backdown strategy used in (Johansson, 2000),

the results are very similar to that NGRAM–

method for using only parts-of-speech informa-

tion. The lexical information might be inte-

grated in an NGRAM–model, weighted in an

efficient way to produce results similar to the

best results in this presentation (F=92.05), but

without the computational overhead of the ana-

logical model. The advantage of such a model

is that it could use larger databases, and there-

fore be much more practical, even if it does not

deliver optimal results for smaller sets of data.

Computation in the NGRAM–model (Johansson,

2000) consists of a fixed number of fast look-up

operations, and training is feasible if the data

can be sorted in reasonable time. Admittedly,

non-naive implementations of a nearest neigh-

bor model, such as TiMBL (Daelemans et al.,

2004), are already doing well for large data

sets, which make it hard to compete on com-

bined accuracy and processing time.

5 Conclusion

We have shown an outline of a theoretical re-

construction of Skousen’s Analogical Modeling

of Language (Skousen, 1989; Skousen, 1992;

Skousen et al., 2002), this is described in more
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detail elsewhere (Johnsen and Johansson, 2005;

Johnsen, 2005). This reconstruction led to a

more efficient approximation of full analogy

modeling, and the results were implemented

in a computer program, and tested on the

CoNLL − 2000 chunk tagging task. Our imple-

mentation showed to be competitive with other

memory based learners. An empirical confirma-

tion of the computational complexity showed a

very slow increase with an increased number of

features, although processing times increased

with more demands on memory, an effect which

is likely due to limits on internal memory.

We are presently not using feature weighting,

such as information gain, which typically works

on the level of individual feature values. Future

research involves working on a method for au-

tomatically finding the relevant variables, and

finding optimal weights for these variables.
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