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Abstract

This paper explores the use of the

naive Bayes classifier as the basis for

personalised spam filters. Several

machine learning algorithms, includ-

ing variants of naive Bayes, have pre-

viously been used for this purpose,

but the author’s implementation using

word-position-based attribute vectors

gave very good results when tested on

several publicly available corpora. The

effects of various forms of attribute se-

lection – removal of frequent and infre-

quent words, respectively, and by us-

ing mutual information – are investi-

gated. It is also shown how n-grams,

with n > 1, may be used to boost

classification performance. Finally, an

efficient weighting scheme for cost-

sensitive classification is introduced.

1 Introduction

The problem of unsolicited bulk e-mail, or

spam, gets worse with every year. The vast

amount of spam being sent wastes resources

on the Internet, wastes time for users, and may

expose children to unsuitable contents (e.g.

pornography). This development has stressed

the need for automatic spam filters.

Early spam filters were instances of knowl-

edge engineering and used hand-crafted rules

(e.g. the presence of the string “buy now” indi-

cates spam). The process of creating the rule

base requires both knowledge and time, and

the rules were thus often supplied by the devel-

opers of the filter. Having common and, more

or less, publicly available rules made it easy

for spammers to construct their e-mails to get

through the filters.

Recently, a shift has occurred as more focus

has been put on machine learning for the au-

tomatic creation of personalised spam filters.

A supervised learning algorithm is presented

with e-mails from the user’s mailbox and out-

puts a filter. The e-mails have previously been

classified manually as spam or non-spam. The

resulting spam filter has the advantage of being

optimised for the e-mail distribution of the indi-

vidual user. Thus it is able to use also the char-

acteristics of non-spam, or legitimate, e-mails

(e.g. presence of the string “machine learning”)

during classification.

Perhaps the first attempt of using machine

learning algorithms for the generation of spam

filters was reported by Sahami et al. (1998).

They trained a naive Bayes classifier and re-

ported promising results. Other algorithms

have been tested but there seems to be no clear

winner (Androutsopoulos et al., 2004). The

naive Bayes approach has been picked up by

end-user applications such as the Mozilla e-mail

client1 and the free software project SpamAs-

sassin2, where the latter is using a combination

of both rules and machine learning.

Spam filtering differs from other text cate-

gorisation tasks in at least two ways. First, one

might expect a greater class heterogeneity – it

is not the contents per se that defines spam, but

rather the fact that it is unsolicited. Similarly,

the class of legitimate messages may also span

a number of diverse subjects. Secondly, since

misclassifying a legitimate message is gener-

ally much worse than misclassifying a spam

message, there is a qualitative difference be-

tween the classes that needs to be taken into

account.

In this paper the results of using a variant

of the naive Bayes classifier for spam filtering

1http://www.mozilla.org/
2http://www.spamassassin.org/
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are presented. The effects of various forms of

attribute selection are explored, as are the ef-

fects of considering not only single tokens, but

rather sequences of tokens, as attributes. An

efficient scheme for cost-sensitive classification

is also introduced. All experiments have been

conducted on several publicly available cor-

pora, thereby making a comparison with pre-

viously published results possible.

The rest of this paper is organised as fol-

lows: Section 2 presents the naive Bayes clas-

sifier; Section 3 discusses the benchmark cor-

pora used; in Section 4 the experimental re-

sults are presented; Section 5 gives a compari-

son with previously reported results, and in the

last section some conclusions are drawn.

2 The naive Bayes classifier

In the general context, the instances to be clas-

sified are described by attribute vectors ~a =

〈a1, a2, . . . , an〉. Bayes’ theorem says that the

posterior probability of an instance ~a being of

a certain class c is

P (c|~a) =
P (~a|c)P (c)

P (~a)
. (1)

The naive Bayes classifier assigns to an in-

stance the most probable, or maximum a poste-

riori, classification from a finite set C of classes

cMAP ≡ argmax
c∈C

P (c|~a).

By noting that the prior probability P (~a) in

Equation (1) is independent of c, we may

rewrite the last equation as

cMAP = argmax
c∈C

P (~a|c)P (c). (2)

The probabilities P (~a|c) = P (a1, a2, . . . , an|c)

could be estimated directly from the training

data, but are generally infeasible to estimate

unless the available data is vast. Thus the

naive Bayes assumption – that the individual at-

tributes are conditionally independent of each

other given the classification – is introduced:

P (a1, a2, . . . , an|c) =
∏

i

P (ai|c).

With this strong assumption, Equation (2) be-

comes the naive Bayes classifier:

cNB = argmax
c∈C

P (c)
∏

i

P (ai|c) (3)

(Mitchell, 1997).

In text classification applications, one may

choose to define one attribute for each word

position in a document. This means that we

need to estimate the probability of a certain

word wk occurring at position i given the tar-

get classification cj: P (ai = wk|cj). Due to

training data sparseness, we introduce the ad-

ditional assumption that the probability of a

specific word wk occurring at position i is iden-

tical to the probability of that same word oc-

curring at position m, that is, P (ai = wk|cj) =

P (am = wk|cj) for all i, j, k, m. Thus we esti-

mate P (ai = wk|cj) with P (wk|cj). The probabil-

ities P (wk|cj) may be estimated with maximum

likelihood estimates, using Laplace smoothing

to avoid zero probabilities:

P (wk|cj) =
Cj(wk) + 1

nj + |V ocabulary|
,

where Cj(wk) is the number of occurrences of

the word wk in all documents of class cj , nj

is the total number of word positions in docu-

ments of class cj , and |V ocabulary| is the num-

ber of distinct words in all documents. The

class priors P (cj) are estimated with document

ratios. (Mitchell, 1997)

Note that during classification, the index i in

Equation (3) ranges over all word positions con-

taining words which are in the vocabulary, thus

ignoring so called out-of-vocabulary words.

The resulting classifier is equivalent to a

naive Bayes text classifier based on a multino-

mial event model (or unigram languagemodel ).

For a more elaborate discussion of the text

model used, see Joachims (1997) andMcCallum

and Nigam (1998).

3 Benchmark corpora

The experiments were conducted on the PU

corpora3 and the SpamAssassin corpus4. The

four PU corpora, dubbed PU1, PU2, PU3 and

PUA, respectively, have been made publicly

available by Androutsopoulos et al. (2004) in or-

der to promote standard benchmarks. The four

corpora contain private mailboxes of four dif-

ferent users in encrypted form. The messages

3The PU corpora are available at http://www.

iit.demokritos.gr/skel/i-config/.
4The SpamAssassin corpus is available at http:

//spamassassin.org/publiccorpus/.
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Table 1: Sizes and spam ratios of the five corpora.

corpus messages spam ratio

PU1 1099 44%

PU2 721 20%

PU3 4139 44%

PUA 1142 50%

SA 6047 31%

have been preprocessed and stripped from at-

tachments, HTML-tags and mail headers (ex-

cept Subject). This may lead to overly pes-

simistic results since attachments, HTML-tags

and mail headers may add useful information

to the classification process. For more infor-

mation on the compositions and characteristics

of the PU corpora see Androutsopoulos et al.

(2004).

The SpamAssassin corpus (SA) consists of

private mail, donated by different users, in un-

encrypted form with headers and attachments

retained5. The fact that the e-mails are col-

lected from different distributions may lead to

overly optimistic results, for example, if (some

of) the spam messages have been sent to a par-

ticular address, but none of the legitimate mes-

sages have. On the other hand, the fact that the

legitimate messages have been donated by dif-

ferent users may lead to underestimates since

this should imply a greater diversity of the top-

ics of legitimate e-mails.

The sizes and compositions of the five cor-

pora are shown in Table 1.

4 Experimental results

As mentioned above, misclassifying a legiti-

mate mail as spam (L→S) is in general worse

than misclassifying a spam message as legiti-

mate (S→L). In order to capture such asym-

metries when measuring classification perfor-

mance, two measures from the field of informa-

tion retrieval, called precision and recall, are

often used. Denote with |S→L| and |S→S| the

number of spam messages classified as legiti-

mate and spam, respectively, and similarly for

|L→L| and |L→S|. Then spam recall (R) and

5Due to a primitive mbox parser, e-mails contain-

ing non-textual or encoded parts (i.e. most e-mails

with attachments) were ignored in the experiments.

spam precision (P ) are defined by

R =
|S→S|

|S→S| + |S→L|

and

P =
|S→S|

|S→S| + |L→S|
.

In the rest of this paper, spam recall and

spam precision are referred to simply as recall

and precision. Intuitively, recall measures ef-

fectiveness whereas precision gives a measure

of safety. One is often willing to accept lower

recall (more spam messages slipping through)

in order to gain precision (fewer misclassified

legitimate messages).

Sometimes accuracy (Acc) – the ratio of cor-

rectly classified messages – is used as a com-

bined measure.

All experiments were conducted using 10-

fold cross validation. That is, the messages

have been divided into ten partitions6 and at

each iteration nine partitions were used for

training and the remaining tenth for testing.

The reported figures are the means of the val-

ues from the ten iterations.

4.1 Attribute selection

It is common to apply some form of attribute

selection process, retaining only a subset of

the words – or rather tokens, since punctuation

signs and other symbols are often included –

found in the training messages. This way the

learning and classification process may be sped

up and memory requirements are lowered. At-

tribute selection may also lead to increased

classification performance since, for example,

the risk of overfitting the training data is re-

duced.

Removing infrequent words and the most fre-

quent words, respectively, are two possible ap-

proaches (Mitchell, 1997). The rationale be-

hind removing infrequent words is that this is

likely to have a significant effect on the size of

the attribute set and that predictions should not

be based on such rare observations anyway. Re-

moving the most frequent words is motivated

by the fact that common words, such as the En-

glish words “the” and “to”, are as likely to occur

in spam as in legitimate messages.

6The PU corpora come prepartitioned and the SA

corpus has been partitioned according to the last

digit of the messages’ decimal ids.
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Figure 1: Impact on vocabulary size when removing

infrequent words (from nine tenths of each corpora).

A very common method is to rank the at-

tributes using mutual information (MI) and to

keep only the highest scoring ones. MI(X ; C)

gives a measure of how well an attribute X

discriminates between the various classes in C

and is defined as

∑

x∈{0,1}

∑

c∈C

P (x, c) log
P (x, c)

P (x)P (c)

(Cover and Thomas, 1991). The probability dis-

tributions were estimated as in Section 2. This

corresponds to the multinomial variant of mu-

tual information used by McCallum and Nigam

(1998), but with the difference that the class

priors were estimated using document ratios

rather than word-position ratios. (Using word-

position ratios gave almost exactly the same

classification results.)

In the first experiment, tokens occurring less

than n = 1, . . . , 15 times were removed. The re-

sults indicated unaffected or slightly increased

precision at the expense of slightly reduced re-

call as n grew. The exception was the PU2 cor-

pus where precision dropped significantly. The

reason for this may be that PU2 is the small-

est corpus and contains many infrequent to-

kens. On the other hand, removing infrequent

tokens had a dramatic impact on the vocabulary

size (see Figure 1). Removing tokens occur-

ring less than three times seems to be a good

trade-off between memory usage and classifica-

tion performance, reducing the vocabulary size

with 56–69%. This selection scheme was used

throughout the remaining experiments.

Removing the most frequent words turned

out to have a major effect on both precision

and recall (see Figure 2). This effect was most

significant on the largest and non-preprocessed

SA corpus where recall increased from 77% to

over 95% by just removing the hundred most

common tokens, but classification gained from

removing the 100–200 most frequent tokens on

all corpora. Removing too many tokens reduced

classification performance – again most notably

on the smaller PU2 corpus. We believe that

this selection scheme increases performance

because it makes sure that very frequent tokens

do not dominate Equation (3) completely. The

greater impact of removing frequent tokens on

the SA corpus can thus be explained by the fact

that it contains many more very frequent to-

kens (originating from mail headers and HTML)

(see related discussion in Section 4.2).

In the last attribute-selection experiment,

MI-ranking was used instead of removing the

most frequent tokens. Although the gain in

terms of reduced memory usage was high –

the vocabulary size dropped from 7000–35000

to the number of attributes chosen to be kept

(e.g. 500–3000) – classification performance

was significantly reduced. When MI-ranking

was performed after first removing the 200

most frequent tokens, the performance penalty

was not as severe, and using MI-ranking to se-

lect 3000–4000 attributes then seems reason-

able (see Figure 3). We are currently investi-

gating further the relation between mutual in-

formation and frequent tokens.

Since learning and classification time is

mostly unaffected – mutual information still has

to be calculated for every attribute – we see no

reason for using MI-ranking unless memory us-

age is crucial7, and we decided not to use it fur-

ther (with unigram attributes).

4.2 n-grams

Up to now each attribute has corresponded to

a single word position, or unigram. Is it possi-

ble to obtain better results by considering also

token sequences of length two and three (i.e.

n-grams for n = 2, 3)? The question was raised

and answered partially in Androutsopoulos et

al. (2004). Although many bi- and trigrams

were shown to have very high information con-

tents, as measured by mutual information, no

improvement was found.

7Androutsopoulos et al. (2004) reaches a different

conclusion.
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Figure 2: Impact on spam precision and recall when removing the most frequent words.

There are many possible ways of extending

the attribute set with general n-grams, for in-

stance, by using all available n-grams, by just

using some of them, or by using some kind of

back-off approach. The attribute probabilities

P (wi, wi+1, . . . , wi+n|cj) are still estimated us-

ing maximum likelihood estimates with Laplace

smoothing

Cj(wi, wi+1, . . . , wi+n) + 1

nj + |V ocabulary|
.

Note that extending the attribute set in this way

can result in a total probability mass greater

than one. Fortunately, this need not be a prob-

lem since we are not estimating the classifica-

tion probabilities explicitly (see Equation (3)).

It turned out that adding bi- and trigrams to

the attribute set increased classification perfor-

mance on all of the PU corpora, but not (ini-

tially) on the SA corpus. The various methods

for extending the attribute set all gave similar

results, and we settled on the simple version

which just considers each n-gram occurrence

as an independent attribute8. The results are

shown in Table 2.

8This is clearly not true. The three n-grams in the

phrase “buy now” – “buy”, “now” and “buy now” –

are obviously not independent.
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Figure 3: Attribute selection using mutual information – spam recall and precision versus the number of

retained attributes after first removing no words and the 200 most frequent words, respectively.

The precision gain was highest for the cor-

pus with lowest initial precision, namely PU2.

For the other PU corpora the precision gain was

relatively small or even non-existing. At first

the significantly decreased classification per-

formance on the SA corpus came as a bit of

a surprise. The reason turned out to be that

when considering also bi- and trigrams in the

non-preprocessed SA corpus, a lot of very fre-

quent attributes, originating from mail head-

ers and HTML, were added to the attribute set.

This had the effect of giving these attributes a

too dominant role in Equation (3). By remov-

ing more of the most frequent n-grams, classifi-

cation performance was increased also for the

SA corpus. The conclusion to be drawn is that

mail headers and HTML, although containing

useful information, should not be included by

brute force. Perhaps some kind of weighting

scheme or selective inclusion process would be

appropriate.

Finally, we note that the gained classification

performance came with a cost in terms of in-

creased memory requirements. The vocabulary

sizes became 17–23 times larger prior to at-

tribute selection (i.e. during training) and 8–12

times larger afterwards (i.e. during operation)

compared to when only using unigrams. The
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Table 2: Comparison of classification results when

using only unigram attributes and uni-, bi- and tri-

gram attributes, respectively. In the experiment n-

grams occurring less than three times and the 200

most frequent n-grams were removed. The second

n-gram row for the SA corpus shows the result when

the 5000 most frequent n-grams were removed.

n-grams R P Acc

PU1

n = 1 98.12 95.35 97.06

n = 1, 2, 3 99.17 96.19 97.89

PU2

n = 1 97.14 87.00 96.20

n = 1, 2, 3 95.00 93.12 96.90

PU3

n = 1 96.92 96.02 96.83

n = 1, 2, 3 96.59 97.83 97.53

PUA

n = 1 93.68 97.91 95.79

n = 1, 2, 3 94.74 97.75 96.23

SA

n = 1 97.12 99.25 98.95

n = 1, 2, 3 92.26 98.70 97.42

n = 1, 2, 3 98.46 99.66 99.46

latter figure may, however, be reduced to 0.7–

4 (while retaining approximately the same per-

formance gain) by using mutual information to

select a vocabulary of 25000 n-grams.

4.3 Cost-sensitive classification

Generally it is much worse to misclassify legit-

imate mails than letting spam slip through the

filter. Hence, it is desirable to be able to bias

the filter towards classifying messages as legit-

imate, yielding higher precision at the expense

of recall.

A common way of biasing the filter is to clas-

sify a message d as spam if and only if the

estimated probability P (spam|d) exceeds some

threshold t > 0.5, or equivalently, to classify as

spam if and only if

P (spam|d)

P (legit|d)
> λ,

for some real number λ > 1 (Sahami et al.,

1998; Androutsopoulos et al., 2000; Androut-

sopoulos et al., 2004). This has the same ef-

fect as multiplying the prior probability of le-

gitimate messages by λ and then classifying ac-

cording to Equation (3).

As noted in Androutsopoulos et al. (2004),

the naive Bayes classifier is quite insensitive

to (small) changes to λ since the probability

estimates tend to approach 0 and 1, respec-

tively. As is shown below, this insensitivity in-

creases with the length of the attribute vec-

tors, and by exploiting this fact, a more efficient

cost-sensitive classification scheme for word-

position-based (and hence, variable-length) at-

tribute vectors is made possible.

Instead of using the traditional scheme, we

propose the following classification criterion:

P (spam|d)

P (legit|d)
> w|d|,

where w > 1, which is equivalent to multiplying

each posterior probability P (wi|clegit) in Equa-

tion (3) with the weight w. Intuitively, we re-

quire the spam posterior probability for each

word occurrence to be on average w times as

high as the corresponding legitimate probabil-

ity (given uniform priors).

When comparing the two schemes by plot-

ting their recall-precision curves for the five

benchmark corpora, we found that the length-

sensitive scheme was more efficient than the

traditional one – rendering higher recall at each

given precision level (see Figure 4). This can be

explained by the fact that the certainty quotient

q(d) = P (spam|d)/P (legit|d) actually grew (de-

creased) exponentially with |d| for spam (legiti-

mate) messages and thereby made it safe to use

much larger thresholds for longer messages.

With length-sensitive thresholds we were thus

able to compensate for longer misclassified le-

gitimate mails without misclassifying as many

short spam messages in the process (as would

a large λ with the traditional scheme) (see Fig-

ure 5).

5 Evaluation

Many different machine learning algorithms be-

sides naive Bayes, such as k-Nearest Neigh-

bour, Support Vector Machines (SVM), and

C4.5, have previously been used in spam-

filtering experiments. There seems to have

been no clear winner, but there is a difficulty

in comparing the results of different experi-

ments since the used corpora have rarely been

made publicly available (Androutsopoulos et

al., 2004). This section gives a brief compari-

son with the implementation and results of the

authors of the PU corpora.
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Figure 4: Recall-precision curves of the two weighting schemes from cost-sensitive classification on the five

corpora using the weights w = 1.0, 1.1, . . . , 2.9 and λ = 100, 104, . . . , 1076, respectively.

In Androutsopoulos et al. (2004), a variant

of naive Bayes was compared with three other

learning algorithms: Flexible Bayes, Logit-

Boost, and Support Vector Machines. All of the

algorithms used real-valued word-frequency at-

tributes. The attributes were selected by re-

moving words occurring less than four times

and then keeping the 600 words with high-

est mutual information.9 As can be seen in

9The authors only report results of their naive

Bayes implementation on attribute sets with up to

600 words, but they seem to conclude that using

larger attribute sets only have a marginal effect on

accuracy.

Table 3, the word-position-based naive Bayes

implementation of this paper achieved signifi-

cantly higher precision and better or compara-

ble recall than the word-frequency-based vari-

ant on all four PU corpora. The results were

also better or comparable to those of the best-

performing algorithm on each corpus.

In Androutsopoulos et al. (2000), the authors

used a naive Bayes implementation based on

Boolean attributes, representing the presence

or absence of a fixed number of words selected

using mutual information. In their experiments

three different cost scenarios were explored,

and the number of attributes used was opti-
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threshold in use.

Table 3: Comparison of the results achieved by

naive Bayes in Androutsopoulos et al. (2004) and

by the author’s implementation. In the latter, at-

tributes were selected by removing the 200 most fre-

quent words as well as words occurring less than

three times. Included are also the results of the best-

performing algorithm for each corpus as found in An-

droutsopoulos et al. (2004).

learner R P Acc

PU1

Androutsopoulos 99.38 89.58 94.59

Hovold 98.12 95.35 97.06

Flexible Bayes 97.08 96.92 97.34

PU2

Androutsopoulos 90.00 80.77 93.66

Hovold 97.14 87.00 96.20

Flexible Bayes 79.29 90.57 94.22

PU3

Androutsopoulos 94.84 93.59 94.79

Hovold 96.92 96.02 96.83

SVM 94.67 96.48 96.08

PUA

Androutsopoulos 94.04 95.11 94.47

Hovold 93.68 97.91 95.79

Flexible Bayes 91.58 96.75 94.21

Table 4: Comparison of the results achieved by

naive Bayes on the PU1 corpus in Androutsopoulos

et al. (2000) and by the author’s implementation. Re-

sults for the latter are shown for both unigram and

n-gram (n = 1, 2, 3) attributes. In both cases, at-

tributes were selected by removing the 200 most fre-

quent n-grams as well as n-grams occurring less than

three times. For each cost scenario, the weightw has

been selected in steps of 0.05 in order to get equal or

higher precision.

learner R P

Androutsopoulos (λ = 1) 83.98 95.11

Hovold, 1-gram (w = 1) 98.12 95.35

Hovold, n-gram (w = 1) 99.17 96.19

Androutsopoulos (λ = 9) 78.77 96.65

Hovold, 1-gram (w = 1.20) 97.50 97.34

Hovold, n-gram (w = 1.05) 99.17 97.15

Androutsopoulos (λ = 999) 46.96 98.80

Hovold, 1-gram (w = 1.65) 91.67 98.88

Hovold, n-gram (w = 1.30) 96.04 98.92

mised for each scenario. Table 4 compares

the best results achieved on the PU1 corpus10

for each scenario with the results achieved by

the naive Bayes implementation of this paper.

Due to the difficulty of relating the two differ-

ent weights, λ and w, the weight w has been

selected in steps of 0.05 in order to get equal

or higher precision. The authors deemed the

λ = 999 scenario too difficult to be used in prac-

tise because of the low recall figures.

6 Conclusions

In this paper it has been shown that it is pos-

sible to achieve very good classification perfor-

mance using a word-position-based variant of

naive Bayes. The simplicity and low time com-

plexity of the algorithm thus makes naive Bayes

a good choice for end-user applications.

The importance of attribute selection has

been stressed – memory requirements may

be lowered and classification performance in-

creased. In particular, removing the most fre-

quent words was found to have a major impact

on classification performance when using word-

position-based attributes.

By extending the attribute set with bi- and tri-

grams, even better classification performance

may be achieved, although at the cost of signif-

icantly increased memory requirements.

10The results are for the bare PU1 corpus, that is,

the stop list and lemmatiser have not been applied.
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With the use of a simple weighting scheme

based on length-sensitive classification thresh-

olds, precision may be boosted further while

still retaining a high enough recall level – a fea-

ture very important in real-life applications.
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