
Computational Mechanisms for Pun Generation

Graeme Ritchie
Department of Computing Science

University of Aberdeen
Aberdeen AB24 3UE

Scotland
gritchie@csd.abdn.ac.uk

Abstract

Computer pun-generators have so far relied on arbi-
trary semantic content, not linked to the immediate
context. The mechanisms used, although tractable,
may be of limited applicability. Integrating puns
into normal text may involve complex search.

1 Introduction
Recently, there has been a growing interest in computational
humour, as indicated by two international workshops [Hul-
stijn and Nijholt, 1996; Stock et al., 2002]. A number of com-
puter programs (mostly quite small) have been constructed
which generated very short humorous texts (see Section 4 be-
low). All but one of these programs generate some form of
pun, where we take a pun, informally and pre-theoretically,
to be a supposedly humorous written or spoken text which
relies crucially on phonetic similarity for its humorous effect.
There is no accepted strict definition of a pun, even amongst
humour scholars, but the computer-generated examples are
almost certainly puns by any reasonable definition; whether
they are funny or not is a separate question.

The purpose of this paper is to consider the task of pun
generation from the wider perspective of NLG, particularly
applied NLG, and to discuss the following:

• how the mechanisms used in pun generation systems
compare with conventional NLG;

• two classes of pun, with different potential roles in NLG;

• the computations that might achieve such puns;

• possible limitations of these computations.

We shall start with the claims made for the usefulness of
computer-generated jokes, give a very brief summary of past
work and then present some observations and arguments.

2 Motivation
It could be argued that computer modelling of humour is
worthwhile because it might shed light on human use of hu-
mour, and hence could contribute to a cognitive model of hu-
mour. Here we shall leave that aside, and consider a case
which has been more explicitly argued: that certain practical
computer systems will be more effective, or more pleasant to
use, if they display humour.

It has been claimed for some time that humour enhances
communication in various ways. In one study, subjects
were persuaded more effectively by material including hu-
mour [Lyttle, 2001]. In another, human subjects gave more
favourable reports of working with computer systems which
employed humour (albeit pre-coded, rather than computer-
generated) [Morkes et al., 1999].

Binsted [1995] argues that a user-interface which used hu-
mour would be more congenial to interact with. Stock [Stock,
2002; 2003] suggests that computerised humour will have
even wider applicability, in advertising, entertainment and
education. Nijholt [2002] points out that if virtual agents
are to show rich “personalities” in their interactions with hu-
mans, some form of humour is essential. McKay [2002] sug-
gests the use of automated humour in a system for second-
language learning, and O’Mara and Waller [2003] propose
that machine-assisted communication by those with language
disabilities (particularly children) could be helped by some
software support for humour.

So far, no computer system for humour-generation has yet
been shown to have these benefits. Nevertheless, for the
purposes of this paper we shall assume, from the writings
cited above, that a case can be made for the desirability of
computer-generated humour in practical applications.

These authors have argued generally for the practical use
of humour, not merely puns. However, the type of humour-
generation that is likely to be available in the near future is
pun-generation. In the following sections, therefore, we shall
focus solely on puns, considering the ways in which they
might be generated within a broader NLG system.

3 Two classes of puns
There are various ways in which puns, or jokes in general,
could be classified, depending on the aspects which are of in-
terest. For the discussion here, we wish to make a distinction
between two loose groupings (not usually distinguished in the
literature):

Self-contained puns: These are pieces of text which can be
used as humorous items in a wide variety of circum-
stances. Any semantic links which they might have to
the context are not directly part of the joke structure, and
their only preconditions for use are general knowledge
(of the surrounding culture, etc.) and a social situation



in which joke-making is acceptable. Example (1) (from
[Binsted, 1996]) is a self-contained pun, as are all of the
puns ((5) – (13)) shown in Section 4.1 below.

(1) What do you get when you cross a murderer with a
breakfast food? A cereal killer.

Contextually integrated puns: This type of pun occurs
within some broader discourse, with the use of a text
which, in addition to conveying some information or
emotion, has further linguistic properties which make it
a pun (and may thereby augment the effects of the text,
either emotionally, persuasively or otherwise). Also, the
status of the text as a pun may depend on contextual
(possibly non-linguistic) factors. Ritchie [2004, p.115]
offers (2) and (3) as puns; both of these, when first de-
livered, were contextually integrated puns.

(2) A shopper is walking along, and a leek falls from
his shopping bag to the ground, unnoticed. Another
shopper calls out, “Hey! Your bag’s leaking!”

(3) A minor football team known informally as ‘Caley
Thistle’ (where Caley rhymes with alley) soundly
defeats Celtic (then the top team in the country) in
a major competition. The next day, a newspaper
headline reads: “Super Caley Go Ballistic, Celtic
Are Atrocious”. (The Sun, 9 February 2000)

In (2), the pun status depends upon the substring leak be-
ing phonetically similar (identical) to the word leek, and
the latter word being directly related to the surrounding
context. In (3) the whole headline has some phonetic
similarity to the song-title Supercalifragilisticexpialido-
cious. In both cases, the utterance conveys contextually
appropriate information.

For both these types of puns, the text’s status as a pun is in
addition to a full set of normal linguistic properties: the pun-
ning texts are usually syntactically well formed texts which
have an internally consistent semantics.

The difference between the two classes can be viewed as
follows: in self-contained puns the semantic content is arbi-
trary, and of secondary importance to the features that make
the text a pun, whereas in contextually integrated puns the se-
mantic message is non-arbitrary, and the pun features have to
be compatible with it.

There are some puns which might seem to be borderline
examples. In everyday social situations, someone may make
a remark simply in order to make a pun, which might seem
therefore to count as a self-contained pun, but such an utter-
ance is very rarely completely unconnected to the context,
even if its sole purpose is humour. For example, someone
who moves their position in a room to avoid cold air from an
open window might make the remark in (4), punning on the
USA expression draft-dodger, ‘someone who avoids military
conscription’.

(4) I’m just a draught-dodger.

Although this remark may communicate little useful infor-
mation, and is made solely as an attempt at humour, it is still a
contextually integrated pun, in the sense that what it conveys

relates to the context, and it would not be a pun without this
connection – if the speaker had not moved to avoid cold air,
it would not be felicitous, and if someone later recounted the
remark alone, with no account of the context, that would not
count as a joke.

4 Previous work: self-contained puns
4.1 The programs
Since 1992, there have been a small number of programs
which created puns (cf. [Ritchie, 2004, Ch 10]). (Jokes de-
pend on cultural knowledge, and puns rely heavily on linguis-
tic knowledge, so some of these examples may be puzzling to
readers from other cultural or linguistic backgrounds.)

Lessard and Levison [1992] devised a program which cre-
ated a type of pun, the Tom Swifty, exemplified by (5).

(5) “Turn up the heat,” said Tom coldly.

The form consists of a quoted utterance, and an adverbially
modified attribution of this remark to Tom. The meaning of
the utterance, or some subpart of it, is semantically linked to
the adverb. The generation is based on finding a configuration
of a root word (e.g. cold) which can be made into an adverb
(coldly) and a sentence somehow linked to the root word.

The JAPE program [Binsted, 1996; Binsted and Ritchie,
1997] generated punning riddles of certain types, illustrated
by (1), (6), (7), (8) (cf. [Lessard and Levison, 1993]).

(6) How is a nice girl like a sugary bird?
Each is a sweet chick.

(7) What is the difference between leaves and a car?
One you brush and rake, the other you rush and brake

(8) What do you call a strange market?
A bizarre bazaar.

This was achieved by various rules which specified allow-
able combinations of lexical entries and surface words; more
details are given in Section 4.2 below.

The HCPP [Venour, 1999] could create two-utterance texts,
where the second part was always a short noun phrase, as in
(9) (punning on doc/dock) and (10) (carrel/carol).

(9) The surgeon digs a garden. A doc yard.

(10) Joan hears wailing in the booth. Carrel singing.

Venour describes his method in terms which borrow both
from Binsted and from Lessard and Levison.

The puns produced by the WISCRAIC program [McKay,
2002] came in three forms, exemplified by (11), (12), (13).

(11) Who broke the woman’s hart?
The cruel deer-keeper.

(12) The performing lumberjack took a bough.

(13) Your mate Johnny is a hard-up deer-keeper. He really
needs doe!

Like the earlier programs, WISCRAIC operated by finding
sets of items (e.g. take a bow, bough, lumberjack, perform-
ing) which were related in specific ways, then slotting them
into stock textual forms.

The output of all these programs consists of self-contained
puns in the sense given in Section 3 above.



4.2 An architecture for self-contained puns

Some of the pun-generators (Lessard and Levison, Venour)
reviewed above were implemented using the Vinci language
generator [Levison and Lessard, 1992], others (Binsted,
McKay) using various Prolog facilities, including definite
clause grammars [Pereira and Warren, 1980]. However, the
general flow of processing in these systems is broadly the
same, and can be described using the model used by [Bin-
sted, 1996] (see also [Ritchie, 2003]). We will look at it in
more detail, partly to make more concrete some aspects of
these puns, and partly to show how these mechanisms relate
to more conventional NLG.

The JAPE processing falls into three stages: content selec-
tion, constituent building, surface string construction, each
of which is controlled by particular types of symbolic rule.
(Binsted calls the constituent-building stage SAD generation,
where ‘SAD’ stands for small adequate description, because
in JAPE it leads to short descriptive noun phrases.)

We shall describe each of these stages in turn.

Content selection
In this phase, a small number of items are selected from the
lexicon as the core of the pun. The generator has rules about
suitable combinations of lexical items and/or surface words,
and uses these to search for a cluster of workable items.

Binsted calls the content selection rules schemas. A pun-
generator program would have a number of schemas (JAPE-
3 had 15), each corresponding to some subclass of pun. A
schema contains two rather different types of information:

Precondition. A schema has a condition which a sequence
of lexical entries or surface strings (intuitively, the parame-
ters for the schema) must meet in order for this type of pun to
be generated. The precondition consists of a conjunction of
terms, where each term is a predicate (e.g. homophone) ap-
plied to variable arguments, and all variables are existentially
quantified. (None of the programs appear to need constant
values as arguments to predicates.) For example, one schema
(from [Ritchie, 2003]) has the precondition:

noun_phrase(NPLex),
component_lexemes(NPLex, LexA, LexB),
written_form([LexA], WordA),
homophone(WordA, HomWord),
written_form([HomLex], HomWord)

where some of the variables (NPLex, LexA, LexB, HomLex)
are to be matched against lexemes (abstract identifiers for
lexical entries) and others (WordA,HomWord) are matched
against surface strings. One possible set of bindings is NPLex
= serial killer, LexA = serial, LexB = killer, WordA
= ‘serial’, HomWord = ‘cereal’, HomLex = cereal.

Although many examples can be produced using predi-
cates which are computable using standard lexical informa-
tion (e.g. homophone), some of the puns (particularly those
in McKay’s system) need semantic relationships which, while
not seriously problematic, might not be standard lexical rela-
tions; for example an action – take a bow – which is “typical”
of an entity with a particular property – performing. Covering
these might need a more encyclopaedic knowledge base.

Interface to later stages. This part of a schema specifies
what is to be done with (some or all of) the values which sat-
isfy the preconditions. It contains a formula indicating how
further processing of the items is to be carried out, specifi-
cally what sorts of constituents they are to be built into.

For example, the JAPE schema illustrated immediately
above has the output specification (taking some liberties with
notation to save space):
<same, sad(share_properties, [HomLex, NPLex]),

sad(make_phrase, [HomLex, LexB]) >

This (rather obscurely) indicates that the values HomLex,
NPLex are to be used to create a phrase which, semantically,
has some mix of their properties (e.g. a murderer with fi-
bre), and that HomLex, LexB, are to be made directly into
a phrase (hence cereal killer). Also, the final text should con-
vey that the abstract relation same holds between these two
constituents. That is, the output specification of a schema pro-
vides a recipe for producing a structure which, while not ac-
tually a text, is much closer to the eventual surface form. The
various building procedures (e.g. share properties) have
a certain amount of non-deterministic freedom (see below),
so that there may be more than one way in which the linguis-
tic form of the phrase can be constructed, without affecting
the basic joke; for example, share properties might cre-
ate a crunchy murderer.

Constituent building
Given the items found in content selection, it may be nec-
essary to form constituents (noun phrases, verb phrases, sen-
tences) which either contain these items or bear some system-
atic relationship to them. In this stage, linguistic representa-
tions of these chunks are constructed, following the output
specification of the schema.

The constituent building stage is a relatively arbitrary map-
ping from the formulae provided by the schema to something
which is more of a surface semantic structure. This is done
by pattern-action rules which match against the various ‘out-
put specifications’ that can be come from the schema handler,
and produces something either in surface linguistic form (e.g.
a string of words) or some skeletal linguistic item whose ex-
act details (e.g. person, number) are left to the final (surface
string) stage. Thus some variation is possible in the linguistic
form of phrases, within the limits set by the initial schema
match. That is why Binsted introduced this middle stage (not
present in an earlier version of JAPE): to allow some linguis-
tic variety where this does not alter the underlying joke. For
example, (14) requires the same schema (and surface tem-
plate) as (8), but uses a different constituent for the question;
this difference would occur in the constituent-building phase.

(14) What do you call an odd mall?
A bizarre bazaar.

Surface string construction
In the third and final stage, a complete surface text is built
by transforming the semantic constituents into surface strings
and concatenating them, in some order, with various fixed
strings of words. Minor adjustments such as number agree-
ment, or choosing between a and an, are carried out. All this
is driven by templates, which are like DCG rules with some
pre-conditions attached.



4.3 Discussion of the mechanisms
The mechanisms summarised here were designed solely to
produce puns, but the notions of “schema” and “template”
are not radically (or interestingly) different from those estab-
lished within mainstream NLG (e.g. [McKeown, 1985], [Ku-
kich, 1983]). However, the way that this whole architecture
is deployed is unusual. Normally in NLG, we can reason-
ably make a distinction between some background knowledge
base (e.g. linguistic rules, lexicon, general facts about the do-
main) and some message which is to be conveyed. A typ-
ical schema-based system then matches its schemas against
the message to determine applicability, with the background
knowledge being called upon only as needed in the match.

In contrast, the pun generators have only a knowledge base,
and do not start from a message to be conveyed: they are
random generators of arbitrary puns. Hence the schemas
are tested against the whole lexical knowledge base, to see
if any sequence of items will meet the stated preconditions.
Rather than asking, as in informative NLG, ‘is the message
of this general shape?’, the pun generator asks ‘are there any
items which can be put together in this way?’. Thus con-
tent selection (which, conventionally, would precede schema-
matching) is inherent in this search for matching items.

Also, the remits passed from the schema-instantiator to the
constituent builder may be extremely vague, and not directly
related to any communicative goals. For example, generating
“Tom Swifties” requires, for the utterance part of the text, a
constituent to be constructed which is, roughly speaking, ‘any
sentence which uses this specific word’.

These processing characteristics follow naturally from the
fact that the pun generators produce self-contained puns, and
hence have no communicative goals: any text will do, regard-
less of content, providing it constitutes a pun.

Hence, although schemas and templates are standard NLG
notions, the freedom allowed to the processing model is less
normal. Is this model of wider use? One possible applica-
tion where this arrangement (arbitrary content but constrained
form) might be of use is a language-teaching tool in which the
illustrative examples are not all pre-programmed by hand but
are machine-generated (either in advance or in response to
the interaction with the human learner). It is conceivable that
a such a system might need to create phrases or sentences
which are not embedded in any real context, and for which
the information conveyed is not critical, but whose linguistic
structure must manifest some particular property (e.g. using
some specific word, or being in passive voice). In that case,
the unusual priorities embodied in the JAPE-style architecture
(linguistic form over content) might be relevant.

The three-stage pun generation architecture allows quite
efficient processing, but the initial lexicon search could be
costly if done crudely. However, given the well-defined na-
ture of that search, it can be optimised in various ways;
preliminary unpublished results on the STANDUP project
[Waller et al., 2005] suggest that fast schema-instantiation
from a realistically large lexical database is quite feasible.

4.4 Usefulness of self-contained puns
Although a self-contained pun is of use only where it would
be helpful to interject a joke for its own sake, it could have

a limited degree of contextual connection, in the following
way. The status of the text as a pun is not context-dependent
(otherwise it would be a contextually integrated pun), but it
could mention topics which are currently salient. For exam-
ple, Loehr [1996] describes a very small prototype system in
which the user interface occasionally tells the user a (JAPE-
generated) joke. Loehr explores limited contextual linking,
based on keywords (for example, using a joke involving the
word aid when help was needed).

Such loose subject matter links do not require computer
joke-generation, but could be achieved from an database of
jokes which had been thoroughly cross-indexed. This might
be a viable way to add humour to a user-interface. Some
investigation would be needed of what types of semantic
links give rise to the most appropriate jokes, and the cross-
indexing, to be automated, would have to depend on well-
defined mechanisable relations (e.g. from a lexical database).

The main weakness of using self-contained puns in practi-
cal applications (such as those suggested by writers cited in
Section 2) is the lack of a subtle connection to what is go-
ing on at the moment of delivery. Nevertheless, isolated or
random jokes could still play a role in some applications:

Virtual agents: If a life-like image is to have a facetious
“personality”, then producing the occasional joke (even
a bad one) might be fitting (as in Loehr’s system).

Teaching language: An interactive system for assisting lan-
guage learners might use jokes as subject matter to be
studied or played with (as proposed by McKay, or by
[Manurung et al., 2004]). In such cases, the jokes might
not need to be tightly related to context.

Again, both these applications could meet the joking re-
quirements using a database of jokes, although proponents of
the educational application might argue that the effect will
be enhanced if the learner can experiment with joke-building
using an interactive system; cf. [Waller et al., 2005].

Notice that even a witty advertising slogan, although typ-
ically used in an isolated, context-independent fashion, is
more sophisticated than the types of self-contained pun that
have so far been computer generated, in that the content of a
slogan is not arbitrary: it has to convey a particular message.
In contrast, the systems reviewed in Section 4.1 above give
no regard to the communicative content of the output text.

5 A general definition
From (2), (3) and other examples, Ritchie [2004] argues that
there is a relatively well-defined, but large, subclass of puns
which can be summarised thus:

(i) part of the utterance is phonetically similar (perhaps
identical) to some other string not present in the utter-
ance;

(ii) either the utterance, or the utterance with that other
string substituted in, is contextually appropriate;

(iii) if the two substrings are identical, then they should be
lexically analysable in different ways, and the lexical
analysis of the one not in the utterance should either
be linked semantically to the context, or should involve



grouping together words which are separate within the
utterance;

(iv) if the two substrings are merely similar, then the un-
spoken one should form a complete and recognisable
linguistic unit (e.g. a complete word or an established
phrase). [Ritchie, 2004, pp.125-126]

This is probably the best available formal definition of this
kind of pun (see [Davies, 2004]), but it has some limitations
(which Ritchie documents) and some weaknesses:

(i) This covers only paradigmatic puns, where the com-
parison is between two strings, only one of which ac-
tually appears in the text. There are also syntagmatic
puns where both the similar/identical strings appear in
the text; (7) and (8) are very simple examples.

(ii) Where a sequence of words is involved in the pun, even
the unspoken sequence must “make sense” in some way;
that is, a pun is not formed when a contextually appropri-
ate remark has a portion which is phonetically identical
to some random sequence of words (unless the individ-
ual words qualify as puns separately). We shall assume
this further condition in our discussions.

(iii) In the case where the two strings are merely similar
(but not identical) the definition puts no restriction on
which should appear in the actual text (providing the
non-present text forms a well-known phrase). However,
consider an example like (3), above. The headline would
not have worked as a pun had it simply read ‘Super-
califragilisticexpialidocious’, as this would not have al-
lowed recovery of the contextually-appropriate message
(even though it would still conform to Ritchie’s defini-
tion). The correct condition may be better stated in terms
of the ease with which the absent string can be sum-
moned up or reconstructed, although this is not an un-
problematic notion [Hempelmann, 2003]. It may be that
there is a trade-off between the degree of phonetic simi-
larity and the extent to which the string outside the text
is a well-known phrase. Ritchie also cites the headline
(15), but this may work because un-bolivia-ble is not a
valid word, which may draw attention to the possibility
that another word or phrase should be considered.

(15) Some South American stamps are un-bolivia-ble

The word unbelievable is not a well-known item in the
sense of being famous, but it is cohesive as a morpho-
logically complex word.

(iv) The previous point suggests that the condition stipulat-
ing that either one of the two similar strings should form
a contextually appropriate part of the utterance may, in
some cases, be too loose.

(v) Ritchie adopts the widespread assumption that puns are
defined on phonetic strings, as this allows a natural de-
scription of the central relationship (phonetic similarity).
However, many puns are conveyed in written text, and
most NLG systems produce textual rather than spoken
output. When a pun involves two phonetically identical
strings, the question of which string appears in the ac-
tual utterance is moot when all the representations are

phonetic; when the text is orthographically represented,
the choice of string may affect whether the pun is notice-
able to the reader. It is arguable that (2) would be more
obviously a pun if the final sentence were Your bag’s
leeking! That is, it may improve the effectiveness of the
pun to use the textual form which is not completely lin-
guistically appropriate (here, there is no verb to leek).

Ritchie [2004, p. 199] gives a more formal version of his
definition, which makes it clearer what primitive concepts it
depends upon. These are:

Phonetic similarity. Study of an extensive range of puns
(e.g. [Sobkowiak, 1991]) shows that the degree (and na-
ture) of similarity required for punning is not obvious.

Contextually appropriate. Puns are part of a text which
“makes sense in context”. Although this is not unprob-
lematic, it is a condition which an NLG system should
aim for, even if no punning is intended; that is, it is not
a further condition imposed by the aim of punning.

Linked to the context. This is a looser notion than ‘contex-
tually appropriate’. The linking just means that some
concepts which are salient in the context are some-
how related to the concept(s) mentioned in the word or
phrase; e.g. in a situation where cooking is being dis-
cussed, words like grill or baste would be linked to the
context.

Forming a recognisable word/phrase. Puns can depend on
a sequence of words being matched against a single
word, or a well-known idiom, motto or quotation. It
is not clear when a phrase is sufficiently established to
qualify.

The above definition covers contextually integrated puns
relatively naturally – see (2), (4) and the examples in [Ritchie,
2004, Ch 9] – and is therefore directly relevant to the possible
generation of such puns. Less obviously, the definition could
be seen as covering self-contained puns (and hence the puns
in Section 4), as follows. The early part of the text (e.g. the
question in a riddle) can be treated as the “context”, and the
latter part (e.g. the answer to a riddle) as forming the pun
utterance proper. That is, self-contained puns can be seen as
puns with their own “context” built in, rather than linking to
some context outside the text.

6 Computing contextually integrated puns

6.1 The usefulness of contextually integrated puns
Many of the advocates of useful computational humour seem
to have in mind some form of “wit” by the computer system,
rather than the mere spouting of jokes. The hypothetical il-
lustrations given by Binsted[1995], for example, involve droll
observations by the computer about what is happening at the
moment. Such goals take us in the direction of contextually
integrated puns. More concretely, if puns delivered within a
quasi-natural dialogue are not contextually appropriate in a
non-trivial way, there is little point in wasting time with com-
puter generation; as noted earlier, a large and well-indexed
database of jokes would be much more straightforward.



Let us consider what would be needed for a system to pro-
duce a text which met all the pun conditions given in Sec-
tion 5. We assume that the NLG system will already be
striving for a text which makes sense (in context), so we
need only consider how the further pun conditions might be
achieved. All of these requirements are decidable in princi-
ple, although (as noted above) there are non-trivial problems
in defining what should count as sufficient phonetic similar-
ity, what counts as an established phrase, and what counts as
linkage to a context.

6.2 Detecting puns
Suppose some communicative system is to enhance its verbal
output with puns. It seems reasonable to propose that such
a system (particularly in cases where this behaviour is to be
part of a life-like “personality”) should be “aware” of having
made a pun. That is, if the system makes a pun, it should have
some record of that having happened, so that it can respond
appropriately to, or even anticipate, the user’s reaction. Ide-
ally, the system should also be able to avoid humour when
this would be socially inappropriate.

This suggests that the most minimal form of pun-
computation would be checking textual output to see if it
contains accidental puns. The system would then be in the
position to make sense of any reaction by the user to the pun
(or to eliminate any accidental but undesirable humour). This
would not involve any special-purpose text construction – the
system would merely check the output it had designed to meet
its current (non-punning) goals. If unwanted humour is to be
eliminated, this is more difficult, as it would require some
form of revision component, which is not trivial.

Such a scheme could be seen as a special case of a more
general post-checking approach, which tests for other desir-
able or undesirable properties, such as accidental ambiguity.
(General ambiguity might even constitute a form of fortuitous
humour, but that goes beyond the basic punning we are cur-
rently considering.)

As we shall discuss below, the full pun definition might
lead to complex computations. A simplification which should
be more tractable (but might miss more complex puns) would
be merely to check each lexical item in the text to determine
whether it had a homophone which was linked to the context.
In order to ensure that the user was aware of the pun, the
homophone might have to be substituted into the text (as in
our method below, Substitution with identity).

Notice that incomplete coverage is something of a flaw in
a checking mechanism like this, as the aim is for the system
to spot every occasion on which it makes a pun; if it misses
some, then the user might respond to a pun in a way which the
system cannot easily interpret (or an unwanted joke might slip
through). On the other hand, a pun-production mechanism,
like those discussed below, need not be comprehensive, as
long as it can produce some puns (and does not cause the text
to become faulty in other respects).

6.3 The search problem
Our working definition (Section 5) involves a combination
of conditions, some of which result in considerable search:
finding some substring of the utterance, finding some string

not in the utterance (a very large set!), finding some lexical
analysis of the non-utterance string which meets certain con-
ditions, finding some well-known word or phrase which is
similar. The definition also has a few disjunctions, to further
increase the search. Hence, even a non-constructive check
(Section 6.2) would involve a significant amount of search-
ing, particularly if naı̈vely implemented.

Some of the simpler cases considered below (e.g. substi-
tuting a contextually-linked homophone) might fit naturally
into a NLG system based on constraint-satisfaction (CS) (cf.
[Power, 2000]). However, CS methods would not completely
remove the complexity problems involved in implementing
the entire definition from Section 5. CS reduces process-
ing in cases where the possible values of the variables are
well-defined and easily enumerable, and evaluating individ-
ual constraints is relatively cheap; i.e. where the main com-
putational load is in testing compatibility among chains of
values. Here, the main work is elsewhere. Conditions such as
testing whether some substring of some possible output string
is similar to some well-known phrase would require compu-
tationally expensive enumeration of the basic values (possible
substrings of possible output texts), and non-trivial conditions
(phonetic similarity) involving very large sets (all words and
well-known phrases). CS might be slightly better than a naı̈ve
search, but it would not be a panacea.

One complicating factor is that the pun criteria are largely
surface constraints which apply to what, in a conventional
pipeline NLG architecture [Reiter and Dale, 2000], would be
the final output of the generator. Hence, it may be difficult
for high-level (early) stages of a pipeline generator to make
syntactic or lexical decisions which will result in puns, nor
is it simple to effect “revisions” to a surface text which has
been the outcome of much high-level processing. There is
not space here to explore the large issue of surface-level con-
straints and their consequences for NLG architecture, but see
[Reiter, 2000] for some discussion.

Puns are not the only forms in which surface constraints are
central: poetry generation [Manurung et al., 2000; Gervás,
2002] makes comparably awkward demands.

6.4 Some possible devices
We can consider some possible ways in which an NLG sys-
tem might include contextually integrated puns.

Substitution with identity. The crudest approach to actual
pun-generation would be to attach a punning module as a final
stage. This module would review the entire text as generated
and see whether it could be edited to form a pun, while mak-
ing as few revisions as possible – preferably none – to pre-
vious higher-level decisions. The simplest tactic here would
be the substitution of a phonetically similar (and internally
coherent) string for some subpart of the message, where the
substituted string does not represent the same lexical items
as those in the original message, and either the content of
the substituted string is somehow linked to the context or the
substituted version should represent a finer segmentation of
the material into words. Even for this very basic method, the
search is considerable. A simplified version could be limited
to looking for homophones of words in the message, and sub-



stituting these providing they were contextually linked; this
is probably the most tractable option.

Substitution with similarity. A slight extension of the pre-
vious method would be to relax the condition from phonetic
identity to phonetic similarity. However, some care would
be needed in deciding under what conditions this should be
permitted, in view of the point raised earlier about the “re-
coverability” of the contextually appropriate string. (This ex-
tension worsens the search problem.)

Minor rephrasing. It is conceivable that a surface-based
editing component could detect that a minor re-wording
would fulfil the pun conditions. However, such changes
should not impair the overall message of the text, which
means that this is not an easy solution.

Lexical preference. Rather than using a post-editing stage,
we could build the pun facilities into a higher level of
the NLG system. One possibility would be some form of
amended lexical choice, within the NLG process (i.e. not
post-editing as in the above mechanisms). The system could,
when choosing a lexical item, give preference (if it would not
distort the intended message) to a word which has a homo-
phone which is in some way linked to the context. It might
also be helpful to use that homophone in the text, to make the
pun obvious to the reader, as noted previously. An extension
would be to have the lexical choice system seek a phoneti-
cally similar item (not a strict homophone) which is associ-
ated with the context. In this case, inserting that other word
in the text (in place of the more directly correct one) would
be not just helpful but necessary.

Rephrasing for lexical preference. The previous device
could perhaps be generalised, depending on how the genera-
tor organises lexical choice, to giving preference to a phrasing
(not just the choice of a single word in isolation) which con-
tains a word with a homophone/similar word which meets the
pun conditions. This increases the amount of searching that
the NLG system would require.

Matching against phrases. A further generalisation would
be for the system to seek not an identical/similar word, but
a phrase (similar/identical to a valid wording of the intended
message) which met the pun conditions (perhaps, as in exam-
ple (3), matching one word against several). These conditions
(Section 5) for a phrase are slightly different from those for a
word. To consider matching all possible well-known phrases
(assuming such a database were available) when constructing
a sentence would lead to high search costs.

Some of these processes could be quite open-ended, as
puns (human-constructed) sometimes involve quite global re-
phrasing in order to achieve the punning effect. The subeditor
who created (3) must have planned the entire headline with
the word Supercalifragilisticexpialidocious in mind.

The later tactics (Rephrasing for lexical preference, Match-
ing against phrases) would be more easily incorporated into
a generator which was opportunistic about what material to
include. For example, the ILEX text generator [Oberlander et
al., 1998] has a content selection stage in which the knowl-
edge base is traversed to gather facts to be expressed. This

is not as free as the process in Section 4.2 above, as ILEX
starts from a particular knowledge base object which is to be
described, and the search is for facts relevant to that object.
The STREAK system [Robin, 1994] can produce variants of
a text in which different amounts of supporting information
(for the central proposition) are included. The choice of this
additional information could allow more freedom to a pun-
devising algorithm (although still with significant search).

Even if any of these pun-creating schemes were imple-
mented, it is quite likely that in many cases no suitable match
would be found, and text realisation would have to proceed as
normal. That is, the pun-condition checking might be wasted
effort, just adding to the generation time for the text.

7 Conclusions
We have seen that existing pun generators assume a relatively
simple rule-based generation architecture, but the way that
this architecture has been used is not typical of NLG tasks.
These generators produce self-contained puns, but such jokes
would be of potential use only in certain applications (where
bald joke-telling is acceptable, or where language is to be
studied rather than used in natural communication). The case
for using contextually integrated puns to enhance computer
systems is more plausible, but in the most general case this
could lead to computational complexity. Nevertheless, there
may be some tractable “tricks” which an NLG system could
use to produce very simple contextually-integrated puns.

Acknowledgements: This paper benefitted from comments
from the Aberdeen NLG group, and from Ruli Manurung.

References
[Binsted and Ritchie, 1997] Kim Binsted and Graeme

Ritchie. Computational rules for generating punning rid-
dles. Humor: International Journal of Humor Research,
10(1):25–76, 1997.

[Binsted, 1995] Kim Binsted. Using humour to make natural
language interfaces more friendly. In Hiroaki Kitano, ed-
itor, Proceedings of the International Joint Conference on
Artificial Intelligence Workshop on AI and Entertainment,
pages 55–57, Montreal, 1995.

[Binsted, 1996] Kim Binsted. Machine humour: An imple-
mented model of puns. PhD thesis, University of Edin-
burgh, Edinburgh, Scotland, October 1996.

[Davies, 2004] Christie Davies. Review of ‘The linguis-
tic analysis of jokes’. Journal of Literary Semantics,
33(2):196–197, 2004.

[Gervás, 2002] Pablo Gervás. Exploring quantitative evalua-
tions of the creativity of automatic poets. In Carlos Bento,
Amilcar Cardoso, and Geraint Wiggins, editors, 2nd Work-
shop on Creative Systems, Approaches to Creativity in
Artificial Intelligence and Cognitive Science, ECAI 2002,
Lyon, France, 2002.

[Hempelmann, 2003] Christian Hempelmann. Paronomasic
Puns: Target Recoverability Towards Automatic Genera-
tion. PhD thesis, Purdue University, 2003.



[Hulstijn and Nijholt, 1996] Joris Hulstijn and Anton Ni-
jholt, editors. Proceedings of the International Workshop
on Computational Humor, number 12 in Twente Work-
shops on Language Technology, Enschede, Netherlands,
September 1996. University of Twente.

[Kukich, 1983] Karen Kukich. Design of a knowledge-
based report generator. In Proceedings of the 21st Annual
Meeting of the Association for Computational Linguistics,
pages 145–150. ACL, 1983.

[Lessard and Levison, 1992] Greg Lessard and Michael Lev-
ison. Computational modelling of linguistic humour: Tom
Swifties. In ALLC/ACH Joint Annual Conference, Oxford,
pages 175–178, 1992.

[Lessard and Levison, 1993] Greg Lessard and Michael Lev-
ison. Computational modelling of riddle strategies. In
ALLC/ACH Joint Annual Conference, Georgetown Uni-
versity, Washington, DC, pages 120–122, 1993.

[Levison and Lessard, 1992] Michael Levison and Greg
Lessard. A system for natural language generation. Com-
puters and the Humanities, 26:43–58, 1992.

[Loehr, 1996] Dan Loehr. An integration of a pun genera-
tor with a natural language robot. In Hulstijn and Nijholt
[1996], pages 161–172.

[Lyttle, 2001] Jim Lyttle. The effectiveness of humor in per-
suasion: The case of business ethics training. Journal of
General Psychology, 128(3):206–216, April 2001.

[Manurung et al., 2000] Hisar Maruli Manurung, Graeme
Ritchie, and Henry Thompson. A flexible integrated
architecture for generating poetic texts. In Proc of
the Fourth Symposium on Natural Language Processing
(SNLP 2000), pages 7–22, Chiang Mai, Thailand, 2000.

[Manurung et al., 2004] Ruli Manurung, Alistair Low, Lu-
cia Trujillo-Dennis, David O’Mara, Helen Pain, Graeme
Ritchie, and Annalu Waller. Interactive computer genera-
tion of jokes for language skill development. Talk at An-
nual Conference of the International Society for Humor
Studies, June 2004. Dijon, France.

[McKay, 2002] Justin McKay. Generation of idiom-based
witticisms to aid second language learning. In Stock et al.
[2002], pages 77–87.

[McKeown, 1985] Kathleen McKeown. Text Generation.
Studies in Natural Language Processing. Cambridge Uni-
versity Press, Cambridge, UK, 1985.

[Morkes et al., 1999] John Morkes, Hadyn K. Kernal, and
Clifford Nass. Effects of humor in task-oriented human-
computer interaction and computer-mediated communica-
tion: A direct test of srct theory. Human-Computer Inter-
action, 14(4):395–435, 1999.

[Nijholt, 2002] Anton Nijholt. Embodied agents: A new im-
petus to humor research. In Stock et al. [2002], pages 101–
111.

[Oberlander et al., 1998] Jon Oberlander, Mick O’Donnell,
Alistair Knott, and Chris Mellish. Conversation in the mu-
seum: experiments in dynamic hypermedia with the intel-

ligent labelling explorer. New Review of Hypermedia and
Multimedia, pages 11–32, 1998.

[O’Mara and Waller, 2003] Dave A. O’Mara and Annalu
Waller. What do you get when you cross a communica-
tion aid with a riddle? The Psychologist, 16(2):78–80,
2003.

[Pereira and Warren, 1980] F. Pereira and D. H. D. Warren.
Definite clause grammars for language analysis – a survey
of the formalism and a comparison with augmented tran-
sition networks. Artificial Intelligence, 13:231–278, 1980.

[Power, 2000] Richard Power. Planning texts by constraint
satisfaction. In Proceedings of the 18th International Con-
ference on Computational Linguistics (COLING-2000),
pages 642–648, Saarbrücken, Germany, 2000.

[Reiter and Dale, 2000] Ehud Reiter and Robert Dale. Build-
ing Natural Language Generation Systems. Cambridge
University Press, Cambridge, UK, 2000.

[Reiter, 2000] Ehud Reiter. Pipelines and size constraints.
Computational Linguistics, 26(2):251–259, June 2000.

[Ritchie, 2003] Graeme Ritchie. The JAPE riddle genera-
tor: technical specification. Informatics Research Report
EDI-INF-RR-0158, School of Informatics, University of
Edinburgh, Edinburgh, February 2003.

[Ritchie, 2004] Graeme Ritchie. The Linguistic Analysis of
Jokes. Routledge, London, 2004.

[Robin, 1994] Jacques Robin. Revision-Based Generation of
Natural Language Summaries Providing Historical Back-
grouns: Corpus-Based Analysis, Design, Implementation
and Evaluation. PhD thesis, Columbia University, 1994.

[Sobkowiak, 1991] Wlodzimierz Sobkowiak. Metaphonol-
ogy of English Paronomasic Puns, volume 26 of Univer-
sity of Bamberg Studies in English Linguistics. Peter Lang,
Frankfurt, 1991.

[Stock et al., 2002] Oliviero Stock, Carlo Strapparava, and
Anton Nijholt, editors. Proceedings of the April Fools’
Day Workshop on Computational Humor, number 20 in
Twente Workshops on Language Technology, Enschede,
Netherlands, April 2002. University of Twente.

[Stock, 2002] Oliviero Stock. Computational humor. In Ste-
fano A. Cerri, Guy Gouardères, and Fábio Paraguaçu, ed-
itors, Intelligent Tutoring Systems: Proceedings of the 6th
International Conference, Lecture Notes in Computer Sci-
ence, pages 2–3, Berlin, 2002. Springer. Invited talk.

[Stock, 2003] Oliviero Stock. “Password Swordfish”: Verbal
humor in the interface. Humor: International Journal of
Humour Research, pages 281–295, 2003.

[Venour, 1999] Chris Venour. The computational generation
of a class of puns. Master’s thesis, Queen’s University,
Kingston, Ontario, 1999.

[Waller et al., 2005] Annalu Waller, Dave O’Mara, Ruli Ma-
nurung, Helen Pain, and Graeme Ritchie. Facilitating user
feedback in the design of a novel joke generation system
for people with severe communication impairment. In
Proceedings of 11th International Conference on Human-
Computer Interaction, Las Vegas, July 2005.


