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Abstract An attempt to account for commonalities that many NLG

. systems share, without imposing too many restrictionss as i
We present an NLG system that.uses Integer Lin- the case with Reiter's "consensus” model, is the Reference
ear Programming to integrate different decisions A chitecture for Generation Systems (RAQS)ellish et al.,
involved in the generation process. Our approach 5004 RAGS is an abstract specification of an NLG architec-
prowdeg an aIternaﬂve to pipelinabed sequenUaI , ture that focuses on two issues: data types that the gemerati
processing which has become prevalent in today's  ,5cass manipulates and a generic model of the interactions
NLG applications. between modules, based on a comneentral server An

important feature of RAGS is that it leaves the question of

1 Introduction processing flow to the actual implementation. Hence it is the

Oo_retically possible to build both fully integrated as wedl a

pipeline-based systems that would observe the RAGS princi-

ples. Two implementations of RAGS presented litellish

and Evans, 2004lemonstrate an intermediate way.

In this paper we present a novel approach to building an
integrated NLG system, in which the generation process is
modeled as a discrete optimization problem. It provides an
I@xtension to theslassification-based generatidramework,
presented inMarciniak and Strube, 2004 We first assume
modularization of the generation process at the lowestiposs
ble level: individual tasks correspond to realizationsiof s
rgle form elements (FESs) that build up a linguistic exprassio

he decisions that these tasks involve are then represented
|as classification tasks and integrated via an Integer Linear
Programming (ILP) formulation (see e.pfNemhauser and

the other side of the spectrum there are highly modularizeéfvmsey’ 1999, This way we avoid the well known ordering

pipeline architectures. A prominent example of this second’mblﬂn th?t IS ?“Tlsetn; In alltﬁlpdelllne-_balse(_j sys}cem;,f.mﬁébse
case is theonsensupipeline architecture recognized [ie- Ing, atleast partially, the methodological principles '

iter, 1994 and further elaborated iiReiter and Dale, 20q0 W€ specify the architecture of our system at two ind_ependent
The modularization of Reiter's model occurs at two levels./€VE!S: Al the abstract level, the low-level generatiorksas
First, individual linguistic decisions of the same typeg(e. are defined, all based on the same input/output interface. At

involving lexical or syntacticchoice) are grouped together the implementation level, the processing flow and integrai

within single low level tasks, such dexicalization aggre- method are determined.

gationor ordering Second, tasks are allocated to three high- | N€ rest of the paper is organized as follows: in Section 2
level generation stages, iBocument PlanningMicroplan- W€ present briefly the classification-based generationdram

ning and Surface Realizatian The processing flow in the WOrK andl reénartk on3the s_htortgomlr:ﬁs :)ijmfpelmel-t:_asedf E[)r:o-
pipeline architecture is sequential, with individual tadle- cessing. In Section 5 we introduce the ormufation or the

ing executed in a predetermined order generationtask, and in Section 4 we report on the expergnent

A study of applied NLG systen{<€ahill and Reape, 1999 and evaluation of the system.
reveals, however, that while most applied NLG systems rely, e .
on sequential processing, they do not follow the strict modu2 Classification-Based Generation
larization that the consensus model assumes. Low-leve tas In informal terms, classification can be characterized as th
are spread over various generation stages and may in fact lbesk of assigning a class label to an unknown instance, given
executed more than once at diverse positions in the pipelineset of its properties and attributes represented as a éeadar

From an engineering perspective, one of the major consi
erations in building a Natural Language Generation (NLG)
system is the choice of the architecture. Two importan&ssu
that need to be considered at this stage are firstlynbeu-
larization of the linguistic decisions involved in the genera-
tion process and secondly, thecessing flowicf. [De Smedt
etal, 1994).

On one side of the spectrum lie integrated systems, wit
all linguistic decisions being handled within a single prss
(e.g.[Appelt, 1985). Such architectures are theoretically at-
tractive, as they assume a close coordination of diffeygres
of linguistic decisions, which are known to be dependent o
one another (cf. e.dDanlos, 198}). A major disadvantage
of integrated models is the complexity that they necessari
involve, which results in poor portability and scalabilitPn



a, be conn null
a o |adirank dsc: -
1 \ verb_lex:  continue - adj_dir_dsc: -
VP |verb_form: bare_inf L /\
hd \ K
. CONN Dc

s_exp: VP
| ! I’\L‘IIl tur‘n GAD‘C ”””
J continue o ! Dc = and
’ Dc Yj hi
/ phr_type: PP conn: null
i | prep_lex: adjrank dsc: 1| k@ BA D¢ agl ET kdsdcSC r|2hl
! [or_type . VP ——-me- ad| rank_phr: 2 adj_dir_dsc: left c 3 Dc - 9
! Ere_ﬁ,\ex' a\on% P - /\ /\
|31 vp *|adi_rank_phr: 1 vP p‘p Bz VF' /c\ Dn: Dc Dc Dc
N tothesports ... — o /\ /\ /\ CONN Dc
vp* PP v PP vp* PP C‘ONN D‘C CONN Dc CONN Dc CONN De | |
| | | | . ] . and continue ...
along the road continue along the road to the sports ... null facing ... null facing ... null turn ... and continue ...

Figure 1: LTAG-based derivation at the clause (left) andaisse levels (right). Elementary trees are representéebasre
vectors. Adjunction operations are marked with dashednexro

tor. In recent years supervised machine learning methoeds ref the profiled situation. This tree-based representatidine
lying on pre-classifiettaining datahave been applied in var- semantic content of route directions constitutes the input
ious areas of NLP to solve tasks formulated as classificatiothe generation process. A detailed description of the upder
problems. In NLG machine learning methods have been useidg conceptual model and the annotation process is prasente
to solve single tasks such as content selection and orderirig [Marciniak and Strube, 2005

(e.g.[Duboue, 2004; Dimitromanolaki and Androutsopoulos,

2003), lexicalization (e.g[Reiter and Sripada, 20{4and lurn efton the prick sidewalk
referring expressions generation (d@henget al, 2001). T

Facing the Wildcat statue and continue along the road ...

In these applications classifiers trained on labeled data
have proven more robust and efficient than approaches us-

subsequent

Make a right onto Concord Road

ing explicit expert knowledge. The difficulty of formaliz- p—

ing the linguistic knowledge involved in the development and keep going straight

of a knowledge-based system (a.kkaowledge-acquisition- _ongoing " gngoing
bottleneck has been replaced W|th an eﬁort Of Obtalnlng the passing Presbyterian Church ... until you reach Copeland Street

\subsequent

right kind of data, which typically involves annotating man
ually a corpus of relevant texts with the required linguisti
information (cf.[Daelemans, 1993

The classification-based generation framework that we in-
troduced ifMarciniak and Strube, 2004 based on a simple
idea that the linguistic form of an expression can be decom-
posed into a set of discrete form elements (FES) representip. 2 From LTAG to Form Elements
both its syntactic and lexical properties The generatian p
cess is then modeled as a series of classification tasksthat r
alize individual FEs. Realization of each FE is then regdrde
as a single low-level generation task.

The library building will be ...

Figure 2: Temporal Structure

To specify an inventory of FEs that would become objects of
the low-level generation tasks, we first apply the Lexicaliz
Tree Adjoining Grammar (LTAG) formalism (see e[doshi
and Schabes, 1991to model the linguistic form of the texts.
2.1 Route Directions In LTAG, the derivation of a linguistic structure starts i
fselection oklementaryrees, anchored by lexical items, such
as verbs or prepositions at the clause level and discourse co
nectives at the discourse level (EfVebber and Joshi, 1998

) i In the next step, elementary trees are put together by means
(a) Facing the Wildcat statue, (b) turn left on the  of 5gjunctionoperations that follow the dependency structure
brick sidewalk (c) and continue along the road to provided by thederivation tree We take the temporal struc-
the Sports Complex. (d) Make arightonto Concord  yre from Figure 2 to constitute the discourse level deiovat
Road, (e) and keep going straight, (f) passing Pres-  ree, with the temporal relationships corresponding tesime

As the main application for this work we consider the task o
generating natural languagasute directions An example of
such a text is given below:

byterian Church on your left, (g) until you reach tactic dependencies. At the clause level, the derivatiemis
Copeland Street. (h) The library building will be isomorphic with the frame-based ontological represemtati
just around the corner on your right. of individual situations (seBMarciniak and Strube, 2005

We analyze the content of instructional texts of this kindin  The clause- and discourse-level derivation of discour#te un
terms of temporally related situations, iaetions(b, ¢, d, €)  (c) from the above example in the context of (a) and (b) is
stateq(a, h) anceventqf, g), denoted by individual discourse depicted in Figure 1. At the clause level, the set of elemen-
units. The temporal structure of the texts is then modeled astary trees includes oniaitial tree a; anchored by the main
tree, with nodes representing individual situation dggimmns  verb, which also specifies the syntactic frame of the clause,
and edges signaling the relations (see Figure 2). The semaandauxiliary treesg; andg; corresponding to the verb argu-
tics of each discourse unit is further represented as arfeatuments. At the discourse level, the discourse unit which eccu
vector describing the aspectual category and frame steuctu pies the root position in the temporal structure (cf. Figeire



Adj. Rank| Adj. Dir. | Conn. | SExp. | Verbl Lex. | Verb Form the rank of the respective constituents
1 | right | and | VP | continue | Bare Inf. .

Phr Typa | Prep. Loxs | Ad, Rank | PIv. Typa | Prep. Lexs | Ad. Rank . Arguably, the above FEs _and the corrgspondmg tasks are
PP | aong | T | PP o | 2 independent of the underlying grammatical model. In this
work we use the abstraction of the grammatical structure pro
Table 1: FEs based form representatioaind continue along  vided by LTAG, but the same or a similar set of FEs can
the road to the sport complex be readily derived from other formalisms (cf. e[§leteer,
199d). The role of the grammatical theory in defining form
elements is twofold. First, it specifies the exact positibn o
is modeled as the initial treg;, and auxiliary treegs and 3, individual FEs in the grammatical structure, making it clea
represent the remaining discourse units. how they should be assembled. Second, it ensures a wide
To model the whole process in a uniform way we en-coverage: although the linguistic structures that we a®rsi
code the elementary trees as feature vectors, with individhere are relatively simple, the use of LTAG as the underlying
ual features conveying syntactic (esgexp and lexical (e.g. grammatical formalism guarantees that our generationdram
verblex) information. Featureadj.rank andadj.dir denote  work can be applied to producing much more complex con-
respectively the ordering of the adjunction operationstaed  structions, both at the clause and discourse levels. Appar-
adjunction direction, which both determine the linear stru ently, this would require a richer feature vector represton
ture of the text. Hence the form of the whole discourse carof the initial trees, and hence a larger number of FEs and the
be represented in terms of feature-value pairs used to encodorresponding generation tasks. The basic principlesef th
the initial trees and the derivation process. On that basis wgeneration process, however, would remain unchanged.
define a set of form elements building up a discourse as di- Notice also that the tasks considered here can be grouped
rectly corresponding to the individual features. A dethile under the conventional NLG labels, suchtast structuring
description of the FEs is given below: (i.e. Ty, Tv), lexicalization(i.e. T3, Tg, Tg) andsentence re-
FE;: Adjunction Rank / Disc. Level specifies the linear alization (i.e. Ty, T5, To). Yet another important NLG task,
rank of each discourse unit at the local level, i.e. only sésu  i.e. aggregationappears to be handled indirectly By (e.g.
temporally related to the sanparentclause are considered. Turn left. Continue along the roadvs. Turn left and con-
FE-: Adjunction Direction is concerned with the position tinue along the road.andT5 (e.g.Keep going straight. You
of the child discourse unit relative to the parent one (e.g. (awill pass the Presbyterian Church on your rights. Keep go-

left of (b), (c)right of (b), etc.). ing straight, passing the Presbyterian Church on your right
FEj3: Connective determines the lexical form of the dis- We view it as the strength of our approach that regardless of
course connective (e.gull in (a), until in (g)). their different linguistic character all these tasks arelgied

FE4: S Expansionspecifies whether a given discourse unitin exactlythe same way.

is realized as a clause with the explicit subject (i.e. np+vp . .

expansiorof the root S node in a clause) (e.g. (g, h)) or not2-3  System Architecture and Sequential

(e.g. (a), (b)) Processing

FE5: Verb Form denotes the form of the main verb in a At an abstract level, the architecture of our system comsist
clause (e.ggerundin (a), (c), bare infinitivein (b), finite  of an unordered set of classifiers solving individual genera

presentn (g), etc.). . . tion tasks. Each classifier is trained on a separate set af dat
FEg: Verb Lex. specifies the lexical form of the main verb obtained from the corpus of route directions annotated with
(e.g.turnin (b), passin (f) or reachin (g)). both semantic and grammatical information.

FE~: Phrase Typedetermines for each argumentin a clause In the previous workMarciniak and Strube, 2004ve fol-

its syntactic realization asreoun phraséNP) ,prepositional  lowed the sequential paradigm advocatedbgelemans and
phrase(PP) or gparticle (P). van den Bosch, 199&nd implemented the system asas-
FEg: Preposition Lex. is concerned with the choice of a cade of classifiersin such systems the output representation
lexical form for prepositions or particles in argument [g@s  is built incrementally, with subsequent classifiers haig
(e.g.leftandonin (b) oralongandto in (c)). If the value of  cess to the outputs of previous modules. An important char-

FE- is NP, then this FE is set tmone acteristic of this model is its extensibility. Since cldiess
FEo: Adjunction Rank / Phr. Level specifies the linear rely on a uniform representation of the input (i.e. a feature
rank of each verb argument within a clause. vector) and the output (i.e. a single feature value), it &yd¢a

As an example, consider the FEs-based representation ohange the ordering or insert new modules at any place in the
the form of clause (c) presented in Table 1. Realization opipeline. Both operations only require retraining classi
eachF'E; is represented as a classification tdskwith a set  with a new selection of the input features.
of possibleclass labelszorresponding to the different forms A major problem that we faced was that we found no
that FE; may take. Only task§} and Ty associated re- satisfactory method to determine thight ordering of in-
spectively withAdjunction Rank / Disc. LevahdAdjunction  dividual classifiers that would guarantee optimal reairat
Rank / Phr. Levedre split into a series of binapgrecedence of the grammatical form of the generated expression. We
classifications that determine the relative position of th&®  found out that no matter what ordering we adopted tasks
course units or phrasal arguments at a time (e.g<(&), (c)  that were solved at the begining had a lower accuracy as the
< (d), and similarlyalong the road< to the sports complex necessary contextual information, i.e. based on the owtsom
etc.). These partial results are later combined to determinfrom other tasks, was missing. At the same time, subsequent



Discourse Unit FE3 | FE, FEs
" Pass the First Union Bank ... null vp bare inf.
MN It is necessary that you pass ... null | np+vp | bare inf.
S : 4 .
Passing the First Union Bank ... null vp gerund

o Ty After passing the First Union Bank .. after vp gerund

2m,) > " i
7 : a2 A After your passing ... after | np+vp | gerund
a;‘" As you pass the First Union Bank ...| as | np+vp | fin. pres.
‘ \ Until you pass the First Union Bank |..until | np+vp | fin. pres.
l 51 T Until passing ... until vp gerund

Table 2: Different realizations of form elements: Connesti
Verb Form and S Expansion. Rare but correct constructions

T, are in italics.
Figure 3: Sequential processing as a graph. image restoration application, where classifiers detegittia

"true” intensity values of individual pixels. This task ierf
mulated as a labeling functiof : P — L which maps a

tasks were influenced by the initial decisions, which in someset P of n objects onto a sel of m possible labels. The
cases led t@rror propagation Apparently, this was due to goal is to find an assignment that minimizes the overall cost
the well known fact that elements of the linguistic struetur functionQ(f) which has two componentassignment costs
are strongly correlated with one another (see Edgnlos, i.e. the costs of selecting a particular label for individoia-
1984). Hence individual generation decisions should not bgects, andseparation costsi.e. the costs of selecting a pair
handled in isolation and arranging them in a fixed order willof labels for tworelatedobjects. [Chekuriet al,, 2001 pro-
always involve a specifiordering bias posed an integer linear programming (ILP) formulation &f th

To get a feeling for the limitations that sequential proeess metric labeling problem, with both assignment cost and sep-
ing of generation tasks involves, consider its graphicalee  aration costs being modeled as binary variables of therlinea
sentation in Figure 3. The process corresponds td#st-  cost function.
first traversal of a weighted multi-layered lattice. Separate Recently,[Roth and Yih, 200k applied an ILP model to
layersTt, ..., T,, correspond to the individual tasks, and thethe task of the simultaneous assignment of semantic roles to
nodes at each layel,(, ..., l;»,) represent class labels for the entities mentioned in a sentence and recognition of the
each task In the sequential model only transitions betweenrelations holding between them. The assignment costs were
nodes belonging to subsequent layers are granted. Each suedlculated on the basis of predictionsbafsicclassifiers, i.e.
transition is augmented with a transition cost, which may bérained for both tasks individually with no access to the-out
affected by the travershistorybut does not consider the fu- comes of the other task. The separation costs were fornaulate
ture choices. Nodes selected in this process representthe oin terms of binary constraints which specified whether a spe-
comes of individual tasks. As can be seen, the procdss is Cific semantic role could occur in a given relation, or not.
cally driven and it does not guarantee an optimal realization In the remainder of this paper, we present a more general
of the tasks. model, which we apply to the generation tasks presented in

As an example consider three interrelated form elements3ection 2. We put no limits on the number of tasks being
Connective, S Exp. and Verb Form and their different real-solved, and express the separation costs as stochastic con-
izations presented in Table 2. Apparently each of these FESfraints, which can be calculated off-line from the avdéab
has the potential to affect the overall meaning of the disseu linguistic data.
unit or its stylistics. It can also be seen that only certaime .
binations of different forms are allowed in the given seri@ant 3.1 ”‘I_D Formulation _ _ _
context. Different realization of any of these FEs would re-We consider a general contextin which the generation psoces
quire other elements to be changed accordingly. To concludéomprises arange of linguistic decisions modeled as a set of
following Danlos’ observation, we see mopriori reason to ~ classification task§’ = {77, ..., T\, } which potentially form
impose any fixed ordering on the respective generation taskgutually related pairs.

and the experiments that we describe in Section 4 suppertthi Each taskT; consists in assigning a label frob; =
position. {li1, -, Lim, } t0 @n instance that represents the particular de-

cision. Assignments are modeled as variables of a linear
; S At cost function. We differentiate betwesimple variableghat
3 Discrete thlmlzatlon_ MOdel_ ~ model individual assignments of labels acampound vari-
As an alternative to sequential ordering of the generatiorablesthat represent respective assignments for each pair of
tasks we consider thmetric labeling problenformulated by  related tasks.
[Kleinberg and Tardos, 20p0and originally applied in an To represent individual assignments the following proce-

—Y , . dure is applied: for each tagk, every label froml; is asso-
Since different generation tasks may have varying numberso—__~

labels we denote the cardinality &f, i.e. the set of possible labels 2These costs were calculated as the function ofrtiegric dis-

for taskT;, asm. tance between a pair of pixels and the difference in intgnsit



ciated with a binary variable(l;;). Each such variable rep-
resents a binary choice, i.e. a respective lajas selected if
z(l;;) = 1 or rejected otherwise. The coefficient of variable
z(l;;) which models the assignment cesl;;) is given by:

c(lij) = —log2(p(li;))

wherep(l;;) is the probability of;; being selected as the out-
come of taskl;. The probability distribution for each task
is provided by the basic classifiers that do not consider the
outcomes of other tasks

The role of compound variables is to provide pairwise con-
straints on the outcomes of individual tasks. Since we are
interested in constraining only those tasks are that trely d
pendent on one another we first apply the contingency coeffi-  Figure 4: Graph representation of the ILP model.
cientC to measure the degree of correlation for each pair of
task$. In the case of tasks; andT}, which aresignificantly
correlated for each pair of labels from; x L, we build a sin- We also require that if two simple variablegl;;) and
gle variablex(l;;, lx,). Each such variable is associated with z(l,), modeling respectively labels; andl;,, are set to
a coefficient representing the constraint on the respegtire 1, then the compound variabigi;;, lx,), which models co-

of labelsl;;, I, calculated in the following way: occurrence of these labels, is also set toThis is done in
two steps: we first ensure thatifl;;) = 1, then exactly one
c(lig; lkp) = —log2(p(liz lkp)) variablex(1;;, ;) must also be set to 1:
2(liy) = Y @l lip) =0,

with p(l;;.1x,) denoting theprior joint probability of labels

l;; andl, in the data, which is independent from the general

classification context and hence can be calculated off:line Vi,k € {1,..,n},i <k A je{l,...mi}
The ILP model consists of the target function and a set ofind do the same for variabigly,, ):

constraints which blocklegal assignments (e.g. only one la-

lep €L

bel of the given task can be selectedn our case the target o (lkp) — Z 2 (lij, lip) =0,
function is the cost functio®(f), which we want to mini- bij €L
mize: Vi,ke{1l,..,n}, i<k A pe{l,..,my}
min Q(f) = Z Z e(ly) - (1) Finally, we constrain the values of both simple and com-

pound variables to be binary:

x(li;) € {0,1} A x(lij, lip) € {0,1},
+T_ TZT L ZL, ) c(lij, lep) - @ (lij Irp) Visk € {1,n} A JE€{Lmi} A pe{l,.mp}
ke ig2tkp > € S X L ) We can represent the decision process that our ILP model
Constraints _need to t_)e formulated for both the simple anghyolves as a graph, with the nodes corresponding to indi-
compound variables. First we want to ensure that exactly ongiqua| labels and the edges marking the associations batwee
Iab_ellij belonging to tas_ITi is selected, i.e. only one simple |gpels belonging to correlated tasks. In Figure 4, tAsks
variablexz(;;) representing labels of a given task can be sefgrelated with task’, and taskZ, with taskT,,. No corre-
tol: lation exists for paifly, T,,. Both nodes and edges are aug-
Z eli) =1, Vie{l,..,n} mented thh costs. The goalis to selgct a subset of connected
nodes, minimizing the overall cost, given that for each grou
of nodesTy,Ts, ..., T,, exactly one node must be selected,
3In this case the ordering of tasks is not necessary, andase c| and the selected nodes, representing correlated tasks, mus
sifiers can run independently from each other. be connected. We can see that in contrast to the pipeline ap-
4C is a test for measuring the association of two nominal vari-proach (cf. Figure 1), nlmcal decisions determine the overall
ables, and hence adequate for the type of tasks that we eonsidassignment as thglobal distribution of costs is considered.
here. The coefficient takes values from 0 (no correlatior) foom-
plete correlation) and is calculated by the formuwla= (x*/(N + 4 Experiments and Results
x?))*/2, wherex? is the chi-squared statistic ad the total num-
ber of instances. The significance@fis then determined from the
value of x? for the given data. See e.fGoodman and Kruskal,

T,€T ;€L

Lij€L;

In order to evaluate our approach we conducted a series of
experiments with two implementations of the ILP model and

1977. two different pipelines. Each system takes as input the tree
5In Section 4 we discuss an alternative approach which cersid Pased representation of the semantic content of route-direc
the actual input. tions described in Section 2. The generation process seser

®For a detailed overview of linear programming and different the temporal tree in a depth-first fashion, and for each node a
types of LP problems see e[tNemhauser and Wolsey, 1999 single discourse unit is realized.



Ti: Disc. Units Rank null  and as after until| T3 Connective
Ts Verb Form

To: Phrase Rank Tz: Disc. Units Dir. 0.13 0.02 0 0 0 bare.inf

0 0 0 0 0 gerund

0 0 005 0.02 02 fin_pres

T,: Phrase Type Tg: Prep. Lex T:: Connective 0.36 0.13 0 0 0 will _inf

Table 4: Joint distribution matrix for tasks Connective and
Te: Verb Lex T.: SExp. Verb Form, considering only disc. units similar to (entil
you see the river side in front of ypat Phi-threshold> 0.8.

T Verb Form

Figure 5: Correlation network for the generation tasks.  known. This time we did not consider all discourse units in
the training data, but only those whose meaning, repredente

null  and as after until| 75 Connective as a feature vector, wasmilar to the meaning of the input
Ts Verb Form discourse unit. As a similarity metric we used thRhi co-
040 0.18 0 0 0 bare.inf efficient, and set the similarity threshold @i8. As can be
0 0 0 004 o001 gerund seen from Table 4, the probability distribution computed in
005 0.01 0.06 003 006 finpres this way is better suited to the specific semantic contexs Th

0.06 0.05 0 0 0  willinf is especially important if the available corpus is small el

frequency of certain pairs of labels might be too low to have

Table 3: Joint distribution matrix for selected labels afkz a significant impact on the final assignment.

Connectivg(horizontal)and Verb Form(vertical), computed
for all discourse units in a corpus. 4.3 Pipeline Systems
As a baseline we implemented two pipeline systems. In the
4.1 Correlations Between Tasks first one we used the ordering of tasks that resembles most
We started with running the correlation tests for all pairs o closely the standard NLG pipeline and which we also used
tasks. The obtained correlation network is presented in Figoefore in[Marciniak and Strube, 200%

ure 5. Itis interesting to observe that tasks which realgs F Individual classifiers had access to both the semantic fea-
belonging to the same levels of linguistic organizatiorg an tures, and the features output by the previous modules. To
have traditionally been handled within the same generatioﬁain the classifiers, theorrectfeature values were extracted
stages (i.eText PlanningMicroplanningandRealizationare ~ from the training data and during testing theneratedand
closely correlated with one another. This fact supports emhence possibly erroneous, values were taken.

pirically some assumptions behind Reiter’s consensus mode In the other pipeline system we wanted to minimize the
On the other hand, there exist quite a few correlations thagrror-propagation effect and placed the tasks in the orfler o
extend over the stage boundaries, and all three lexicalizat decreasingaccuracy. To determine the ordering of tasks we
tasks i.eT3, T andTy are correlated with many tasks of a applied the following procedure: the classifier with thethig

totally different linguistic character. est baseline accuracy was selected as the first one. The re-
maining classifiers were trained and tested again, butithés t
4.2 ILP Systems they had access to the additional feature. Again, the Gissi

We used the ILP model described in Section 3 to implemenwith the highest accuracy was selected and the procedure was
two generation systems. To obtain assignment costs, botigpeated until all classifiers were ordered.
systems get a probability distribution for each task from ba
sic classifiers trained on the training data. To calculate th4.4 Evaluation
separation costs, modeling the stochastic constrainthen t
co-occurrence of labels, we considered correlated tadis on
(cf. Figure 5) and applied two calculation methods, which re
sulted in two different system implementations.

In ILP1, for each pair of tasks we computed the joint distri-
bution of the respective labels considering all discourstsu
in the training data before the actual input was known. Suc
obtained joint distributions were used for genera.tmg_a#. d. "Phi is a measure of the extent of correlation between two sets
course qnlts from the test data. An example mat.r'x with JOIntof binary variables, see e.dEdwards, 1976 To represent multi-
distribution for selected labels of tasks Connective anthVe a5 features on a binary scale we appliednmy codingvhich
Form is given in Table 3. An advantage of this approach isransforms multi class-nominal variables to a set of dumanjables
that the computation can be done in@ffline mode and has  with binary values.
no impact on the run-time. 8The ordering of tasks is given in Table 5.

In ILP2, the joint distribution for a pair of tasks was cal-  °Both implemented in the Weka machine learning softviavi-
culated at run-time, i.e. only after the actual input hadnbee ten and Frank, 2040

We evaluated our system usintpave-one-out cross-
validation, i.e. for all texts in the corpus, each text wasdius
once for testing, and the remaining texts provided theitngin
data. To solve individual classification tasks we used the de
cision tree learne€4.5in the pipeline systems and thiaive
rI]Bayesalgorithrﬁ’ in the ILP systems. Both learning schemes



Pipeline 1 Pipeline 2 ILP1 ILP 2
Tasks Pos. Accuracy K Pos. Accuracy K Accuracy K Accuracy K
Dis.Un. Rank| 1 96.81%  90.90% 2 96.81%  90.90%| 97.43%  92.66%| 97.43%  92.66%
Dis.Un. Pos. 2 98.04%  89.64% 1 98.04%  89.64% 96.10%  77.19%| 97.95%  89.05%
Connective 3 78.64%  60.33% 8 79.10%  61.14% 79.15%  61.22%| 79.36%  61.31%
S Exp. 4 95.90%  89.45% 3 96.20%  90.17%| 99.48%  98.65%| 99.49%  98.65%
Verb Form 5 86.76%  77.01% 4 87.83%  78.90% 92.81%  87.60%| 93.22%  88.30%
Verb Lex. 6 64.58%  60.87% 9 67.40%  64.19% 75.87%  73.69%| 76.08%  74.00%
Phr. Type 7 86.93%  75.07% 5 87.08%  75.36% 87.33%  76.75%| 88.03%  77.17%
Prep. Lex. 8 86.23% 81.12% 6 86.03%  81.10%| 87.28%  82.20%| 88.59%  83.24%
Phr. Rank 9 84.73%  75.24% 7 86.95%  78.65% 90.22%  84.02%| 91.27%  85.72%
Phi 0.85 0.87 0.89 0.90

Table 5: Results reached by the implemented ILP systemsvembaselines. For both pipeline systerRss. stands for the
position of the tasks in the pipeline.

yielded highest results in the respective configurafitnko  already mentioned error propagation. This example shows
solve the ILP models we usdgd_solve a highly efficient well the advantage that optimization processing bringsh bo
GNU-licence Mixed Integer Programming (MIP) sol¥er  ILP systems reached much higher scores for all three tasks.
that implements th&ranch-and-Bounalgorithm. For each Finally, it appears as no coincidence that the three tasks in
task we applied &eature selectioprocedure (cflkohaviand  volving lexical choice, i.e. Connective, Verb Lex. and Rrep
John, 199J) to determine whiclsemantideatures should be sition Lex. scored lower than the syntactic tasks in all sys-
taken as the input by the basic classifiers. tems. This can be attributed partially to the limitations of
To evaluate individual tasks we applied two metrics: accu-+etrieval measures which do not allow for the fact, that in a
racy, calculated as the proportion of correct classificeim  given semantic content more than one lexical form can be ap-
the total number of instances, and thetatistic, which cor-  propriate.
rects for the proportion of classifications that might odoyr
chance. Foend-to-encevaluation, we applied thehicoef- 5§ Conclusions
ficient to measure the degree of similarity between the vecto _ L . .
representations of the generated form (i.e. built from te o N this paper we showed that the pipeline architecture in an
comes of individual tasks) and the reference form obtained!LC application can be succ_:ess_fully replacgd with an Inte-
from the test data. ThBhi-based similarity metric is simi- 9rated ILP-based model which is better suited to handling

lar to » as it compensates for the fact that a match betweefiorelated generation decisions. To the best of our knowl-
two multi-label features is more difficult to obtain thanfret €498, linear programming has been used in an NLG related
case of binary features. This measure tells us how well all thWork only by[Althauset al, 200 to solve a single task of
tasks have been solved together, which in our case amourfi§termining the order of discourse constituents. In a some-
to generating the whole text. what related contexDras, 1999 used ILP to optimize the
The results presented in Table 5 show that the ILP system@SK Of téxt paraphrasing, given global constraints sucexds
achieved highest accuracy andor most tasks and reached and sentence length, readibilty, etc.
the highest overalPhi score. Notice that ILP2 improved the _In contrast, in this work we use an ILP model to orga-
accuracy of both pipeline systems for the three correlateliZ€ the entire process of generating the surface form from
tasks that we discussed before, i.e. Connective, S Exp. arfl! Underlying semantic representation, which involves an
Verb Form. Another group of correlated tasks for which the!ntegration of different types of NLG tasks. Although in
results appear interesting are i.e. Verb Lex., Phrase Tyge a OUr Systém we use machine learning as the primary deci-
Phrase Rank (cf. Figure 3). Notice that Verb Lex. got higher>'0" making m(_achamsm, we believe that the ILP model can
scores in Pipeline2, with outputs from both Phrase Type an@!so t_)_e us_ed W'Fh knowledge-b_ased systems that observe the
Phrase Rank (see the respective pipeline positions), bueth ~ classification-oriented formulation of the NLG tasks.
verse effect did not occur: scores for both phrase tasks were Finally, we are convinced that an adequate evaluation of an
lower in Pipelinel when they had access to the output fromf\-C System must at some stage go beyond the application of
Verb Lex., contrary to what we might expect. Apparentiysthi quantitative measures. Nevertheless, it is reasonabiptre

was due to the low accuracy for Verb Lex. which caused théhat the improvement that we reached with the ILP system,
especially the increase of the ovei@Hi score, must correlate

10e have found that in direct comparis@.5performs better 10 some extent with the quality improvement. To verify it
than Naive Bayesut the probability distribution that it outputs is We are currently proceeding with qualitative evaluatioithef
strongly biased towards theinning label. In this case it is practi- output from our system.

cally impossible for the ILP system to change the class#ideci-
sion, as the costs of other labels get extremely high. Hereeore ~ Acknowledgements: The work presented here has been

balanced probability distribution given tNaive Bayesan be easier funded by the Klaus Tschira Foundation, Heidelberg, Ger-
correctedin the optimization process. many. The first author receives a scholarship from KTF
Uhttp://www.geocities.com/Ipsolve/ (09.001.2004).
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