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Abstract

We present an NLG system that uses Integer Lin-
ear Programming to integrate different decisions
involved in the generation process. Our approach
provides an alternative to pipeline-based sequential
processing which has become prevalent in today’s
NLG applications.

1 Introduction
From an engineering perspective, one of the major consid-
erations in building a Natural Language Generation (NLG)
system is the choice of the architecture. Two important issues
that need to be considered at this stage are firstly, themodu-
larization of the linguistic decisions involved in the genera-
tion process and secondly, theprocessing flow(cf. [De Smedt
et al., 1996]).

On one side of the spectrum lie integrated systems, with
all linguistic decisions being handled within a single process
(e.g.[Appelt, 1985]). Such architectures are theoretically at-
tractive, as they assume a close coordination of different types
of linguistic decisions, which are known to be dependent on
one another (cf. e.g.[Danlos, 1984]). A major disadvantage
of integrated models is the complexity that they necessarily
involve, which results in poor portability and scalability. On
the other side of the spectrum there are highly modularized
pipeline architectures. A prominent example of this second
case is theconsensuspipeline architecture recognized by[Re-
iter, 1994] and further elaborated in[Reiter and Dale, 2000].
The modularization of Reiter’s model occurs at two levels.
First, individual linguistic decisions of the same type (e.g.
involving lexical or syntacticchoice) are grouped together
within single low level tasks, such aslexicalization, aggre-
gationor ordering. Second, tasks are allocated to three high-
level generation stages, i.e.Document Planning, Microplan-
ning and Surface Realization. The processing flow in the
pipeline architecture is sequential, with individual tasks be-
ing executed in a predetermined order.

A study of applied NLG systems[Cahill and Reape, 1999]
reveals, however, that while most applied NLG systems rely
on sequential processing, they do not follow the strict modu-
larization that the consensus model assumes. Low-level tasks
are spread over various generation stages and may in fact be
executed more than once at diverse positions in the pipeline.

An attempt to account for commonalities that many NLG
systems share, without imposing too many restrictions, as is
the case with Reiter’s ”consensus” model, is the Reference
Architecture for Generation Systems (RAGS)[Mellish et al.,
2004]. RAGS is an abstract specification of an NLG architec-
ture that focuses on two issues: data types that the generation
process manipulates and a generic model of the interactions
between modules, based on a commoncentral server. An
important feature of RAGS is that it leaves the question of
processing flow to the actual implementation. Hence it is the-
oretically possible to build both fully integrated as well as
pipeline-based systems that would observe the RAGS princi-
ples. Two implementations of RAGS presented in[Mellish
and Evans, 2004] demonstrate an intermediate way.

In this paper we present a novel approach to building an
integrated NLG system, in which the generation process is
modeled as a discrete optimization problem. It provides an
extension to theclassification-based generationframework,
presented in[Marciniak and Strube, 2004]. We first assume
modularization of the generation process at the lowest possi-
ble level: individual tasks correspond to realizations of sin-
gle form elements (FEs) that build up a linguistic expression.
The decisions that these tasks involve are then represented
as classification tasks and integrated via an Integer Linear
Programming (ILP) formulation (see e.g.[Nemhauser and
Wolsey, 1999]. This way we avoid the well known ordering
problem that is present in all pipeline-based systems. Observ-
ing, at least partially, the methodological principles of RAGS,
we specify the architecture of our system at two independent
levels. At the abstract level, the low-level generation tasks
are defined, all based on the same input/output interface. At
the implementation level, the processing flow and integration
method are determined.

The rest of the paper is organized as follows: in Section 2
we present briefly the classification-based generation frame-
work and remark on the shortcomings of pipeline-based pro-
cessing. In Section 3 we introduce the ILP formulation of the
generation task, and in Section 4 we report on the experiments
and evaluation of the system.

2 Classification-Based Generation
In informal terms, classification can be characterized as the
task of assigning a class label to an unknown instance, givena
set of its properties and attributes represented as a feature vec-
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Figure 1: LTAG-based derivation at the clause (left) and discourse levels (right). Elementary trees are represented asfeature
vectors. Adjunction operations are marked with dashed arrows.

tor. In recent years supervised machine learning methods re-
lying on pre-classifiedtraining datahave been applied in var-
ious areas of NLP to solve tasks formulated as classification
problems. In NLG machine learning methods have been used
to solve single tasks such as content selection and ordering
(e.g.[Duboue, 2004; Dimitromanolaki and Androutsopoulos,
2003]), lexicalization (e.g.[Reiter and Sripada, 2004]) and
referring expressions generation (e.g.[Chenget al., 2001]).

In these applications classifiers trained on labeled data
have proven more robust and efficient than approaches us-
ing explicit expert knowledge. The difficulty of formaliz-
ing the linguistic knowledge involved in the development
of a knowledge-based system (a.k.a.knowledge-acquisition-
bottleneck) has been replaced with an effort of obtaining the
right kind of data, which typically involves annotating man-
ually a corpus of relevant texts with the required linguistic
information (cf.[Daelemans, 1993]).

The classification-based generation framework that we in-
troduced in[Marciniak and Strube, 2004] is based on a simple
idea that the linguistic form of an expression can be decom-
posed into a set of discrete form elements (FEs) representing
both its syntactic and lexical properties. The generation pro-
cess is then modeled as a series of classification tasks that re-
alize individual FEs. Realization of each FE is then regarded
as a single low-level generation task.

2.1 Route Directions
As the main application for this work we consider the task of
generating natural languageroute directions. An example of
such a text is given below:

(a) Facing the Wildcat statue, (b) turn left on the
brick sidewalk (c) and continue along the road to
the Sports Complex. (d) Make a right onto Concord
Road, (e) and keep going straight, (f) passing Pres-
byterian Church on your left, (g) until you reach
Copeland Street. (h) The library building will be
just around the corner on your right.

We analyze the content of instructional texts of this kind in
terms of temporally related situations, i.e.actions(b, c, d, e)
states(a, h) andevents(f, g), denoted by individual discourse
units. The temporal structure of the texts is then modeled asa
tree, with nodes representing individual situation descriptions
and edges signaling the relations (see Figure 2). The seman-
tics of each discourse unit is further represented as a feature
vector describing the aspectual category and frame structure

of the profiled situation. This tree-based representation of the
semantic content of route directions constitutes the inputto
the generation process. A detailed description of the underly-
ing conceptual model and the annotation process is presented
in [Marciniak and Strube, 2005].
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Figure 2: Temporal Structure

2.2 From LTAG to Form Elements
To specify an inventory of FEs that would become objects of
the low-level generation tasks, we first apply the Lexicalized
Tree Adjoining Grammar (LTAG) formalism (see e.g.[Joshi
and Schabes, 1991]) to model the linguistic form of the texts.
In LTAG, the derivation of a linguistic structure starts with a
selection ofelementarytrees, anchored by lexical items, such
as verbs or prepositions at the clause level and discourse con-
nectives at the discourse level (cf.[Webber and Joshi, 1998]).
In the next step, elementary trees are put together by means
of adjunctionoperations that follow the dependency structure
provided by thederivation tree. We take the temporal struc-
ture from Figure 2 to constitute the discourse level derivation
tree, with the temporal relationships corresponding to thesyn-
tactic dependencies. At the clause level, the derivation tree is
isomorphic with the frame-based ontological representation
of individual situations (see[Marciniak and Strube, 2005]).

The clause- and discourse-level derivation of discourse unit
(c) from the above example in the context of (a) and (b) is
depicted in Figure 1. At the clause level, the set of elemen-
tary trees includes oneinitial treeα1 anchored by the main
verb, which also specifies the syntactic frame of the clause,
andauxiliary treesβ1 andβ2 corresponding to the verb argu-
ments. At the discourse level, the discourse unit which occu-
pies the root position in the temporal structure (cf. Figure2)



Adj. Rank Adj. Dir. Conn. S Exp. Verb Lex. Verb Form
1 right and VP continue Bare Inf.

Phr. Type1 Prep. Lex.1 Adj. Rank1 Phr. Type2 Prep. Lex.2 Adj. Rank2
PP along 1 PP to 2

Table 1: FEs based form representation ofand continue along
the road to the sport complex.

is modeled as the initial treeα2, and auxiliary treesβ3 andβ4

represent the remaining discourse units.
To model the whole process in a uniform way we en-

code the elementary trees as feature vectors, with individ-
ual features conveying syntactic (e.g.s exp) and lexical (e.g.
verb lex) information. Featuresadj rank andadj dir denote
respectively the ordering of the adjunction operations andthe
adjunction direction, which both determine the linear struc-
ture of the text. Hence the form of the whole discourse can
be represented in terms of feature-value pairs used to encode
the initial trees and the derivation process. On that basis we
define a set of form elements building up a discourse as di-
rectly corresponding to the individual features. A detailed
description of the FEs is given below:
FE1: Adjunction Rank / Disc. Level specifies the linear
rank of each discourse unit at the local level, i.e. only clauses
temporally related to the sameparentclause are considered.
FE2: Adjunction Direction is concerned with the position
of thechild discourse unit relative to the parent one (e.g. (a)
left of (b), (c) right of (b), etc.).
FE3: Connective determines the lexical form of the dis-
course connective (e.g.null in (a),until in (g)).
FE4: S Expansionspecifies whether a given discourse unit
is realized as a clause with the explicit subject (i.e. np+vp
expansionof the root S node in a clause) (e.g. (g, h)) or not
(e.g. (a), (b)).
FE5: Verb Form denotes the form of the main verb in a
clause (e.g.gerund in (a), (c), bare infinitive in (b), finite
presentin (g), etc.).
FE6: Verb Lex. specifies the lexical form of the main verb
(e.g.turn in (b), passin (f) or reachin (g)).
FE7: Phrase Typedetermines for each argument in a clause
its syntactic realization as anoun phrase(NP) ,prepositional
phrase(PP) or aparticle (P).
FE8: Preposition Lex. is concerned with the choice of a
lexical form for prepositions or particles in argument phrases
(e.g. left andon in (b) or alongandto in (c)). If the value of
FE7 is NP, then this FE is set tonone.
FE9: Adjunction Rank / Phr. Level specifies the linear
rank of each verb argument within a clause.

As an example, consider the FEs-based representation of
the form of clause (c) presented in Table 1. Realization of
eachFEi is represented as a classification taskTi, with a set
of possibleclass labelscorresponding to the different forms
that FEi may take. Only tasksT1 and T9 associated re-
spectively withAdjunction Rank / Disc. LevelandAdjunction
Rank / Phr. Levelare split into a series of binaryprecedence
classifications that determine the relative position of twodis-
course units or phrasal arguments at a time (e.g. (a)≺ (c), (c)
≺ (d), and similarlyalong the road≺ to the sports complex
etc.). These partial results are later combined to determine

the rank of the respective constituents.
Arguably, the above FEs and the corresponding tasks are

independent of the underlying grammatical model. In this
work we use the abstraction of the grammatical structure pro-
vided by LTAG, but the same or a similar set of FEs can
be readily derived from other formalisms (cf. e.g.[Meteer,
1990]). The role of the grammatical theory in defining form
elements is twofold. First, it specifies the exact position of
individual FEs in the grammatical structure, making it clear
how they should be assembled. Second, it ensures a wide
coverage: although the linguistic structures that we consider
here are relatively simple, the use of LTAG as the underlying
grammatical formalism guarantees that our generation frame-
work can be applied to producing much more complex con-
structions, both at the clause and discourse levels. Appar-
ently, this would require a richer feature vector representation
of the initial trees, and hence a larger number of FEs and the
corresponding generation tasks. The basic principles of the
generation process, however, would remain unchanged.

Notice also that the tasks considered here can be grouped
under the conventional NLG labels, such astext structuring
(i.e. T1, T2), lexicalization(i.e. T3, T6, T8) andsentence re-
alization (i.e. T4, T5, T9). Yet another important NLG task,
i.e. aggregationappears to be handled indirectly byT3 (e.g.
Turn left. Continue along the road.vs. Turn left and con-
tinue along the road.) andT5 (e.g.Keep going straight. You
will pass the Presbyterian Church on your right.vs.Keep go-
ing straight, passing the Presbyterian Church on your right.).
We view it as the strength of our approach that regardless of
their different linguistic character all these tasks are modeled
in exactlythe same way.

2.3 System Architecture and Sequential
Processing

At an abstract level, the architecture of our system consists
of an unordered set of classifiers solving individual genera-
tion tasks. Each classifier is trained on a separate set of data
obtained from the corpus of route directions annotated with
both semantic and grammatical information.

In the previous work[Marciniak and Strube, 2004] we fol-
lowed the sequential paradigm advocated by[Daelemans and
van den Bosch, 1998] and implemented the system as acas-
cade of classifiers. In such systems the output representation
is built incrementally, with subsequent classifiers havingac-
cess to the outputs of previous modules. An important char-
acteristic of this model is its extensibility. Since classifiers
rely on a uniform representation of the input (i.e. a feature
vector) and the output (i.e. a single feature value), it is easy to
change the ordering or insert new modules at any place in the
pipeline. Both operations only require retraining classifiers
with a new selection of the input features.

A major problem that we faced was that we found no
satisfactory method to determine theright ordering of in-
dividual classifiers that would guarantee optimal realization
of the grammatical form of the generated expression. We
found out that no matter what ordering we adopted tasks
that were solved at the begining had a lower accuracy as the
necessary contextual information, i.e. based on the outcomes
from other tasks, was missing. At the same time, subsequent
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Figure 3: Sequential processing as a graph.

tasks were influenced by the initial decisions, which in some
cases led toerror propagation. Apparently, this was due to
the well known fact that elements of the linguistic structure
are strongly correlated with one another (see e.g.[Danlos,
1984]). Hence individual generation decisions should not be
handled in isolation and arranging them in a fixed order will
always involve a specificordering bias.

To get a feeling for the limitations that sequential process-
ing of generation tasks involves, consider its graphical repre-
sentation in Figure 3. The process corresponds to thebest-
first traversal of a weighted multi-layered lattice. Separate
layersT1, ..., Tn correspond to the individual tasks, and the
nodes at each layer (li1, ..., limi

) represent class labels for
each task1. In the sequential model only transitions between
nodes belonging to subsequent layers are granted. Each such
transition is augmented with a transition cost, which may be
affected by the traversalhistorybut does not consider the fu-
ture choices. Nodes selected in this process represent the out-
comes of individual tasks. As can be seen, the process islo-
cally driven and it does not guarantee an optimal realization
of the tasks.

As an example consider three interrelated form elements:
Connective, S Exp. and Verb Form and their different real-
izations presented in Table 2. Apparently each of these FEs
has the potential to affect the overall meaning of the discourse
unit or its stylistics. It can also be seen that only certain com-
binations of different forms are allowed in the given semantic
context. Different realization of any of these FEs would re-
quire other elements to be changed accordingly. To conclude,
following Danlos’ observation, we see noa priori reason to
impose any fixed ordering on the respective generation tasks,
and the experiments that we describe in Section 4 support this
position.

3 Discrete Optimization Model
As an alternative to sequential ordering of the generation
tasks we consider themetric labeling problemformulated by
[Kleinberg and Tardos, 2000], and originally applied in an

1Since different generation tasks may have varying numbers of
labels we denote the cardinality ofLi, i.e. the set of possible labels
for taskTi, asmi.

Discourse Unit FE3 FE4 FE5

Pass the First Union Bank ... null vp bare inf.
It is necessary that you pass ... null np+vp bare inf.
Passing the First Union Bank ... null vp gerund
After passing the First Union Bank ... after vp gerund
After your passing . . . after np+vp gerund
As you pass the First Union Bank ... as np+vp fin. pres.
Until you pass the First Union Bank ...until np+vp fin. pres.
Until passing . . . until vp gerund

Table 2: Different realizations of form elements: Connective,
Verb Form and S Expansion. Rare but correct constructions
are in italics.

image restoration application, where classifiers determine the
”true” intensity values of individual pixels. This task is for-
mulated as a labeling functionf : P → L which maps a
setP of n objects onto a setL of m possible labels. The
goal is to find an assignment that minimizes the overall cost
functionQ(f) which has two components:assignment costs,
i.e. the costs of selecting a particular label for individual ob-
jects, andseparation costs, i.e. the costs of selecting a pair
of labels for tworelatedobjects2. [Chekuriet al., 2001] pro-
posed an integer linear programming (ILP) formulation of the
metric labeling problem, with both assignment cost and sep-
aration costs being modeled as binary variables of the linear
cost function.

Recently,[Roth and Yih, 2004] applied an ILP model to
the task of the simultaneous assignment of semantic roles to
the entities mentioned in a sentence and recognition of the
relations holding between them. The assignment costs were
calculated on the basis of predictions ofbasicclassifiers, i.e.
trained for both tasks individually with no access to the out-
comes of the other task. The separation costs were formulated
in terms of binary constraints which specified whether a spe-
cific semantic role could occur in a given relation, or not.

In the remainder of this paper, we present a more general
model, which we apply to the generation tasks presented in
Section 2. We put no limits on the number of tasks being
solved, and express the separation costs as stochastic con-
straints, which can be calculated off-line from the available
linguistic data.

3.1 ILP Formulation
We consider a general context in which the generation process
comprises a range of linguistic decisions modeled as a set ofn
classification tasksT = {T1, ..., Tn} which potentially form
mutually related pairs.

Each taskTi consists in assigning a label fromLi =
{li1, ..., limi

} to an instance that represents the particular de-
cision. Assignments are modeled as variables of a linear
cost function. We differentiate betweensimple variablesthat
model individual assignments of labels andcompound vari-
ablesthat represent respective assignments for each pair of
related tasks.

To represent individual assignments the following proce-
dure is applied: for each taskTi, every label fromLi is asso-

2These costs were calculated as the function of themetric dis-
tance between a pair of pixels and the difference in intensity.



ciated with a binary variablex(lij). Each such variable rep-
resents a binary choice, i.e. a respective labellij is selected if
x(lij) = 1 or rejected otherwise. The coefficient of variable
x(lij) which models the assignment costc(lij) is given by:

c(lij) = −log2(p(lij))

wherep(lij) is the probability oflij being selected as the out-
come of taskTi. The probability distribution for each task
is provided by the basic classifiers that do not consider the
outcomes of other tasks3.

The role of compound variables is to provide pairwise con-
straints on the outcomes of individual tasks. Since we are
interested in constraining only those tasks are that truly de-
pendent on one another we first apply the contingency coeffi-
cientC to measure the degree of correlation for each pair of
tasks4. In the case of tasksTi andTk which aresignificantly
correlated, for each pair of labels fromLi×Lk we build a sin-
gle variablex(lij , lkp). Each such variable is associated with
a coefficient representing the constraint on the respectivepair
of labelslij , lkp calculated in the following way:

c(lij , lkp) = −log2(p(lij,lkp))

with p(lij,lkp) denoting theprior joint probability of labels
lij andlkp in the data, which is independent from the general
classification context and hence can be calculated off-line5.

The ILP model consists of the target function and a set of
constraints which blockillegal assignments (e.g. only one la-
bel of the given task can be selected)6. In our case the target
function is the cost functionQ(f), which we want to mini-
mize:

min Q(f) =
∑

Ti∈T

∑

lij∈Li

c(lij) · x(lij)

+
∑

Ti,Tk∈T,i<k

∑

<lij ,lkp>∈Li×Lk

c(lij , lkp) · x(lij , lkp)

Constraints need to be formulated for both the simple and
compound variables. First we want to ensure that exactly one
labellij belonging to taskTi is selected, i.e. only one simple
variablex(lij) representing labels of a given task can be set
to 1:

∑

lij∈Li

x(lij) = 1, ∀i ∈ {1, ..., n}

3In this case the ordering of tasks is not necessary, and the clas-
sifiers can run independently from each other.

4C is a test for measuring the association of two nominal vari-
ables, and hence adequate for the type of tasks that we consider
here. The coefficient takes values from 0 (no correlation) to1 (com-
plete correlation) and is calculated by the formula:C = (χ2/(N +

χ2))1/2, whereχ2 is the chi-squared statistic andN the total num-
ber of instances. The significance ofC is then determined from the
value of χ2 for the given data. See e.g.[Goodman and Kruskal,
1972].

5In Section 4 we discuss an alternative approach which considers
the actual input.

6For a detailed overview of linear programming and different
types of LP problems see e.g.[Nemhauser and Wolsey, 1999].
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Figure 4: Graph representation of the ILP model.

We also require that if two simple variablesx(lij) and
x(lkp), modeling respectively labelslij and lkp, are set to
1, then the compound variablex(lij , lkp), which models co-
occurrence of these labels, is also set to1. This is done in
two steps: we first ensure that ifx(lij) = 1, then exactly one
variablex(lij , lkp) must also be set to 1:

x(lij) −
∑

lkp∈Lk

x(lij , lkp) = 0,

∀i, k ∈ {1, ..., n}, i < k ∧ j ∈ {1, ..., mi}

and do the same for variablex(lkp):

x(lkp) −
∑

lij∈Li

x(lij , lkp) = 0,

∀i, k ∈ {1, ..., n}, i < k ∧ p ∈ {1, ..., mk}

Finally, we constrain the values of both simple and com-
pound variables to be binary:

x(lij) ∈ {0, 1} ∧ x(lij , lkp) ∈ {0, 1},

∀i, k ∈ {1, ..., n} ∧ j ∈ {1, ..., mi} ∧ p ∈ {1, ..., mk}

We can represent the decision process that our ILP model
involves as a graph, with the nodes corresponding to indi-
vidual labels and the edges marking the associations between
labels belonging to correlated tasks. In Figure 4, taskT1 is
correlated with taskT2 and taskT2 with taskTn. No corre-
lation exists for pairT1, Tn. Both nodes and edges are aug-
mented with costs. The goal is to select a subset of connected
nodes, minimizing the overall cost, given that for each group
of nodesT1, T2, ..., Tn exactly one node must be selected,
and the selected nodes, representing correlated tasks, must
be connected. We can see that in contrast to the pipeline ap-
proach (cf. Figure 1), nolocaldecisions determine the overall
assignment as theglobaldistribution of costs is considered.

4 Experiments and Results
In order to evaluate our approach we conducted a series of
experiments with two implementations of the ILP model and
two different pipelines. Each system takes as input the tree-
based representation of the semantic content of route direc-
tions described in Section 2. The generation process traverses
the temporal tree in a depth-first fashion, and for each node a
single discourse unit is realized.
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null and as after until T3 Connective
T5 Verb Form

0.40 0.18 0 0 0 bare inf
0 0 0 0.04 0.01 gerund

0.05 0.01 0.06 0.03 0.06 fin pres
0.06 0.05 0 0 0 will inf

Table 3: Joint distribution matrix for selected labels of tasks
Connective(horizontal)and Verb Form(vertical), computed
for all discourse units in a corpus.

4.1 Correlations Between Tasks
We started with running the correlation tests for all pairs of
tasks. The obtained correlation network is presented in Fig-
ure 5. It is interesting to observe that tasks which realize FEs
belonging to the same levels of linguistic organization, and
have traditionally been handled within the same generation
stages (i.e.Text Planning, MicroplanningandRealization) are
closely correlated with one another. This fact supports em-
pirically some assumptions behind Reiter’s consensus model.
On the other hand, there exist quite a few correlations that
extend over the stage boundaries, and all three lexicalization
tasks i.e.T3, T6 andT8 are correlated with many tasks of a
totally different linguistic character.

4.2 ILP Systems
We used the ILP model described in Section 3 to implement
two generation systems. To obtain assignment costs, both
systems get a probability distribution for each task from ba-
sic classifiers trained on the training data. To calculate the
separation costs, modeling the stochastic constraints on the
co-occurrence of labels, we considered correlated tasks only
(cf. Figure 5) and applied two calculation methods, which re-
sulted in two different system implementations.

In ILP1, for each pair of tasks we computed the joint distri-
bution of the respective labels considering all discourse units
in the training data before the actual input was known. Such
obtained joint distributions were used for generating all dis-
course units from the test data. An example matrix with joint
distribution for selected labels of tasks Connective and Verb
Form is given in Table 3. An advantage of this approach is
that the computation can be done in anofflinemode and has
no impact on the run-time.

In ILP2, the joint distribution for a pair of tasks was cal-
culated at run-time, i.e. only after the actual input had been

null and as after until T3 Connective
T5 Verb Form

0.13 0.02 0 0 0 bare inf
0 0 0 0 0 gerund
0 0 0.05 0.02 0.27 fin pres

0.36 0.13 0 0 0 will inf

Table 4: Joint distribution matrix for tasks Connective and
Verb Form, considering only disc. units similar to (c):until
you see the river side in front of you, atPhi-threshold≥ 0.8.

known. This time we did not consider all discourse units in
the training data, but only those whose meaning, represented
as a feature vector, wassimilar to the meaning of the input
discourse unit. As a similarity metric we used thePhi co-
efficient7, and set the similarity threshold at0.8. As can be
seen from Table 4, the probability distribution computed in
this way is better suited to the specific semantic context. This
is especially important if the available corpus is small andthe
frequency of certain pairs of labels might be too low to have
a significant impact on the final assignment.

4.3 Pipeline Systems

As a baseline we implemented two pipeline systems. In the
first one we used the ordering of tasks that resembles most
closely the standard NLG pipeline and which we also used
before in[Marciniak and Strube, 2004]8.

Individual classifiers had access to both the semantic fea-
tures, and the features output by the previous modules. To
train the classifiers, thecorrect feature values were extracted
from the training data and during testing thegenerated, and
hence possibly erroneous, values were taken.

In the other pipeline system we wanted to minimize the
error-propagation effect and placed the tasks in the order of
decreasingaccuracy. To determine the ordering of tasks we
applied the following procedure: the classifier with the high-
est baseline accuracy was selected as the first one. The re-
maining classifiers were trained and tested again, but this time
they had access to the additional feature. Again, the classifier
with the highest accuracy was selected and the procedure was
repeated until all classifiers were ordered.

4.4 Evaluation

We evaluated our system usingleave-one-out cross-
validation, i.e. for all texts in the corpus, each text was used
once for testing, and the remaining texts provided the training
data. To solve individual classification tasks we used the de-
cision tree learnerC4.5in the pipeline systems and theNaive
Bayesalgorithm9 in the ILP systems. Both learning schemes

7Phi is a measure of the extent of correlation between two sets
of binary variables, see e.g.[Edwards, 1976]. To represent multi-
class features on a binary scale we applieddummy codingwhich
transforms multi class-nominal variables to a set of dummy variables
with binary values.

8The ordering of tasks is given in Table 5.
9Both implemented in the Weka machine learning software[Wit-

ten and Frank, 2000].



Pipeline 1 Pipeline 2 ILP 1 ILP 2
Tasks Pos. Accuracy κ Pos. Accuracy κ Accuracy κ Accuracy κ
Dis.Un. Rank 1 96.81% 90.90% 2 96.81% 90.90% 97.43% 92.66% 97.43% 92.66%
Dis.Un. Pos. 2 98.04% 89.64% 1 98.04% 89.64% 96.10% 77.19% 97.95% 89.05%
Connective 3 78.64% 60.33% 8 79.10% 61.14% 79.15% 61.22% 79.36% 61.31%
S Exp. 4 95.90% 89.45% 3 96.20% 90.17% 99.48% 98.65% 99.49% 98.65%
Verb Form 5 86.76% 77.01% 4 87.83% 78.90% 92.81% 87.60% 93.22% 88.30%
Verb Lex. 6 64.58% 60.87% 9 67.40% 64.19% 75.87% 73.69% 76.08% 74.00%
Phr. Type 7 86.93% 75.07% 5 87.08% 75.36% 87.33% 76.75% 88.03% 77.17%
Prep. Lex. 8 86.23% 81.12% 6 86.03% 81.10% 87.28% 82.20% 88.59% 83.24%
Phr. Rank 9 84.73% 75.24% 7 86.95% 78.65% 90.22% 84.02% 91.27% 85.72%

Phi 0.85 0.87 0.89 0.90

Table 5: Results reached by the implemented ILP systems and two baselines. For both pipeline systems,Pos. stands for the
position of the tasks in the pipeline.

yielded highest results in the respective configurations10. To
solve the ILP models we usedlp solve, a highly efficient
GNU-licence Mixed Integer Programming (MIP) solver11,
that implements theBranch-and-Boundalgorithm. For each
task we applied afeature selectionprocedure (cf.[Kohavi and
John, 1997]) to determine whichsemanticfeatures should be
taken as the input by the basic classifiers.

To evaluate individual tasks we applied two metrics: accu-
racy, calculated as the proportion of correct classifications to
the total number of instances, and theκ statistic, which cor-
rects for the proportion of classifications that might occurby
chance. Forend-to-endevaluation, we applied thePhi coef-
ficient to measure the degree of similarity between the vector
representations of the generated form (i.e. built from the out-
comes of individual tasks) and the reference form obtained
from the test data. ThePhi-based similarity metric is simi-
lar to κ as it compensates for the fact that a match between
two multi-label features is more difficult to obtain than in the
case of binary features. This measure tells us how well all the
tasks have been solved together, which in our case amounts
to generating the whole text.

The results presented in Table 5 show that the ILP systems
achieved highest accuracy andκ for most tasks and reached
the highest overallPhi score. Notice that ILP2 improved the
accuracy of both pipeline systems for the three correlated
tasks that we discussed before, i.e. Connective, S Exp. and
Verb Form. Another group of correlated tasks for which the
results appear interesting are i.e. Verb Lex., Phrase Type and
Phrase Rank (cf. Figure 3). Notice that Verb Lex. got higher
scores in Pipeline2, with outputs from both Phrase Type and
Phrase Rank (see the respective pipeline positions), but the re-
verse effect did not occur: scores for both phrase tasks were
lower in Pipeline1 when they had access to the output from
Verb Lex., contrary to what we might expect. Apparently, this
was due to the low accuracy for Verb Lex. which caused the

10We have found that in direct comparisonC4.5performs better
thanNaive Bayesbut the probability distribution that it outputs is
strongly biased towards thewinning label. In this case it is practi-
cally impossible for the ILP system to change the classifier’s deci-
sion, as the costs of other labels get extremely high. Hence the more
balanced probability distribution given byNaive Bayescan be easier
correctedin the optimization process.

11http://www.geocities.com/lpsolve/

already mentioned error propagation. This example shows
well the advantage that optimization processing brings: both
ILP systems reached much higher scores for all three tasks.

Finally, it appears as no coincidence that the three tasks in-
volving lexical choice, i.e. Connective, Verb Lex. and Prepo-
sition Lex. scored lower than the syntactic tasks in all sys-
tems. This can be attributed partially to the limitations of
retrieval measures which do not allow for the fact, that in a
given semantic content more than one lexical form can be ap-
propriate.

5 Conclusions
In this paper we showed that the pipeline architecture in an
NLG application can be successfully replaced with an inte-
grated ILP-based model which is better suited to handling
correlated generation decisions. To the best of our knowl-
edge, linear programming has been used in an NLG related
work only by [Althauset al., 2004] to solve a single task of
determining the order of discourse constituents. In a some-
what related context[Dras, 1999] used ILP to optimize the
task of text paraphrasing, given global constraints such astext
and sentence length, readibilty, etc.

In contrast, in this work we use an ILP model to orga-
nize the entire process of generating the surface form from
an underlying semantic representation, which involves an
integration of different types of NLG tasks. Although in
our system we use machine learning as the primary deci-
sion making mechanism, we believe that the ILP model can
also be used with knowledge-based systems that observe the
classification-oriented formulation of the NLG tasks.

Finally, we are convinced that an adequate evaluation of an
NLG system must at some stage go beyond the application of
quantitative measures. Nevertheless, it is reasonable to expect
that the improvement that we reached with the ILP system,
especially the increase of the overallPhi score, must correlate
to some extent with the quality improvement. To verify it
we are currently proceeding with qualitative evaluation ofthe
output from our system.
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