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Abstract

The paper presents an approach to utterance plan-
ning, which can dynamically use context informa-
tion about the environment in which a dialogue
is situated. The approach is functional in nature,
using systemic networks to specify its planning
grammar. The planner takes a description of a
communicative goal as input, and produces one
or more logical forms that can express that goal
in a contextually appropriate way. Both the goal
and the resulting logical forms are expressed in a
single formalism as ontologically rich, relational
structures. To realize the logical forms, OpenCCG
is used. The paper focuses primarily on the im-
plementation, but also discusses how the planning
grammar can be based on the grammar used in
OpenCCG, and trained on (parseable) data.

1 Introduction
Conversational robots often need to carry out a dialogue with
other agents while being situated in a dynamic environment.
This poses an interesting challenge: For the robot to con-
verse in a natural manner with other interlocutors its commu-
nication needs to be contextually appropriate, but referential
contexts may naturally change in such a setting. The robot
thus must be actively aware of the environment, and use this
awareness when producing utterances.

Here, we present an approach to utterance planning where
we can use context information to dynamically guide deci-
sions we need to make during planning. These decisions are
paradigmatic in nature, and get us from a logical form stating
a communicative intention, to a logical form (or a set thereof)
expressing the intention in a contextually appropriate way.

We specify a planning grammar as a systemic network, in
the tradition of generation systems for systemic functional
grammar[Mathiessen, 1983; Bateman, 1997]. We process
using an agenda/chart-based algorithm, (meaning there is no
“determinicity” assumption). The utterance planner itself
is embedded in a distributed architecture that makes it pos-
sible to access the various models of the situated environ-
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ment that the robot maintains. This way we can dynam-
ically use contextual information during the planning pro-
cess. The logical forms we operate on are all specified in a
single formalism, namely Hybrid Logic Dependency Seman-
tics (HLDS), meaning we have a representational continuum
between discourse-level and utterance-level representations
[Kruijff, 2001; Baldridge and Kruijff, 2002], and can guide
utterance planning through content decisions made at higher
levels. The logical form we obtain from the utterance planner
serves as input to a separate OpenCCG realizer[White and
Baldridge, 2003; White, 2004].

The resulting approach is related to[Stone and Doran,
1997; Cassellet al., 2000]. We adopt their idea of an utter-
ance as a description, generated from a communicative goal,
and also use an “ontologically promiscuous” formalism for
representing meaning[Hobbs, 1985]. We differ in that we
separate out the realizer, though minimize the need for back-
tracking in the planner by allowing for multiple, alternative
logical forms to be sent to the realizer, cf.[Foster and White,
2004]. Also, to establish contextual status of an entity, we can
in principle use any type of model that the robot maintains of
the environment, as long as we have an ontology on which we
can establish a common ground in interpretation.

Our approach places us squarely in the full generation
camp, but there is a continuum: Using the approach to in-
cluding canned text as proposed in[Foster and White, 2004],
we can freely position the actual planner between full gen-
eration and pre-baked generation. We can use the flexibility
of full generation where necessary, notably to achieve con-
textual appropriateness, but if desired we can use more direct
methods to specify content. Our approach owes its perspec-
tive to systemic approaches, particularly KPML[Bateman,
1997]. Where we differ is in the creation of, and relation be-
tween, the resources we use in the parser, the realizer, and
the utterance planner: We use one and the same grammar
for both parsing and realization (though with different algo-
rithms), and we can derive the systemic network for utterance
planning from this grammar (§4) to ensure that we have a
single formulation of the robot’s linguistic knowledge, in the
form of a CCG grammar. We also point out (§4), how we can
in principle train the planner, like e.g.[Stentet al., 2004].
Overview In §2 we briefly discuss HLDS, and the overall
architecture in which we employ the utterance planner.§3
presents the planner, focusing on the basic structure of the



planning grammar, and context sensitivity.§4 discusses how
we can base the planning grammar on the specification of the
grammar we employ for parsing and realization, and how we
can in principle train the planning grammar given a corpus of
(analyzable) utterances.

2 Background
2.1 Hybrid Logic Dependency Semantics
Hybrid Logic Dependency Semantics (HLDS;[Kruijff, 2001;
Baldridge and Kruijff, 2002]) is an “ontologically promiscu-
ous” [Hobbs, 1985] framework for representing the propo-
sitional content (or meaning) of an expression as anonto-
logically richly sorted, relational structure. The relational
structure connects different bits of meaning using (directed)
labelled edges. The labels on these edges indicate how the
meaning of thedependent contributes to the meaning of the
whole, rooted at thehead node that governs the dependent.

This view on the representation of meaning can be traced
back to various theories of valency in dependency gram-
mar and related work on theta-frames. Under this view we
obtain relatively flat representations. These flat represen-
tations are nowadays used in various grammar frameworks,
and are closely related to the conceptual structures found in
AI knowledge representations.[Baldridge and Kruijff, 2002;
White and Baldridge, 2003] show how HLDS representations
can be built compositionally with CCG using unification, and
compare HLDS to other semantic formalisms like Minimal
Recursion Semantics[Copestakeet al., 1997].

Formally, we represent the meaning of an expression us-
ing hybrid logic [Blackburn, 2000; Areces, 2000]. Being a
type of modal logic, hybrid logic is ideally suited to capture
relational structures. Furthermore, it adopts an approach to
sorting that enables us to represent meaning as an ontologi-
cally richly sorted structure. This works out as follows.

Hybrid logic is a modal logic, but a modal logic with a
twist. Modal logics are interpreted on models consisting of
states and accessibility relations between these states. How-
ever, we cannot reference these states directly in the language
of a modal logic itself. This is problematic. Modal logic is
often used to model temporal structure, e.g. using Prior’s Past
and Future operators. Unfortunately, all we can express is that
something happened at some point in the past, or will happen
at some point in the future. We cannotspecify that point in a
formula, which is counter-intuitive; cf.[Blackburn, 2000].

Hybrid logic addresses this issue by introducingnominals
into the language. A nominal is a type of formula, which is
interpreted as a unique reference to a state in the underlying
model theory of the logic. Nominals are formulas, and hence
equal citizens in the language next to e.g. propositions. There
are several operators that range over nominals, the most ubiq-
uitous for our current purposes being the “@” operator:@nφ
means that “at the state referred to byn, formulaφ holds”.

We use the standard modal operators to model relations:
@n〈R〉m means that there is a relationR between the nomi-
nalsn andm. Particularly important for our purposes is that
we can sort the nominals further, to indicate the ontological
sort or category of the proposition that holds at the state re-
ferred to by the nominal. For example,@{k :person}Kathy rep-

Figure 1: Conceptual architecture

resents the fact that Kathy is a person; note that we can thus
use nominals as (neo-Davidsonian style) discourse referents.

We obtain a relational structure by relating nominals
through modal relations, e.g. (1).

(1) a. Kathy saw Eli.
b. @{s:observing}(see& 〈Tense〉past

& 〈Actor〉(k : person & Kathy)
& 〈Patient〉(e : person & Eli))

Here,s is the nominal (or discourse referent) for the event
see, which we interpret as anobservational process in past
tense. Related to the events are two dependents: we have an
Actor, aperson with discourse referentk, beingKathy (the
one doing the seeing); and a Patient, anotherperson but with
discourse referente, beingEli (the one being seen).

We can flatten the representation in (1b) by rewriting it into
a conjunction of elementary predications, akin to MRS terms:

(2) @{s:observing}(see)
& @{s:observing}〈Tense〉past
& @{s:observing}〈Actor〉(k : person)
& @{k :person}(Kathy)
& @{s:observing}〈Patient〉(e : person)
& @{e:person}(Eli)

The flattened representation in (2) illustrates that
we have basically three types of elementary predica-
tions: lexical predications –@{k :person}(Kathy ), features
– @{s:observing}〈Tense〉past, and dependency relations –
@{s:observing}〈Actor〉(k : person).

2.2 System architecture
Figure 1 describes the conceptual architecture that underlies
our system. As a cognitively motivated architecture, it speci-
fies the underlying infrastructure for the communication abil-
ities for an intelligent embodied agent.

The distributed nature of the architecture is inspired by
the general tendency to see cognition as a network of con-
current, situated processes, e.g.[Minsky, 1986; Langley and
Laird, 2002]. Distributed information processing facilitates
the concurrent maintenance of several models of the environ-
ment, possibly using different means for representation and



interpretation. Furthermore, we can adopt a localised ap-
proach to the processing and fusion of information stemming
from different modalities (local cross-modal fusion), guided
by passive attention mechanisms[Chum and Wolfe, 2001]
and active attention mechanisms through a short-term work-
ing memory with activated concepts and their associations.

The architecture is layered in that we distinguish different
levels of information processing. The levels basically corre-
spond to the reactive (or perceptual), deliberative, and meta-
level processes in the cognitive architecture presented in[Slo-
man, 2001]. Like cognitive robotics[Reiter, 2001] we use
logic as a representational medium at the deliberative level,
but with an explicit relation to lower-level perceptual pro-
cesses[Shanahan, 2000; Shanahan and Witkowski, 2001].

We use context models to represent the deliberative in-
terpretation of the situation relative to a particular modality,
on the basis of which future states can be anticipated and
planned. Each context model maintains a (model-specific, lo-
cal) salience measure over the information in the model, to in-
dicate what is currently activated. Examples of context mod-
els are the dialogue context model, capturing the dialogue his-
tory which serves as the background against which new dia-
logue moves are interpreted and planned, or the action context
which keeps track of the current status of tasks and the overall
action plan. Figure 1 shows these context models asmodal-
ity specific context models. It also includes abelief context.
The belief context model capturesglobal cross-modal fusion,
achieved by fusing information across the different modal-
ities at least at the level of token identification. We estab-
lish a common ground for interpretation across modalities
by relating each layer to a set of ontologies that model cat-
egories on which the events, states, and entities at that layer
can be interpreted, following recent work in information fu-
sion[Wacheet al., 2001] and dialogue systems[Gurevychet
al., 2003]. There are different levels of granularity for the
common ground we may be able to establish, due to the po-
tential for hybridity across the different local representations
used in the architecture. On the low end of the scale we have
type identity, to type/token identity, to the high end where
we have fully shared representations. The granularity of the
common ground we are able to establish determines to what
extend information can be fused.

For the purposes of this paper we use the example imple-
mented architecture, shown in Figure 2. The goal of this
instance is to enable a robot to conduct a simple dialogue
about a dynamic, visual scene. We have implemented the
distributed infrastructure using theOpen Agent Architecture
[Cheyer and Martin, 2001]; the different boxes in Figure 2 are
processes implemented as OAA agents.

On the interpretation side, we have several layers of pro-
cessing for a speech dimension, and for a vision dimension.
We process the acoustic signal usingSphinx4 [Walkeret al.,
2004] with a domain-specific, English language model, and
then parse the recognized string using theOpenCCG parser
for combinatory categorial grammar[Baldridge, 2002]. The
parser yields a logical form of the meaning of the string, rep-
resented as an HLDS logical form. This logical form is inter-
preted further in a dialogue process, which maintains a model
of the dialogue history. In parallel to the speech dimension,

Figure 2: Example implemented architecture

we also have processes that interpret the visual scene. We
use a visual recognition and classification algorithm based on
OpenCV1 that produces a representation of an object in terms
of its type, physical properties, and position. We interpret
these representations on a model of the visual scene, captur-
ing proximal and projective spatial relations between objects
[Kelleher and Kruijff, 2005b].

For production, the architecture in Figure 2 includes only
spoken language as an output modality. The dialogue planner
constructs an HLDS logical form that specifies the communi-
cation goal reflecting how the belief context could be updated
with the information coming from the acoustic and visual di-
mensions. This logical form is taken by the utterance planner,
which expands this logical form to a full logical form that
OpenCCG can realize as a well-formed string[White, 2004].
Finally, we use FreeTTS2 for speech synthesis.

3 Utterance planning
Following the systemic tradition, we formulate a planning
grammar as a network of systems. A system represents a
paradigmatic choice, i.e. a choice about an aspect of the
meaning to be specified by the logical form we are planning.
We specify the decision process involved in this choice as a
decision tree or chooser, associated with the system. In the
chooser, we can pose several inquiries about the logical form
and the contextual status of discourse referents, to guide the
decision process. On the basis of the choice we make, the
system performs one or more operations on the logical form,
to expand it; we thus reflect grammatical features directly as
content in the logical form.

A system consists of an entry condition, actions associated
with the different choices the associated chooser can make,
and an output. Both the entry condition and the output of the
system take the shape of an HLDS logical form, and an indi-
cation of the locus within that logical form. As a result, the
combination of locus and output logical form of one system
may be the entry condition for another system. It is in this
way that we obtain a network of systems.

1We would like to thank Somboon Hongeng from Birmingham
University for the implementation of this module.

2http://freetts.sf.net



<system id=’’evidencing-modality’’ region=’’’’ metafunction=’’ideational’’>
<chooser id=’’c-evidencing-mod’’/>
<conditions>

<condition features=’’@type:process’’/>
</conditions>
<actions>

<action choice=’’vision’’>
<assign-type type=’’observing’’/>
<add-proposition propositions=’’@see’’/>
<add-relation mode=’’Actor’’ nomvar=’’sp’’ type=’’speaker’’/>
<identify-nomvar mode=’’Patient’’ nomvar=’’obj’’/>
<move-locus nomvar=’’obj’’/>

</action>
:

</actions>
</system>

Figure 3: Example of a system

Figure 3 provides an example specification of a system,
calledevidencing-modality. The point of the system is to
specify the kind of mental process the current locus in the
logical form should express to refer to the modality in which
an entity can be grounded. The chooser associated with this
system isc-evidencing-mod; cf. Figure 5 and below.

One of the possible answers of this chooser isvision, i.e.
the visually situated context is the “strongest” modality in
which we can ground the entity that is part of the commu-
nicative goal. This results in the system performing several
actions on the logical form:

1. assign-type specifies the type of the locus asobserving
2. add-proposition adds the propositionseeto the nomi-

nal of the locus

3. add-relation adds a relation of typeActor between the
locus and a nominalsp of typespeaker

4. identify-nomvar identifies the nominal to which thePa-
tient relation points, and then moves the locus to this
nominal (identified by variable nameobj ).3

We have two more operations that a system can specify,
besides the above ones. The operationadd-feature adds a
feature and a value to the nominal of the current locus. This
operation together with the operationsassign-type, add-
proposition andadd-relation gives us a basic inventory for
extending a logical form throughsubstitution:

• add-feature:
@{n:nomv}φ =⇒@{n:nomv}φ & @{n:nomv}〈Feat〉(value).

• add-proposition:
@{n:nomv}φ =⇒ @{n:nomv}(φ & prop)

• add-relation:
@{n:nomv}φ =⇒ @{n:nomv}φ & @{n:nomv}〈Rel〉n′ :
nomv′.

• assign-type:
@{n:nomv}φ =⇒ @{n:type}φ

3We can define for a variable whether it is to have system-local
scope, or global scope. This way, we can reference other parts of a
logical form, outside the scope of the subtree that is currently in the
locus.

Furthermore, we have an operationadjoin-lf. With this
operation we can extend the current logical form byadjoining
another logical form into it. We can explain adjunction using
the illustration in Figure 4.

Figure 4: Adjunction

We start with a logical
form which contains the
greyed subtree rooted by a
nominal n′ of type t′ (1).
Next, we remove that sub-
tree, leaving an argument
position for a nominal of
type t′ in the logical form
rooted byn : t, (2). We
now insert a new subtree,
rooted by a nominaln′′ of type t′, which itself also contains
an argument position of typet′ into which we can slot the
greyed subtree ofn′ : t′. The adjunction operator, the above
substitution operators, and theidentify-nomvar, give us a
complete inventory of operations for defining logical forms
as directed graphs in HLDS.

The main way we bring in context-sensitivity is through
the types of inquiries we can pose in a chooser. In the archi-
tecture, the utterance planner runs as an agent with access to
the various short-term and long-term models that the robot
maintains for the environment it is situated in; cf. Figure
2. Each of these models is equipped with attentional mech-
anisms, which model current attentional prominence (short-
term working memory) or salience (longer-term memories,
like models of the discursive or visual context).

Using the inquiries built into the utterance planner, we can
query the architecture for the contextual status of an entity,
and what the strongest evidencing modality is in which we
can ground the entity.4 Based on the results of these inquiries,
we can decide how to reflect the contextual status of an en-
tity or an event in the logical form. Contextual appropriate-
ness can thereby take various forms, not just in terms of us-
ing information structure to reflect attentional status, but also

4We assume that the visual context is the strongest modality,
followed by the discursive context, and then the (personal) belief
context.



<chooser id=’’c-evidencing-mod’’ region=’’’’ metafunction=’’textual’’>
<dectree>

<choicenode answer=’’*TOP*’’>
<inquiry id=’’fetch-evid-modality’’ type=’’string’’

answerset=’’@vision @dialogue @beliefs’’>
<f-mod-maxevid/>

</inquiry>
<choicenode answer=’’vision’’>

<result val=’’vision’’/>
</choicenode>
:

</choicenode>
</dectree>

</chooser>

Figure 5: Example of a chooser

by appealing to the appropriate (and maximally informative)
modal context to refer.

Another way we bring in context-sensitivity is through the
inclusion of algorithms for generating referring expressions.
One of the actions a system can perform is to call a dedicated
GRE algorithm, to plan a contextually appropriate referring
expression for an entity. Currently, the planner has access
to an extension of the incremental Dale & Reiter GRE al-
gorithm, which is able to generate a referring expression for
an entity on the basis of its physical properties as well as its
spatial relations to other entities in the visually situated con-
text. The algorithm returns a full logical form for the mean-
ing of the referring expressions. This algorithm is described
in [Kelleher and Kruijff, 2005a].
Example. To illustrate the way logical forms are planned,
consider the network in Figure 6. The network provides an
illustration of how we could plan simple types of grounding
feedback, for example to a statement about the visual scene
like “The red ball is near the blue box.”

Depending on whether the robot is able to verify the
statement against its models of the dialogue history and
the visual scene, the dialogue planner generates a simple
communicative goal providing feedback to the statement.
For example, if the robot is able to resolve the referents
both in the dialogue and the visual contexts, then the di-
alogue planner will send an acknowledgment to the utter-
ance planner:@{d:disc−vantagepoint}〈Acknowledgment〉(p1 :
process) & @{p1 :process}〈Patient〉(o1 : phys− obj). Here,
o1 is an identifier for the red ball in the belief context, where
we fuse the information about identifiers in the dialogue and
visual context.

The utterance planner makesd the locus, and enters system
(1). Here, a chooser inquires after the dialogue move to deter-
mine the polarity of the utterance. Because we need to pro-
duce an acknowledgment, the polarity is to be positive. The
utterance planner now extends the logical form to express the
polarity through “yes” and a positive state: We addyesto the
nominald, and adjoin a positive state construction betweend
and the processp1. We now get the following logical form:

(3) @{d:disc−vantagepoint}(yes)
& @{d:disc−vantagepoint}〈Acknowl.〉(p1 : process)

& @{s:state}(do)
& @{s:state}〈Scope〉(p1 : process))
& @{p1 :process}〈Patient〉(o1 : phys− obj)

Finally, we move the locus to the processp1, identified by
the variablepx in the system.

The type ofp1, process, satisfies the entry condition for
system (2). In this system, we inquire after the strongest ev-
idencing modality for the entity referenced in the commu-
nicative goal. Because the strongest modality is the visual
context, we turn the process into a mental process of type
“observing”. Although the entity can also be grounded in the
dialogue and belief contexts, it would be less appropriate to
say “Yes I do understand ...” or “Yes I do believe ..” than it
would be “Yes I dosee ...”. The remaining actions in the sys-
tem add the propositionseeto p1, and add an Actor relation
to the speaker:

(4) @{d:disc−vantagepoint}(yes)
& @{d:disc−vantagepoint}〈Acknowl.〉(p1 : process)
& @{s:state}(do)
& @{s:state}〈Scope〉(p1 : process))
& @{p1 :process}(see)
& @{p1 :process}〈Actor〉(sp : speaker)
& @{p1 :process}〈Patient〉(o1 : phys− obj)

We next move the locus to Patient, i.e. the entity to be
acknowledged. The type of the entity satisfies the entry con-
dition for system (4). There we trigger the generation of a
contextually appropriate referring expression, calling a GRE
algorithm with the identifiero1.

(5) @{d:disc−vantagepoint}(yes)
& @{d:disc−vantagepoint}〈Acknowl.〉(p1 : process)
& @{s:state}(do)
& @{s:state}〈Scope〉(p1 : process))
& @{p1 :process}(see)
& @{p1 :process}〈Actor〉(sp : speaker)
& @{p1 :process}〈Patient〉(o1 : phys − obj)
& @{o1 :phys−obj}(ball)
& @{o1 :phys−obj}〈Delimitation〉(unique)
& @{o1 :phys−obj}〈Quantification〉(specificsingular)



Figure 6: Simple network for planning grounding feedback

& @{o1 :phys−obj}〈Property〉(c1 : color)
& @{c1 :color}(red)

Finally, the agenda manager moves the locus automatically
to the nominalsp. Applying system (3), we introduce the full
specification of the speaker, to yield the logical form that is
outputted by the utterance planner:

(6) @{d:disc−vantagepoint}(yes)
& @{d:disc−vantagepoint}〈Acknowl.〉(p1 : process)
& @{s:state}(do)
& @{s:state}〈Scope〉(p1 : process))
& @{p1 :process}(see)
& @{p1 :process}〈Actor〉(sp : speaker)
& @{sp:speaker}(I)
& @{sp:speaker}〈Number〉(singular)
& @{p1 :process}〈Patient〉(o1 : phys − obj)
& @{o1 :phys−obj}(ball)
& @{o1 :phys−obj}〈Delimitation〉(unique)
& @{o1 :phys−obj}〈Quantification〉(specificsingular)
& @{o1 :phys−obj}〈Property〉(c1 : color)
& @{c1 :color}(red)

3.1 Coverage

One of the topics under investigation in the CoSy project
is how a robot canlearn through language, acquiring more
knowledge of its environment through interaction with a hu-
man tutor. As such, we are currently developing grammars for
the utterance planner, so as to be able to handle clarification
dialogues, verbalization of what the robot does or does not

know, and synchronization of different modalities (sequenc-
ing, concurrency) through which the robot can communicate.
The example below illustrates such a dialogue.

(7) H: “In front of you you see a desk.”
R: looks in front of it, acquires a visual recognition model

of the object it has in its field of vision
R: turns to the tutor
R: nods, and says “Thank you for showing me a desk.”
R: “Is a desk a kind of table?”
H: “Yes, that is correct.”

4 Practical planning grammars
In this section we describeongoing research on constructing
utterance planning grammars for practical systems.

4.1 Derivation from a CCG grammar
In a dialogue system, there are usually various grammars:
for speech recognition, parsing recognized strings, generat-
ing strings from logical forms, an utterance planning gram-
mar; and so on. Ideally, one grammar would be enough –
and should, if we want to maintain a single source of linguis-
tic knowledge across the different levels of interpretation and
production of natural language. The OpenCCG system al-
ready facilitates the use of a single grammar for both parsing
and realization. Here, we discuss how we could derive the
planning grammar from the signature of the CCG grammar,
to ensure that we can realize what we can plan.

We start from two observations. First, we can break up the
meaning of an expression, down to the level of a single word,
in terms of a conjunction of elementary predications; cf.§2.1.
Second, we can organize the computational CCG lexicon as a
collection of (monotonic) inheritance hierarchies[Baldridge,



2002]. Taken together, this means that we can describe the hi-
erarchies in terms of how elementary predications are added,
when descending down a hierarchy. More precisely, because
we can distinguish between elementary predications that add
propositions, features, or relations, we can describe the hier-
archies in terms of what types of structure are being added.

Hierarchies are over lexical families. Given a lexical fam-
ily f i , we can define the signature of its meaning in terms
of what it (a) inherits from a super-familyf j , and (b) con-
tributes itself: Σ(f i) = LF f i

+ Σ(f j : f i v f j ). Be-
cause a contribution to logical form is essentially the speci-
fication of the type of the root nominal and a conjunction of
elementary predicationsepi , LF f i

is nom : type plus a set
of conjunctsconj(f i) = {ep1 , ..., epn}. We can separate
the conjuncts further in terms of relations, propositions, and
features:conj(f i) = props(f i){ep1 , .., epk} ∪ rels(f i) =
{epl , ..., epm} ∪ feats(f i) = {epn , ..., epo}.

Based on the signatures, we define the construction of sys-
tems and outline their associated choosers. Staying with a
functional perspective, we should not map lexical families di-
rectly onto systems. Systems define paradigmatic choices,
whereas lexical families reflect an aggregation of several such
choices: they reflect transitivity through their valency and the
associated structure of their categories, whereas other mean-
ingful dimensions are associated with their features.

We focus first on transitivity. This is expressed by the type
of the nominal, and the elementary predications inprops and
rels. Given a subtree in the inheritance hierarchy, being a
family f i and itsn immediate childrenf j , we can define
a systemσ for the transitivity region in the planning net-
work as follows. The entry condition to the system is defined
by the logical form thatf i yields, modulo its features i.e.
entry(σ) = Σ(f i)− feats(f i). The chooser needs to make
(n − 1) decisions, to cover the different possibilities; we de-
rive the associated actions (add-proposition, add-relation,
assign-type) directly from the type forf j , props(f j ) and
rels(f j ). This procedure yields a shallow network, in which
systems do not take into account any similarities between the
childrenf j of f i . If we want this, we need to find a com-
mon structure between the children. This is again an inheri-
tance hierarchy, over contributions to logical form in terms of
props(f j ) ∪ rels(f j ). We then define system for each node
in this hierarchy, using the above procedure.

We can thus obtain the systems for the transitivity region
of the planning grammar, based on how logical forms in the
lexical inheritance hierarchy are expanded by assigning more
specific types, and adding propositions and relations. To or-
ganize regions around features (and their values), we suggest
to let this organization follow from the organization of fea-
tures and values in the type-hierarchy, which we can specify
for a CCG grammar[Erkan, 2003]. Given a class of features,
and a lexical inheritance hierarchy, we can define systems on
the basis of how these features are set when we descend down
the hierarchy. Given an inheritance hierarchy, we annotate
each node for a familyf j with those features infeats(f j )
that are in the class we consider. The resulting structure may
be sparse, as not every family needs to add features; hence,
we can flatten this structure by removing nodes that do not
add any features. From this structure, we can create systems

in essentially the same way as we did above. For each subtree
in the structure, we create a system that has as entry condi-
tion the type for the rootf i plus its features in the current
class. The chooser needs to make decisions about the speci-
fication of the features introduced or further specified by the
children f j of f i . For both introduction and specification
the associated action isadd-feature; if a feature is specified,
the chooser can already specify a choice point based on the
inquiry after the presence and (underspecified) value of the
feature.

The resulting utterance planning grammar is based on a
network in which the entry conditions ensure that the way
logical forms are expanded conforms to the way lexical fam-
ilies are formulated in the grammar. The systems are dis-
tributed across different regions, modelling different dimen-
sions of paradigmatic choices that the systems in these re-
gions make, whereby the organization into regions is driven
by the relational structures defined through the lexical fami-
lies (i.e. transitivity) and the type hierarchies over features.

Current research focuses on how we can use XSLT to
transform the XSL-based specification of a CCG grammar
into the different structures from which we derive the sys-
temic network. We then use the resulting XML-based struc-
tures together with the type hierarchies for the grammar as in-
put to the above construction procedures. The systems we can
thus obtain still lack the decisions to be made in the choosers;
we are developing a debugger/editor for the sentence planner
to help specifying these.

4.2 Trainability

Relatively recently, the issue of trainability of utterance plan-
ners has arisen in the context of practical dialogue systems.
Using training, we can automatically adapt and optimize the
choices of a planner to the domain in which the planner needs
to be applied. This has the potential of yielding a significantly
faster planner; cf. e.g.[Stentet al., 2004].

For training the planner we discuss in this paper, we are not
only interested in ensuring that we obtain a logical form that
is appropriate given the communicative goal to be expressed
(or, in a more structured way, comparable to the rhetorical
structures considered in[Stentet al., 2004]); the logical form
also needs to be appropriate given ’the’ context.

This poses an interesting challenge, because it means that
we need to train the planner on data that is rated not only
for its structural appropriateness, but also for contextual ap-
propriateness. By data we understand a domain-specific cor-
pus of parseable expressions, annotated with context features
such as the salience of an entity or event across different
modalities. We are exploring how we can train the planner
over the logical forms underlying the syntactic analyses of
the expressions, i.e. training is not on the surface forms.

The basic idea we consider is the following. Given the
logical form for an expression, written as elementary predi-
cations, we can reconstruct the path through the systemic net-
work that gives rise to this logical form. A path consists of
the systems that need to be entered, and the decisions that
the associated choosers need to make. Training then comes
down to learning, for each system, ann-ary classifier that



takes context features and the logical form for the current lo-
cus, to output the choice that the chooser should make.

5 Conclusions
In this paper we discussed the implementation of an utterance
planner which is part of a larger communication subsystem
for a conversational robot. One of the challenges for such a
robot is to produce contextually appropriate utterances in a
dynamic context. We presented an approach that can dynam-
ically include information about the situated context while
planning an utterance. We use systemic networks to guide
the paradigmatic choices the planner needs to make, and we
discussed (briefly) how these networks could be trained, and
derived from the CCG grammar that specifies the linguistic
knowledge of the robot. The planner is implemented in Java,
and has a (tccg -style) debugger enabling one to trace, and
interact with, the decisions the planner makes, and to realize
the resulting logical forms using OpenCCG.
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