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Abstract

The paper presents an approach to utterance plan-
ning, which can dynamically use context informa-
tion about the environment in which a dialogue
is situated. The approach is functional in nature,
using systemic networks to specify its planning
grammar. The planner takes a description of a
communicative goal as input, and produces one
or more logical forms that can express that goal
in a contextually appropriate way. Both the goal
and the resulting logical forms are expressed in a
single formalism as ontologically rich, relational
structures. To realize the logical forms, OpenCCG
is used. The paper focuses primarily on the im-
plementation, but also discusses how the planning
grammar can be based on the grammar used in
OpenCCG, and trained on (parseable) data.

Introduction

ment that the robot maintains. This way we can dynam-
ically use contextual information during the planning pro-
cess. The logical forms we operate on are all specified in a
single formalism, namely Hybrid Logic Dependency Seman-
tics (HLDS), meaning we have a representational continuum
between discourse-level and utterance-level representations
[Kruijff, 2001; Baldridge and Kruijff, 200 and can guide
utterance planning through content decisions made at higher
levels. The logical form we obtain from the utterance planner
serves as input to a separate OpenCCG rea]ia#ite and
Baldridge, 2003; White, 2004

The resulting approach is related Stone and Doran,
1997; Casselét al, 2004. We adopt their idea of an utter-
ance as a description, generated from a communicative goal,
and also use an “ontologically promiscuous” formalism for
representing meaningHobbs, 198% We differ in that we
separate out the realizer, though minimize the need for back-
tracking in the planner by allowing for multiple, alternative
logical forms to be sent to the realizer, BFoster and White,
2004. Also, to establish contextual status of an entity, we can
in principle use any type of model that the robot maintains of

Conversational robots often need to carry out a dialogue withhe environment, as long as we have an ontology on which we
other agents while be|ng situated in a dynamIC enV|r0nmenr€an establish a common ground in interpretation.

This poses an interesting challenge: For the robot to con- oy approach places us squarely in the full generation
verse in a natural manner with other interlocutors its commus- amp, but there is a continuum: Using the approach to in-

thus must be actively aware of the environment, and use thigation and pre-baked generation. We can use the flexibility
awareness when producing utterances. , of full generation where necessary, notably to achieve con-
Here, we present an approach to utterance planning wheggy,al appropriateness, but if desired we can use more direct
we can use context information to dynamically guide deci-pathods to specify content. Our approach owes its perspec-
sions we need to make during planning. These decisions akge o systemic approaches, particularly KPNBateman,
paradigmatic in nature, and get us from a logical form stating 997 Where we differ is in the creation of, and relation be-

a communicative intention, to a logical form (or a set thereoﬂtween, the resources we use in the parser, the realizer, and
expressing_the intenti(_)n in a contextually appropriate Way. the utterance planner: We use one and the same grammar
We specify a planning grammar as a systemic network, ifor poth parsing and realization (though with different algo-

the tradition of generation systems for systemic functlonalrithms), and we can derive the systemic network for utterance
grammar[Mathiessen, 1983; Bateman, 199We process pjanning from this grammars4) to ensure that we have a
using an agenda/chart-based algorithm, (meaning there is iingle formulation of the robot’s linguistic knowledge, in the
“determinicity” assumption). The utterance planner itselfsorm of a CCG grammar. We also point 0§84, how we can
is embedded in a distributed architecture that makes it posy, principle train the planner, like e.§Stentet al, 2004.

sible to access the various models of the situated enVirorbverview In §2 we briefly discuss HLDS, and the overall

*This research is supported by the EU FP6 IST IP “Cognitivearchitecture in which we employ the utterance planri3.
Systems for Cognitive Assistants” (CoSy), FP6-004250-IP presents the planner, focusing on the basic structure of the



planning grammar, and context sensitivif¢ discusses how ontologies (procedural) knowledge

we can base the planning grammar on the specification of the e entology oroduction
grammar we employ for parsing and realization, and how we
can in principle train the planning grammar given a corpus of ‘GLOBALcRoss MODAL FUSION [ potief cantext INTERACTION

(analyzable) utterances. REALIZER

LOCAL CROSS;MODAL FUSION modality specific INTERACTION

2 BaCkg round MODALITY | context models PLANNING
. . . : “";i:f:;;d" MODALITY SPECIFIC
2.1 Hybrid Logic Dependency Semantics C SN jrooairy < |MODAL.:YLTTN|':§DALM
Hybrid Logic Dependency Semantics (HLD®ruijff, 2001; = = < working 1
Baldridge and Kruijff, 200D is an “ontologically promiscu- T memory
[ sensor 1 |[ sensor 2 || sensoran | | MODALITY SYNTHESIS 1.

ous” [Hobbs, 1985 framework for representing the propo-
sitional content (or meaning) of an expression asoato- i )
logically richly sorted, relational structure. The relational Figure 1: Conceptual architecture
structure connects different bits of meaning using (directed)

labelled edges. The labels on these edges indicate how ﬂ?gsents the fact that Kathy is a person; note that we can thus

wﬁ;g'n%ggetg:eﬁ]eggfgtﬂg%gtif:ttez\tgrwsetﬂqeeggmegng(fame use nominals as (neo-Davidsonian style) discourse referents.
' 9 P ' We obtain a relational structure by relating nominals

1 This view_on the representation of meaning can be tracegnrough modal relations, e.g. (1).
ack to various theories of valency in dependency gram-
mar and related work on theta-frames. Under this view we (1) 4 Kathy saw Eli.
obtain relatively flat representations. These flat represen-
tations are nowadays used in various grammar frameworks,
and are closely related to the conceptual structures found in
Al knowledge representationfBaldridge and Kruijff, 2002;
White and Baldridge, 20d3how how HLDS representations
can be built compositionally with CCG using unification, and
compare HLDS to other semantic formalisms like Minimal
Recursion Semanti¢€opestaket al., 1997.

Formally, we represent the meaning of an expression u
ing hybrid logic [Blackburn, 2000; Areces, 20R0Being a
type of modal logic, hybrid logic is ideally suited to capture
relational structures. Furthermore, it adopts an approach tg
sorting that enables us to represent meaning as an ontologi-
cally richly sorted structure. This works out as follows. (2)  Qfqoserving) (S8

Hybrid logic is a modal logic, but a modal logic with a & @ & (Tense)past

. . : " {s:observing} pas
twist. Modal logics are interpreted on models consisting of & @ U Actory ( -
states and accessibility relations between these states. How- {siobserving} (Actor) (k : person)

i i & @ :person (Kathy)
ever, we cannot reference these states directly in the language {k:person} /
of a modal logic itself. This is problematic. Modal logic is @{s:observing}<_Pa“e”t>(e s person)
often used to model temporal structure, e.g. using Prior's Past & Qcipersony (ElN)
and Future operators. Unfortunately, all we can express is that . . .
something hgppened at some poin%/in the past, orF\)/viII happen The fIattengd representation in (2) illustrates that
at some point in the future. We canngkecify that pointin a we have _ba5|cally_ th_ree types of elementary predica-
formula, which is counter-intuitive; c{Blackburn, 2000 tions: lexical predications @ person (Kathy), fea’;ures

Hybrid logic addresses this issue by introducirgninals ~ — @{swobserving} (Tense)past, and dependency relations —
into the language. A nominal is a type of formula, which is @{s:observing} (Actor) (k : person).
interpreted as a unique reference to a state in the underlyiry .
model theory of the logic. Nominals are formulas, and hence-2 ~ System architecture
equal citizens in the language next to e.g. propositions. TherBigure 1 describes the conceptual architecture that underlies
are several operators that range over nominals, the most ubiqur system. As a cognitively motivated architecture, it speci-
uitous for our current purposes being the “@” operatory  fies the underlying infrastructure for the communication abil-
means that “at the state referred tosbyformula¢ holds”. ities for an intelligent embodied agent.

We use the standard modal operators to model relations: The distributed nature of the architecture is inspired by
@, (R)m means that there is a relatidhbetween the nomi- the general tendency to see cognition as a network of con-
nalsn andm. Particularly important for our purposes is that current, situated processes, elinsky, 1986; Langley and
we can sort the nominals further, to indicate the ontologicalaird, 2003. Distributed information processing facilitates
sort or category of the proposition that holds at the state rethe concurrent maintenance of several models of the environ-
ferred to by the nominal. For exampl@,;.....sony Kathy rep-  ment, possibly using different means for representation and

b. Qg observing} (S€E& (T'ense)past
& (Actor)(k : person & Kathy)
& (Patient) (e : person & Eli))

Here,s is the nominal (or discourse referent) for the event
see which we interpret as anbservational process in past
tense. Related to the evenare two dependents: we have an
S,Q\ctor, aperson with discourse refererit, beingKathy (the
one doing the seeing); and a Patient, anoffleeson but with
discourse referent, beingEli (the one being seen).
We can flatten the representation in (1b) by rewriting it into
conjunction of elementary predications, akin to MRS terms:
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interpretation. Furthermore, we can adopt a localised ap- ‘ ontologies (procedural) knowledge
proach to the processing and fusion of information stemming [ncerpretation ot | [oroauceion
from different modalities Ipcal cross-modal fusion), guided [ ——— content
by passive attention mechanisif@hum and Wolfe, 2001 -
and active attention mechanisms through a short-term work- N ) e
ing memory with activated concepts and their associations. plarfing
The architecture is layered in that we distinguish different T—1
levels of information processing. The levels basically corre- ‘ realization
spond to the reactive (or perceptual), deliberative, and meta- Jworld model”
level processes in the cognitive architecture presenteslan il
man, 200]. Like cognitive roboticdReiter, 2001 we use &
logic as a representational medium at the deliberative level,
but with an explicit relation to lower-level perceptual pro- specch vision speech
cesse:iShanahgn, 2000; Shanahan and Witﬁowsl?i, I.Oopl |L| U E
We use context r_nodgls to represent the_ deliberative_ in- Figure 2: Example implemented architecture
terpretation of the situation relative to a particular modality,
on the basis of which future states can be anticipated and
planned. Each context model maintains a (model-specific, lowe also have processes that interpret the visual scene. We
cal) salience measure over the information in the model, to inuse a visual recognition and classification algorithm based on
dicate what is currently activated. Examples of context mod-OpenCV? that produces a representation of an object in terms
els are the dialogue context model, capturing the dialogue hif its type, physical properties, and position. We interpret
tory which serves as the background against which new diahese representations on a model of the visual scene, captur-
logue moves are interpreted and planned, or the action conteittg proximal and projective spatial relations between objects
which keeps track of the current status of tasks and the overdlKelleher and Kruijff, 2005h
action plan. Figure 1 shows these context modelsiadal- For production, the architecture in Figure 2 includes only
ity specific context models. It also includes @elief context. spoken language as an output modality. The dialogue planner
The belief context model capturghbal cross-modal fusion, ~ constructs an HLDS logical form that specifies the communi-
achieved by fusing information across the different modal-cation goal reflecting how the belief context could be updated
ities at least at the level of token identification. We estab-with the information coming from the acoustic and visual di-
lish a common ground for interpretation across modalitieamensions. This logical form is taken by the utterance planner,
by relating each layer to a set of ontologies that model catwhich expands this logical form to a full logical form that
egories on which the events, states, and entities at that lay@penCCG can realize as a well-formed strikghite, 2004.
can be interpreted, following recent work in information fu- Finally, we use FreeTTor speech synthesis.
sion[Wacheet al, 2001 and dialogue systemi&urevychet
al., 2003. There are different levels of granularity for the 3 Utterance planning
comen U e 1y b bl o estableh due Lo Plowing the systemi raciion, we formulate @ planning
used in the architecture. On the low end of the scale we havgrammar as a network of systems. A system represents a
type identity, to type/token identity, to the high end where arad_|gmat|c chmcg,. e a ch0|c_e about an aspect Of. the
we have fullg/ shared representations The granularity of th (eaning to be speqf!ed by the Ioglcal forrr_1 we are pl_annmg.
common ground we are able to estat;lish determines to wh?Ne _speufy the decision process mvolved in this choice as a
extend information can be fused Hecision tree or chooser, assqmat(_a(_j with the system. In the
For the purposes of this pape.r we use the example imlolecihooser, we can pose several inquiries about the logical form
d hitecture. shown in Fiqure 2. The aoal of thisand_the contextual status of d|§course refer_ents, to guide the
mgtr;tr?ceairsct(; enablé a robot to c%nduci a simgle dialo udeC|S|on process. On the basis of the choice we make, the
bout a d o visual We h . Ip i dgth%/Stem per_forms one or more operations on the Iog|_cal form,
about a dynamic, visual scene. We have implemente expand it; we thus reflect grammatical features directly as
distributed infrastructure using ti@pen Agent Architecture " :
[Cheyer and Martin, 20Q1the different boxes in Figure 2 are content in the logical form. y - -
. ' A system consists of an entry condition, actions associated
processes'|mplemen'ted as OAA agents. with the different choices the associated chooser can make,
On the interpretation side, we have several layers of prog 4 4 gutput. Both the entry condition and the output of the
cessing for a speech dimension, and for a vision dimensior, 1o take the shape of an HLDS logical form, and an indi-
We process the acoustic s_|gnal usSythinx4 [Walkeret al, cation of the locus within that logical form. As a result, the
2004 with a domain-specific, English language model, and;ination of locus and output logical form of one system
then parse the recognized string using @y@nCCG parser o he the entry condition for another system. It is in this
for combinatory categorial grammwald_rldge, 200 The way that we obtain a network of systems.
parser yields a logical form of the meaning of the string, rep-
resented as an HLDS logical form. This logical form is inter-  *we would like to thank Somboon Hongeng from Birmingham
preted further in a dialogue process, which maintains a modelniversity for the implementation of this module.
of the dialogue history. In parallel to the speech dimension, 2http://freetts.sf.net



<system id="evidencing-modality” region="" metafunction="ideational”’>
<chooser id="c-evidencing-mod”/>
<conditions>
<condition features="@type:process”/>
</conditions>
<actions>
<action choice="vision">
<assign-type type="observing"/>
<add-proposition propositions="@see"/>
<add-relation mode="Actor” nomvar="sp” type="speaker”/>
<identify-nomvar mode="Patient” nomvar="0bj"/>
<move-locus nomvar="obj"/>
</action>

</actions>
</system>

Figure 3: Example of a system

Figure 3 provides an example specification of a system, Furthermore, we have an operatiadjoin-If. With this
called evidencing-modality. The point of the system is to operation we can extend the current logical formabjpining
specify the kind of mental process the current locus in theanother logical form into it. We can explain adjunction using
logical form should express to refer to the modality in whichthe illustration in Figure 4.
an entity can be grounded. The chooser associated with this We start with a logical
system isc-evidencing-mod; cf. Figure 5 and below. form which contains the o ® ®

One of the possible answers of this chooseris$on, i.e.  greyed subtree rooted by a ¢ nt nit
the visually situated context is the “strongest” modality in nominal n’ of type ¢’ (1).
which we can ground the entity that is part of the commu-Next, we remove that sub- / /\
nicative goal. This results in the system performing severatree, leaving an argument A /\
actions on the logical form: position for a nominal of

1. assign-type specifies the type of the locus alsserving ~ tyPe ¢’ in the logical form

iy Iy . rooted byn : t, (2). We Figure 4: Adjunction
2. add-proposition adds the propositioeeeto the nomi- now insert a new subtree,
nal of the locus

rooted by a nominah’ of typet’, which itself also contains

3. add-relation adds a relation of typéctor between the  an argument position of typé into which we can slot the
locus and a nominaip of type speaker greyed subtree af’ : #'. The adjunction operator, the above

4. identify-nomvar identifies the nominal to which thea- ~ Substitution operators, and théentify-nomvar, give us a
tient relation points, and then moves the locus to thiscomplete inventory of operations for defining logical forms
nominal (identified by variable namj). as directed graphs in HLDS. o

We have two more operations that a system can specif){h The main way we bring in context-sensitivity is through

besides the above ones. The operatidd-feature adds a € types of inquiries we can pose in a chooser. In the archi-
ecture, the utterance planner runs as an agent with access to

feature and a value to the nominal of the current locus. Thi%h ! hort-t dl i dels that th bot
operation together with the operatioassign-type, add- € various short-term and long-term models that the robo
maintains for the environment it is situated in; cf. Figure

roposition andadd-relation gives us a basic inventory for . ; ; )
gxtgnding a logical form throgg#ubstitution' y 2. Each of these models is equipped with attentional mech-
' anisms, which model current attentional prominence (short-

e add-feature: term working memory) or salience (longer-term memories,
Qninomv} @ == Qfninom} @ & Qninomyy (Feat) (value). ke models of the discursive or visual context).

e add-proposition: Using the inquiries built into the utterance planner, we can
Qninomv} ® = Qpinomvy (¢ & prop) query the architecture for the contextual status of an entity,

e add-relation: and what the strongest evidencing modality is in which we
Qrrimom}® = Qninom1® & Qpinomyy (Rel)n' can ground the entityBased on the results of these inquiries,
nomv’. we can decide how to reflect the contextual status of an en-

e assign-type: tity or an event in the logical form. Contextual appropriate-
A pnomv} @ = Qp.type) & ness can thereby take various forms, not just in terms of us-

. ing information structure to reflect attentional status, but also
3We can define for a variable whether it is to have system-local

scope, or global scope. This way, we can reference other parts of a “We assume that the visual context is the strongest modality,

logical form, outside the scope of the subtree that is currently in thdollowed by the discursive context, and then the (personal) belief

locus. context.



<chooser id="c-evidencing-mod” region="" metafunction="textual’>
<dectree>
<choicenode answer="*TOP*">
<inquiry id="fetch-evid-modality” type="string”
answerset="@vision @dialogue @beliefs”>
<f-mod-maxevid/>
</inquiry>
<choicenode answer="vision">
<result val="vision"/>
</choicenode>

</choicenode>

</dectree>
</chooser>
Figure 5: Example of a chooser
by appealing to the appropriate (and maximally informative) & Qg .gtate} (dO)
modal context to refer. & Qygisrate} (Scope) (pl = process))
Another way we bring in context-sensitivity is through the & Q1 processy (Patient) (ol : phys — obj)

inclusion of algorithms for generating referring expressions.
One of the actions a system can perform is to call a dedicated Finally, we move the locus to the procesis identified by
GRE algorithm, to plan a contextually appropriate referringthe variablepz in the system.
expression for an entity. Currently, the planner has access The type ofpl, process, satisfies the entry condition for
to an extension of the incremental Dale & Reiter GRE al-system (2). In this system, we inquire after the strongest ev-
gorithm, which is able to generate a referring expression fofdencing modality for the entity referenced in the commu-
an entity on the basis of its physical properties as well as it§icative goal. Because the strongest modality is the visual
spatial relations to other entities in the visually situated concontext, we turn the process into a mental process of type
text. The algorithm returns a full logical form for the mean- “observing”. Although the entity can also be grounded in the
ing of the referring expressions. This algorithm is describeddialogue and belief contexts, it would be less appropriate to
in [Kelleher and Kruijff, 2005k say “Yes | do understand ...” or “Ye_s_l do b_elievg .7 than it
Example. To illustrate the way logical forms are planned, Would be “Yes I dasee ...". The remaining actions in the sys-
consider the network in Figure 6. The network provides arfém add the propositioseeto p1, and add an Actor relation
illustration of how we could plan simple types of grounding t0 the speaker:
feedback, for example to a statement about the visual scene 4) @y e (ves
like “The red ball is near the blue box.” {d:disc—vantagepoint} (¥ M '

Depending on whether the robot is able to verify the & Q@ g:disc—vantagepoint} (Acknowl.) (pl = process)
statement against its models of the dialogue history and & Qpistate) (dO)

the visual scene, the dialogue planner generates a simple & Qgistate} (Scope) (pl : process))

communicative goal providing feedback to the statement. & @y process) (S€8

For example, if the robot is able to resolve the referents & Q1 :process) (Actor) (sp : speaker)

both in the dialogue and the visual contexts, then the di- & Q1 process} (Patient) (ol : phys — obj)

alogue planner will send an acknowledgment to the utter- . _ )

ance plannery y.dic vantagepoint} {Acknowledgment)(pl : We next move the locus to Patient, i.e. the entity to be

. . . knowledged. The type of the entity satisfies the entry con-
process) & Q1 .pocess) (Patient) (ol : phys — obj). Here, act X .
ol is an identifier for the red ball in the belief context, where dition for system (4). There we trigger the generation of a

we fuse the information about identifiers in the dialogue andFOntextually appropriate referring expression, calling a GRE
visual context. algorithm with the identifiep1.

The utterance planner makéthe locus, and enters system (5) @ udisc—vantagepoint} (YES
(1). Here, a chooser inquires after the dialogue move to deter- &G o gtp o (Acknowl.)(pl : process)
mine the polarity of the utterance. Because we need to pro- & @{ ' 'SC‘V(z‘g)geP"'" 4
duce an acknowledgment, the polarity is to be positive. The {is:state}

utterance planner now extends the logical form to express the & Qgistare} (Scope) (p1 = process))

polarity through “yes” and a positive state: We aabto the & @y 1:process} (S€
nominald, and adjoin a positive state construction betwéen & Q1 process) (Actor) (sp : speaker)
and the processl. We now get the following logical form: & Qg iiprocesst (Patient)(ol = phys — obj)
@{01 :phys—obj}(ba”)
(3) @{d:disc—vantagepoint} (yes) & @{01 :phys—obj} <Delimitation> (Unique)
& Q g.disc—vantagepoint} (Acknowl.) (pl : process) & Qy, 1:phys—obj} (Quanti fication)(specificsingular)



Acknowledgment  =add-proposition propositions="@yes"/=
—® <adjoin-If mode="Acknowledgment" If="@s1:state{do * <Scope={px:process))" foot="px />
<move-locus nomvar="px"/=

n:disc-vantagepaoint
—>» 7e-dialmove

@ <add-proposition propositions="@no">
———# <adjoin-if mode="Reject" If="@s1:state(do * <Scope?(s2:state * not * <Scope=(px:process)))” foot="px"/=
Reject <maove-locus nomvar="px"/=

<assign-type type="observing"/>
vision <add-proposition propositions="@see"/>
—® <add-relation mode="Actor” nomvar="sp" type="speaker"/>
<identify-nomvar mode="Patient™ nomvar="obj"/>
n:process <move-locus nomvar="obj"/>

—  Pl-evid-mod

®

<add-proposition propositions="@|"/>
~  <add-feature feature="Number" value="singular /> -

® ®

Figure 6: Simple network for planning grounding feedback

A 4

e <generate-rfx/>

n:speaker default n:phys-obj | default

& Q41 .phys—obj} (Property)(cl : color) know, and synchronization of different modalities (sequenc-
& Qo 1.color} (red) ing, concurrency) through which the robot can communicate.
The example below illustrates such a dialogue.

Finally, the agenda manager moves the locus automatically (7) H: “In fro_m of you youseea deSkj" .
to the nominakp. Applying system (3), we introduce the full R: looks in front of it, acquires a visual recognition model
specification of the speaker, to yield the logical form that is of the object it has in its field of vision

outputted by the utterance planner: R: turns to the tutor
R: nods, and says “Thank you for showing me a desk.”
(6) Q¢ g.disc—vantagepoint} (YES R: “Is a desk a kind of table?”
& @{d:discfvantagepoint} <A0kn0wl'>(p1 : p?"OC@SS) H: “Yes, thatis correct.”
& @{s:state} (dO)
& Q@ state} (Scope) (pl : process)) 4 Practical planning grammars
& Q1 :process) (S€9 In this section we describengoing research on constructing
& Q1 processy (Actor) (sp : speaker) utterance planning grammars for practical systems.
& @{sp:speaker}(l) i i
& Qygp.speaker} (Number) (singular) 4.1 Derivation from a CCG grammar
Q¢p1:process} (Patient)(ol ' phys — obj) In a dialogue system, there are usually various grammars:

Q{4 1:phys—obj} (ball) for spgech recognit_ion, parsing recognized string_s, generat-
& Qy o 1.phys—obj} (Delimitation) (unique) ing strings from logical forms, an utterance planning gram-
& @y 1:phys—obj) (Quanti fication) (specificsingular) Mar; and so on. lIdeally, one grammar would be enough —
& @y 1 .phys—abj) (PTOperty) (cl : color) and should, if we want to maintain a single source of linguis-

tic knowledge across the different levels of interpretation and
production of natural language. The OpenCCG system al-
ready facilitates the use of a single grammar for both parsing
and realization. Here, we discuss how we could derive the
planning grammar from the signature of the CCG grammar,
One of the topics under investigation in the CoSy projectto ensure that we can realize what we can plan.

is how a robot carearn through languageacquiring more We start from two observations. First, we can break up the
knowledge of its environment through interaction with a hu-meaning of an expression, down to the level of a single word,
man tutor. As such, we are currently developing grammars foin terms of a conjunction of elementary predications£efl.

the utterance planner, so as to be able to handle clarificatioBecond, we can organize the computational CCG lexicon as a
dialogues, verbalization of what the robot does or does notollection of (monotonic) inheritance hierarchi@aldridge,

& @{cl :color} (red)

3.1 Coverage



2004. Taken together, this means that we can describe the hin essentially the same way as we did above. For each subtree
erarchies in terms of how elementary predications are added) the structure, we create a system that has as entry condi-
when descending down a hierarchy. More precisely, becaug®n the type for the rooff; plus its features in the current
we can distinguish between elementary predications that adtlass. The chooser needs to make decisions about the speci-
propositions, features, or relations, we can describe the hiefication of the features introduced or further specified by the
archies in terms of what types of structure are being added. children f; of f;. For both introduction and specification

Hierarchies are over lexical families. Given a lexical fam-the associated action &ld-feature; if a feature is specified,
ily f;, we can define the signature of its meaning in termghe chooser can already specify a choice point based on the
of what it (a) inherits from a super-family;, and (b) con- inquiry after the presence and (underspecified) value of the
tributes itself: X(f;,) = LFy, + 2(f; : fi T f;). Be- feature.
cause a contribution to logical form is essentially the speci- The resulting utterance planning grammar is based on a
fication of the type of the root nominal and a conjunction of network in which the entry conditions ensure that the way
elementary predicationg;, LF, is nom : type plus a set  logical forms are expanded conforms to the way lexical fam-
of conjunctsconj(f;) = {eps,...,epn}. We can separate ilies are formulated in the grammar. The systems are dis-
the conjuncts further in terms of relations, propositions, andributed across different regions, modelling different dimen-
features:conj(f;) = props(fi){eps,...,epr} Urels(f;) =  sions of paradigmatic choices that the systems in these re-
{epi,...,epm} U feats(f;) = {epn,...,epo} gions make, whereby the organization into regions is driven

Based on the signatures, we define the construction of sysy the relational structures defined through the lexical fami-
tems and outline their associated choosers. Staying with les (i.e. transitivity) and the type hierarchies over features.
functional perspective, we should not map lexical families di- Current research focuses on how we can use XSLT to
rectly onto systems. Systems define paradigmatic choicessansform the XSL-based specification of a CCG grammar
whereas lexical families reflect an aggregation of several sucimto the different structures from which we derive the sys-
choices: they reflect transitivity through their valency and thetemic network. We then use the resulting XML-based struc-
associated structure of their categories, whereas other meares together with the type hierarchies for the grammar as in-
ingful dimensions are associated with their features. put to the above construction procedures. The systems we can

We focus first on transitivity. This is expressed by the typethus obtain still lack the decisions to be made in the choosers;
of the nominal, and the elementary predicationgriops and ~ we are developing a debugger/editor for the sentence planner
rels. Given a subtree in the inheritance hierarchy, being ao help specifying these.
family f; and itsn immediate childrenf;, we can define
a systemo for the transitivity region in the planning net- 4.2 Trainability
work as follows. The entry condition to the system is defined ) ) o
by the logical form thatf; yields, modulo its features i.e. Relatively recent_ly, the issue of tramabl_llty of_utterance plan-
entry(o) = X(f;) — feats(f;). The chooser needs to make Ners has arisen in the context <_3f practical dlalogue_ systems.
(n — 1) decisions, to cover the different possibilities; we de-Using training, we can automatically adapt and optimize the
rive the associated actionadd-proposition, add-relation, ~ choices of a planner to the domain in which the planner needs
rels(f;). This procedure yields a shallow network, in which faster planner; cf. e.dStentet al, 2004.
systems do not take into account any similarities between the For training the planner we discuss in this paper, we are not
children f; of f;. If we want this, we need to find a com- only interested in ensuring that we obtain a logical form that
mon structure between the children. This is again an inherilS appropriate given the communicative goal to be expressed
tance hierarchy, over contributions to logical form in terms of(0r, in a more structured way, comparable to the rhetorical
props(f;) Urels(f;). We then define system for each node structures considered [St_entet al, 2004); the logical form
in this hierarchy, using the above procedure. also needs to be appropriate given 'the’ context.

We can thus obtain the systems for the transitivity region This poses an interesting challenge, because it means that
of the planning grammar, based on how logical forms in thewe need to train the planner on data that is rated not only
lexical inheritance hierarchy are expanded by assigning mortr its structural appropriateness, but also for contextual ap-
specific types, and adding propositions and relations. To orpropriateness. By data we understand a domain-specific cor-
ganize regions around features (and their values), we suggetis of parseable expressions, annotated with context features
to let this organization follow from the organization of fea- such as the salience of an entity or event across different
tures and values in the type-hierarchy, which we can specifynodalities. We are exploring how we can train the planner
for a CCG grammalErkan, 2003. Given a class of features, over the logical forms underlying the syntactic analyses of
and a lexical inheritance hierarchy, we can define systems ofie expressions, i.e. training is not on the surface forms.
the basis of how these features are set when we descend downThe basic idea we consider is the following. Given the
the hierarchy. Given an inheritance hierarchy, we annotatéogical form for an expression, written as elementary predi-
each node for a family; with those features irfeats(f;) cations, we can reconstruct the path through the systemic net-
that are in the class we consider. The resulting structure mayork that gives rise to this logical form. A path consists of
be sparse, as not every family needs to add features; hendege systems that need to be entered, and the decisions that
we can flatten this structure by removing nodes that do nothe associated choosers need to make. Training then comes
add any features. From this structure, we can create systerdswn to learning, for each system, arary classifier that



takes context features and the logical form for the current lofHobbs, 1985 Jerry R. Hobbs. Ontological promiscuity. Rro-
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derived from the CCG grammar that specifies the linguistic Czech Republic, 2001.

knowledge of the robot. The planner is implemented in JavalLangley and Laird, 2002 Pat Langley and John E. Laird. Cogni-
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