A context-dependent algorithm for generating
locative expressions in physically situated environments

John D. Kelleher & Geert-Jan M. Kruijff
Language Technology Lab
German Research Center for Artificial Intelligence (DFKI)
Saarbiicken, Germany
{kelleher,gj }@dfki.de

Abstract Several GRE algorithms have addressed the issue of gen-
i i erating locative expressioni®ale and Haddock, 1991; Ho-
This paper presents a framework for generating racek, 1997; Gardent, 2002; Krahmer and Theune, 2002;
locative expressions. The framework addresses  yjarges, 2000 However, all these algorithms assume the

the issue of combinatorial explosion inherent in GRE component has access to a predefined scene model.
the construction of relational context models by: For an embodied conversational robot functioning in dynamic
(@) contextually defining the set of objects in the partially known environments this assumption is a serious
context that may function as a landmark, and (b) ~ grawback. If an agent wishes to generate a contextually ap-
sequencing the order in which spatial relations are  hropriate reference it cannot assume the availability of a do-
considered using a cognitively motivated hierar- main model, rather it must dynamically construct one. How-
chy of relations. ever, constructing a model containing all the relationships be-

tween all the entities in the domain is prone to combinatorial
1 Introduction explosion, both in terms of t_he n_umber of objects in the con-
) ] _ text (the location of each object in the scene must be checked
Our long-term goal is to develop embodied conversationahgainst all the other objects in the scene) and number of inter-
robots that are Capable.Of natural, fluent Ylsually situated d|0bject Spatia| relations (as a greater number of Spatia| rela-
alog with one or more interlocutors. An inherent aspect oftions will require a greater number of comparisons between
visually situated dialog is reference to objects located in theach pair of objects Moreover, the context fres priori con-
physical environment. In this paper, we present a computastryction of such an exhaustive scene model is cognitively im-
tional framework for the generation of a spatial locative ex-plausible. Psychological research indicates that spatial rela-
pressions in such contexts. ) __ tions are not preattentively perceptually availaplesisman
In the simplest form of locative expression, a prepositionaland Gormican, 1998 Rather, their perception requires atten-
phrase modifies a noun phrase to explicitly specify the location [Logan, 1994; 1995 These findings point to subjects
tion of the object. (1) is an example of the type of locative constructing contextually dependent reduced relational scene
we focus on generating. In this examiee bookis the sub-  models, rather than an exhaustive context free model.
ject of the expression artlie tableis the object. Following Contributions In this paper we present a framework for
[Langacker, 1987 we use the termisajector andlandmark  generating locative expressions. This framework addresses
to respectively denote the subject and the object of a locativg,e issue of combinatorial explosion inherent in relational
expression: the location of the trajector is specified relative tQcene model construction by incrementally creating a series
the landmark by the semantics of the preposition. of reduced scene models. Within each scene model only one
; ; spatial relations is considered and only a subset of objects
(1) & the book [subject] on the table [object] are considered as candidate landmarks. This reduces both the
Generating locative expressions is part of the general fiel@umber of relations that must be computed over each object
of generating referring expressions (GRE). Most GRE algoair and the number of object pairs. The decision as to which
rithms deal with the same problem: given a domain descript€lations should be included in each scene model is guided
tion and atarget object generate a description of the target by a cognitively motivated hierarchy of spatial relations. The
object that distinguishes it from the other objects in the do-Set of candidate landmarks in a given scene is dependent on
main. The termdistractor objects is used to describe the the set of objects in the scene that fulfil the description of the
objects in the context excluding the trajector that at a given
point in processing fulfil the description of the target object 1| English, the vast majority of spatial locatives are binary, some
that has been generated. The description generated is saidrigtable exceptions includeetweenamongsetc. However, we will
bedistinguishing when the set of distractor objects is empty. not deal with these exceptions in this paper



target object and the relation that is being considered. right of the squarat is possible to adjudicate between them

Overview In §2 we present some background data relevanbased on their location in the region. The relative semantics
to our discussion. 1§3 we present our GRE framework. In of a topological preposition can also be illustrated using Fig-
84 we illustrate the framework with a worked example andure 3. A description such dke circle near the squareould
expand on some of the issues relevant to the framework. Wee applied to either circle if the other circle was not present.
end with conclusions. However, when both are present it is possible to interpret the

reference based on their relative proximity to the landmark

2 Data the square

When one considers that the English lexicon of spatial prepo-

sitions numbers above eighty members (not considering com- . . .

pounds such asgght next tg [Landau, 199F the combina-

torial aspect of relational scene model construction becomeSigure 1: Visual context used to illustrate the contrastive se-
apparent. It should be noted that for our purposes, the sifmantics of projective prepositions.

uation is somewhat ameliorated by the fact that a distinc-

tion can be made between static and dynamic prepositions:

static prepositions primarifydenote the location of an object, ! ! .

dynamic prepositions primarily denote the path of an object

[Jackendoff, 1983; Herskovits, 1986ee (2). However, even . .
focusing exclusively on the set of static prepositions does ndf!9ure 2: Visual context used to illustrate the contrastive se-
remove the combinatorial issues effecting the construction offantics of topological prepositions.

a scene model.

(2) a. thetree is behind [static] the house . . .

b. the man walked across [dynamic] the road

In general, the set of static prepositions can be decomposdtigure 3: Visual context used to illustrate the relative seman-
into two sets calledopological andprojective. Topological tics of topological and projective prepositions.
prepositions are the category of prepositions referring to a
region that is proximal to the landmark; e.gt, near, etc.
Often, the distinctions between the semantics of the differ3 Approach
ent topological prepositions is based on pragmatic contraint:
for example the use dt licences the trajector to be in con-

tact with the landmark, by contrast the usenefirdoes not. 1995 " Te motivation for this is the polynomial complexity
Projective prepositions describe a region projected from thé o', e mental algorithm. The incremental algorithm iter-
landmark in a particular direction, the specification of the di- 0. 01,gh the properties of the target and for each property
reeC“?QtLSe?F%?g??gih%nlé?teo;g?e of reference being use ‘omputes the set of distractor objects for which (a) the con-
9. gnt ) L - .._junction of the properties selected so far, and (b) the current
_ The semantics of static prepositions exhibit both qualita, 0+ hold. A property is added to the list of selected prop-
tive and quantitative properties. The qualitative aspect of the'g ties if it reduces the size of the distractor object set. The al-

E?ng&'gzt:ﬁ;?{fﬁ’ r(]:;\tlzlgneCviir;]et)r/]:[jeis?;?:?otroo%jegg{sel(;icnat?ct))ljwe. rithm succeeds when all the distractors have been ruled out,
Taking Figure 1 as a visual context the locative expresien it fails if all the properties have been processed and there are
circle on the left of the squamxhibits the contrastive seman- still some dlstractor objects. Thg algorlthm_ can bg refined by
tics of a projective preposition. Only one of the circles in theOrderlng the checking of properties according to fixed prefer-
soene is located in the regidmihe right of the squareTak- ences, e.g. first a taxonomic description of the target, second
an absolute property such as colour, third a relative property

I(:?I%l??]g;er tzhgksjIZC\IQSsu?Jla(rﬁﬂé?rxattégir:gcggaltiaz)t(ie(raessémﬁm;n— such as size[Dale and Reiter, 1995also stipulate that the
q type description of the target should be included in the de-

tics of a topological preposition. Again, of the wo circles in < ion even if its inclusion does not distinguish the target
the scene only one of them may be appropriately describe om any of the distractors, see Algorithm 1
afobﬁgt%?e%re?;iggcgiqbue?rah:r c::]r;e;vﬂirtgeslsugg?th_ However, before applying the incremental algorithm we
puapntit::lti\)//e aspect of the serrzwg;ntics of static qre ositions imUSt construct a context model within which we can check
gvident when tﬁe denote an obiect using a reFati\F/)e scale I\‘?(/hether or not the description generated distinguishes the tar-
the context rovio)I/ed bv Figure 3Jthe Ioca?l\bne circle to the ' Bet object. In order to constrain the combinatorial issues in-

. P Dy ™19 ; . ° herent in relational scene model construction we construct
right of the squarexhibits the relative semantics of a projec- a series of reduced scene models, rather than constructing

tive preposition. Although both the circles are locatedne one complex exhaustive model. This construction process is

2Static prepositions can be used in dynamic contexts, tag. ~ driven by a hierarchy of spatial relations and the partition-
man ran behind the housend dynamic prepositions can be used in ing of the context model into objects that may and may not
static ones, e.ghe tree lay across the road function as landmarks. These two components are developed

SThe approach we adopt to generating locative expressions in-
volves extending the incremental algoritfiPale and Reiter,



Algorithm 1 The Basic Incremental Algorithm lations it is important to recognize that they are represented

Require: T =target object; D = set of distractor objects. and processed at several levels of abstraction. For example,
Initialise: P = {type, colour, size}; DESC = {} the geometric leve] where metric properties are dealt with,
for i = 0to|P|do the functional level, where the specific properties of spatial

if [D| # 0 then entities deriving from their functions in space are considered,

Dr={z:xz € D,Pi(z) = P;(T)}
if |Dr| < | D] then
DESC = DESC U P;(T)

and thepragmatic level, which gathers the underlying prin-
ciples that people use in order to discard wrong relations or to

D= {z:z€D,Pi(z) = Pi(T)} deduce more informatiofEdwards and Moulin, 1998 Our
end if discussion is grounded at the geometric level of representa-
else tion and processing.
Distinguishing description generated Focusing on static prepositions, it is reasonable to
if type(x) ¢ DESC then propose that topologi-
DESC = DESC U type(x) cal prepositons have a
end if lower perceptua| load E PROJECTIVE LOCATION
endi e 2
end for . o ?(Ieﬁlgt?vsé e(;léee ;[3(12 ;2?_ §, ABSOLUTE ADJECTIVE
Failed to generate distinguishing description o . O Low TYPE
return DESC! ceiving two objects

that are close to each . »

other and the complex Figure 4: Cognitive load of

in the next two sections. 1§3.1 we develop the hierarchy processing required to reference forms

of spatial relations and if3.2 we develop a classification of handle frame of refer-

landmarks and use these groupings to create a definition @nce ambiguity [Carlson-Radvansky and Irwin, 1994;
a distinguishing locative description. §8.3 we present the Carlson-Radvansky and Logan, 1997Figure 4 lists these

generation algorithm that integrates these components. preferences, with further distinctions among features: objects
» ) type is the easiest to process, before absolute gradable
3.1 Cogpnitive Ordering of Contexts predicates (e.g. color), which is still easier than relative
Psychological research indicates that spatial relations are ngradable predicates (e.g. siZB)ale and Reiter, 1995
preattentively perceptually availabl@reisman and Gormi- This topological versus projective preference can be fur-

can, 1988 Rather, their perception requires attentlbiw-  ther refined if we consider the contrastive and relative uses

gan, 1994; 1996 These findings point to subjects construct- of these relations noted &2. Perceiving and interpreting a

ing contextually dependent reduced relational scene modelspnstrastive use of a spatial relation is computationally easier

rather than an exhaustive context free model. Mimicking thisthan judging a relative use. Finally, within the set of projec-

we have developed an approach to context model construtive prepositions, psycholinguistic data indicates a perceptu-

tion that attempts to constrain the combinatorial explosiorally based ordering of the relationabovebeloware easier

inherent in the construction of relational context models byto percieve and interpret thamfront of/behindwhich in turn

incrementally constructing a series of reduced context modare easier thato the right ofito the left of [Bryantet al,

els. Each context model focuses on a different spatial relatior.992; Gapp, 1995

The ordering of the spatial relations is based on the cognitive In sum, we would like to propose the following ordering

load of interpreting the relation. In this section, we motivateof spatial relations:

and develop the ordering of relations used. 1
It seems reasonable to asssume that it takes less effort to™"

describe one object than two. Consequently, following the 2. topological relative

Principle of Minimal Cooperative EffortClark and Wilkes- . projective constrastive [above/below, front/back/,

Gibbs, 1986, a speaker should only use a locative expression right/left]

when they cannot create a distinguishing description of the o ) )

target object using a simple feature based approach. More- 4. projective relative [above/below, front/back, right/left]

over, the Principle of SensitivityDale and Reiter, 1995 For each level of this hierarchy we require a computational

states that when producing a referring expression, the speakgjo el of the semantics of the relation at that level that acco-
should prefer features which the hearer is known to be ablg,,qates both contrastive and relative representation§2 In

to interpret and perceive. This points to a preference, duge noted that the distinctions between the semantics of the
to cognitive load, towards descriptions that distinguish an obyiterent topological prepositions is often based on functional

jectusing purely physical and easily perceivable features ovegq pragmatic issuésCurrently, however, more psycholin-

descriptions that use spatial expressions. Psycholinguistig,istic data is required to distinguish the cognitive ioad asso-
results support this preferenéean der Sluis and Krahmer,

2004 ciated with the different topological prepositions. We use the

Similarly, we can distinguish between the cognitive loads  3seeinter alia [Talmy, 1983; Herskovits, 1986; Vandeloise,

of processing different forms of spatial relations. In com-1991; Fillmore, 1997; Garrodt al, 1999 for more discussion on
paring the cognitive load associated with different spatial reithese differences

topological contrastive



model of topological proximity developed iiKelleher and /ﬁ\ ﬁ\ /ﬁ\ @ /ﬁ\

Kruijff, 2005] to model all the relations at this level. Using R i R A A
<

this model we can define the extent of a region proximal to
an object. If the trajector or one of the distractor objects is_. . .

Figure 5: Visual context used to illustrate the relative seman-
tics of topological and projective prepositions.

the only object within the region of proximity around a given
landmark this is taken to model a contrastive use of a topo
logical relation relative to that landmark. If the landmark’s
region of proximity contains more than one object from the
trajector and distractor object set then it is a relative use ofire object salience and the functional relationships between
a topological relation. We handle the issue of frame of ref-objects. However, one basic constraint on landmark selection
erence ambiguity and model the semantics of projective preis that the landmark should be distinguishable from the trajec-
postions using the framework developedHk®lleher and van tor. For example, given the context in Figure 5 and all other
Genabith, 200b Here again, the contrastive-relative distinc- factors being equal, using a locative suclfesman to the left
tion is dependent on the number of objects within the regiorof the manwould be much less helpful than usitige man to

of space defined by the preposition. the right of the ball Following this observation, we treat an
o o o object as a&andidate landmark if the trajector object can be
3.2 Landmarks and Distinguishing Descriptions distinguished from it using the basic incremental algorithm,

In order to use a locative expression an object in the contexhlgorithm 15 Furthermore, @rajector landmark is a mem-
must be selected to function as the landmark. An implicitber of the candidate landmark set that stands in relation to
assumption in selecting an object to function as a landmark i¢he trajector and distractor landmark is a member of the
that the hearer can easily identify and locate the object withirtandidate landmark set that stands in relation to a distractor
the context. A landmark can be: the speaker (3)a, the hear@bject under the relation being considered. Using these cat-
(3)b, the scene (3)c, an object in the scene (3)d, or a group &fgories of landmark we can definalatinguishing locative

objects in the scene (3fe. description as a locative description where there is trajector
) landmark that can be distinguished from all the members of
(3) a. the ball omyright [speaker] the set of distractor landmarks under the relation used in the
b. the ball toyour left [hearer] locative.

c. the ball on the right [scene] o We can illustrate these different categories of landmark

d. the ball to the left otthe box[an object in the ging Figure 6 as the visual context. In this context, if
scene] _ , W1 is taken as the target object, the distractor set equals

e. the ball in the middle [group of objects] {T1,B1,W2,B2. Running the basic incremental algorithm

. ; ; ; Id generate the descriptiomhite block This distin-
Currently, new empirical research is required to see ifVOU

there is a preference order between these landmark cat@uishes W1 from T1, B1 and B2 but not from W2. Conse-
P quently, the set of candidate landmarks eqydl$,B1,B2}.

gories. Intuitively, in most situations, either of the inter- ; i text model for the relati " i
locutors are ideal landmarks because the speaker can naty /€ NOW créate a context modei for the relaliogarine se

rally assume that the hearer is aware of the speaker's locatidf] trajector landmarks would bgT1,B1} and the set of dis-
and their own. Focusing on instances where an object in th actor landmarks would b§81,B2}. Obviously, B1 cannot

scene is used as a landmark, several authEabny, 1983; e distinguished from all the distractor landmarks as it cannot

Landau, 1996; Gapp, 19b&ave noted a trajector-landmark be distinguished from itself. As a result, B1 cannot function
’ ’ ’ as the landmark for a distinguishing locative description for

asymmetry: generally, the landmark object is more perma¢ 1 usina the relati 4 T be distinauished
nently located, larger, and taken to have greater geomet?w using the relationear. However, T1 can be distinguishe
om the distractor landmarks B1 and B2 by its typsgngle.

complexity. These characteristics are indicative of salient ob" . ; ;
jects and empirical results support this correlation betwee 0 t_he Wh't_e block near the triangteould be considered a
distinguishing description.

object salience and landmark selecti@eun and Cremers,
1994. However, the salience of an object is intrinsically
linked to the context it is embedded in. For example, in the
context provided by Figure 5 the ball has a relatively high /T\ w1 B] W2 E
salience, because it is a singleton, despite the fact that it is
smaller and geo_metr_lcally less ComP'GX than the other f'.g'Figure 6: Visual context used to illustrate the different cate-
ures. Moreover, in this context, the ball is the only object in_ 2.
X : ories of landmark.

the scene that can function as a landmark without recourse &
using the scene itself or a grouping of objects in the scene.

Clearly, deciding which objects in a given context are suit-
able to function as landmarks is a complex and contextually— _ _
dependent process. Some of the factors effecting this decision °As noted by one of our reviewers, one unwanted effect of this
- definition of a landmark is that it precludes the generation of descrip-

“See[Gorniak and Roy, 20G4for further discussion on the use tions that use a landmark that are themselves distinguished using a
of spatial extrema of the scene and groups of objects in the scene Exative expression. For examptlge block to the right of the block
landmarks which has a ball on it




3.3 Algorithm in the hierarchy, (2) create an embedded locative description

The basic approach is to try to generate a distinguishing ddlat distinguishes the landmark. Currently, we prefer option
scription using the standard incremental algorithm. If this(1) OVer (2), preferringhe dog to the right of the caover

fails, we divide the context into three components: the dog near the car to the right of the houséowever, the
) ) algorithm can generate these longer embedded descriptions if
the trajector: the target object, needed. This is done by replacing the call to the basic incre-

the distractor objects: the objects that match the descrip- mental algorithm for the trajector landmark object with a call
tion generated for the target object by the standard inf0 the whole locative expression generation algorithm, with
cremental algorithm, the trajector landmark as the target object and the set of dis-

: . . tractor landmarks as the distractor objects. Algorithm 3 lists
the set of candidate landmarks:the objects that donot iy steps in the recursive version of the algorithm.

match the description generated for the target object by
the standard incremental algorithm.

. . . . Algorithm 3 The Recursive Locative Algorithm
We then begin to iterate through the hierarchy of relatlonspe Uire: T = targel obiect D = set of distractor obiects: R = hier-
and for each relation we create a context model that defines e?rchy-of r;Iati(?ns ject D= Jects; R =

the set of trajector and distractor landmarks. Once a context pegc = gasic-Incremental-Algorithm(T, D)
model has been created we iterate through the trajector land-it ppSC £ Distinguishing then

marks (using a salience ordering if there is more than%®ne)  createC' the set of candidate landmarks
and try to create a distinguishing locative description. Adis- CL = {z: 2z # T,DESC(z) = false}
tinguishing locative description is created by using the basic  for i = 0to |R| do

incremental algorithm to distinguish the trajector landmark create a context model for relatioR; consisting ofl'L the
from the distractor landmarks. If we succeed in generating a set of trajector landmarks anB I the set of distractor land-
distinguishing locative description we return the description g"zrks (212 € OL Ri(D.2) = true}
ﬁ:\hdmstop processing. Algorithm 2 lists the steps in the algo TL={y:ye CLy¢ DL Ri(T,y) = truc}
) for j = 0to |TL| by salience(TLdo
- _ _ LANDDESC =
Algorithm 2 The Locative Algorithm Recursive-Locative-Algorithm(T=TJ,D=DL,R)
Require: T = target object; D = set of distractor objects; R = hier- if LANDDESC = Distinguishing then
archy of relations. Distinguishing locative generated
DESC = Basic-Incremental-Algorithm(T,D) return{DESC,R,LANDDESC}
if DESC # Distinguishing then end if
createC L the set of candidate landmarks end for
CL={z:2z#T,DESC(z) = false} end for
for ¢ = 0to |R| do end if
create a context model for relatioR; consisting ofl'L the FAIL
set of trajector landmarks anB L the set of distractor land-
marks . . . .
DL ={z:2 € CL,Ri(D, z) = true} For both versions of the chatlye algonth'm an important
TL={y:yeCL,y¢DL,R;(T,y) = true} consideration is the issue of infinite regression. As noted by
for j = 0to |T'L| by salience(TL)Yo [Dale and Haddock, 199a compositional GRE system may,
LANDDESC = Basic-Incremental-Algorithm(TL. DL) in certain contexts, generate an infinite description by trying
if LANDDESC = Distinguishing then to distinguish the landmark in terms of the trajector and the
Distinguishing locative generated trajector in terms of the landmark, see (4). However, this in-
return {DESC,R,LANDDESC} finite recursion can only occur if the context is not modified
end if between calls to the algorithm. This issue does not effect Al-
end for gorithm 2 because each call to the algorithm results in the
end for . . o . .
end if domain being partitioned into those objects that can and can-
FAIL not be used as landmarks. One effect of this partitioning is a

reduction in the number of object pairs that relations must be
S ) o computed for. However, and more importantly for this dis-
If we cannot create a distinguishing locative description Wegussion, another consequence of this partitioning is that the
are faced with a choice of: (1) iterate on to the next re|at|0fbrocess of creating a distinguishing description for a land-
mark is carried out in a context that is a subset of the context
is computed using a modified version of the visual saliency algo-the trajec_tor description was generated in. The d_lst_ract_or set
rithm described ifKelleher and van Genabith, 2004Discourse used dgrlng the generation of a Iapdmark description is the
salience is computed based on recency of mention as defifiedin _set of dls_tracto_r Iandmark_s._ Th's minimally exclu_des the tra-
jicova, 1993 except we represent the maximum overall salience in/€Ctor object, since by definition the landmark objects cannot
the scene as 1, and use O to indicate object is not salient. We idUlfill the description of the trajector generated by the basic
tegrate these two components by summing them and dividing thincremental algorithm. This naturally removes the possibility
result by 2. for the algorithm to distinguish a landmark using its trajector.

5We model both visual and linguistic salience. Visual salience



models.

By providing a basic contextual definition of a landmark
we are able to partition the context in an appropriate manner.
This partitioning has two advantages:

1. it reduces the complexity of the context model con-

Figure 7: A visual scene and the topological analsis of R1 2.

and R2

(4) the bowl on the table supporting the bowl on the table
supporting the bowl ...

4 Discussion

We can illustrate the framework using the visual context pro-
vided by the scene on the left of Figure 7. This context con-
sists of two red boxes R1 and R2 and two blue balls B1 and
B2. Imagine that we want to refer to B1. We begin by call-

struction, as the relationships between the trajector and
the distractor objects or between the distractor objects
themselves do not need to be computed,;

the context used during the generation of a landmark
description is always a subset of the context used for
a trajector (as the trajector, its distractors and the other
objects in the domain that do not stand in relation to
the trajector or distractors under the relation being con-
sidered are excluded). As a result the framework avoids
the issue of infinite recusion. Furthermore, the trajector-
landmark relationship is automatically included as a
property of the landmark as its feature based descrip-
tion need only distinguish it from objects that stand in
relation to one of the distractor objects under the same
spatial relationship.

ing the locative incremental algorithm, Algorithm 2. This

in turn calls the basic incremental algorithm, Algorithm 1, | future work we will focus on extending the framework
which will return the propertyall. However, this is not suf- {5 handle some of the issues effecting the incremental algo-
ficient to create a distinguishing description as B2 is also gjthm, see[van Deemter, 20d1 For example, generating
ball. In this context the set of candidate landmarks equalg,cative descriptions containing negated relations, conjunc-

{R1,R2 and the first relation in the hierarchy is topological tjons of relations and involving sets of objects (sets of trajec-
proximity, which we model using the algorithm developed g5 and landmarks).

in [Kelleher and Kruijff, 2005. The image on the right of
Figure 7 illustrates the analysis of the scene using this fram .
work: the green region on the left defines the area deemedqﬁ-} Conclusions

be proximal to R1, and the yellow region on the right definesin this paper we have argued that an if an embodied conver-
the area deemed to be proximal to R2. It is evident that BXkational agent functioning in dynamic partially known envi-
is in the area proximal to R1, consequently R1 is classified asonments wishes to generate contextually appropriate locative
a trajector landmark. As none of the distractors (i.e., B2) arexpressions it must be able to construct a context model that
located in a region that is proximal to a candidate landmarlexplicitly marks the spatial relations between objects in the
there are no distractor landmarks. As a result when the basi&cene. However, the construction of such a model is prone
incremental algorithm is called to create a distinguishing deto the issue of combinatorial explosion both in terms of the
scription for the trajector landmark R1 it will retubbxand  number of objects in the context (the location of each object
this will be deemed to be a distinguishing locative descrip-n the scene must be checked against all the other objects in
tion. The overall algorithm will then return the vectfrall,  the scene) and number of inter-object spatial relations (as a
proximal, bo} which would result in the realiser generating greater number of spatial relations will require a greater num-
a reference of the fornthe ball near the box ber of comparisons between each pair of objects.

The relational hierarchy used by the framework has some We have presented a framework that address this issue by:
commonalities with the relational subsumption hierarchy pro{a) contextually defining the set of objects in the context that
posed in[Krahmer and Theune, 20D2However, there are may function as a landmark, and (b) sequencing the order
two important differences between them. First, an implica-in which spatial relations are considered using a cognitively
tion of the subsumption hierarchy proposedimahmer and  motivated hierarchy of relations. Defining the set of objects in
Theune, 200Pis that the semantics of the relations at lowerthe scene that may function as a landmark reduces the number
levels in the hierarchy are subsumed by the semantics of theaf object pairs that a spatial relation must be computed over.
parent relations. For example, in the portion of the subsumpSequencing the consideration of spatial relations means that
tion hierarchy illustrated ifiKrahmer and Theune, 20Dthe  in each context model only one relation needs to be checked
relation next tosubsumes the relatiorisft of andright of. and in some instances the agent need not compute some of the
By contrast, the relational hierarchy developed here is basespatial relations, as it may have succeeded in generating a dis-
solely on the relative cognitive load associated with the setinguishing locative using a relation earlier in the sequence.
mantics of the spatial relations and makes no claims as to the A further advantage of our approach stems from the parti-
semantic relationships between the semantics of the spatitibning of the context into those objects that may function as
relations. SecondlfKrahmer and Theune, 20Ddo not use  a landmark and those that may not. As a result of this parti-
their relational hierarchy to guide the construction of domaintioning the algorithm avoids the issue of infinite recursion, as



the partitioning of the context stops the algorithm from dis-[Kelleher and Kruijff, 2005 J. Kelleher and G.J. Kruijff. A
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