
Statistical Generation: Three Methods Compared and Evaluated

Anja Belz
ITRI, University of Brighton

Lewes Road, Brighton BN2 4GJ, UK
Anja.Belz@itri.brighton.ac.uk

Abstract

Statistical NLG has largely meantn-gram mod-
elling which has the considerable advantages of
lending robustness toNLG systems, and of making
automatic adaptation to new domains from raw cor-
pora possible. On the downside,n-gram models are
expensive to use as selection mechanisms and have
a built-in bias towards shorter realisations. This pa-
per looks at treebank-training of generators, an al-
ternative method for building statistical models for
NLG from raw corpora, and two different ways of
using treebank-trained models during generation.
Results show that the treebank-trained generators
achieve improvements similar to a 2-gram gener-
ator over a baseline of random selection. How-
ever, the treebank-trained generators achieve this
at a much lower cost than the 2-gram generator,
and without its strong preference for shorter real-
isations.

1 Introduction
Traditionally, NLG systems have been built as deterministic
decision-makers, that is to say, they generate one string of
words for any given input, in a sequence of decisions that in-
creasingly specify the word string. In practice, this has meant
carefully handcrafting generators to make decisions locally,
at each step in the generation process. Such generators tend
to be specialised and domain-specific, are hard to adapt to
new domains, or even subdomains, and have no way of deal-
ing with incomplete or incorrect input. Wide-coverage tools
only exist for surface realisation, and tend to require highly
specific and often idiosyncratic inputs. The rest ofNLP has
reached a stage where state-of-the-art tools are expected to
begeneric: wide-coverage, reusable and robust.NLG is lag-
ging behind the field on all three counts.

The last decade has seen a new generation ofNLG method-
ologies that are characterised by a separation between the def-
inition of the generation space (all possible generation pro-
cesses from inputs to outputs) on the one hand, and control
over the decisions that lead to a (set of) output realisation(s),
on the other.

In making this separation,generate-and-selectNLG takes
several crucial steps towards genericity: reusing systemsbe-

comes easier if the selection mechanism can be adjusted or
replaced separately, without changing the definition of the
generation space; coverage can be increased more easily if
every expansion of the generation space does not have to be
accompanied by handcrafted rules controlling the resulting
increase in nondeterminism; and certain types of selection
methods can provide robustness, for example through prob-
abilistic choice.

Statistical generation has aroused by far the most interest
among these methods, and it has mostly meantn-gram se-
lection: a packed representation of all alternative (partial)
realisations is produced, and ann-gram language model is
applied to select the most likely realisation.N -gram meth-
ods have several desirable properties: they offer a fully auto-
matic method for building and adapting control mechanisms
for generate-and-selectNLG from raw corpora (reusability);
they base selections on statistical models (robustness); and
they can potentially be used for deep as well as surface gen-
eration.

However,n-gram models are expensive to apply: in order
to select the most likely realisation according to ann-gram
model, all alternative realisations have to be generated and
the probability of each realisation according to the model has
to be calculated. This can get very expensive (even if packed
representations of the set of alternatives are used), especially
when the system accepts incompletely specified input, be-
cause the number of alternatives can be vast. In Halogen,
Langkilde[2000] deals with trillions of alternatives, and the
generator used in the experiments reported in this paper has
up to1040 alternative realisations (see Section 4.3 for empir-
ical evidence of the relative inefficiency ofn-gram genera-
tion).

Furthermore,n-gram models have a built-in bias towards
shorter strings. This is because they calculate the likelihood
of a string of words as the joint probability of the words, or,
more precisely, as the product of the probabilities of each
word given then− 1 preceding words. The likelihood of any
string will therefore generally be lower than that of any of
its substrings (see Section 4.3 for empirical evidence of this
bias). This is wholly inappropriate forNLG where equally
good realisations can vary greatly in length (see Section 5
for discussion of normalisation for length in statistical mod-
elling).

The research reported in this paper is part of an ongoing



research project1 the purpose of which is to investigate issues
in genericNLG. The experiments (Section 4.3) were carried
out to evaluate and compare different methods for exploiting
the frequencies of word sequences and word sequence cooc-
currences in raw text corpora to build models forNL gener-
ation, and different ways of using such models during gen-
eration. One of the methods uses a standard 2-gram model
for selection among all realisations (with a new selection al-
gorithm, see Section 4.3). The other two use atreebank-
trainedmodel of the generation space (Section 3). The basic
idea behind treebank-training of generators is simple: deter-
mine for the strings and substrings in the corpus the different
ways in which the generator could have generated them, i.e.
the different sequences of decisions that lead to them, then
collect frequency counts for individual decisions, and deter-
mine a probability distribution over decisions on this basis.
In the experiments, treebank-trained generation models are
combined with two different ways of using them during gen-
eration, one locally and one globally optimal (Section 3.1).
All three methods are evaluated on a corpus of weather fore-
casts (Section 4.1).

2 Generate-and-select NLG
Generate-and-selectNLG separates the definition of the space
of all possible generation processes (the generation space)
from the mechanism that controls which (set of) realisation(s)
is selected as the output. Generate-and-select methods vary
primarily along three dimensions:

(i) Number of (partial) solutions generated at each step:
some methods generate all possibilities, then select;
some select a subset of partial solutions at each step;
some use an automatically adaptable decision module
to select the (single) next partial solution.

(ii) Type of decision-making module and method of
construction/adaptation: statistical models, various
machine learning techniques or manual construc-
tion/adaptation.

(iii) Size of subtask of the generation process that the
method is applied to: from the entire generation process
e.g. in text summarisation, to all of surface realisation
for domain-independent generation.

Methods that can in principle be used to stochastically gen-
erate text have existed for a long time, but statistical genera-
tion from specified inputs started with Japan-Gloss[Knightet
al., 1994; 1995] (which replacedPENMAN’s defaults with sta-
tistical decisions), while comprehensive statistical generation
started with Nitrogen[Knight and Langkilde, 1998] (which
represented the set of alternative realisations as a word lattice
and selected the best with a 2-gram model) and its succes-
sor Halogen[Langkilde, 2000] (where the word lattice was
replaced by a more efficientAND /OR-tree representation).

Since then, a steady stream of publications has reported
work on statisticalNLG. In FERGUS, Bangaloreet al. used
an XTAG grammar to generate a word lattice representation

1Controlled Generation of Text (CoGenT)http://www.
itri.brighton.ac.uk/projects/cogent.

of a small number of alternative realisations, and a 3-gram
model to select the best[Bangalore and Rambow, 2000b].
Humphreyset al. [2001] reused aPCFG trained forNL pars-
ing to build syntactic generation trees from candidate syntac-
tic nodes.

Recently, Habash[2004] reported work using structural 2-
grams for lexical/syntactic selection tasks (using joint prob-
ability of word and parent word in dependency structures,
instead of probability of word given preceding word), as
well as conventionaln-grams for selection among surface
strings. Velldalet al. [2004] compared the performance of
a 4-gram model trained on theBNC2 with a Maximum En-
tropy model reused from a parsing application and trained
on the small, domain-specificLOGON corpus, finding that
the domain-specificME model performs better on theLOGON
corpus, but a combined model performs best.

Some statisticalNLG research has looked at subproblems
of language generation, such as ordering ofNP premodifiers
[Shaw and Hatzivassiloglou, 1999; Malouf, 2000], attribute
selection in content planning[Oh and Rudnicky, 2000], NP
type determination[Poesioet al., 1999], pronominalisation
[Strube and Wolters, 2000], and lexical choice[Bangalore
and Rambow, 2000a].

In hybrid symbolic-statistical approaches, White[2004]
prunes edges in chart realisation usingn-gram models, and
Varges uses quantitative methods for determining the weights
on instance features in instance-based generation[Varges and
Mellish, 2001].

The likelihood of realisations given concepts or semantic
representations has been modeled directly, but is probably
limited to small-scale and specialised applications: summari-
sation construed as term selection and ordering[Witbrock
and Mittal, 1999], grammar-free stochastic surface realisation
[Oh and Rudnicky, 2000], and surface realisation construed
as attribute selection and lexical choice[Ratnaparkhi, 2000].

Some of the above papers compare the purely statisti-
cal methods to other machine learning methods such as
memory-based learning and reinforcement learning. Some
other research has focussed on machine learning methods,
e.g. Walkeret al. [2001] look at using a boosting algorithm to
train a sentence plan ranker on a corpus of labelled examples,
and Marciniak & Strube[2004] construe the entire genera-
tion process as a sequence of classification problems, solved
by corpus-trained feature-vector classifiers.

Generate-and-selectNLG has been applied either to all of
surface realisation, or to a small subproblem in deep or sur-
face realisation (not to the entire generation process); itis
either very expensive or not guaranteed to find the optimal
solution; and the models it has used are either shallow and
unstructured, or require manual corpus annotation.

3 Treebank-Training of Generators
Treebank-training of generators is a method for modelling
likelihoods of realisations in generation. It is introduced
in this section first in terms of the general idea behind it
(which could be implemented with various formalisms, train-
ing methods and generation algorithms), and then in Sec-

2British National Corpus.



Inputs

NL Sentences

Semantic Reps

D
E

E
P

 G
E

N
E

R
A

TIO
N

G
E

N
E

R
A

TIO
N

S
U

R
FA

C
E

Figure 1: Generation space as decision tree.

tion 3.1 by a description of the actual technique that was used
in the experiments reported below.

The generation space of a generator can be seen as a set of
decision trees, where the root nodes correspond to the inputs,
and the paths down the trees are all possible generation pro-
cesses in the generator that lead to a realisation (leaf) node (a
view discussed in more detail in[Belz, 2004]).

Consider the diagrammatic generation space representation
in Figure 1. It shows examples of three realisations and the
sequences of generator decisions that generate them, repre-
sented as paths connecting decision nodes and leading to re-
alisation nodes. In this view of the generation space, usingan
n-gram model is equivalent to following all paths (from the
given input node) down to the realisations, and then applying
the model to select the most likely realisation.

An alternative is to estimate the likelihood of a realisation
in terms of the likelihoods of the generator decisions that give
rise to it, looking at the possible sequences of decisions that
generate the realisation (its ‘derivations’). One way of doing
this is to say the likelihood of a string is the sum of the like-
lihoods of its derivations. To train such a model on a corpus
of raw text, the set of derivations for each sentence is deter-
mined, frequencies for individual decisions are added up, and
a probability distribution over sets of alternative decisions is
estimated.

If a sentence has more than one derivation, as in the exam-
ple on the right of Figure 1, there are two possibilities: either
the frequency counts are evenly divided between them, or dis-
ambiguation is carried out to determine the correct derivation.
The former uses the surface frequencies of word strings re-
gardless of their meaning and structure, as don-gram models.
The latter is complicated by the fact that there is not always
a single ‘correct’ derivation in generation (e.g. an expression
may end up being passivised in more than one way).

There are at least three strategies for using a treebank-
trained model during generation: (i) select the most likely
decision at each choice point; (ii) select the most likely gener-
ation process (joint probability of all decisions); or (iii) select
the most likely string of words (summed probabilities of all
generation processes that generate the string). The first would
always make the same decision given the same alternatives,

whereas for (ii) and (iii) it would depend also on the other
decisions in the derivation(s). On the other hand, the com-
plexity of (iii) is much greater than that of (ii) which in turn
is greater than that of (i).

3.1 Context-free Generator Treebank-Training
without Disambiguation

There are many different ways of representing generator
decisions and annotating sentences with derivations, and
treebank-training is clearly not equally suitable for all types
of generators. In the current version of the method, gen-
eration rules must be context-free with atomic arguments.
Derivations for sentences in the corpus are then standard
context-free derivations, and corpora are annotated in the
standard context-free way with brackets and labels.

No disambiguation is performed, the assumption being that
all derivations are equally good for a sentence. If a sentence
has more than one derivation, frequency counts are divided
equally between them.

The three basic steps in context-free generator treebank-
training are:

1. For each sentence in the corpus, find allgeneration pro-
cessesthat generate it, that is, all the ways in which the
generator could have generated it. For each generation
process, note the sequences of generator decisions in-
volved in it (thederivationsfor the sentence). If there is
no complete derivation, maximal partial derivations are
used instead.

2. Annotate the (sub)strings in the sentence with the deriva-
tion, resulting in ageneration treefor the sentence. If
there is more than one derivation for the sentence, create
a set of annotated trees. The resulting annotated corpus
is ageneration treebank.

3. Obtain frequency counts for each individual decision
from the annotations, adding1/n to the count for every
decision, wheren is the number of alternative deriva-
tions; convert counts into probability distributions over
alternative decisions, smoothing for unseen decisions.

The probability distribution is currently smoothed with the
simple add-1 method3. This is equivalent to Bayesian estima-
tion with a uniform prior probability on all decisions, and is
entirely sufficient for present purposes given the very small
vocabulary and the good coverage of the data. A standard
maximum likelihood estimation is performed: the total num-
ber of occurrences of a decision (e.g. passive) is divided by
the total number of occurrences of all alternatives (e.g. pas-
sive + active). In the context-free setting, a decision typecor-
responds to a nonterminalN , and decisions correspond to
expansion rulesN → α. Given a functionc(x) which re-
turns the frequency count for a decisionx, normalising each
occurrence by the number of derivations for the sentence, the
probability of a decision is obtained in the standard way (R is
the set of all decisions):

p(N → α) =
c(N → α)

∑
i:N→αi∈R

c(N → αi)
(1)

3Also known as applying Laplace’s law.



Greedy generation
One way of using a treebank-trained generator is to make the
single most likely decision at each choice point in a genera-
tion process. This is not guaranteed to result in the most likely
generationprocess, but the computational cost in application
is exceedingly low.

Viterbi generation
The alternative is to do a Viterbi search of the generation
forest for a given input, which maximises the joint likeli-
hood of all decisions taken in the generation process. This
is guaranteed to select the most likely generation process,
but is considerably more expensive. The efficiency of greedy
probabilistic generation, Viterbi generation and 2-gram post-
selection is compared in Section 4.3 below.

A possible alternative to greedy search is to use a non-
uniform random distribution proportional to the likelihoods
of alternatives. E.g. if there are two alternative decisionsD1
andD2, with the model givingp(D1) = .8 andp(D2) = .2,
then the generator would decideD1 with probability .8, and
D2 with a probability of.2 for an arbitrary input (instead of
always decidingD1 as does the greedy generator). However,
such a strategy, while increasing variation, would come at the
price of lowering the overall likelihood of making the right
decision. With the strategy of always going for the most fre-
quent alternative, the overall likelihood of making the right
decision when faced with the choiceD1 or D2 is simply
.8 in the current example (1 for D1, 0 for D2). With the
likelihood-proportional random strategy, however, the overall
likelihood of making the right decision is only.68 (.64 for
D1, .04 for D2). Variation can alternatively be increased by
making the model more fine-grained.

4 Evaluation on Weather Forecast Generation
4.1 Domain and Data: Weather Forecasting
The corpus used in the experiments reported below is the
SUMTIME-METEO corpus created by the SUMTIME project
team in collaboration withWNI Oceanroutes[Sripadaet al.,
2002]. The corpus was collected byWNI Oceanroutes from
the commercial output of five different (human) forecasters,
and each instance in the corpus consists of three numerical
data files (output by three different weather simulators) and
the weather forecast file written by the forecaster on the evi-
dence of the data files (and sometimes additional resources).
Following the SUMTIME work, the experiments reported be-
low focussed on the part of the forecasts that predicts wind
characteristics for the next 15 hours. Such ‘wind statements’
look as follows (for 10-08-01):

---------------------------------------------
2.FORECAST 1500 GMT FRI 10-Aug,TO 0600GMT SAT
11-Aug 2001
=====WARNINGS: NIL =======
WIND(KTS) CONFIDENCE: HIGH

10M: WNW-NW 12-15 BACKING W’LY 05-10 BY
MIDNIGHT, THEN SW-SSW BY MORNING

50M: WNW-NW 15-18 BACKING W’LY 06-12 BY
MIDNIGHT, THEN SW-SSW BY MORNING

---------------------------------------------

---------------------------------------------
O1, O2 AND O3 OIL FIELDS (EAST OF SHETLAND)
10-08-01

10/18 WNW 11 13 17 1.7 2.7 NW 1.5 7
10/21 W 8 10 12 1.5 2.4 NW 1.4 7
11/00 W 7 8 10 1.4 2.2 NW 1.4 7
11/03 SW 7 8 10 1.4 2.2 NW 1.3 7
11/06 SW 7 8 10 1.3 2.1 NW 1.3 7
11/09 SSW 10 12 15 1.3 2.1 NW 1.2 7
11/12 S 14 17 21 1.5 2.4 NW 1.2 7
11/15 S 20 25 31 1.8 2.9 WNW 1.3 7
11/18 S 22 27 34 1.9 3.0 SW 1.5 8
11/21 S 24 30 37 2.3 3.7 S 1.7 8
12/00 S 28 35 43 3.0 4.8 S 1.9 8
12/03 S 28 35 43 3.0 4.8 S 1.9 8
12/06 SW 27 33 41 3.0 4.8 S 2.0 8
12/09 WSW 26 32 40 2.9 4.6 SSW 2.0 8
12/12 WSW 25 31 39 2.9 4.6 SW 2.0 8
12/15 WSW 25 31 39 2.9 4.6 WSW 2.0 8
12/18 WSW 24 30 37 3.1 5.0 WSW 2.1 8
12/21 SW 23 28 35 2.9 4.6 WSW 2.2 9
13/00 SW 21 26 32 2.8 4.5 WSW 2.3 9
13/03 SW 19 23 29 2.4 3.8 WSW 2.1 8
13/06 SSW 19 23 29 2.2 3.5 SW 2.0 8
13/09 SSW 20 25 31 2.2 3.5 SSW 1.9 8
13/12 SSW 21 26 32 2.4 3.8 SSW 1.8 8
---------------------------------------------

Figure 2: Metereological data file for 10-08-01.

To keep things simple, only the data file type that contains
(virtually all) the information about wind parameters (the.tab
file type) was used. Figure 2 is the .tab file corresponding
to the above forecast. The first column is the day/hour time
stamp, the second the wind direction predicted for the corre-
sponding time period; the third the wind speed at 10m above
the ground; the fourth the gust speed at 10m; and the fifth
the gust speed at 50m. The remaining columns contain wave
data.

The mapping from time series data to forecast is not
straightforward (even when all three data files are taken into
account). An example here is that while the wind direction
in the first part of the wind statement is given asWNW-NW,
NW does not appear as a wind speed anywhere in the data
file. Nor is it obvious why the wind speeds 11, 12 and 7 are
mapped to the two ranges 12-15 and 5-10.

The SUMTIME Project construed the mapping from time
series data to weather forecasts as two tasks[Sripadaet al.,
2003]: selecting a subset of the time series data to be in-
cluded in the forecast, and expressing this subset of numbers
as anNL forecast. The focus of the research reported here
is not the numerical summarisation of time series data, but
NLG techniques. Therefore, the SUMTIME-METEO corpus
was converted into a parallel corpus of wind statements and
the wind data included in each statement. The wind data is a
vector of time stamps and wind parameters, and was ‘reverse-
engineered’, by automatically aligning wind speeds and wind
directions in the forecasts with time-stamps in the data file.
In order to do this, wind speed and directions in the data file
have to be matched with those in the forecast. This was not



straightforward either, because more often than not, thereis
no exact match in the data file for the wind speeds and di-
rections in the forecast. The strategy adopted in the work
reported here was to select the time stamp beside the first ex-
act match, and to leave time undefined if there was no exact
match. The instances in the final training corpus look as fol-
lows (same example, 10-08-01, resulting in two instances):

---------------------------------------------
WNW-NW 12 15 - - - W 05 10 - - 21 SW-SSW - -
- - 03
WNW-NW 12-15 BACKING W’LY 05-10 BY MIDNIGHT
THEN SW-SSW BY MORNING

SSW 05 10 - - - S - - - - - - 26 30 38 38 -1
SSW 05-10 BACKING S’LY AND INCREASING 26-30
GUSTS 38 BY END OF PERIOD
---------------------------------------------

4.2 Automatic Generation of Weather Forecasts
The three generation methods compared below are all
generate-and-select methods. The idea was to build a basic
generator that for any given input generates a set of alterna-
tives that reflectsall the variation found in the corpus (rather
than deciding which alternative to select in which context),
and then to create statistical decision makers trained on the
corpus to select (a subset of) alternatives. The rest of thissec-
tion describes the basic generator, and the following section
describes the experiments that were carried out.

The basic generator was written semi-automatically as a
set of generation rules with atomic arguments that convert
an input vector of numbers in steps to a set ofNL forecasts.
The automatic part was analysing the entire corpus with a
set of simple chunking rules that split wind statements into
wind direction, wind speed, gust speed, gust statements, time
expressions, transition phrases (such asand increasing), pre-
modifiers (such asless thanfor numbers, andmainlyfor wind
direction), and post-modifiers (e.g.in or near the low centre).
The manual part was to write the chunking rules themselves,
and higher-level rules that combine different sequences of
chunks into larger components.

The higher-level generation rules were based on an inter-
pretation of wind statements as sequences of fairly indepen-
dent units of information, each containing as a minimum a
wind direction or wind speed range, and as a maximum all
the chunks listed above. The only context encoded in the
rules was whether a unit of information was the first in a wind
statement, and whether a wind statement contained wind di-
rection (only), wind speed (only), or both. The final genera-
tor takes as inputs number vectors of length 6 to 36, and has
a large amount of non-determinism. For the simplest input
(one number), it generates 8 alternative realisations. Forthe
most complex input (36 numbers), it generates4.96 × 1040

alternatives (as a tightly packedAND /OR-tree).

4.3 Experiments and Results
The converted corpus (as described in Section 4.1 above) con-
sisted of 2,123 instances, corresponding to a total of 22,985
words. This may not sound like much, but considering that
the entire corpus only has a vocabulary of about 90 words

(not counting wind directions), and uses only a handful of
different syntactic structures, the corpus provides extremely
good coverage (an initial impression confirmed by the small
differences between training and testing data results below).

The corpus was divided at random into training and testing
data at a ratio of 9:1. The training set was used to treebank-
train the weather forecast generation grammar (as described
in Section 3.1) and a back-off 2-gram model (using theSRILM
toolkit, [Stolcke, 2002]). The treebank-trained generation
grammar was used in conjunction with a greedy and a Viterbi
generation method. The 2-gram model was used in more or
less exactly the way reported in the Halogen papers[Langk-
ilde, 2000]. That is to say, the packedAND /OR-tree represen-
tation of all alternatives is generated in full, then the 2-gram
model is applied to select the single best one.

One small difference to Halogen is that a Viterbi algo-
rithm was used to identify the single most likely string. This
is achieved as follows. TheAND /OR-tree is interpreted di-
rectly as a finite-state automaton where the states correspond
to words as well as to the nodes in theAND /OR-tree. The
transitions are assigned probabilities according to the 2-gram
model, and then a straightforward single-best Viterbi algo-
rithm is applied to find the best path through the automaton.

Random selection among all alternatives was used as a
baseline. All results were evaluated against the gold standard
(the human written forecasts) of the test set. Results were
validated with 5-fold cross-validation.

In the following overview of the results4, the similarity be-
tween automatically generated forecasts and gold standard
was measured by conventional string-edit (SE) distance with
substitution at cost 2, and deletion and insertion at cost 1.
Baseline results are given as absoluteSE scores, results for
the non-random generators in terms of improvement over the
baseline (reduction in string-edit distance, withSE score in
brackets)5.

Training set Test set
Random 14.92 14.37
TT/Greedy -50.64% (7.36) -50.30% (7.41)
TT/Viterbi -52.32% (7.11) -52.11% (7.14)
2-gram -58.44% (6.20) -57.91% (6.27)

The SE scores show that, as expected, the improvements
for the training set are slightly larger in all cases. The greedy
generator achieves a significant improvement over random se-
lection, but is outperformed by the Viterbi generator, with2-
gram selection the clear overall winner.

The generated strings were also evaluated using theBLEU
metric[Papineniet al., 2001] which is ultimately based onn-
gram agreement between generated and gold standard strings.
In simple terms, the more 1-grams, 2-grams, ... andn-grams
are the same between two strings, the higher theirBLEU
score. This implies thatBLEU with n = 1 is the most closely
related toSE scoring (which can also be seen from the simi-
larity between the relative scores assigned byBLEU1 andSE

4All numbers in this paper are either given in their entirety or
truncated (not rounded).

5Percentage reductions were calculated on the non-truncated
string-edit distances.



BLEU1 BLEU2 BLEU3 BLEU4

Train Test Train Test Train Test Train Test
Random 0.479 0.485 0.390 0.382 0.310 0.301 0.225 0.215
TT/Greedy 0.678 0.671 0.598 0.591 0.521 0.514 0.437 0.429
TT/Viterbi 0.674 0.668 0.595 0.589 0.518 0.512 0.434 0.427
2-gram 0.708 0.704 0.620 0.614 0.542 0.536 0.460 0.453

Table 1:BLEUn scores for training and test sets,1 ≤ n ≤ 4.

to the generators). Table 1 givesBLEUn scores for the 4 gen-
erators, for1 ≤ n ≤ 4. These scores give a different im-
pression of the results.BLEU consistently scores the Viterbi
generatorlower than the greedy generator, although the dif-
ference between them is only0.003 on average, less than the
average mean deviation for the two generators across the five
runs (0.005). The difference between the random generator
and the other methods increases significantly with increasing
n. Forn = 2 andn = 3, the differences between the 2-gram
generator and the two treebank-trained generators drops no-
ticeably.

Results were stable over the five runs of the cross-
validation. For the test set, the mean deviation inSE scores
was between0.13 and 0.35, and in BLEU scores between
0.0034 and0.0065. The margins by which the 2-gram gener-
ator outperformed the other two were nearly identical across
the five runs. TheSE score of the greedy generator was lower
(by nearly identical margins) than that of the Viterbi genera-
tor in all runs. All fourBLEU scores of the greedy generator,
however, were slightly higher than those of the Viterbi gen-
erator in four out of five runs, and slightly lower in one run.
Small mean deviation figures and consistency of results con-
firm the significance of the differences between the scores in
theSE andBLEU evaluations to some extent.

There is a debate over the degree to which an evaluation
metric for NLG should be sensitive to word order and word
adjacency. The appropriate degree of word-order sensitivity
may vary from one evaluation task to the next, but for the
task of evaluating weather forecasts it certainly is important.
A clear example is time expressions. A forecast can contain
up to five different time expressions, which have to observe
the correct chronological order. It is not appropriate to re-
ward the mere presence (regardless of place in the string) of,
say,by midnight(which is what some evaluation metrics are
specifically designed to do, e.g.[Bangaloreet al., 2000]). SE
scoring has a tendency to reward proximity to the intended
place (although not in a very straightforward way), andBLEU
is increasingly strict about place with increasingn.

The SE score gives an intuitive, initial impression of how
much the three methods have learned in comparison to the
baseline: it is easy to conceptualise how different one string
is from another if you know there are two insert and delete
operations between them (not so easy with theBLEU scores).
However, by far the more complete picture (and the most ap-
propriate to this evaluation task) is given byBLEU. It shows
that the 2-gram generator does better than the other two, but
not by a very large margin. The margin is important con-
sidering the far greater expense ofn-gram generation. The
following table shows the total amount of time it took to test

the training and test sets with the different methods in one
(controlled) run.

Total time (minutes) Training set Test set
TT/greedy 23m52s 2m06s
TT/Viterbi 3h22m33s 27m05s
2-gram 24h04m05s 3h35m06s

Testing the training set took all methods about 7 times as
long as the test set. The Viterbi generator took about 13 times
longer than the greedy generator for the test set, and about 9
times longer for the training set. The 2-gram generator took
6.5 times longer than the Viterbi generator on the test set, and
7.5 times longer on the training set.

To make the comparison fair, the Viterbi and the 2-gram
generator were implemented identically as far as possible.
Both start by generating the packedAND /OR-tree of all alter-
natives. During this process, the former makes a note of the
rule probabilities (at theAND andOR nodes) along with the
rules, and then directly identifies the most likely realisation
by a Viterbi method. The 2-gram generator first has to anno-
tate theAND /OR-tree with 2-gram probabilities looked up in
the 2-gram model before using the same Viterbi method. The
overhead of looking up the 2-gram model to score the packed
representation is the only difference between the two methods
and multiplies out into a large overhead in computing time
for the 2-gram generator6, which would make it unsuitable
for use in practical applications.

The random generator has no preference for shorter strings
at all, and has an average string length almost twice that of the
other generators. The 2-gram generator has an almost abso-
lute preference of shorter over longer strings, and so produces
the shortest strings. The Viterbi generator does not prefer
shorter strings, but does prefer shorter derivations, and there
is a correlation between string length and derivation length.
The greedy generator does not have a built-in preference for
shorter strings or derivations, but it reflects the fact thatshort
(sub)strings were more frequent in the training corpus:

gold: 10.8 greedy: 9.3 2-gram: 8.7
random: 17.2 Viterbi: 9.0

In some application domains, then-gram model’s prefer-
ence for shorter strings is irrelevant: e.g. in speech recogni-
tion (wheren-gram models are used widely) the alternatives
among which the model must choose are always of the same
length. In language generation, where equally good alterna-

6Even if the lookup can be implemented more efficiently there
will always be some overhead multiplied by the total number of 2-
grams in the packed representation.



tives can vary greatly in length, this preference is positively
harmful (see following section for discussion of methods to
counteract this bias).

5 Discussion and Further Research
Then-gram model’s bias towards shorter strings is an exam-
ple of a general case: whenever the likelihood of a larger unit
that can vary in length (e.g. sentence) is modelled in terms of
the joint probability of length-invariant smaller units, larger
units that are composed of fewer smaller units are more likely.
The possibility of counteracting this bias has been investi-
gated. In parsing, Magerman & Marcus[1991] and Briscoe
& Carroll [1993] used the geometric mean of probabilities
instead of the product of probabilities. In later work, Briscoe
& Carroll [1992] use a normalisation approach, the equiva-
lent of which forn-gram selection would be to ‘pad’ shorter
alternatives with extra ‘dummy’ words up to the length of
the longest alternative, and to use the geometric mean of
the probabilities assigned by then-gram model to the non-
dummy words as the probability of any dummy word. It
has been observed that such methods turn a principled proba-
bilistic model into anad hocscoring function[Manning and
Schuetze, 1999, p. 443]. It certainly means getting rid of the
n-gram model’s particular independence assumptions, with-
out replacing them with a principled alternative.

The NLG community is traditionally wary of using evalu-
ation metrics like the ones used here.NLU, and in particu-
lar the numbers-driven parsing community, has not tended to
worry about the fact that the gold standard parse is usually
not the only correct one. It is accepted that it is an imperfect
way of evaluating results, albeit the only realistic possibility,
especially for large amounts of data. Furthermore, where a
parser or generator has been trained directly on a corpus, itis
a fair way of estimating how well a method has succeeded in
its aim, namely to learn from the corpus.

Some typical example outputs from all generators are
shown in an appendix to this paper. The greedy and Viterbi
generators tend to have very similar output. Both rely on a
small number of short, high-frequency phrases, e.g.SOON,
VEERING, INCREASING, andLATER. The 2-gram generator
has a similar tendency, but with a larger number of phrases
and more variation. If the generation rules allow it, the greedy
generator always prefixesSOON (all three examples), whereas
the Viterbi generator can avoid it (third example).

The quality of the 2-gram generator’s output is indepen-
dent of the quality of the weather forecast generation rules, as
long as they reflect all the variation in the corpus. However,
the other two generators are entirely dependent on the quality
of the generation rules, in particular on whether enough infor-
mation is incorporated in the rules to base decisions on. The
only room for improving the 2-gram generator is in using al-
ternative statistical estimation techniques, but there isa lot of
potential for improving the probabilistic-rule-driven genera-
tors, by (i) improving the quality of the generation rules (e.g.
by incorporating more contextual information in the genera-
tion rules, in particular always including a time stamp); (ii)
using alternative methods for building treebank models (e.g.
extending the local context of rules has proved useful in pars-

ing); and (iii) using alternative methods for exploiting tree-
bank models during generation, e.g. it would be good to have
a generation strategy that has (some of) the vastly superior
efficiency of the greedy generator without its repetitiveness,
while not sacrificing (too much of) the overall likelihood of
making the right decision (unlike the non-uniform random
strategy discussed in Section 3.1). Future research will look
at all three areas, using for evaluation a larger and more var-
ied corpus from a different domain as well as the SUMTIME
corpus.

The three statistical generation methods evaluated in this
paper all work with raw corpora, but vary hugely in efficiency.
Generation speed and the ability to adapt generators to new
domains with no annotation bottleneck are crucial for the de-
velopment of practical, genericNLG tools. The work pre-
sented in this paper is intended to be a step in this direction.

Acknowledgements
The research reported in this paper is part of the CoGenT
project, an ongoing research project supported under UK EP-
SRC Grant GR/S24480/01. Many thanks to John Carroll,
Roger Evans and Richard Power, as well as to the anonymous
reviewers, for very helpful comments.

References
[Bangalore and Rambow, 2000a] S. Bangalore and O. Ram-

bow. Corpus-based lexical choice in natural language gen-
eration. InProceedings of the 38th Annual Meeting of
the Association for Computational Linguistics (ACL ’00),
pages 464–471, 2000.

[Bangalore and Rambow, 2000b] S. Bangalore and O. Ram-
bow. Exploiting a probabilistic hierarchical model for gen-
eration. InProceedings of the 18th International Confer-
ence on Computational Linguistics (COLING ’00), pages
42–48, 2000.

[Bangaloreet al., 2000] S. Bangalore, O. Rambow, and
S. Whittaker. Evaluation metrics for generation. InPro-
ceedings of the 1st International Conference on Natural
Language Generation (INLG ’00), pages 1–8, 2000.

[Belz, 2004] A. Belz. Underspecification for NLG. In
INLG04 Posters: Extended Abstracts of Posters Presented
at the Third International Conference on Natural Lan-
guage Generation. Technical Report ITRI-04-01, ITRI,
University of Brighton, 2004.

[Briscoe and Carroll, 1992] T. Briscoe and J. Carroll. Prob-
abilistic normalisation and unpacking of packed parse
forests for unification-based grammars. InProceedings of
the AAAI Fall Symposium on Probabilistic Approaches to
Natural Language, pages 33–38, 1992.

[Briscoe and Carroll, 1993] T. Briscoe and J. Carroll. Gen-
eralised probabilistic LR parsing of natural language (cor-
pora) with unification-based grammars.Computational
Linguistics, 19(1):25–59, 1993.

[Habash, 2004] N. Habash. The use of a structural n-gram
language model in generation-heavy hybrid machine trans-
lation. In A. Belz, R. Evans, and P. Piwek, editors,Pro-
ceedings of the Third International Conference on Natural



Language Generation (INLG ’04), volume 3123 ofLNAI,
pages 61–69. Springer, 2004.

[Humphreyset al., 2001] K. Humphreys, M. Calcagno, and
D. Weise. Reusing a statistical language model for gen-
eration. InProceedings of the 8th European Workshop on
Natural Language Generation (EWNLG ’01), pages 86–
91, 2001.

[Knight and Langkilde, 1998] K. Knight and I. Langkilde.
Generation that exploits corpus-based statistical knowl-
edge. InProceedings of the 36th Annual Meeting of the
Association for Computational Linguistics and the 17th
International Conference on Computational Linguistics
(COLING-ACL ’98), pages 704–710, 1998.

[Knight et al., 1994] K. Knight, I. Chander, M. Haines,
V. Hatzivassiloglou, E. Hovy, M. Iida, S. Luk, A. Oku-
mura, R. Whitney, and K. Yamada. Integrating knowledge
bases and statistics in MT. InProceedings of the 1st Con-
ference of the Association for Machine Translation in the
Americas (AMTA ’94), pages 134–141, 1994.

[Knight et al., 1995] K. Knight, I. Chander, M. Haines,
V. Hatzivassiloglou, E. Hovy, M. Iida, S. Luk, R. Whit-
ney, and K. Yamada. Filling knowledge gaps in a broad-
coverage MT system. InProceedings of the Fourteenth In-
ternational Joint Conference on Artificial Intelligence (IJ-
CAI ’95), pages 1390–1397, 1995.

[Langkilde, 2000] I. Langkilde. Forest-based statistical sen-
tence generation. InProceedings of the 6th Applied Natu-
ral Language Processing Conference and the 1st Meeting
of the North American Chapter of the Association of Com-
putational Linguistics (ANLP-NAACL ’00), pages 170–
177, 2000.

[Magerman and Marcus, 1991] D. Magerman and M. Mar-
cus. Pearl: A probabilistic chart parser. InProceedings of
the 2nd International Workshop on Parsing Technologies,
pages 193–199, 1991.

[Malouf, 2000] R. Malouf. The order of prenominal adjec-
tives in natural language generation. InProceedings of the
38th Annual Meeting of the Association for Computational
Linguistics (ACL ’00), pages 85–92, 2000.

[Manning and Schuetze, 1999] C. Manning and
H. Schuetze.Foundations of Statistical Natural Language
Processing. The MIT Press, 1999.

[Marciniak and Strube, 2004] T. Marciniak and M. Strube.
Classification-based generation using TAG. In A. Belz,
R. Evans, and P. Piwek, editors,Proceedings of the Third
International Conference on Natural Language Genera-
tion (INLG ’04), volume 3123 ofLNAI, pages 100–109.
Springer, 2004.

[Oh and Rudnicky, 2000] A. Oh and A. Rudnicky. Stochas-
tic language generation for spoken dialogue systems. In
Proceedings of the ANLP-NAACL 2000 Workshop on Con-
versational Systems, pages 27–32, 2000.

[Papineniet al., 2001] K. Papineni, S. Roukos, T. Ward, and
W.-J. Zhu. BLEU: A method for automatic evaluation of
machine translation. IBM research report, IBM Research
Division, 2001.

[Poesioet al., 1999] M. Poesio, R. Henschel, J. Hitzeman,
and R. Kibble. Statistical NP generation: A first report.
In R. Kibble and K. van Deemter, editors,Proceedings of
ESSLLI Workshop on NP Generation, pages 30–42, 1999.

[Ratnaparkhi, 2000] A. Ratnaparkhi. Trainable methods for
surface natural language generation. InProceedings of
the 6th Applied Natural Language Processing Conference
and the 1st Meeting of the North American Chapter of the
Association of Computational Linguistics (ANLP-NAACL
’00), pages 194–201, 2000.

[Shaw and Hatzivassiloglou, 1999] J. Shaw and V. Hatzivas-
siloglou. Ordering among premodifiers. InProceedings of
the 37th Annual Meeting of the Association for Computa-
tional Linguistics (ACL ’99), pages 135–143, 1999.

[Sripadaet al., 2002] S. Sripada, E. Reiter, J. Hunter, and
J. Yu. SUMTIME-METEO: Parallel corpus of naturally oc-
curring forecast texts and weather data. Technical Report
AUCS/TR0201, Computing Science Department, Univer-
sity of Aberdeen, 2002.

[Sripadaet al., 2003] S. Sripada, E. Reiter, J. Hunter, and
J. Yu. Exploiting a parallel text-data corpus. InProceed-
ings of Corpus Linguistics 2003, pages 734–743, 2003.

[Stolcke, 2002] A. Stolcke. SRILM: An extensible language
modeling toolkit. InProceedings of the 7th International
Conference on Spoken Language Processing (ICSLP ’02),
pages 901–904,, 2002.

[Strube and Wolters, 2000] M. Strube and M. Wolters. A
probabilistic genre-independent model of pronominaliza-
tion. In Proceedings of the 6th Applied Natural Language
Processing Conference and the 1st Meeting of the North
American Chapter of the Association of Computational
Linguistics (ANLP-NAACL ’00), pages 18–25, 2000.

[Varges and Mellish, 2001] S. Varges and C. Mellish.
Instance-based natural language generation. InProceed-
ings of the 2nd Meeting of the North American Chapter
of the Association for Computational Linguistics (NAACL
’01), pages 1–8, 2001.

[Velldal et al., 2004] E. Velldal, S. Oepen, and D. Flickinger.
Paraphrasing treebanks for stochastic realization ranking.
In Proceedings of the 3rd Workshop on Treebanks and Lin-
guistic Theories (TLT ’04), Tuebingen, Germany, 2004.

[Walker, 2001] M. Walker. An application of reinforcement
learning to dialogue strategy selection in a spoken dialogue
system for email. Journal of Artificial Intelligence Re-
search, 12:387–416, 2001.

[White, 2004] M. White. Reining in CCG chart realization.
In A. Belz, R. Evans, and P. Piwek, editors,Proceedings of
the Third International Conference on Natural Language
Generation (INLG ’04), volume 3123 ofLNAI, pages 182–
191. Springer, 2004.

[Witbrock and Mittal, 1999] M. Witbrock and V. Mittal.
Ultra-summarization: A statistical approach to generating
highly condensed non-extractive summaries. InProceed-
ings of the 22nd International Conference on Research
and Development in Information Retrieval (SIGGIR ’99),
pages 315–316, 1999.



A Example output

10Jul2001 03/3:

Gold ENE SOON 20-24 BACKING NE 08-12 BY LATE AFTERNOON
Random ENE VERY SOON 20-24 AHEAD OF THE FRONT AT FIRST EASING AND BACKING NE’LY 8-12 BY THE

AFTERNOON
Greedy SOON ENE INCREASING 20-24 VEERING NE 8-12 LATER
Viterbi SOON ENE INCREASING 20-24 VEERING NE 8-12 LATER
2-gram ENE AND 20-24 BACKING NE 8-12 LATER

10Nov2000 16/1:

Gold N 10 OR LESS VEERING SE AND RISING 20-24 LATE IN THE PERIOD
Random N 10 OR LESS THEN LATE IN PERIOD BACKING SE STEADILY INCREASING TO 20-24 IN FRONTAL

ZONE FOR A TIME EARLY EVENING
Greedy SOON N 10 OR LESS VEERING SE INCREASING 20-24 LATER
Viterbi SOON N 10 OR LESS VEERING SE INCREASING 20-24 LATER
2-gram N 10 OR LESS BACKING SE AND 20-24 BY EVENING

10Feb2002 04/1:

Gold WNW 22-28 GUSTS 38 VEERING NW BY MIDDAY THEN BACKING AND DECREASING W’LY 18-22 BY
MID EVENING

Random WNW 22-28 GUSTS 38 IN ANY SHOWERS THEN SLOWLY BACKING TO NW BY MID MORNING WEST
18-22 LATER

Greedy SOON WNW 22-28 GUSTS 38-38 VEERING NW LATER VEERING W 18-22 LATER
Viterbi WNW 22-28 GUSTS 38-38 VEERING NW LATER W 18-22 LATER
2-gram WNW 22-28 GUSTS 38 LATER NW LATER W 18-22 LATER


