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Abstract

Statistical NLG has largely meant:-gram mod-
elling which has the considerable advantages of
lending robustness LG systems, and of making
automatic adaptation to new domains from raw cor-
pora possible. On the downsidegram models are
expensive to use as selection mechanisms and have
a built-in bias towards shorter realisations. This pa-
per looks at treebank-training of generators, an al-
ternative method for building statistical models for
NLG from raw corpora, and two different ways of
using treebank-trained models during generation.
Results show that the treebank-trained generators
achieve improvements similar to a 2-gram gener-
ator over a baseline of random selection. How-
ever, the treebank-trained generators achieve this
at a much lower cost than the 2-gram generator,
and without its strong preference for shorter real-
isations.

I ntroduction

comes easier if the selection mechanism can be adjusted or
replaced separately, without changing the definition of the
generation space; coverage can be increased more easily if
every expansion of the generation space does not have to be
accompanied by handcrafted rules controlling the regltin
increase in nondeterminism; and certain types of selection
methods can provide robustness, for example through prob-
abilistic choice.

Statistical generation has aroused by far the most interest
among these methods, and it has mostly meagtam se-
lection: a packed representation of all alternative (pjrti
realisations is produced, and angram language model is
applied to select the most likely realisatio®-gram meth-
ods have several desirable properties: they offer a fullg-au
matic method for building and adapting control mechanisms
for generate-and-selemt. G from raw corpora (reusability);
they base selections on statistical models (robustners); a
they can potentially be used for deep as well as surface gen-
eration.

However,n-gram models are expensive to apply: in order
to select the most likely realisation according toraigram
model, all alternative realisations have to be generated an

Traditionally, NLG systems have been built as deterministicthe probability of each realisation according to the modsl h
decision-makers, that is to say, they generate one string ¢@ be calculated. This can get very expensive (even if packed
words for any given input, in a sequence of decisions that infepresentations of the set of alternatives are used), iedigec
creasingly specify the word string. In practice, this hasnte When the system accepts incompletely specified input, be-
carefully handcrafting generators to make decisions lpcal cause the number of alternatives can be vast. In Halogen,
at each step in the generation process. Such generators teli@ngkilde[2000 deals with trillions of alternatives, and the
to be specialised and domain-specific, are hard to adapt @enerator used in the experiments reported in this paper has
new domains, or even subdomains, and have no way of deaiP tol(.)40 alternative realisations (see Section 4.3 for empir-
ing with incomplete or incorrect input. Wide-coverage ol ical evidence of the relative inefficiency afgram genera-
only exist for surface realisation, and tend to require lyigh tion).
specific and often idiosyncratic inputs. The restaf has Furthermorep-gram models have a built-in bias towards
reached a stage where state-of-the-art tools are expexted shorter strings. This is because they calculate the liketh
be generic wide-coverage, reusable and robustG is lag- ~ of a string of words as the joint probability of the words, or,
ging behind the field on all three counts. more precisely, as the product of the probabilities of each

The last decade has seen a new generatiomefmethod- ~ word given then — 1 preceding words. The likelihood of any
ologies that are characterised by a separation betweeethe dstring will therefore generally be lower than that of any of
inition of the generation space (all possible generatian pr its substrings (see Section 4.3 for empirical evidence isf th
cesses from inputs to outputs) on the one hand, and contrbias). This is wholly inappropriate faiLG where equally
over the decisions that lead to a (set of) output realis@tjpn good realisations can vary greatly in length (see Section 5
on the other. for discussion of normalisation for length in statisticaban

In making this separatiomgenerate-and-selestLG takes  elling).
several crucial steps towards genericity: reusing systems The research reported in this paper is part of an ongoing



research projetthe purpose of which is to investigate issuesof a small number of alternative realisations, and a 3-gram
in genericNLG. The experiments (Section 4.3) were carriedmodel to select the be$Bangalore and Rambow, 2000b
out to evaluate and compare different methods for explpitin Humphreyset al. [2001] reused acFGtrained forNL pars-

the frequencies of word sequences and word sequence codng to build syntactic generation trees from candidateaynt
currences in raw text corpora to build models far gener-  tic nodes.

ation, and different ways of using such models during gen- Recently, Habasf2004 reported work using structural 2-
eration. One of the methods uses a standard 2-gram modgtams for lexical/syntactic selection tasks (using joirdlp

for selection among all realisations (with a new selectibn a ability of word and parent word in dependency structures,
gorithm, see Section 4.3). The other two usé&reebank- instead of probability of word given preceding word), as
trainedmodel of the generation space (Section 3). The basigvell as conventionah-grams for selection among surface
idea behind treebank-training of generators is simpleerdet strings. Velldalet al. [2004 compared the performance of
mine for the strings and substrings in the corpus the differe a 4-gram model trained on tlenc? with a Maximum En-
ways in which the generator could have generated them, i.¢topy model reused from a parsing application and trained
the different sequences of decisions that lead to them, theon the small, domain-specificoGON corpus, finding that
collect frequency counts for individual decisions, andedet the domain-specifisie model performs better on th@GonN
mine a probability distribution over decisions on this Basi corpus, but a combined model performs best.

In the experiments, treebank-trained generation models ar Some statisticaNLG research has looked at subproblems
combined with two different ways of using them during gen-of language generation, such as orderingipforemodifiers
eration, one locally and one globally optimal (Section 3.1) [Shaw and Hatzivassiloglou, 1999; Malouf, 200attribute

All three methods are evaluated on a corpus of weather foreselection in content planningh and Rudnicky, 2040 NP

casts (Section 4.1). type determinatioiPoesioet al, 1999, pronominalisation
[Strube and Wolters, 2000and lexical choicdBangalore
2 Generate-and-select NLG and Rambow, 2000a

- In hybrid symbolic-statistical approaches, Whi@2004
Generate-and-selest G separates the definition of the SPace prunes edges in chart realisation usingram models, and
of all possible generation processes (the generation pacg,rges uses quantitative methods for determining the vigigh
from the mechanism that controls which (set of) realisd&pn 5 instance features in instance-based generfifamges and
is selected as the output. Generate-and-select methogls vaye|iish 2001.
primarily along three dimensions: The likelihood of realisations given concepts or semantic

(i) Number of (partial) solutions generated at each stepfepresentations has been modeled directly, but is probably
some methods generate all possibilities, then seleciimited to small-scale and specialised applications: siammm
some select a subset of partial solutions at each steggation construed as term selection and ordefivtbrock -
some use an automatically adaptable decision moduland Mittal, 1999, grammar-free stochastic surface realisation
to select the (single) next partial solution. [Oh and Rudnicky, 2040 and surface realisation construed

. . . as attribute selection and lexical cho[€&atnaparkhi, 2000

(ii) Type of decision-making module and method of “gqo"of the above papers compare the purely statisti-
construction/adaptation: _statistical models, various.a"rethods to other machine learning methods such as
maCh'”e Iearnlng techniques or manual COnStruc'memory-based learning and reinforcement learning. Some
tion/adaptation. other research has focussed on machine learning methods,

(iii) Size of subtask of the generation process that thee.g. Walkeret al. [2001] look at using a boosting algorithm to
method is applied to: from the entire generation processrain a sentence plan ranker on a corpus of labelled examples
e.g. in text summarisation, to all of surface realisationand Marciniak & Strubg2004 construe the entire genera-
for domain-independent generation. tion process as a sequence of classification problems,dsolve

L : by corpus-trained feature-vector classifiers.
Methods that can in principle be used to stochastically gen Generate-and-selest 6 has been applied either to all of

erate text have existed for a long time, but statistical geene surface realisation. or 1o a small subbroblem in deep or sur-
tion from specified inputs started with Japan-Gl&sight et fu i Isation, h 1! Subp =M | porsu
al., 1994; 1995 (which replacedENMAN’s defaults with sta- a}che realisation (nqt to the entire gene(rjatlor];l_ %mﬁess}; It |
tistical decisions), while comprehensive statisticalggation ~ ©'.'e" Very expensive or not guaranteed to find the optima
solution; and the models it has used are either shallow and

started with NitrogeriKnight and Langkilde, 1998(which unstructured, or require manual corpus annotation
represented the set of alternative realisations as a witickla ' q P '

and selected the best with a 2-gram model) and its succei,— .

sor HalogenLangkilde, 2009 (where the word lattice was Treebank-Training of Generators

replaced by a more efficieatND/OR-tree representation). Treebank-training of generators is a method for modelling
Since then, a steady stream of publications has reportdikelihoods of realisations in generation. It is introddce

work on statisticaNLG. In FERGUS Bangaloreet al. used in this section first in terms of the general idea behind it

an XTAG grammar to generate a word lattice representatiorfwhich could be implemented with various formalisms, train

- ing methods and generation algorithms), and then in Sec-
1Controlled Generation of Text (CoGenTtt p://ww. -
itri.brighton.ac. uk/projects/cogent. 2British National Corpus.



whereas for (ii) and (iii) it would depend also on the other
decisions in the derivation(s). On the other hand, the com-
plexity of (iii) is much greater than that of (ii) which in tar

is greater than that of (i).

3.1 Context-free Generator Treebank-Training
without Disambiguation

There are many different ways of representing generator
decisions and annotating sentences with derivations, and
treebank-training is clearly not equally suitable for gjpes

of generators. In the current version of the method, gen-
eration rules must be context-free with atomic arguments.
Derivations for sentences in the corpus are then standard
context-free derivations, and corpora are annotated in the
standard context-free way with brackets and labels.

No disambiguation is performed, the assumption being that
all derivations are equally good for a sentence. If a semtenc
has more than one derivation, frequency counts are divided
tion 3.1 by a description of the actual technique that was useequally between them.
in the experiments reported below. The three basic steps in context-free generator treebank-

The generation space of a generator can be seen as a setr@fining are:
decision trees, where the root nodes corre_spond to the_ﬂ'nput 1. For each sentence in the corpus, findyelheration pro-
and the_paths down the trees are all posslble_ generation pro-  egseshat generate it, that is, all the ways in which the
cesses in the generator that lead to a realisation (leaf) (eod generator could have generated it. For each generation
view discussed in more detail [Belz, 2004). _ process, note the sequences of generator decisions in-

Consider the diagrammatic generation space represemtatio  yglved in it (thederivationsfor the sentence). If there is

entence

coodoboooooodooo oo

Figure 1: Generation space as decision tree.

in Figure 1. It shows examples of three realisations and the
sequences of generator decisions that generate them; repre
sented as paths connecting decision nodes and leading to re-
alisation nodes. In this view of the generation space, usmg
n-gram model is equivalent to following all paths (from the
given input node) down to the realisations, and then apglyin
the model to select the most likely realisation.

An alternative is to estimate the likelihood of a realisatio

in terms of the likelihoods of the generator decisions that g~ 3.

rise to it, looking at the possible sequences of decisioats th
generate the realisation (its ‘derivations’). One way ahdo
this is to say the likelihood of a string is the sum of the like-
lihoods of its derivations. To train such a model on a corpus

2.

no complete derivation, maximal partial derivations are
used instead.

Annotate the (sub)strings in the sentence with the deriva
tion, resulting in ageneration tredor the sentence. If
there is more than one derivation for the sentence, create
a set of annotated trees. The resulting annotated corpus
is ageneration treebank

Obtain frequency counts for each individual decision
from the annotations, addirig'» to the count for every
decision, where: is the number of alternative deriva-
tions; convert counts into probability distributions over
alternative decisions, smoothing for unseen decisions.

of raw text, the set of derivations for each sentence is deter The probability distribution is currently smoothed witteth
mined, frequencies for individual decisions are added o, a simple add-1 methdd This is equivalent to Bayesian estima-

a probability distribution over sets of alternative demis is
estimated.

tion with a uniform prior probability on all decisions, argl i
entirely sufficient for present purposes given the very smal

If a sentence has more than one derivation, as in the examjpcabulary and the good coverage of the data. A standard

ple on the right of Figure 1, there are two possibilitiesheit

maximum likelihood estimation is performed: the total num-

the frequency counts are evenly divided between them, er digser of occurrences of a decision (e.g. passive) is divided by

ambiguation is carried out to determine the correct daawat

the total number of occurrences of all alternatives (e.g- pa

The former uses the surface frequencies of word strings resive + active). In the context-free setting, a decision type

gardless of their meaning and structure, asdpam models.

responds to a nontermin&’, and decisions correspond to

The latter is complicated by the fact that there is not alwaysxpansion rulesV — «. Given a functionc(z) which re-

a single ‘correct’ derivation in generation (e.g. an expi@s
may end up being passivised in more than one way).

turns the frequency count for a decisionnormalising each
occurrence by the number of derivations for the sentenee, th

There are at least three strategies for using a treebankrobability of a decision is obtained in the standard ways(
trained model during generation: (i) select the most likelythe set of all decisions):

decision at each choice point; (ii) select the most likelyeye
ation process (joint probability of all decisions); or)sielect
the most likely string of words (summed probabilities of all
generation processes that generate the string). The fitdtlwo

¢(N — a)

N =
p(N — «) Zi:N—»aieRC(N — ;)

(1)

always make the same decision given the same alternatives, *Also known as applying Laplace’s law.



Greedy generation Ol, G2 AND O3 O L FIELDS (EAST OF SHETLAND)
One way of using a treebank-trained generator is to make th£0- 08- 01
single most likely decision at each choice point in a genera-

tion process. This is not guaranteed to resultin the maasidik 10/18 Ww 11 13 17 1.7 2.7 NW 1.5 7
generatiorprocessbut the computational cost in application 10/ 21 W 8 10 12 1.5 2.4 NwW 1.4 7
is exceedingly low. 11/00 W 7 8 10 1.4 2.2 NW 1.4 7
11/03 SW 7 8 10 1.4 2.2 NwW 1.3 7

Viterbi generation 11/06 SwW 7 8 10 1.3 2.1 NwW 1.3 7
The alternative is to do a Viterbi search of the generatio i; (1)2 gsw 12 1% %‘:_’ ig gzll m ig ;
forest for a given input, which maximises the joint likeli- 11/15 s 50 25 31 1.8 2.9 WW1.3 7
hood of all decisions taken in the generation process. Thi§;, 18 s 22 27 34 1.9 3.0 SW 1.5 8
is guaranteed to select the most likely generation procesg, ;21 s 24 30 37 2.3 3.7 S 1.7 8
but is considerably more expensive. The efficiency of greedyi2/ 00 s 28 35 43 3.0 4.8 S 1.9 8
probabilistic generation, Viterbi generation and 2-gramstp  12/03 S 28 35 43 3.0 48 S 1.9 8
selection is compared in Section 4.3 below. 12/06 Sw 27 33 41 3.0 4.8 S 2.0 8
. . . 12/09 WSW 26 32 40 2.9 4.6 SSW2.0 8

A possible alternative to greedy search is to use a Nnofto; 12 Wew 25 31 39 2.9 4.6 SW 2.0 8
uniform random distribution proportional to the likelind® 12/15 Wsw 25 31 39 2.9 4.6 WW2.0 8
of alternatives. E.g. if there are two alternative decisibr 12/18 WBW 24 30 37 3.1 5.0 Wsw2.1 8
and D2, with the model givingp(D1) = .8 andp(D2) = .2, 12/21 SW 23 28 35 2.9 4.6 WW2.2 9
then the generator would decid&l with probability.8, and  13/00 Sw 21 26 32 2.8 4.5 WWwW2.3 9
D2 with a probability of.2 for an arbitrary input (instead of 13/03 Sw 19 23 29 2.4 3.8 WW2.1 8
always deciding)1 as does the greedy generator). However,ig; 88 ggw %g gg g? g g g g g‘é"w i 8 g
such a strategy, while increasing variation, would coméat t 13/12 SSW 21 26 32 2.4 3.8 SSWis 8

price of lowering the overall likelihood of making the right
decision. With the strategy of always going for the most fre-
guent alternative, the overall likelihood of making thehtig ) . ]
decision when faced with the choidel or D2 is simply Figure 2: Metereological data file for 10-08-01.
.8 in the current examplel(for D1, 0 for D2). With the
likelihood-proportional random strategy, however, thera
likelihood of making the right decision is onlg8 (.64 for
D1, .04 for D2). Variation can alternatively be increased by
making the model more fine-grained.

To keep things simple, only the data file type that contains
(virtually all) the information about wind parameters (tkeh
file type) was used. Figure 2 is the .tab file corresponding
to the above forecast. The first column is the day/hour time

. . stamp, the second the wind direction predicted for the eorre
4 Evaluation on Weather Forecast Generation  gponding time period: the third the wind speed at 10m above

4.1 Domain and Data: Weather Forecasting the ground; the fourth the gust speed at 10m; and the fifth
. . .. the gust speed at 50m. The remaining columns contain wave
The corpus used in the experiments reported below is th

SUMTIME-METEO corpus created by theum TIME project Bata.

team in collaboration withwNI Oceanroute§Sripadaet al., str;?ehtgg?vl?/glrgg(etg?m}ggﬁ aslle{;]erZedgg?atf(i)Ie?;ergatsatk;\ inn('zt
2004. The corpus was collected NI Oceanroutes from 9

the commercial output of five different (human) forecastersaccount)' An example here is that while the wind direction

and each instance in the corpus consists of three numeric%\vshgoférstn%?r;()f ég? ;vslngl \i}i?]tgn;egéésgrivwh\g?evwmé data
data files (output by three different weather simulators) an PD P y

. ; file. Nor is it obvious why the wind speeds 11, 12 and 7 are
the weather forecast file written by the forecaster on the evi apped to the wo ranges 12-15 and 5-10.

dence of the data files (and sometimes additional resourceé}" he S . d th ing f .
Following the SIMTIME work, the experiments reported be- 1€ SUMTIME Project construed the mapping from time
eries data to weather forecasts as two téSkipadaet al,,

low focussed on the part of the forecasts that predicts WincZ . selecti b f the i ies d be i
characteristics for the next 15 hours. Such ‘wind statesient 2003: selecting a subset of the time series data to be in-

look as follows (for 10-08-01): cluded in the forecast, and expressing this subset of nuisnber

as annL forecast. The focus of the research reported here
--------------------------------------------- is not the numerical summarisation of time series data, but
2. FORECAST 1500 GMI FRI- 10- Aug, TO 0600GMI' SAT | G techniques. Therefore, theuS TIME-METEO corpus

E'_'f‘ﬂg 2001 S was converted into a parallel corpus of wind statements and
\_/\I_NE)(_\Q#;Q;\" Ngsd\lFl DENCE: N:_|:‘GH """" the wind Qata included in ea}ch statement. The wind Ejata is a
10M VWNW NW 12- 15 BACKI NG W LY 05-10 By  Vectoroftime stamps and wind parameters, and was ‘reverse-
M DNI GHT, THEN SW SSW BY NORNI NG engineered’, by automatically aligning wind speeds andiwin
50M VINW NW 15- 18 BACKI NG W LY 06- 12 BY directions in the forecasts with time-stamps in the data file
M DNI GHT, THEN SW SSW BY MORNI NG In order to do this, wind speed and directions in the data file

--------------------------------------------- have to be matched with those in the forecast. This was not



straightforward either, because more often than not, tisere (not counting wind directions), and uses only a handful of
no exact match in the data file for the wind speeds and didifferent syntactic structures, the corpus provides exdly
rections in the forecast. The strategy adopted in the worlgood coverage (an initial impression confirmed by the small
reported here was to select the time stamp beside the first egifferences between training and testing data resultsaijelo

act match, and to leave time undefined if there was no exact The corpus was divided at random into training and testing
match. The instances in the final training corpus look as foldata at a ratio of 9:1. The training set was used to treebank-
lows (same example, 10-08-01, resulting in two instances): train the weather forecast generation grammar (as describe
in Section 3.1) and a back-off 2-gram model (usingzR@& M

WAWNW12 15 - - - WO5 10 - - 21 SWSSW- - toolkit, [Stolcke, ZO_OD. The treebank-trained generation
- - 03 grammar was used in conjunction with a greedy and a Viterbi
VAW NW 12- 15 BACKI NG W LY 05-10 BY M DN GHT generation method. The 2-gram model was used in more or
THEN SW SSW BY MORNI NG less exactly the way reported in the Halogen papeasgk-

ilde, 200Q. That is to say, the packediD/OR-tree represen-
Sswo5 10 - - - S- - - - - - 26 30 38 38 -1 tation of all alternatives is generated in full, then therarg
SSW05-10 BACKING S'LY AND | NCREASI NG 26- 30 model is applied to select the single best one.

GUSTS 38 BY END OF PERI OD

One small difference to Halogen is that a Viterbi algo-
rithm was used to identify the single most likely string. §hi
42 Automatic Generation of Weather Forecasts is achieved_a_s follows. ThenD/oR-tree is interpreted di-

] rectly as a finite-state automaton where the states comespo
The three generation methods compared below are ajb words as well as to the nodes in thep/or-tree. The
generate-and-select methods. The idea was to build a basi@nsitions are assigned probabilities according to tiyes2a
generator that for any given input generates a set of akerngnodel, and then a straightforward single-best Viterbi algo
tives that reflectsill the variation found in the corpus (rather rithm is applied to find the best path through the automaton.
and then to create statistical decisio_n makers trained en thhaseline. All results were evaluated against the gold stahd
corpus to select (a subset of) alternatives. The rest o§€tis  (the human written forecasts) of the test set. Results were
tion describes the basic generator, and the following @ecti y5jidated with 5-fold cross-validation.
describes the experiments that were carried out. In the following overview of the resultsthe similarity be-

The basic generator was written semi-automatically as @yeen automatically generated forecasts and gold standard
set of generation rules with atomic arguments that converfas measured by conventional string-edi)(distance with
an input vector of numbers in steps to a sehafforecasts. gy pstitution at cost 2, and deletion and insertion at cost 1.
The automatic part was analysing the entire corpus with @aseline results are given as absolstescores, results for
set of simple chunking rules that split wind statements intope non-random generators in terms of improvement over the

wind direction, wind speed, gust speed, gust statements, ti paseline (reduction in string-edit distance, with score in
expressions, transition phrases (suchiad increasing pre-  prackets).

modifiers (such akess tharfor numbers, anchainlyfor wind

direction), and post-modifiers (eig.or near the low centre Training set Test set
The manual part was to write the chunking rules themselves, | Random 14.92 14.37
and higher-level rules that combine different sequences of | TT/Greedy| -50.64% (7.36) -50.30% (7.41)
chunks into larger components. TT/Viterbi | -52.32% (7.11)| -52.11% (7.14)
The higher-level generation rules were based on an inter- | 2-gram -58.44% (6.20)| -57.91% (6.27)

pretation of wind statements as sequences of fairly indepen

dent units of information, each containing as a minimum The SE scores show that, as expected, the improvements
: L . ’ 9 . or the training set are slightly larger in all cases. Theegre
wind direction or wind speed range, and as a maximum al

the chunks listed above. The onlv context encoded in th enerator achieves a significantimprovement over randem se
O y o .~ Tection, but is outperformed by the Viterbi generator, with
rules was whether a unit of information was the first in a wind

: . . gram selection the clear overall winner.
statement, and whether a wind statement contained wind dF . .
The generated strings were also evaluated usingthe

rection (only), wind speed (only), or both. The final genera'ryetric[Papinen'et al, 2001 which is ultimately based on-

tor takes as inputs number vectors of length 6 to 36, and haFram agreement between generated and gold standard strings

a large amount of non-determinism. For the simplest inpu n simple terms, the more 1-grams, 2-grams, ... amglams
(one number), it generates 8 alternative realisations.theor P y grams, 2-g o1 .
are the same between two strings, the higher tBeiEu

. X 10
most complex input (36 numbers), it generates x 10 score. This implies thaLEu with n = 1 is the most closely

alternatives (as a tightly packeaib/or-tree). related tose scoring (which can also be seen from the simi-
43 Experimentsand Results larity between the relative scores assignedbgu; andse

T.he converted corpus (as described in _Section 4.1 above) con “4a|| numbers in this paper are either given in their entirety o
sisted of 2,123 instances, corresponding to a total of Z2,98truncated (not rounded).

words. This may not sound like much, but considering that Spercentage reductions were calculated on the non-truhcate
the entire corpus only has a vocabulary of about 90 wordstring-edit distances.



BLEU; BLEU, BLEU3 BLEU4

Train  Test | Train  Test | Train Test | Train  Test

Random 0.479 0.485| 0.390 0.382] 0.310 0.301] 0.225 0.215
TT/Greedy| 0.678 0.671| 0.598 0.591| 0.521 0.514| 0.437 0.429
TT/Viterbi | 0.674 0.668| 0.595 0.589| 0.518 0.512| 0.434 0.427
2-gram 0.708 0.704| 0.620 0.614| 0.542 0.536| 0.460 0.453

Table 1:BLEU,, scores for training and test setsg n < 4.

to the generators). Table 1 giveseu,, scores for the 4 gen-

erators, forl < n < 4. These scores give a different im- (controlled) run.

pression of the resultLEU consistently scores the Viterbi

the training and test sets with the different methods in one

generatotower than the greedy generator, although the dif- Total time (minutes) Training set Test set
ference between them is orly003 on average, less than the TT/gTeed_y 23m>52s 2m06s
average mean deviation for the two generators across the five | 1 1/ Viterbi 3h22m33s ~ 27m05s
runs (.005). The difference between the random generator 2-gram 24h04m05s 3h35m06s

and the other methods increases significantly with incnggsi  Testing the training set took all methods about 7 times as
n. Forn = 2 andn = 3, the differences between the 2-gram |ong as the test set. The Viterbi generator took about 13stime
generator and the two treebank-trained generators drops nynger than the greedy generator for the test set, and about 9
ticeably. times longer for the training set. The 2-gram generator took
Results were stable over the five runs of the crossé.5 times longer than the Viterbi generator on the test sek, a
validation. For the test set, the mean deviatiosinscores 7.5 times longer on the training set.
was betweer?.13 and 0.35, and in BLEU scores between To make the comparison fair, the Viterbi and the 2-gram
0.0034 and0.0065. The margins by which the 2-gram gener- generator were implemented identically as far as possible.
ator outperformed the other two were nearly identical acrosBoth start by generating the packesb/or-tree of all alter-
the five runs. TheE score of the greedy generator was lower natives. During this process, the former makes a note of the
(by nearly identical margins) than that of the Viterbi gemer rule probabilities (at thenD andoRr nodes) along with the
tor in all runs. All fourBLEU scores of the greedy generator, rules, and then directly identifies the most likely realisat
however, were slightly higher than those of the Viterbi gen-by a Viterbi method. The 2-gram generator first has to anno-
erator in four out of five runs, and slightly lower in one run. tate theaND/oR-tree with 2-gram probabilities looked up in
Small mean deviation figures and consistency of results corthe 2-gram model before using the same Viterbi method. The
firm the significance of the differences between the scores inverhead of looking up the 2-gram model to score the packed
the seandBLEU evaluations to some extent. representation is the only difference between the two nustho

There is a debate over the degree to which an evaluatiofnd multiplies out into a large overhead in computing time
metric for NLG should be sensitive to word order and word for the 2-gram generatirwhich would make it unsuitable
adjacency. The appropriate degree of word-order sengitivi for use in practical applications.
may vary from one evaluation task to the next, but for the The random generator has no preference for shorter strings
task of evaluating weather forecasts it certainly is im@ort  at all, and has an average string length almost twice thaiof t
A clear example is time expressions. A forecast can containther generators. The 2-gram generator has an almost abso-
up to five different time expressions, which have to observdute preference of shorter over longer strings, and so presiu
the correct chronological order. It is not appropriate to re the shortest strings. The Viterbi generator does not prefer
ward the mere presence (regardless of place in the string) o$horter strings, but does prefer shorter derivations, heackt
say,by midnight(which is what some evaluation metrics are is a correlation between string length and derivation lengt
specifically designed to do, e [Bangaloreet al, 200(). sSE ~ The greedy generator does not have a built-in preference for
scoring has a tendency to reward proximity to the intendeghorter strings or derivations, but it reflects the fact tirt
place (although not in a very straightforward way), angu (sub)strings were more frequent in the training corpus:
is increasingly strict about place with increasing

The SE score gives an intuitive, initial impression of how
much the three methods have learned in comparison to the
baseline: it is easy to Conceptua"SG how different Onﬁgtri In some app“cation domainsi thegram model’s prefer-
is from another if you know there are two insert and deleteance for shorter strings is irrelevant: e.g. in speech neieog
operations between them (not so easy withetheu scores).  tion (wheren-gram models are used widely) the alternatives
However, by far the more complete picture (and the most apamong which the model must choose are always of the same
propriate to this evaluation task) is given ByEU. It shows  |ength. In language generation, where equally good alterna
that the 2-gram generator does better than the other two, but
not by a very large margin. The margin is important con-  Sgyen if the lookup can be implemented more efficiently there
sidering the far greater expenserefgram generation. The will always be some overhead multiplied by the total numite2-o
following table shows the total amount of time it took to test grams in the packed representation.

10.8
17.2

9.3
9.0

gold: 8.7

random:

greedy:
Viterbi:

2-gram:



tives can vary greatly in length, this preference is posiyiv ing); and (iii) using alternative methods for exploitinger
harmful (see following section for discussion of methods tobank models during generation, e.g. it would be good to have

counteract this bias). a generation strategy that has (some of) the vastly superior
efficiency of the greedy generator without its repetitivene
5 Discussion and Further Research while not sacrificing (too much of) the overall likelihood of

making the right decision (unlike the non-uniform random
Then-gram model’s bias towards shorter strings is an examstrategy discussed in Section 3.1). Future research vl lo
ple of a general case: whenever the likelihood of a larger uniat all three areas, using for evaluation a larger and more var
that can vary in length (e.g. sentence) is modelled in teffms aed corpus from a different domain as well as theve IME
the joint probability of length-invariant smaller unitgrgier  corpus.
units that are composed of fewer smaller units are moregjikel ~ The three statistical generation methods evaluated in this
The possibility of counteracting this bias has been investipaper all work with raw corpora, but vary hugely in efficiency
gated. In parsing, Magerman & Marc[£991] and Briscoe Generation speed and the ability to adapt generators to new
& Carroll [1993 used the geometric mean of probabilities domains with no annotation bottleneck are crucial for the de
instead of the product of probabilities. In later work, Bog  velopment of practical, generigLG tools. The work pre-
& Carroll [1997 use a normalisation approach, the equiva-sented in this paper is intended to be a step in this direction
lent of which forn-gram selection would be to ‘pad’ shorter
alternatives with extra ‘dummy’ words up to the length of Acknowledgements
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lar the numbers-driven parsing community, has not tended to . . S )
worry about the fact that the gold standard parse is usually th; 'g‘;i%ﬂﬂgq f%(():é) mputational Linguistics (ACL "00)
not the only correct one. It is accepted that it is an impérfec bag ' '
way of evaluating results, albeit the only realistic poiiigip ~ [Bangalore and Rambow, 20005. Bangalore and O. Ram-
especially for large amounts of data. Furthermore, where a Pow. Exploiting a probabilistic hierarchical model for gen
parser or generator has been trained directly on a corgas, it~ €ration. InProceedings of the 18th International Confer-
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A Exampleoutput

10Jul 200103/ 3:

Gold ENE SOON 20- 24 BACKI NG NE 08-12 BY LATE AFTERNOCON
Random ENE VERY SOON 20-24 AHEAD OF THE FRONT AT FI RST EASI NG AND BACKI NG NE' LY 8-12 BY THE
AFTERNCON

Greedy SOON ENE | NCREASI NG 20- 24 VEERI NG NE 8-12 LATER
Viterbi SOON ENE | NCREASI NG 20- 24 VEERI NG NE 8- 12 LATER
2-gram  ENE AND 20- 24 BACKI NG NE 8-12 LATER

10Nov2000.16/ 1:

Gold N 10 OR LESS VEERI NG SE AND RI SI NG 20-24 LATE I N THE PERI CD

Random N 10 OR LESS THEN LATE | N PERI OD BACKI NG SE STEADI LY | NCREASI NG TO 20-24 | N FRONTAL
ZONE FOR A TI ME EARLY EVEN NG

Greedy SOON N 10 OR LESS VEERI NG SE | NCREASI NG 20- 24 LATER

Viterbi SOON N 10 OR LESS VEERI NG SE | NCREASI NG 20- 24 LATER

2-gram N 10 OR LESS BACKI NG SE AND 20- 24 BY EVENI NG

10Feb2002.04/ 1:

Gold WNW 22- 28 GUSTS 38 VEERI NG NW BY M DDAY THEN BACKI NG AND DECREASI NG W LY 18-22 BY
M D EVEN NG

Random WNW 22-28 GUSTS 38 | N ANY SHOWERS THEN SLOWLY BACKI NG TO NW BY M D MORNI NG VEST
18-22 LATER

Greedy SOON WNW 22-28 GUSTS 38-38 VEERI NG NW LATER VEERI NG W 18- 22 LATER
Viterbi VAW 22- 28 GUSTS 38-38 VEERI NG NW LATER W 18-22 LATER
2-gram  WAW 22-28 GUSTS 38 LATER NW LATER W 18- 22 LATER




