
Proceedings of the Ninth International Workshop on Parsing Technologies (IWPT), pages 188–189,
Vancouver, October 2005. c©2005 Association for Computational Linguistics

The Quick Check Pre-unification Filter for Typed Grammars: Extensions

Liviu Ciortuz
CS Department, University of Iaşi, Romania

ciortuz@infoiasi.ro

The so called quick check (henceforth QC) pre-
unification filter for feature structure (FS) unifica-
tion was introduced by (Kiefer et al., 1999). QC is
considered the most important speed-up technique
in the framework of non-compiled FS unification.
We present two potential ways in which the design
of the quick check can be further extended: con-
sistency sort check on coreferenced paths, and pre-
unification type-checking. We analyse the effect of
these extensions on LinGO, the large-scale HPSG
grammar for English (Flickinger et al., 2000) using
the compiler system LIGHT (Ciortuz, 2002).

1 Coreferenced Based Quick Check

Suppose that the FS ϕ is going to be unified with
ψ, and that ϕ contains the coreference ϕ.π .

= ϕ.π′.
In this setup, if for a certain path η it happens that
sort(ϕ.(πη)) ∧ sort(ψ.(πη)) ∧ sort(ψ.(π ′η)) = ⊥,
then certainly ϕ and ψ are not unifiable. There is
no a priori reason why, on certain typed grammars,
coreference-based sort inconsistency would not be
more effective in ruling out FS unification than sort
inconsistency on mutual paths. Moreover, the in-
tegration of the two forms of QC is not compli-
cated. However, up to our knowledge no system
parsing LinGO-like grammars included the above
newly presented form of (coreference-based) pre-
unification QC test.

On the GR-reduced form LinGO (Ciortuz, 2004)
we identified 12 pairs of non-cross argument coref-
erences inside rule arguments (at LinGO’s source
level). Interestingly enough, all these coreferences
occur inside key arguments, belonging to only 8 (out
of the total of 61) rules in LinGO.

To perform coreference-based QC, we computed
the closure of this set Λ of coreference paths. The
closure of Λ will be denoted Λ̄. If the pair π1 and π2

is in Λ, then together with it will be included in Λ̄ all
pairs of QC-paths such that π1η and π2η, where η
is a feature path (a common suffix to the two newly
selected paths). For the GR-reduced form of LinGO,
the closure of Λ defined as above amounted to 38
pairs. It is on these pairs of paths that we performed
the coreference-based QC test.

Using all these coreference paths pairs, 70,581
unification failures (out of a total of 2,912,623 at-
tempted unifications) were detected on the CSLI test
suite. Only 364 of these failures were not detectable
through classical QC. When measuring the “sensi-
tivity” of coreferenced-based QC to individual rule
arguments, we found that out of a total of 91 rule
arguments in LinGO only for 4 rule arguments the
coreference-based QC detects inconsistencies, and
the number of these inconsistencies is far lower than
those detected by the classical QC on the same ar-
guments. None of the pairs of coreference paths ex-
hibited a higher failure detection rate than the first
ranked 32 QC-paths. If one would work with 42 QC-
paths, then only 4 of the pairs of coreference paths
would score failure detection frequencies that would
qualify them to be taken into consideration for the
(extended form of) QC-test.

As a conclusion, it is clear that for LinGO, run-
ning the coreference-based QC test is virtually of
no use. For other grammars (or other applications
involving FS unification), one may come to a dif-
ferent conclusion, if the use of non-cross argument
coreferences balances (or outnumbers) that of cross-
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argument coreferences.

2 Type Checking Based Quick Check

Failure of run-time type checking — the third po-
tential source of inconsistency when unifying two
typed FSs — is in general not so easily/efficiently
detectable at pre-unification time, because this check
requires calling a type consistency check routine
which is much more expensive than the simple sort
consistency operation.

While exploring the possibility to filter unifica-
tion failures due to type-checking, the measurements
we did using LinGO (the GR-reduced form) on the
CSLI test suite resulted in the following facts:

1. Only 137 types out of all 5235 (non-rule and non-
lexical) types in LinGO were involved in (either suc-
cessful or failed) type-checks.1 Of these types, only
29 types were leading to type checking failure.2

2. Without using QC, 449,779 unification fail-
ures were due to type-checking on abstract instruc-
tions, namely on intersects sort; type-checking on
test feature acts in fact as type unfolding. When
the first 32 QC-paths (from the GR-set of paths)
were used (as standard), that number of failures went
down to 92,447. And when using all 132 QC-paths
(which have been detected on the non GR-reduced
form of LinGO), it remained close to the preceding
figure: 86,841.

3. For QC on 32 paths, we counted that failed type-
checking at intersect sort occurs only on 14 GR-
paths. Of these paths, only 9 produced more than
1000 failures, only 4 produced more than 10,000
failures and finally, for only one GR-path the num-
ber of failed type-checks exceeded 20,000.

The numbers given at the above second point sug-
gest that when trying to extend the ‘classical’ form
of QC towards finding all/most of failures, a consid-
erably high number of type inconsistencies will re-
main in the FSs produced during parsing, even when
we use all (GR-paths as) QC-paths. Most of these in-
consistencies are due to failed type-checking. And
as shown, neither the classical QC nor its exten-
sion to (non-cross argument) coreference-based QC
is able to detect these inconsistencies.

1For 32 QC-paths: 122 types, for 132 QC-paths: also 122.
2For 32 QC-paths and 132 QC-paths: 24 and 22 respectively.

s = GRϕ[ i ] ∧ GRψ[ i ];
if s 6= GRϕ[ i ] and s 6= GRψ[ i ] and

ϕ.πj or ψ.πj is defined for
a certain non-empty path πj = πiπ,
an extension of πi,

such that πj is a QC-path,
then

if Ψ(s).π∧ GRψ[i] = ⊥, where
a Ψ(s) is the type corresponding to s,

or type-checking ψ.πi with Ψ(s) fails
then ϕ and ψ do not unify.

Figure 1: The core of a type-checking specialised
compiled QC sub-procedure.

The first and third points from above say that in
parsing the CSLI test suite with LinGO, the failures
due to type checking tend to agglomerate on cer-
tain paths. But due to the fact that type-checking
is usually time-costly, our conclusion, like in the
case of non-cross argument coreference-based QC,
is that extending the classical QC by doing a cer-
tain amount of type-checking at pre-unification time
is not likely to improve significantly the unification
(and parsing) performances on LinGO.

For another type-unification grammar one can ex-
tend (or replace) the classical QC test with a type-
check QC filter procedure. Basically, after identify-
ing the set of paths (and types) which most probably
cause failure during type-checking, that procedure
works as shown in Figure 1.
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