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Abstract 

This paper explores the possibilities of 
improving parsing results by combining 
outputs of several parsers. To some ex-
tent, we are porting the ideas of Hender-
son and Brill (1999) to the world of 
dependency structures. We differ from 
them in exploring context features more 
deeply. All our experiments were con-
ducted on Czech but the method is lan-
guage-independent. We were able to 
significantly improve over the best pars-
ing result for the given setting, known so 
far. Moreover, our experiments show that 
even parsers far below the state of the art 
can contribute to the total improvement. 

1 Introduction 

Difficult and important NLP problems have the 
property of attracting whole range of researchers, 
which often leads to the development of several 
different approaches to the same problem. If these 
approaches are independent enough in terms of not 
producing the same kinds of errors, there is a hope 
that their combination can bring further improve-
ment to the field. While improving any single ap-
proach gets more and more difficult once some 
threshold has been touched, exploring the potential 
of approach combination should never be omitted, 
provided three or more approaches are available. 

Combination techniques have been successfully 
applied to part of speech tagging (van Halteren et 

al., 1998; Brill and Wu, 1998; van Halteren et al., 
2001). In both cases the investigators were able to 
achieve significant improvements over the previ-
ous best tagging results. Similar advances have 
been made in machine translation (Frederking and 
Nirenburg, 1994), speech recognition (Fiscus, 
1997), named entity recognition (Borthwick et al., 
1998), partial parsing (Inui and Inui, 2000), word 
sense disambiguation (Florian and Yarowsky, 
2002) and question answering (Chu-Carroll et al., 
2003). 

Brill and Hladká (Haji  et al., 1998) have first 
explored committee-based dependency parsing. 
However, they generated multiple parsers from a 
single one using bagging (Breiman, 1994). There 
have not been more sufficiently good parsers 
available. A successful application of voting and of 
a stacked classifier to constituent parsing followed 
in (Henderson and Brill, 1999). The authors have 
investigated two combination techniques (constitu-
ent voting and naïve Bayes), and two ways of their 
application to the (full) parsing: parser switching, 
and similarity switching. They were able to gain 
1.6 constituent F-score, using their most successful 
technique. 

In our research, we focused on dependency pars-
ing. One of the differences against Henderson and 
Brill’s situation is that a dependency parser has to 
assign exactly one governing node (parent word) to 
each word. Unlike the number of constituents in 
constituency-based frameworks, the number of 
dependencies is known in advance, the parser only 
has to assign a link (number 0 through N) to each 
word. In that sense, a dependency parser is similar 
to classifiers like POS taggers. Unless it deliber-
ately fails to assign a parent to a word (or assigns 
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several alternate parents to a word), there is no 
need for precision & recall. Instead, a single metric 
called accuracy is used. 

On the other hand, a dependency parser is not a 
real classifier: the number of its “classes”  is theo-
retically unlimited (natural numbers), and no gen-
eralization can be drawn about objects belonging 
to the same “class” (words that – sometimes – ap-
peared to find their parent at the position i). 

A combination of dependency parsers does not 
necessarily grant the resulting dependency struc-
ture being cycle-free. (This contrasts to not intro-
ducing crossing brackets in constituent parsing, 
which is granted according to Henderson and 
Brill.) We address the issue in 4.4. 

The rest of this paper is organized as follows: in 
Sections 2 and 3 we introduce the data and the 
component parsers, respectively. In Section 4 we 
discuss several combining techniques, and in Sec-
tion 5 we describe the results of the corresponding 
experiments. We finally compare our results to the 
previous work and conclude. 

2 The data 

To test our parser combination techniques, we use 
the Prague Dependency Treebank 1.0 (PDT; Haji  
et al. 2001). All the individual parsers have been 

trained on its analytical-level training section 
(73,088 sentences; 1,255,590 tokens). 

The PDT analytical d-test section has been parti-
tioned into two data sets, Tune (last 77 files; 3646 
sentences; 63,353 tokens) and Test (first 76 files; 
3673 sentences; 62,677 tokens). We used the Tune 
set to train the combining classifiers if needed. The 
Test data were used to evaluate the approach. Nei-
ther the member parsers, nor the combining classi-
fier have seen this data set during their respective 
learning runs. 

3 Component parsers 

The parsers involved in our experiments are sum-
marized in Table 1. Most of them use unique 
strategies, the exception being thl and thr, which 
differ only in the direction in which they process 
the sentence. 

The table also shows individual parser accura-
cies on our Test data. There are two state-of-the art 
parsers, four not-so-good parsers, and one quite 
poor parser. We included the two best parsers 
(ec+mc) in all our experiments, and tested the con-
tributions of various selections from the rest. 

The necessary assumption for a meaningful 
combination is that the outputs of the individual 
parsers are sufficiently uncorrelated, i.e. that the 
parsers do not produce the same errors. If some 

Accuracy Par-
ser  

Author  Br ief descr iption 
Tune Test 

ec 
Eugene 
Charniak 

A maximum-entropy inspired parser, home in constituency-based 
structures. English version described in Charniak (2000), Czech ad-
aptation 2002 – 2003, unpublished. 

83.6 85.0 

mc 
Michael 
Collins 

Uses a probabilistic context-free grammar, home in constituency-
based structures. Described in (Haji  et al., 1998; Collins et al., 
1999). 

81.7 83.3 

zž 
Zden k 
Žabokrtský 

Purely rule-based parser, rules are designed manually, just a few lexi-
cal lists are collected from the training data. 2002, unpublished. 

74.3 76.2 

dz 
Daniel 
Zeman 

A statistical parser directly modeling syntactic dependencies as word 
bigrams. Described in (Zeman, 2004). 73.8 75.5 

thr 71.0 72.3 
thl 69.5 70.3 
thp 

Tomáš 
Holan 

Three parsers. Two of them use a sort of push-down automata and 
differ from each other only in the way they process the sentence (left-
to-right or right-to-left). Described in (Holan, 2004). 62.0 63.5 

 
Table 1. A brief description of the tested parsers. Note that the Tune data is not the data used to train the 
individual parsers. Higher numbers in the right column reflect just the fact that the Test part is slightly 
easier to parse. 
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parsers produced too similar results, there would 
be the danger that they push all their errors 
through, blocking any meaningful opinion of the 
other parsers. 

To check the assumption, we counted (on the 
Tune data set) for each parser in a given parser se-
lection the number of dependencies that only this 
parser finds correctly. We show the results in Ta-
ble 2. They demonstrate that all parsers are inde-
pendent on the others at least to some extent. 

4 Combining techniques 

Each dependency structure consists of a number of 
dependencies, one for each word in the sentence. 
Our goal is to tell for each word, which parser is 
the most likely to pick its dependency correctly. 
By combining the selected dependencies we aim at 
producing a better structure. We call the complex 
system (of component parsers plus the selector) the 
superparser. 

Although we have shown how different strate-
gies lead to diversity in the output of the parsers, 
there is little chance that any parser will be able to 
push through the things it specializes in. It is very 
difficult to realize that a parser is right if most of 
the others reject its proposal. Later in this section 
we assess this issue; however, the real power is in 
majority of votes. 

4.1 Voting 

The simplest approach is to let the member parsers 
vote. At least three parsers are needed. If there are 
exactly three, only the following situations really 
matter: 1) two parsers outvote the third one; 2) a 
tie: each parser has got a unique opinion. It would 
be democratic in the case of a tie to select ran-
domly. However, that hardly makes sense once we 
know the accuracy of the involved parsers on the 
Tune set. Especially if there is such a large gap 
between the parsers’  performance, the best parser 
(here ec) should get higher priority whenever there 

Parsers compared All 7 4 best 3 best ec+mc+dz 2 best 3 worst 
Who is cor rect How many times cor rect 

ec 1.7 % 3.0 % 4.1 % 4.5 % 8.1 %  
zž 1.2 % 2.0 % 3.3 %    
mc 0.9 % 1.7 % 2.7 % 2.9 % 6.2 %  
thr 0.4 %     4.9 % 
thp 0.4 %     4.4 % 
dz 0.3 % 1.0 %  2.2 %   

a single parser 
(all other wrong) 

thl 0.3 %     4.3 % 
all seven parsers 42.5 %      
at least six 58.1 %      
at least five 68.4 %      
at least four 76.8 % 58.0 %     
at least three 84.0 % 75.1 % 63.6 % 64.7 %  50.6 % 
at least two 90.4 %  82.9 % 82.4 % 75.5 % 69.2 % 
at least one 95.8 % 94.0 % 93.0 % 92.0 % 89.8 % 82.7 % 

 
Table 2: Comparison of various groups of parsers. All percentages refer to the share of the total words in 
test data, attached correctly. The “single parser”  part shows shares of the data where a single parser is the 
only one to know how to parse them. The sizes of the shares should correlate with the uniqueness of the 
individual parsers’  strategies and with their contributions to the overall success. The “at least”  rows give 
clues about what can be got by majority voting (if the number represents over 50 % of parsers compared) 
or by hypothetical oracle selection (if the number represents 50 % of the parsers or less, an oracle would 
generally be needed to point to the parsers that know the correct attachment). 
 

173



is no clear majority of votes. Van Halteren et al. 
(1998) have generalized this approach for higher 
number of classifiers in their TotPrecision voting 
method. The vote of each classifier (parser) is 
weighted by their respective accuracy. For in-
stance, mc + zž would outvote ec + thr, as 81.7 + 
74.3 = 156 > 154.6 = 83.6 + 71.0. 

4.2 Stacking 

If the world were ideal, we would have an oracle, 
able to always select the right parser. In such situa-
tion our selection of parsers would grant the accu-
racy as high as 95.8 %. We attempt to imitate the 
oracle by a second-level classifier that learns from 
the Tune set, which parser is right in which situa-
tions. Such technique is usually called classifier 
stacking. Parallel to (van Halteren et al., 1998), we 
ran experiments with two stacked classifiers, 
Memory-Based, and Decision-Tree-Based. This 
approach roughly corresponds to (Henderson and 
Brill, 1999)’s Naïve Bayes parse hybridization. 

4.3 Unbalanced combining 

For applications preferring precision to recall, un-
balanced combination — introduced by Brill and 
Hladká in (Haji  et al., 1998) — may be of inter-
est. In this method, all dependencies proposed by 
at least half of the parsers are included. The term 
unbalanced reflects the fact that now precision is 
not equal to recall: some nodes lack the link to 
their parents. Moreover, if the number of member 
parsers is even, a node may get two parents. 

4.4 Switching 

Finally, we develop a technique that considers the 
whole dependency structure rather than each de-
pendency alone. The aim is to check that the result-
ing structure is a tree, i.e. that the dependency-
selecting procedure does not introduce cycles.1 
Henderson and Brill prove that under certain con-
ditions, their parse hybridization approach cannot 

                                                   
1 One may argue that “ treeness”  is not a necessary condition 
for the resulting structure, as the standard accuracy measure 
does not penalize non-trees in any way (other than that there is 
at least one bad dependency). Interestingly enough, even some 
of the component parsers do not produce correct trees at all 
times. However, non-trees are both linguistically and techni-
cally problematic, and it is good to know how far we can get 
with the condition in force. 

introduce crossing brackets. This might seem an 
analogy to our problem of introducing cycles — 
but unfortunately, no analogical lemma holds. As a 
workaround, we have investigated a crossbreed 
approach between Henderson and Brill’s Parser 
Switching, and the voting methods described 
above. After each step, all dependencies that would 
introduce a cycle are banned. The algorithm is 
greedy — we do not try to search the space of de-
pendency combinations for other paths. If there are 
no allowed dependencies for a word, the whole 
structure built so far is abandoned, and the struc-
ture suggested by the best component parser is 
used instead.2 

5 Experiments and results 

5.1 Voting 

We have run several experiments where various 
selections of parsers were granted the voting right. 
In all experiments, the TotPrecision voting scheme 
of (van Halteren et al., 1998) has been used. The 
voting procedure is only very moderately affected 
by the Tune set (just the accuracy figures on that 
set are used), so we present results on both the Test 
and the Tune sets. 

 
Accuracy 

Voters 
Tune Test 

ec (baseline) 83.6 85.0 
all seven 84.0 85.4 
ec+mc+dz 84.9 86.2 
all but thp 84.9 86.3 
ec+mc+zž+dz+thr 85.1 86.5 
ec+mc+zž 85.2 86.7 
ec+mc+zž+dz 85.6 87.0 
Table 3: Results of voting experiments. 

 
According to the results, the best voters pool 

consists of the two best parsers, accompanied by 

                                                   
2 We have not encountered such situation in our test data. 
However, it indeed is possible, even if all the component pars-
ers deliver correct trees, as can be seen from the following 
example. Assume we have a sentence #ABCD and parsers P1 
(85 votes), P2 (83 votes), P3 (76 votes). P1 suggests the tree 
A→D→B→C→#, P2 suggests B→D→A→C→#, P3 suggests 
B→D→A→#, C→#. Then the superparser P gradually intro-
duces the following dependencies: 1. A→D; 2. B→D; 
3. C→#; 4. D→A or D→B possible but both lead to a cycle. 
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the two average parsers. The table also suggests 
that number of diverse strategies is more important 
than keeping high quality standard with all the 
parsers. Apart from the worst parser, all the other 
together do better than just the first two and the 
fourth. (On the other hand, the first three parsers 
are much harder to beat, apparently due to the ex-
treme distance of the strategy of zž parser from all 
the others.) 

Even the worst performing parser combination 
(all seven parsers) is significantly3 better than the 
best component parser alone. 

We also investigated some hand-invented voting 
schemes but no one we found performed better 
than the ec+mc+zž+dz combination above. 

Some illustrative results are given in the Ta-
ble 4. Votes were not weighted by accuracy in 
these experiments, but accuracy is reflected in the 
priority given to ec and mc by the human scheme 
inventor. 

 
Accuracy Voters Selection 

scheme Tune Test 

all seven 
most votes 
or ec 

82.8 84.3 

all seven 

at least 
half, or ec 
if there is 
no absolute 
majority 

84.4 85.8 

all seven 

absolute 
majority, 
or ec+2, or 
mc+2, or 
ec 

84.6 85.9 

Table 4: Voting under hand-invented schemes. 
 

5.2 Stacking – using context 

We explored several ways of using context in 
pools of three parsers.4 If we had only three parsers 
we could use context to detect two kinds of situa-
tions: 

                                                   
3 All significance claims refer to the Wilcoxon Signed Ranks 
Test at the level of p = 0.001. 
4 Similar experiments could be (and have been) run for sets of 
more parsers as well. However, the number of possible fea-
tures is much higher and the data sparser. We were not able to 
gain more accuracy on context-sensitive combination of more 
parsers. 

1. Each parser has its own proposal and a 
parser other than ec shall win. 

2. Two parsers agree on a common pro-
posal but even so the third one should 
win. Most likely the only reasonable in-
stance is that ec wins over mc + the 
third one. 

“Context”  can be represented by a number of 
features, starting at morphological tags and ending 
up at complex queries on structural descriptions. 
We tried a simple memory-based approach, and a 
more complex approach based on decision trees. 

Within the memory-based approach, we use just 
the core features the individual parsers themselves 
train on: the POS tags (morphological tags or m-
tags in PDT terminology). We consider the m-tag 
of the dependent node, and the m-tags of the gov-
ernors proposed by the individual parsers. 

We learn the context-based strengths and weak-
nesses of the individual parsers on their perform-
ance on the Tune data set. In the following table, 
there are some examples of contexts in which ec is 
better than the common opinion of mc + dz. 

 
Dep. 
tag 

Gov. 
tag 
(ec) 

Context 
occurrences 

No. of 
times 
ec was 
r ight 

Percent 
cases ec 
was 
r ight 

Ĵ  # 67 44 65.7 
Vp Ĵ  53 28 52.8 
VB Ĵ  46 26 56.5 
N1 Z, 38 21 55.3 
Rv Vp 25 13 52.0 
Z, Z, 15 8 53.3 
A1 N1 15 8 53.3 
Vje Ĵ  14 9 64.3 
N4 Vf 12 9 75.0 

Table 5: Contexts where ec is better than mc+dz. 
Ĵ  are coordination conjunctions, # is the root, V* 
are verbs, Nn are nouns in case n, R* are preposi-
tions, Z* are punctuation marks, An are adjectives. 

 
For the experiment with decision trees, we used 

the C5 software package, a commercial version of 
the well-known C4.5 tool (Quinlan, 1993). We 
considered the following features: 

For each of the four nodes involved (the de-
pendent and the three governors suggested by the 
three component parsers): 
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• 12 attributes derived from the morpho-
logical tag (part of speech, subcategory, 
gender, number, case, inner gender, in-
ner number, person, degree of compari-
son, negativeness, tense and voice) 

• 4 semantic attributes (such as Proper-
Name, Geography etc.) 

For each of the three governor-dependent pairs 
involved: 

• mutual position of the two nodes (Left-
Neighbor, RightNeighbor, LeftFar, 
RightFar) 

• mutual position expressed numerically 
• for each parser pair a binary flag 

whether they do or do not share opin-
ions 

The decision tree was trained only on situations 
where at least one of the three parsers was right 
and at least one was wrong. 

 

Voters Scheme Accuracy 
ec+mc+dz context free 86.2 
ec+mc+dz memory-based 86.3 
ec+mc+zž context free 86.7 
ec+mc+zž decision tree 86.9 
Table 6: Context-sensitive voting. Contexts trained 
on the Tune data set, accuracy figures apply to the 
Test data set. Context-free results are given for the 
sake of comparison. 

 
It turns out that there is very low potential in the 

context to improve the accuracy (the improvement 
is significant, though). The behavior of the parsers 
is too noisy as to the possibility of formulating 
some rules for prediction, when a particular parser 
is right. C5 alone provided a supporting evidence 
for that hypothesis, as it selected a very simple tree 
from all the features, just 5 levels deep (see Fig-
ure 1). 

Henderson and Brill (1999) also reported that 
context did not help them to outperform simple 
voting. Although it is risky to generalize these ob-
servations for other treebanks and parsers, our en-
vironment is quite different from that of Henderson 
and Brill, so the similarity of the two observations 
is at least suspicious. 

5.3 Unbalanced combining 

Finally we compare the balanced and unbalanced 
methods. Expectedly, precision of the unbalanced 
combination of odd number of parsers rose while 
recall dropped slightly. A different situation is ob-
served if even number of parsers vote and more 
than one parent can be selected for a node. In such 
case, precision drops in favor of recall. 

 
Method Precision Recall F-measure 
ec only 
(baseline) 

85.0 

balanced 
(all seven) 

85.4 

unbalanced 
(all seven) 90.7 78.6 84.2 

balanced 
(best four) 87.0 

unbalanced 
(best four) 

85.4 87.7 86.5 

balanced 
(ec+mc+dz) 

86.2 

unbalanced 89.5 84.0 86.7 

 agreezzmc = yes: zz (3041/1058) 
 agreezzmc = no: 
 :...agreemcec = yes: ec (7785/1026) 
     agreemcec = no: 
     :...agreezzec = yes: ec (2840/601) 
         agreezzec = no: 
         :...zz_case = 6: zz (150/54) 
             zz_case = 3: zz (34/10) 
             zz_case = X: zz (37/20) 
             zz_case = undef: ec (2006/1102) 
             zz_case = 7: zz (83/48) 
             zz_case = 2: zz (182/110) 
             zz_case = 4: zz (108/57) 
             zz_case = 1: ec (234/109) 
             zz_case = 5: mc (1) 
             zz_case = root: 
             :...ec_negat = A: mc (117/65) 
                 ec_negat = undef: ec (139/65) 
                 ec_negat = N: ec (1) 
                 ec_negat = root: ec (2) 
 
Figure 1. The decision tree for ec+mc+zž, 
learned by C5. Besides pairwise agreement be-
tween the parsers, only morphological case and 
negativeness matter. 
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Method Precision Recall F-measure 
(ec+mc+dz) 
balanced 
(ec+mc+zž) 

86.7 

unbalanced 
(ec+mc+zž) 

90.2 84.7 87.3 

Table 7: Unbalanced vs. balanced combining. All 
runs ignored the context. Evaluated on the Test 
data set. 

 

5.4 Switching 

Out of the 3,673 sentences in our Test set, 91.6 % 
have been rendered as correct trees in the balanced 
decision-tree based stacking of ec+mc+zž+dz (our 
best method). 

After we banned cycles, the accuracy dropped 
from 97.0 to 96.9 %. 

6 Comparison to related work 

Brill and Hladká in (Haji  et al., 1998) were able to 
improve the original accuracy of the mc parser on 
PDT 0.5 e-test data from 79.1 to 79.9 (a nearly 4% 
reduction of the error rate). Their unbalanced5 vot-
ing pushed the F-measure from 79.1 to 80.4 (6% 
error reduction). We pushed the balanced accuracy 
of the ec parser from 85.0 to 87.0 (13% error re-
duction), and the unbalanced F-measure from 85.0 
to 87.7 (18% reduction). Note however that there 
were different data and component parsers (Haji  
et al. found bagging the best parser better than 
combining it with other that-time-available pars-
ers). This is the first time that several strategically 
different dependency parsers have been combined. 

(Henderson and Brill, 1999) improved their best 
parser’s F-measure of 89.7 to 91.3, using their na-
ïve Bayes voting on the Penn TreeBank constituent 
structures (16% error reduction). Here, even the 
framework is different, as has been explained 
above. 

7 Conclusion 

We have tested several approaches to combining of 
dependency parsers. Accuracy-aware voting of the 
four best parsers turned out to be the best method, 
as it significantly improved the accuracy of the 
best component from 85.0 to 87.0 % (13 % error 

                                                   
5 Also alternatively called unrestricted. 

rate reduction). The unbalanced voting lead to the 
precision as high as 90.2 %, while the F-measure 
of 87.3 % outperforms the best result of balanced 
voting (87.0). 

At the same time, we found that employing con-
text to this task is very difficult even with a well-
known and widely used machine-learning ap-
proach. 

The methods are language independent, though 
the amount of accuracy improvement may vary 
according to the performance of the available pars-
ers. 

Although voting methods are themselves not 
new, as far as we know we are the first to propose 
and evaluate their usage in full dependency pars-
ing. 
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