
Proceedings of the Ninth International Workshop on Parsing Technologies (IWPT), pages 171–178,
Vancouver, October 2005. c©2005 Association for Computational Linguistics

Improving Parsing Accuracy by Combining Diverse
Dependency Parsers

Daniel Zeman and Zden k Žabokr tský
Ústav formální a aplikované lingvistiky, Univerzita Karlova

Malostranské nám stí 25, CZ-11800 Praha
{zeman|zabokrtsky}@ufal.mff.cuni.cz

Abstract

This paper explores the possibilities of
improving parsing results by combining
outputs of several parsers. To some ex-
tent, we are porting the ideas of Hender-
son and Brill (1999) to the world of
dependency structures. We differ from
them in exploring context features more
deeply. All our experiments were con-
ducted on Czech but the method is lan-
guage-independent. We were able to
significantly improve over the best pars-
ing result for the given setting, known so
far. Moreover, our experiments show that
even parsers far below the state of the art
can contribute to the total improvement.

1 Introduction

Difficult and important NLP problems have the
property of attracting whole range of researchers,
which often leads to the development of several
different approaches to the same problem. If these
approaches are independent enough in terms of not
producing the same kinds of errors, there is a hope
that their combination can bring further improve-
ment to the field. While improving any single ap-
proach gets more and more difficult once some
threshold has been touched, exploring the potential
of approach combination should never be omitted,
provided three or more approaches are available.

Combination techniques have been successfully
applied to part of speech tagging (van Halteren et

al., 1998; Brill and Wu, 1998; van Halteren et al.,
2001). In both cases the investigators were able to
achieve significant improvements over the previ-
ous best tagging results. Similar advances have
been made in machine translation (Frederking and
Nirenburg, 1994), speech recognition (Fiscus,
1997), named entity recognition (Borthwick et al.,
1998), partial parsing (Inui and Inui, 2000), word
sense disambiguation (Florian and Yarowsky,
2002) and question answering (Chu-Carroll et al.,
2003).

Brill and Hladká (Haji et al., 1998) have first
explored committee-based dependency parsing.
However, they generated multiple parsers from a
single one using bagging (Breiman, 1994). There
have not been more sufficiently good parsers
available. A successful application of voting and of
a stacked classifier to constituent parsing followed
in (Henderson and Brill, 1999). The authors have
investigated two combination techniques (constitu-
ent voting and naïve Bayes), and two ways of their
application to the (full) parsing: parser switching,
and similarity switching. They were able to gain
1.6 constituent F-score, using their most successful
technique.

In our research, we focused on dependency pars-
ing. One of the differences against Henderson and
Brill’s situation is that a dependency parser has to
assign exactly one governing node (parent word) to
each word. Unlike the number of constituents in
constituency-based frameworks, the number of
dependencies is known in advance, the parser only
has to assign a link (number 0 through N) to each
word. In that sense, a dependency parser is similar
to classifiers like POS taggers. Unless it deliber-
ately fails to assign a parent to a word (or assigns

171

several alternate parents to a word), there is no
need for precision & recall. Instead, a single metric
called accuracy is used.

On the other hand, a dependency parser is not a
real classifier: the number of its “classes” is theo-
retically unlimited (natural numbers), and no gen-
eralization can be drawn about objects belonging
to the same “class” (words that – sometimes – ap-
peared to find their parent at the position i).

A combination of dependency parsers does not
necessarily grant the resulting dependency struc-
ture being cycle-free. (This contrasts to not intro-
ducing crossing brackets in constituent parsing,
which is granted according to Henderson and
Brill.) We address the issue in 4.4.

The rest of this paper is organized as follows: in
Sections 2 and 3 we introduce the data and the
component parsers, respectively. In Section 4 we
discuss several combining techniques, and in Sec-
tion 5 we describe the results of the corresponding
experiments. We finally compare our results to the
previous work and conclude.

2 The data

To test our parser combination techniques, we use
the Prague Dependency Treebank 1.0 (PDT; Haji
et al. 2001). All the individual parsers have been

trained on its analytical-level training section
(73,088 sentences; 1,255,590 tokens).

The PDT analytical d-test section has been parti-
tioned into two data sets, Tune (last 77 files; 3646
sentences; 63,353 tokens) and Test (first 76 files;
3673 sentences; 62,677 tokens). We used the Tune
set to train the combining classifiers if needed. The
Test data were used to evaluate the approach. Nei-
ther the member parsers, nor the combining classi-
fier have seen this data set during their respective
learning runs.

3 Component parsers

The parsers involved in our experiments are sum-
marized in Table 1. Most of them use unique
strategies, the exception being thl and thr, which
differ only in the direction in which they process
the sentence.

The table also shows individual parser accura-
cies on our Test data. There are two state-of-the art
parsers, four not-so-good parsers, and one quite
poor parser. We included the two best parsers
(ec+mc) in all our experiments, and tested the con-
tributions of various selections from the rest.

The necessary assumption for a meaningful
combination is that the outputs of the individual
parsers are sufficiently uncorrelated, i.e. that the
parsers do not produce the same errors. If some

Accuracy Par-
ser

Author Br ief descr iption
Tune Test

ec
Eugene
Charniak

A maximum-entropy inspired parser, home in constituency-based
structures. English version described in Charniak (2000), Czech ad-
aptation 2002 – 2003, unpublished.

83.6 85.0

mc
Michael
Collins

Uses a probabilistic context-free grammar, home in constituency-
based structures. Described in (Haji et al., 1998; Collins et al.,
1999).

81.7 83.3

zž
Zden k
Žabokrtský

Purely rule-based parser, rules are designed manually, just a few lexi-
cal lists are collected from the training data. 2002, unpublished.

74.3 76.2

dz
Daniel
Zeman

A statistical parser directly modeling syntactic dependencies as word
bigrams. Described in (Zeman, 2004). 73.8 75.5

thr 71.0 72.3
thl 69.5 70.3
thp

Tomáš
Holan

Three parsers. Two of them use a sort of push-down automata and
differ from each other only in the way they process the sentence (left-
to-right or right-to-left). Described in (Holan, 2004). 62.0 63.5

Table 1. A brief description of the tested parsers. Note that the Tune data is not the data used to train the
individual parsers. Higher numbers in the right column reflect just the fact that the Test part is slightly
easier to parse.

172

parsers produced too similar results, there would
be the danger that they push all their errors
through, blocking any meaningful opinion of the
other parsers.

To check the assumption, we counted (on the
Tune data set) for each parser in a given parser se-
lection the number of dependencies that only this
parser finds correctly. We show the results in Ta-
ble 2. They demonstrate that all parsers are inde-
pendent on the others at least to some extent.

4 Combining techniques

Each dependency structure consists of a number of
dependencies, one for each word in the sentence.
Our goal is to tell for each word, which parser is
the most likely to pick its dependency correctly.
By combining the selected dependencies we aim at
producing a better structure. We call the complex
system (of component parsers plus the selector) the
superparser.

Although we have shown how different strate-
gies lead to diversity in the output of the parsers,
there is little chance that any parser will be able to
push through the things it specializes in. It is very
difficult to realize that a parser is right if most of
the others reject its proposal. Later in this section
we assess this issue; however, the real power is in
majority of votes.

4.1 Voting

The simplest approach is to let the member parsers
vote. At least three parsers are needed. If there are
exactly three, only the following situations really
matter: 1) two parsers outvote the third one; 2) a
tie: each parser has got a unique opinion. It would
be democratic in the case of a tie to select ran-
domly. However, that hardly makes sense once we
know the accuracy of the involved parsers on the
Tune set. Especially if there is such a large gap
between the parsers’ performance, the best parser
(here ec) should get higher priority whenever there

Parsers compared All 7 4 best 3 best ec+mc+dz 2 best 3 worst
Who is cor rect How many times cor rect

ec 1.7 % 3.0 % 4.1 % 4.5 % 8.1 %
zž 1.2 % 2.0 % 3.3 %
mc 0.9 % 1.7 % 2.7 % 2.9 % 6.2 %
thr 0.4 % 4.9 %
thp 0.4 % 4.4 %
dz 0.3 % 1.0 % 2.2 %

a single parser
(all other wrong)

thl 0.3 % 4.3 %
all seven parsers 42.5 %
at least six 58.1 %
at least five 68.4 %
at least four 76.8 % 58.0 %
at least three 84.0 % 75.1 % 63.6 % 64.7 % 50.6 %
at least two 90.4 % 82.9 % 82.4 % 75.5 % 69.2 %
at least one 95.8 % 94.0 % 93.0 % 92.0 % 89.8 % 82.7 %

Table 2: Comparison of various groups of parsers. All percentages refer to the share of the total words in
test data, attached correctly. The “single parser” part shows shares of the data where a single parser is the
only one to know how to parse them. The sizes of the shares should correlate with the uniqueness of the
individual parsers’ strategies and with their contributions to the overall success. The “at least” rows give
clues about what can be got by majority voting (if the number represents over 50 % of parsers compared)
or by hypothetical oracle selection (if the number represents 50 % of the parsers or less, an oracle would
generally be needed to point to the parsers that know the correct attachment).

173

is no clear majority of votes. Van Halteren et al.
(1998) have generalized this approach for higher
number of classifiers in their TotPrecision voting
method. The vote of each classifier (parser) is
weighted by their respective accuracy. For in-
stance, mc + zž would outvote ec + thr, as 81.7 +
74.3 = 156 > 154.6 = 83.6 + 71.0.

4.2 Stacking

If the world were ideal, we would have an oracle,
able to always select the right parser. In such situa-
tion our selection of parsers would grant the accu-
racy as high as 95.8 %. We attempt to imitate the
oracle by a second-level classifier that learns from
the Tune set, which parser is right in which situa-
tions. Such technique is usually called classifier
stacking. Parallel to (van Halteren et al., 1998), we
ran experiments with two stacked classifiers,
Memory-Based, and Decision-Tree-Based. This
approach roughly corresponds to (Henderson and
Brill, 1999)’s Naïve Bayes parse hybridization.

4.3 Unbalanced combining

For applications preferring precision to recall, un-
balanced combination — introduced by Brill and
Hladká in (Haji et al., 1998) — may be of inter-
est. In this method, all dependencies proposed by
at least half of the parsers are included. The term
unbalanced reflects the fact that now precision is
not equal to recall: some nodes lack the link to
their parents. Moreover, if the number of member
parsers is even, a node may get two parents.

4.4 Switching

Finally, we develop a technique that considers the
whole dependency structure rather than each de-
pendency alone. The aim is to check that the result-
ing structure is a tree, i.e. that the dependency-
selecting procedure does not introduce cycles.1
Henderson and Brill prove that under certain con-
ditions, their parse hybridization approach cannot

1 One may argue that “ treeness” is not a necessary condition
for the resulting structure, as the standard accuracy measure
does not penalize non-trees in any way (other than that there is
at least one bad dependency). Interestingly enough, even some
of the component parsers do not produce correct trees at all
times. However, non-trees are both linguistically and techni-
cally problematic, and it is good to know how far we can get
with the condition in force.

introduce crossing brackets. This might seem an
analogy to our problem of introducing cycles —
but unfortunately, no analogical lemma holds. As a
workaround, we have investigated a crossbreed
approach between Henderson and Brill’s Parser
Switching, and the voting methods described
above. After each step, all dependencies that would
introduce a cycle are banned. The algorithm is
greedy — we do not try to search the space of de-
pendency combinations for other paths. If there are
no allowed dependencies for a word, the whole
structure built so far is abandoned, and the struc-
ture suggested by the best component parser is
used instead.2

5 Experiments and results

5.1 Voting

We have run several experiments where various
selections of parsers were granted the voting right.
In all experiments, the TotPrecision voting scheme
of (van Halteren et al., 1998) has been used. The
voting procedure is only very moderately affected
by the Tune set (just the accuracy figures on that
set are used), so we present results on both the Test
and the Tune sets.

Accuracy

Voters
Tune Test

ec (baseline) 83.6 85.0
all seven 84.0 85.4
ec+mc+dz 84.9 86.2
all but thp 84.9 86.3
ec+mc+zž+dz+thr 85.1 86.5
ec+mc+zž 85.2 86.7
ec+mc+zž+dz 85.6 87.0
Table 3: Results of voting experiments.

According to the results, the best voters pool

consists of the two best parsers, accompanied by

2 We have not encountered such situation in our test data.
However, it indeed is possible, even if all the component pars-
ers deliver correct trees, as can be seen from the following
example. Assume we have a sentence #ABCD and parsers P1
(85 votes), P2 (83 votes), P3 (76 votes). P1 suggests the tree
A→D→B→C→#, P2 suggests B→D→A→C→#, P3 suggests
B→D→A→#, C→#. Then the superparser P gradually intro-
duces the following dependencies: 1. A→D; 2. B→D;
3. C→#; 4. D→A or D→B possible but both lead to a cycle.

174

the two average parsers. The table also suggests
that number of diverse strategies is more important
than keeping high quality standard with all the
parsers. Apart from the worst parser, all the other
together do better than just the first two and the
fourth. (On the other hand, the first three parsers
are much harder to beat, apparently due to the ex-
treme distance of the strategy of zž parser from all
the others.)

Even the worst performing parser combination
(all seven parsers) is significantly3 better than the
best component parser alone.

We also investigated some hand-invented voting
schemes but no one we found performed better
than the ec+mc+zž+dz combination above.

Some illustrative results are given in the Ta-
ble 4. Votes were not weighted by accuracy in
these experiments, but accuracy is reflected in the
priority given to ec and mc by the human scheme
inventor.

Accuracy Voters Selection

scheme Tune Test

all seven
most votes
or ec

82.8 84.3

all seven

at least
half, or ec
if there is
no absolute
majority

84.4 85.8

all seven

absolute
majority,
or ec+2, or
mc+2, or
ec

84.6 85.9

Table 4: Voting under hand-invented schemes.

5.2 Stacking – using context

We explored several ways of using context in
pools of three parsers.4 If we had only three parsers
we could use context to detect two kinds of situa-
tions:

3 All significance claims refer to the Wilcoxon Signed Ranks
Test at the level of p = 0.001.
4 Similar experiments could be (and have been) run for sets of
more parsers as well. However, the number of possible fea-
tures is much higher and the data sparser. We were not able to
gain more accuracy on context-sensitive combination of more
parsers.

1. Each parser has its own proposal and a
parser other than ec shall win.

2. Two parsers agree on a common pro-
posal but even so the third one should
win. Most likely the only reasonable in-
stance is that ec wins over mc + the
third one.

“Context” can be represented by a number of
features, starting at morphological tags and ending
up at complex queries on structural descriptions.
We tried a simple memory-based approach, and a
more complex approach based on decision trees.

Within the memory-based approach, we use just
the core features the individual parsers themselves
train on: the POS tags (morphological tags or m-
tags in PDT terminology). We consider the m-tag
of the dependent node, and the m-tags of the gov-
ernors proposed by the individual parsers.

We learn the context-based strengths and weak-
nesses of the individual parsers on their perform-
ance on the Tune data set. In the following table,
there are some examples of contexts in which ec is
better than the common opinion of mc + dz.

Dep.
tag

Gov.
tag
(ec)

Context
occurrences

No. of
times
ec was
r ight

Percent
cases ec
was
r ight

Ĵ # 67 44 65.7
Vp Ĵ 53 28 52.8
VB Ĵ 46 26 56.5
N1 Z, 38 21 55.3
Rv Vp 25 13 52.0
Z, Z, 15 8 53.3
A1 N1 15 8 53.3
Vje Ĵ 14 9 64.3
N4 Vf 12 9 75.0

Table 5: Contexts where ec is better than mc+dz.
Ĵ are coordination conjunctions, # is the root, V*
are verbs, Nn are nouns in case n, R* are preposi-
tions, Z* are punctuation marks, An are adjectives.

For the experiment with decision trees, we used

the C5 software package, a commercial version of
the well-known C4.5 tool (Quinlan, 1993). We
considered the following features:

For each of the four nodes involved (the de-
pendent and the three governors suggested by the
three component parsers):

175

• 12 attributes derived from the morpho-
logical tag (part of speech, subcategory,
gender, number, case, inner gender, in-
ner number, person, degree of compari-
son, negativeness, tense and voice)

• 4 semantic attributes (such as Proper-
Name, Geography etc.)

For each of the three governor-dependent pairs
involved:

• mutual position of the two nodes (Left-
Neighbor, RightNeighbor, LeftFar,
RightFar)

• mutual position expressed numerically
• for each parser pair a binary flag

whether they do or do not share opin-
ions

The decision tree was trained only on situations
where at least one of the three parsers was right
and at least one was wrong.

Voters Scheme Accuracy
ec+mc+dz context free 86.2
ec+mc+dz memory-based 86.3
ec+mc+zž context free 86.7
ec+mc+zž decision tree 86.9
Table 6: Context-sensitive voting. Contexts trained
on the Tune data set, accuracy figures apply to the
Test data set. Context-free results are given for the
sake of comparison.

It turns out that there is very low potential in the

context to improve the accuracy (the improvement
is significant, though). The behavior of the parsers
is too noisy as to the possibility of formulating
some rules for prediction, when a particular parser
is right. C5 alone provided a supporting evidence
for that hypothesis, as it selected a very simple tree
from all the features, just 5 levels deep (see Fig-
ure 1).

Henderson and Brill (1999) also reported that
context did not help them to outperform simple
voting. Although it is risky to generalize these ob-
servations for other treebanks and parsers, our en-
vironment is quite different from that of Henderson
and Brill, so the similarity of the two observations
is at least suspicious.

5.3 Unbalanced combining

Finally we compare the balanced and unbalanced
methods. Expectedly, precision of the unbalanced
combination of odd number of parsers rose while
recall dropped slightly. A different situation is ob-
served if even number of parsers vote and more
than one parent can be selected for a node. In such
case, precision drops in favor of recall.

Method Precision Recall F-measure
ec only
(baseline)

85.0

balanced
(all seven)

85.4

unbalanced
(all seven) 90.7 78.6 84.2

balanced
(best four) 87.0

unbalanced
(best four)

85.4 87.7 86.5

balanced
(ec+mc+dz)

86.2

unbalanced 89.5 84.0 86.7

 agreezzmc = yes: zz (3041/1058)
 agreezzmc = no:
 :...agreemcec = yes: ec (7785/1026)
 agreemcec = no:
 :...agreezzec = yes: ec (2840/601)
 agreezzec = no:
 :...zz_case = 6: zz (150/54)
 zz_case = 3: zz (34/10)
 zz_case = X: zz (37/20)
 zz_case = undef: ec (2006/1102)
 zz_case = 7: zz (83/48)
 zz_case = 2: zz (182/110)
 zz_case = 4: zz (108/57)
 zz_case = 1: ec (234/109)
 zz_case = 5: mc (1)
 zz_case = root:
 :...ec_negat = A: mc (117/65)
 ec_negat = undef: ec (139/65)
 ec_negat = N: ec (1)
 ec_negat = root: ec (2)

Figure 1. The decision tree for ec+mc+zž,
learned by C5. Besides pairwise agreement be-
tween the parsers, only morphological case and
negativeness matter.

176

Method Precision Recall F-measure
(ec+mc+dz)
balanced
(ec+mc+zž)

86.7

unbalanced
(ec+mc+zž)

90.2 84.7 87.3

Table 7: Unbalanced vs. balanced combining. All
runs ignored the context. Evaluated on the Test
data set.

5.4 Switching

Out of the 3,673 sentences in our Test set, 91.6 %
have been rendered as correct trees in the balanced
decision-tree based stacking of ec+mc+zž+dz (our
best method).

After we banned cycles, the accuracy dropped
from 97.0 to 96.9 %.

6 Comparison to related work

Brill and Hladká in (Haji et al., 1998) were able to
improve the original accuracy of the mc parser on
PDT 0.5 e-test data from 79.1 to 79.9 (a nearly 4%
reduction of the error rate). Their unbalanced5 vot-
ing pushed the F-measure from 79.1 to 80.4 (6%
error reduction). We pushed the balanced accuracy
of the ec parser from 85.0 to 87.0 (13% error re-
duction), and the unbalanced F-measure from 85.0
to 87.7 (18% reduction). Note however that there
were different data and component parsers (Haji
et al. found bagging the best parser better than
combining it with other that-time-available pars-
ers). This is the first time that several strategically
different dependency parsers have been combined.

(Henderson and Brill, 1999) improved their best
parser’s F-measure of 89.7 to 91.3, using their na-
ïve Bayes voting on the Penn TreeBank constituent
structures (16% error reduction). Here, even the
framework is different, as has been explained
above.

7 Conclusion

We have tested several approaches to combining of
dependency parsers. Accuracy-aware voting of the
four best parsers turned out to be the best method,
as it significantly improved the accuracy of the
best component from 85.0 to 87.0 % (13 % error

5 Also alternatively called unrestricted.

rate reduction). The unbalanced voting lead to the
precision as high as 90.2 %, while the F-measure
of 87.3 % outperforms the best result of balanced
voting (87.0).

At the same time, we found that employing con-
text to this task is very difficult even with a well-
known and widely used machine-learning ap-
proach.

The methods are language independent, though
the amount of accuracy improvement may vary
according to the performance of the available pars-
ers.

Although voting methods are themselves not
new, as far as we know we are the first to propose
and evaluate their usage in full dependency pars-
ing.

8 Acknowledgements

Our thanks go to the creators of the parsers used
here for making their systems available.

The research has been supported by the Czech
Academy of Sciences, the “ Information Society”
program, project No. 1ET101470416.

References

Andrew Borthwick, John Sterling, Eugene Agichtein,
Ralph Grishman. 1998. Exploiting Diverse Knowl-
edge Sources via Maximum Entropy in Named Entity
Recognition. In: Eugene Charniak (ed.): Proceedings
of the 6th Workshop on Very Large Corpora, pp.
152–160. Université de Montréal, Montréal, Québec.

Leo Breiman. 1994. Bagging Predictors. Technical Re-
port 421, Department of Statistics, University of
California at Berkeley, Berkeley, California.

Eric Brill, Jun Wu. 1998. Classifier Combination for
Improved Lexical Combination. In: Proceedings of
the 17th International Conference on Computational
Linguistics (COLING-98), pp. 191–195. Université
de Montréal, Montréal, Québec.

Eugene Charniak. 2000. A Maximum-Entropy-Inspired
Parser. In: Proceedings of NAACL. Seattle, Wash-
ington.

Jennifer Chu-Carroll, Krzysztof Czuba, John Prager,
Abraham Ittycheriah. 2003. In Question Answering,
Two Heads Are Better Than One. In: Proceedings of
the HLT-NAACL. Edmonton, Alberta.

Michael Collins, Jan Haji
�
, Eric Brill, Lance Ramshaw,

Christoph Tillmann. 1999. A Statistical Parser of
Czech. In: Proceedings of the 37th Meeting of the

177

ACL, pp. 505–512. University of Maryland, College
Park, Maryland.

Jonathan G. Fiscus. 1997. A Post-Processing System to
Yield Reduced Word Error Rates: Recognizer Output
Voting Error Reduction (ROVER). In: EuroSpeech
1997 Proceedings, vol. 4, pp. 1895–1898. Rodos,
Greece.

Radu Florian, David Yarowsky. 2002. Modeling Con-
sensus: Classifier Combination for Word Sense Dis-
ambiguation. In: Proceedings of the Conference on
Empirical Methods in Natural Language Processing
(EMNLP), pp. 25–32. Philadelphia, Pennsylvania.

Robert Frederking, Sergei Nirenburg. 1994. Three
Heads Are Better Than One. In: Proceedings of the
4th Conference on Applied Natural Language Proc-
essing, pp. 95–100. Stuttgart, Germany.

Jan Haji
�
, Eric Brill, Michael Collins, Barbora Hladká,

Douglas Jones, Cynthia Kuo, Lance Ramshaw, Oren
Schwartz, Christoph Tillmann, Daniel Zeman. 1998.
Core Natural Language Processing Technology Ap-
plicable to Multiple Languages. The Workshop 98
Final Report. http://www.clsp.jhu.edu/ws98/projects/
nlp/report/. Johns Hopkins University, Baltimore,
Maryland.

Jan Haji
�
, Barbora Vidová Hladká, Jarmila Panevová,

Eva Haji
�
ová, Petr Sgall, Petr Pajas. 2001. Prague

Dependency Treebank 1.0 CD-ROM. Catalog #
LDC2001T10, ISBN 1-58563-212-0. Linguistic Data
Consortium, Philadelphia, Pennsylvania.

Hans van Halteren, Jakub Zav� el, Walter Daelemans.
1998. Improving Data-Driven Wordclass Tagging by
System Combination. In: Proceedings of the 17th In-
ternational Conference on Computational Linguistics
(COLING-98), pp. 491–497. Université de Montréal,
Montréal, Québec.

Hans van Halteren, Jakub Zav� el, Walter Daelemans.
2001. Improving Accuracy in Word Class Tagging
through the Combination of Machine Learning Sys-
tems. In: Computational Linguistics, vol. 27, no. 2,
pp. 199–229. MIT Press, Cambridge, Massachusetts.

John C. Henderson, Eric Brill. 1999. Exploiting Diver-
sity in Natural Language Processing: Combining
Parsers. In: Proceedings of the Fourth Conference on
Empirical Methods in Natural Language Processing
(EMNLP-99), pp. 187–194. College Park, Maryland.

Tomáš Holan. 2004. Tvorba závislostního syntaktického
analyzátoru. In: David Obdržálek, Jana Tesková
(eds.): MIS 2004 Josef � v D � l, Sborník seminá� e.
Matfyzpress, Praha, Czechia.

Inui Takashi, Inui Kentaro. 2000. Committee-Based
Decision Making in Probabilistic Partial Parsing. In:

Proceedings of the 18th International Conference on
Computational Linguistics (COLING 2000), pp.
348–354. Universität des Saarlandes, Saarbrücken,
Germany.

J. Ross Quinlan. 1993. C4.5: Programs for Machine
Learning. Morgan Kaufmann, San Mateo, California.

Daniel Zeman. 2004. Parsing with a Statistical Depend-
ency Model (PhD thesis). Univerzita Karlova, Praha,
Czechia.

178

