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Abstract

Ordinary classification techniques can
drive a conceptually simple constituent
parser that achieves near state-of-the-art
accuracy on standard test sets. Here we
present such a parser, which avoids some
of the limitations of other discriminative
parsers. In particular, it does not place
any restrictions upon which types of fea-
tures are allowed. We also present sev-
eral innovations for faster training of dis-
criminative parsers: we show how train-
ing can be parallelized, how examples
can be generated prior to training with-
out a working parser, and how indepen-
dently trained sub-classifiers that have
never done any parsing can be effectively
combined into a working parser. Finally,
we propose a new figure-of-merit for best-
first parsing with confidence-rated infer-
ences. Our implementation is freely avail-
able at: http://cs.nyu.edu/˜turian/
software/parser/

1 Introduction

Discriminative machine learning methods have im-
proved accuracy on many NLP tasks, such as POS-
tagging (Toutanova et al., 2003), machine translation
(Och & Ney, 2002), and relation extraction (Zhao &
Grishman, 2005). There are strong reasons to believe
the same would be true of parsing. However, only
limited advances have been made thus far, perhaps

due to various limitations of extant discriminative
parsers. In this paper, we present some innovations
aimed at reducing or eliminating some of these lim-
itations, specifically for the task of constituent pars-
ing:

• We show how constituent parsing can be per-
formed using standard classification techniques.
• Classifiers for different non-terminal labels can be

induced independently and hence training can be
parallelized.
• The parser can use arbitrary information to evalu-

ate candidate constituency inferences.
• Arbitrary confidence scores can be aggregated in

a principled manner, which allows beam search.

In Section 2 we describe our approach to parsing. In
Section 3 we present experimental results.

The following terms will help to explain our work.
A span is a range over contiguous words in the in-
put sentence. Spans cross if they overlap but nei-
ther contains the other. An item (or constituent) is
a (span, label) pair. A state is a set of parse items,
none of which may cross. A parse inference is a pair
(S , i), given by the current state S and an item i to be
added to it. A parse path (or history) is a sequence
of parse inferences over some input sentence (Klein
& Manning, 2001). An item ordering (ordering, for
short) constrains the order in which items may be in-
ferred. In particular, if we prescribe a complete item
ordering, the parser is deterministic (Marcus, 1980)
and each state corresponds to a unique parse path.
For some input sentence and gold-standard parse, a
state is correct if the parser can infer zero or more
additional items to obtain the gold-standard parse. A
parse path is correct if it leads to a correct state. An
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inference is correct if adding its item to its state is
correct.

2 Parsing by Classification

Recall that with typical probabilistic parsers, our
goal is to output the parse P̂ with the highest like-
lihood for the given input sentence x:

P̂ = arg max
P∈P(x)

Pr(P) (1)

= arg max
P∈P(x)

∏

I∈P

Pr(I) (2)

or, equivalently,

= arg max
P∈P(x)

∑

I∈P

log(Pr(I)) (3)

where each I is a constituency inference in the parse
path P.
In this work, we explore a generalization in which

each inference I is assigned a real-valued confidence
score Q(I) and individual confidences are aggre-
gated using some function A, which need not be a
sum or product:

P̂ = arg max
P∈P(x)

A
I∈P

Q(I) (4)

In Section 2.1 we describe how we induce scoring
function Q(I). In Section 2.2 we discuss the aggre-
gation function A. In Section 2.3 we describe the
method used to restrict the size of the search space
over P(x).

2.1 Learning the Scoring Function Q(I)

During training, our goal is to induce the scoring
function Q, which assigns a real-valued confidence
score Q(I) to each candidate inference I (Equa-
tion 4). We treat this as a classification task: If infer-
ence I is correct, we would like Q(I) to be a positive
value, and if inference I is incorrect, we would like
Q(I) to be a negative value.

Training discriminative parsers can be computa-
tionally very expensive. Instead of having a single
classifier score every inference, we parallelize train-
ing by inducing 26 sub-classifiers, one for each con-
stituent label λ in the Penn Treebank (Taylor, Mar-
cus, & Santorini, 2003): Q(Iλ) = Qλ(Iλ), where
Qλ is the λ-classifier and Iλ is an inference that in-
fers a constituent with label λ. For example, the VP-
classifier QVP would score the VP-inference in Fig-
ure 1, preferably assigning it a positive confidence.

Figure 1 A candidate VP-inference, with head-
children annotated using the rules given in (Collins,
1999).

VP (was)

NP (timing) VBD / was ADJP (perfect)

DT / The NN / timing JJ / perfect

Each λ-classifier is independently trained on training
set Eλ, where each example eλ ∈ Eλ is a tuple (Iλ, y),
Iλ is a candidate λ-inference, and y ∈ {±1}. y = +1 if
Iλ is a correct inference and −1 otherwise. This ap-
proach differs from that of Yamada and Matsumoto
(2003) and Sagae and Lavie (2005), who parallelize
according to the POS tag of one of the child items.

2.1.1 Generating Training Examples

Our method of generating training examples does
not require a working parser, and can be run prior to
any training. It is similar to the method used in the
literature by deterministic parsers (Yamada & Mat-
sumoto, 2003; Sagae & Lavie, 2005) with one ex-
ception: Depending upon the order constituents are
inferred, there may be multiple bottom-up paths that
lead to the same final parse, so to generate training
examples we choose a single random path that leads
to the gold-standard parse tree.1 The training ex-
amples correspond to all candidate inferences con-
sidered in every state along this path, nearly all of
which are incorrect inferences (with y = −1). For
instance, only 4.4% of candidate NP-inferences are
correct.

2.1.2 Training Algorithm

During training, for each label λ we induce scor-
ing function Qλ to minimize the loss over training
examples Eλ:

Qλ = arg min
Q′
λ

∑

(Iλ,y)∈Eλ

L(y · Q′λ(Iλ)) (5)

1 The particular training tree paths used in our experiments are
included in the aforementioned implementation so that our
results can be replicated under the same experimental condi-
tions.
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where y · Qλ(Iλ) is the margin of example (Iλ, y).
Hence, the learning task is to maximize the margins
of the training examples, i.e. induce scoring function
Qλ such that it classifies correct inferences with pos-
itive confidence and incorrect inferences with nega-
tive confidence. In our work, we minimized the lo-
gistic loss:

L(z) = log(1 + exp(−z)) (6)

i.e. the negative log-likelihood of the training sam-
ple.

Our classifiers are ensembles of decisions trees,
which we boost (Schapire & Singer, 1999) to min-
imize the above loss using the update equations
given in Collins, Schapire, and Singer (2002). More
specifically, classifier QT

λ
is an ensemble comprising

decision trees q1
λ
, . . . , qT

λ
, where:

QT
λ (Iλ) =

T
∑

t=1

qt
λ(Iλ) (7)

At iteration t, decision tree qt
λ

is grown, its leaves
are confidence-rated, and it is added to the ensemble.
The classifier for each constituent label is trained in-
dependently, so we henceforth omit λ subscripts.

An example (I, y) is assigned weight wt(I, y):2

wt(I, y) =
1

1 + exp(y · Qt−1(I))
(8)

The total weight of y-value examples that fall in leaf
f is W t

f ,y:

W t
f ,y =

∑

(I,y′)∈E
y′=y, I∈ f

wt(I, y) (9)

and this leaf has loss Zt
f :

Zt
f = 2 ·

√

W t
f ,+ ·W

t
f ,− (10)

Growing the decision tree: The loss of the entire
decision tree qt is

Z(qt) =
∑

leaf f∈qt

Zt
f (11)

2 If we were to replace this equation with wt(I, y) =

exp(y·Qt−1(I))−1, but leave the remainder of the algorithm un-
changed, this algorithm would be confidence-rated AdaBoost
(Schapire & Singer, 1999), minimizing the exponential loss
L(z) = exp(−z). In preliminary experiments, however, we
found that the logistic loss provided superior generalization
accuracy.

We will use Zt as a shorthand for Z(qt). When grow-
ing the decision tree, we greedily choose node splits
to minimize this Z (Kearns & Mansour, 1999). In
particular, the loss reduction of splitting leaf f us-
ing feature φ into two children, f ∧ φ and f ∧ ¬φ, is
∆Zt

f (φ):

∆Zt
f (φ) = Zt

f − (Zt
f∧φ + Zt

f∧¬φ) (12)

To split node f , we choose the φ̂ that reduces loss
the most:

φ̂ = arg max
φ∈Φ

∆Zt
f (φ) (13)

Confidence-rating the leaves: Each leaf f is
confidence-rated as κtf :

κtf =
1
2
· log

W t
f ,+ + ε

W t
f ,− + ε

(14)

Equation 14 is smoothed by the ε term (Schapire
& Singer, 1999) to prevent numerical instability in
the case that either W t

f ,+ or W t
f ,− is 0. In our ex-

periments, we used ε = 10−8. Although our exam-
ple weights are unnormalized, so far we’ve found
no benefit from scaling ε as Collins and Koo (2005)
suggest. All inferences that fall in a particular leaf
node are assigned the same confidence: if inference
I falls in leaf node f in the tth decision tree, then
qt(I) = κtf .

2.1.3 Calibrating the Sub-Classifiers

An important concern is when to stop growing the
decision tree. We propose the minimum reduction
in loss (MRL) stopping criterion: During training,
there is a value Θt at iteration t which serves as a
threshold on the minimum reduction in loss for leaf
splits. If there is no splitting feature for leaf f that
reduces loss by at least Θt then f is not split. For-
mally, leaf f will not be bisected during iteration t if
maxφ∈Φ ∆Zt

f (φ) < Θ
t. The MRL stopping criterion

is essentially `0 regularization:Θt corresponds to the
`0 penalty parameter and each feature with non-zero
confidence incurs a penalty of Θt, so to outweigh the
penalty each split must reduce loss by at least Θt.
Θt decreases monotonically during training at

the slowest rate possible that still allows train-
ing to proceed. We start by initializing Θ1 to ∞,
and at the beginning of iteration t we decrease Θt

only if the root node ∅ of the decision tree can-
not be split. Otherwise, Θt is set to Θt−1. Formally,
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Θt = min(Θt−1,maxφ∈Φ ∆Zt
∅
(φ)). In this manner, the

decision trees are induced in order of decreasing Θt.

During training, the constituent classifiers Qλ
never do any parsing per se, and they train at dif-
ferent rates: If λ , λ′, then Θt

λ
isn’t necessarily

equal to Θt
λ′

. We calibrate the different classifiers by
picking some meta-parameter Θ̂ and insisting that
the sub-classifiers comprised by a particular parser
have all reached some fixed Θ in training. Given Θ̂,
the constituent classifier for label λ is Qt

λ
, where

Θt
λ
≥ Θ̂ > Θt+1

λ
. To obtain the final parser, we

cross-validate Θ̂, picking the value whose set of con-
stituent classifiers maximizes accuracy on a devel-
opment set.

2.1.4 Types of Features used by the Scoring
Function

Our parser operates bottom-up. Let the frontier of
a state be the top-most items (i.e. the items with no
parents). The children of a candidate inference are
those frontier items below the item to be inferred, the
left context items are those frontier items to the left
of the children, and the right context items are those
frontier items to the right of the children. For exam-
ple, in the candidate VP-inference shown in Figure 1,
the frontier comprises the NP, VBD, and ADJP items,
the VBD and ADJP items are the children of the VP-
inference (the VBD is its head child), the NP is the left
context item, and there are no right context items.

The design of some parsers in the literature re-
stricts the kinds of features that can be usefully and
efficiently evaluated. Our scoring function and pars-
ing algorithm have no such limitations. Q can, in
principle, use arbitrary information from the history
to evaluate constituent inferences. Although some of
our feature types are based on prior work (Collins,
1999; Klein & Manning, 2003; Bikel, 2004), we
note that our scoring function uses more history in-
formation than typical parsers.

All features check whether an item has some
property; specifically, whether the item’s la-
bel/headtag/headword is a certain value. These fea-
tures perform binary tests on the state directly, un-
like Henderson (2003) which works with an inter-
mediate representation of the history. In our baseline
setup, feature set Φ contained five different feature
types, described in Table 1.

Table 2 Feature item groups.
• all children
• all non-head children
• all non-leftmost children
• all non-rightmost children
• all children left of the head
• all children right of the head
• head-child and all children left of the head
• head-child and all children right of the head

2.2 Aggregating Confidences

To get the cumulative score of a parse path P, we ap-
ply aggregatorA over the confidences Q(I) in Equa-
tion 4. Initially, we definedA in the customary fash-
ion as summing the loss of each inference’s confi-
dence:

P̂ = arg max
P∈P(x)















−
∑

I∈P

L (Q(I))















(15)

with the logistic loss L as defined in Equation 6. (We
negate the final sum because we want to minimize
the loss.) This definition of A is motivated by view-
ing L as a negative log-likelihood given by a logistic
function (Collins et al., 2002), and then using Equa-
tion 3. It is also inspired by the multiclass loss-based
decoding method of Schapire and Singer (1999).
With this additive aggregator, loss monotonically in-
creases as inferences are added, as in a PCFG-based
parser in which all productions decrease the cumu-
lative probability of the parse tree.

In preliminary experiments, this aggregator gave
disappointing results: precision increased slightly,
but recall dropped sharply. Exploratory data analy-
sis revealed that, because each inference incurs some
positive loss, the aggregator very cautiously builds
the smallest trees possible, thus harming recall. We
had more success by defining A to maximize the
minimum confidence. Essentially,

P̂ = arg max
P∈P(x)

min
I∈P

Q(I) (16)

Ties are broken according to the second lowest con-
fidence, then the third lowest, and so on.

2.3 Search

Given input sentence x, we choose the parse path P
in P(x) with the maximum aggregated score (Equa-
tion 4). Since it is computationally intractable to
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Table 1 Types of features.
• Child item features test if a particular child item has some property. E.g. does the item one right of the

head have headword “perfect”? (True in Figure 1)
• Context item features test if a particular context item has some property. E.g. does the first item of left

context have headtag NN? (True)
• Grandchild item features test if a particular grandchild item has some property. E.g. does the leftmost

child of the rightmost child item have label JJ? (True)
• Exists features test if a particular group of items contains an item with some property. E.g. does some

non-head child item have label ADJP? (True) Exists features select one of the groups of items specified in
Table 2. Alternately, they can select the terminals dominated by that group. E.g. is there some terminal
item dominated by non-rightmost children items that has headword “quux”? (False)

consider every possible sequence of inferences, we
use beam search to restrict the size of P(x). As
an additional guard against excessive computation,
search stopped if more than a fixed maximum num-
ber of states were popped from the agenda. As usual,
search also ended if the highest-priority state in the
agenda could not have a better aggregated score than
the best final parse found thus far.

3 Experiments

Following Taskar, Klein, Collins, Koller, and Man-
ning (2004), we trained and tested on ≤ 15 word sen-
tences in the English Penn Treebank (Taylor et al.,
2003), 10% of the entire treebank by word count.3

We used sections 02–21 (9753 sentences) for train-
ing, section 24 (321 sentences) for development,
and section 23 (603 sentences) for testing, prepro-
cessed as per Table 3. We evaluated our parser us-
ing the standard PARSEVAL measures (Black et
al., 1991): labelled precision, recall, and F-measure
(LPRC, LRCL, and LFMS, respectively), which are
computed based on the number of constituents in the
parser’s output that match those in the gold-standard
parse. We tested whether the observed differences in
PARSEVAL measures are significant at p = 0.05 us-
ing a stratified shuffling test (Cohen, 1995, Section
5.3.2) with one million trials.4

As mentioned in Section 1, the parser cannot in-
fer any item that crosses an item already in the state.

3 There was insufficient time before deadline to train on all
sentences.

4 The shuffling test we used was originally implemented
by Dan Bikel (http://www.cis.upenn.edu/˜dbikel/
software.html) and subsequently modified to compute p-
values for LFMS differences.

We placed three additional candidacy restrictions
on inferences: (a) Items must be inferred under the
bottom-up item ordering; (b) To ensure the parser
does not enter an infinite loop, no two items in a state
can have both the same span and the same label;
(c) An item can have no more than K = 5 children.
(Only 0.24% of non-terminals in the preprocessed
development set have more than five children.) The
number of candidate inferences at each state, as well
as the number of training examples generated by the
algorithm in Section 2.1.1, is proportional to K. In
our experiment, there were roughly |Eλ| ≈ 1.7 mil-
lion training examples for each classifier.

3.1 Baseline

In the baseline setting, context item features (Sec-
tion 2.1.4) could refer to the two nearest items of
context in each direction. The parser used a beam
width of 1000, and was terminated in the rare event
that more than 10,000 states were popped from the
agenda. Figure 2 shows the accuracy of the base-
line on the development set as training progresses.
Cross-validating the choice of Θ̂ against the LFMS
(Section 2.1.3) suggested an optimum of Θ̂ = 1.42.
At this Θ̂, there were a total of 9297 decision tree
splits in the parser (summed over all constituent
classifiers), LFMS = 87.16, LRCL = 86.32, and
LPRC = 88.02.

3.2 Beam Width

To determine the effect of the beam width on the
accuracy, we evaluated the baseline on the devel-
opment set using a beam width of 1, i.e. parsing
entirely greedily (Wong & Wu, 1999; Kalt, 2004;
Sagae & Lavie, 2005). Table 4 compares the base-
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Table 3 Steps for preprocessing the data. Starred steps are performed only on input with tree structure.
1. * Strip functional tags and trace indices, and remove traces.
2. * Convert PRT to ADVP. (This convention was established by Magerman (1995).)
3. Remove quotation marks (i.e. terminal items tagged ‘‘ or ’’). (Bikel, 2004)
4. * Raise punctuation. (Bikel, 2004)
5. Remove outermost punctuation.a

6. * Remove unary projections to self (i.e. duplicate items with the same span and label).
7. POS tag the text using Ratnaparkhi (1996).
8. Lowercase headwords.
9. Replace any word observed fewer than 5 times in the (lower-cased) training sentences with UNK.

a As pointed out by an anonymous reviewer of Collins (2003), removing outermost punctuation may discard useful information.
It’s also worth noting that Collins and Roark (2004) saw a LFMS improvement of 0.8% over their baseline discriminative parser
after adding punctuation features, one of which encoded the sentence-final punctuation.

Figure 2 PARSEVAL scores of the baseline on the ≤ 15 words development set of the Penn Treebank. The
top x-axis shows accuracy as the minimum reduction in loss Θ̂ decreases. The bottom shows the correspond-
ing number of decision tree splits in the parser, summed over all classifiers.
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line results on the development set with a beam
width of 1 and a beam width of 1000.5 The wider
beam seems to improve the PARSEVAL scores of
the parser, although we were unable to detect a sta-
tistically significant improvement in LFMS on our
relatively small development set.

5 Using a beam width of 100,000 yielded output identical to
using a beam width of 1000.

3.3 Context Size

Table 5 compares the baseline to parsers that could
not examine as many context items. A significant
portion of the baseline’s accuracy is due to contex-
tual clues, as evidenced by the poor accuracy of the
no context run. However, we did not detect a signif-
icant difference between using one context item or
two.
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Table 4 PARSEVAL results on the ≤ 15 words
development set of the baseline, varying the beam
width. Also, the MRL that achieved this LFMS and
the total number of decision tree splits at this MRL.

Dev Dev Dev MRL #splits
LFMS LRCL LPRC Θ̂ total

Beam=1 86.36 86.20 86.53 2.03 7068
Baseline 87.16 86.32 88.02 1.42 9297

Table 5 PARSEVAL results on the ≤ 15 words de-
velopment set, given the amount of context avail-
able. is statistically significant. The score differences
between “context 0” and “context 1” are significant,
whereas the differences between “context 1” and the
baseline are not.

Dev Dev Dev MRL #splits

LFMS LRCL LPRC Θ̂ total

Context 0 75.15 75.28 75.03 3.38 3815
Context 1 86.93 85.78 88.12 2.45 5588
Baseline 87.16 86.32 88.02 1.42 9297

Table 6 PARSEVAL results of decision stumps on
the ≤ 15 words development set, through 8200
splits. The differences between the stumps run and
the baseline are statistically significant.

Dev Dev Dev MRL #splits

LFMS LRCL LPRC Θ̂ total

Stumps 85.72 84.65 86.82 2.39 5217
Baseline 87.07 86.05 88.12 1.92 7283

3.4 Decision Stumps

Our features are of relatively fine granularity. To test
if a less powerful machine could provide accuracy
comparable to the baseline, we trained a parser in
which we boosted decisions stumps, i.e. decision
trees of depth 1. Stumps are equivalent to learning
a linear discriminant over the atomic features. Since
the stumps run trained quite slowly, it only reached
8200 splits total. To ensure a fair comparison, in Ta-
ble 6 we chose the best baseline parser with at most
8200 splits. The LFMS of the stumps run on the de-
velopment set was 85.72%, significantly less accu-
rate than the baseline.

For example, Figure 3 shows a case where NP
classification better served by the informative con-
junction φ1 ∧ φ2 found by the decision trees. Given

Figure 3 An example of a decision (a) stump and
(b) tree for scoring NP-inferences. Each leaf’s value
is the confidence assigned to all inferences that fall
in this leaf. φ1 asks “does the first child have a de-
terminer headtag?”. φ2 asks “does the last child have
a noun label?”. NP classification is better served by
the informative conjunction φ1∧φ2 found by the de-
cision trees.

(a)

φ1
true f alse

+0.5 0

(b)

φ1
true f alse

φ2
true f alse

0

+1.0 -0.2

Table 7 PARSEVAL results of deterministic parsers
on the ≤ 15 words development set through 8700
splits. A shaded cell means that the difference be-
tween this value and that of the baseline is statisti-
cally significant. All differences between l2r and r2l
are significant.

Dev Dev Dev MRL #splits

LFMS LRCL LPRC Θ̂ total

l2r 83.61 82.71 84.54 3.37 2157
r2l 85.76 85.37 86.15 3.39 1881
Baseline 87.07 86.05 88.12 1.92 7283

the sentence “The man left”, at the initial state there
are six candidate NP-inferences, one for each span,
and “(NP The man)” is the only candidate inference
that is correct. φ1 is true for the correct inference and
two of the incorrect inferences (“(NP The)” and “(NP
The man left)”). φ1 ∧ φ2, on the other hand, is true
only for the correct inference, and so it is better at
discriminating NPs over this sample.

3.5 Deterministic Parsing

Our baseline parser simulates a non-deterministic
machine, as at any state there may be several correct
decisions. We trained deterministic variations of the
parser, for which we imposed strict left-to-right (l2r)
and right-to-left (r2l) item orderings. For these vari-
ations we generated training examples using the cor-
responding unique path to each gold-standard train-
ing tree. The r2l run reached only 8700 splits to-
tal, so in Table 7 we chose the best baseline and l2r
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Table 8 PARSEVAL results of the full vocabulary
parser on the ≤ 15 words development set. The dif-
ferences between the full vocabulary run and the
baseline are not statistically significant.

Dev Dev Dev MRL #splits

LFMS LRCL LPRC Θ total

Baseline 87.16 86.32 88.02 1.42 9297
Full vocab 87.50 86.85 88.15 1.27 10711

parser with at most 8700 splits.
r2l parsing is significantly more accurate than l2r.

The reason is that the deterministic runs (l2r and r2l)
must avoid prematurely inferring items that come
later in the item ordering. This puts the l2r parser
in a tough spot. If it makes far-right decisions, it’s
more likely to prevent correct subsequent decisions
that are earlier in the l2r ordering, i.e. to the left.
But if it makes far-left decisions, then it goes against
the right-branching tendency of English sentences.
In contrast, the r2l parser is more likely to be correct
when it infers far-right constituents.

We also observed that the accuracy of the de-
terministic parsers dropped sharply as training pro-
gressed (See Figure 4). This behavior was unex-
pected, as the accuracy curve levelled off in every
other experiment. In fact, the accuracy of the deter-
ministic parsers fell even when parsing the training
data. To explain this behavior, we examined the mar-
gin distributions of the r2l NP-classifier (Figure 5).
As training progressed, the NP-classifier was able to
reduce loss by driving up the margins of the incor-
rect training examples, at the expense of incorrectly
classifying a slightly increased number of correct
training examples. However, this is detrimental to
parsing accuracy. The more correct inferences with
negative confidence, the less likely it is at some state
that the highest confidence inference is correct. This
effect is particularly pronounced in the deterministic
setting, where there is only one correct inference per
state.

3.6 Full Vocabulary

As in traditional parsers, the baseline was smoothed
by replacing any word that occurs fewer than five
times in the training data with the special token UNK
(Table 3.9). Table 8 compares the baseline to a full
vocabulary run, in which the vocabulary contained

all words observed in the training data. As evidenced
by the results therein, controlling for lexical sparsity
did not significantly improve accuracy in our setting.
In fact, the full vocabulary run is slightly more ac-
curate than the baseline on the development set, al-
though this difference was not statistically signifi-
cant. This was a late-breaking result, and we used
the full vocabulary condition as our final parser for
parsing the test set.

3.7 Test Set Results

Table 9 shows the results of our best parser on the
≤ 15 words test set, as well as the accuracy reported
for a recent discriminative parser (Taskar et al.,
2004) and scores we obtained by training and test-
ing the parsers of Charniak (2000) and Bikel (2004)
on the same data. Bikel (2004) is a “clean room”
reimplementation of the Collins parser (Collins,
1999) with comparable accuracy. Both Charniak
(2000) and Bikel (2004) were trained using the gold-
standard tags, as this produced higher accuracy on
the development set than using Ratnaparkhi (1996)’s
tags.

3.8 Exploratory Data Analysis

To gain a better understanding of the weaknesses of
our parser, we examined a sample of 50 develop-
ment sentences that the full vocabulary parser did
not get entirely correct. Besides noise and cases of
genuine ambiguity, the following list outlines all er-
ror types that occurred in more than five sentences,
in roughly decreasing order of frequency. (Note that
there is some overlap between these groups.)

• ADVPs and ADJPs A disproportionate amount of
the parser’s error was due to ADJPs and ADVPs.
Out of the 12.5% total error of the parser on the
development set, an absolute 1.0% was due to
ADVPs, and 0.9% due to ADJPs. The parser had
LFMS = 78.9%,LPRC = 82.5%,LRCL = 75.6%
on ADVPs, and LFMS = 68.0%,LPRC =

71.2%,LRCL = 65.0% on ADJPs.
These constructions can sometimes involve tricky
attachment decisions. For example, in the frag-
ment “to get fat in times of crisis”, the parser’s
output was “(VP to (VP get (ADJP fat (PP in (NP
(NP times) (PP of (NP crisis)))))))” instead of the
correct construction “(VP to (VP get (ADJP fat) (PP
in (NP (NP times) (PP of (NP crisis))))))”.

148



Figure 4 LFMS of the baseline and the deterministic runs on the ≤ 15 words development set of the Penn
Treebank. The x-axis shows the LFMS as training progresses and the number of decision tree splits in-
creases.
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Figure 5 The margin distributions of the r2l NP-classifier, early in training and late in training, (a) over the
incorrect training examples and (b) over the correct training examples.
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The amount of noise present in ADJP and ADVP
annotations in the PTB is unusually high. Annota-
tion of ADJP and ADVP unary projections is partic-
ularly inconsistent. For example, the development
set contains the sentence “The dollar was trading
sharply lower in Tokyo .”, with “sharply lower”

bracketed as “(ADVP (ADVP sharply) lower)”.
“sharply lower” appears 16 times in the complete
training section, every time bracketed as “(ADVP
sharply lower)”, and “sharply higher” 10 times,
always as “(ADVP sharply higher)”. Because of the
high number of negative examples, the classifiers’
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Table 9 PARSEVAL results of on the ≤ 15 words test set of various parsers in the literature. The differ-
ences between the full vocabulary run and Bikel or Charniak are significant. Taskar et al. (2004)’s output
was unavailable for significance testing, but presumably its differences from the full vocab parser are also
significant.

Test Test Test Dev Dev Dev
LFMS LRCL LPRC LFMS LRCL LPRC

Full vocab 87.13 86.47 87.80 87.50 86.85 88.15
Bikel (2004) 88.85 88.31 89.39 86.82 86.43 87.22
Taskar et al. (2004) 89.12 89.10 89.14 89.98 90.22 89.74
Charniak (2000) 90.09 90.01 90.17 89.50 89.69 89.32

bias is to cope with the noise by favoring negative
confidences predictions for ambiguous ADJP and
ADVP decisions, hence their abysmal labelled re-
call. One potential solution is the weight-sharing
strategy described in Section 3.5.
• Tagging Errors Many of the parser’s errors

were due to poor tagging. Preprocessing sentence
“Would service be voluntary or compulsory ?”
gives “would/MD service/VB be/VB voluntary/JJ
or/CC UNK/JJ” and, as a result, the parser brack-
ets “service . . . compulsory” as a VP instead of
correctly bracketing “service” as an NP. We also
found that the tagger we used has difficulties with
completely capitalized words, and tends to tag
them NNP. By giving the parser access to the same
features used by taggers, especially rich lexical
features (Toutanova et al., 2003), the parser might
learn to compensate for tagging errors.
• Attachment decisions The parser does not de-

tect affinities between certain word pairs, so it has
difficulties with bilexical dependency decisions.
In principle, bilexical dependencies can be rep-
resented as conjunctions of feature given in Sec-
tion 2.1.4. Given more training data, the parser
might learn these affinities.

4 Conclusions

In this work, we presented a near state-of-the-
art approach to constituency parsing which over-
comes some of the limitations of other discrimina-
tive parsers. Like Yamada and Matsumoto (2003)
and Sagae and Lavie (2005), our parser is driven by
classifiers. Even though these classifiers themselves
never do any parsing during training, they can be
combined into an effective parser. We also presented

a beam search method under the objective function
of maximizing the minimum confidence.

To ensure efficiency, some discriminative parsers
place stringent requirements on which types of fea-
tures are permitted. Our approach requires no such
restrictions and our scoring function can, in prin-
ciple, use arbitrary information from the history to
evaluate constituent inferences. Even though our
features may be of too fine granularity to dis-
criminate through linear combination, discrimina-
tively trained decisions trees determine useful fea-
ture combinations automatically, so adding new fea-
tures requires minimal human effort.

Training discriminative parsers is notoriously
slow, especially if it requires generating examples by
repeatedly parsing the treebank (Collins & Roark,
2004; Taskar et al., 2004). Although training time
is still a concern in our setup, the situation is ame-
liorated by generating training examples in advance
and inducing one-vs-all classifiers in parallel, a tech-
nique similar in spirit to the POS-tag parallelization
in Yamada and Matsumoto (2003) and Sagae and
Lavie (2005).

This parser serves as a proof-of-concept, in that
we have not fully exploited the possibilities of en-
gineering intricate features or trying more complex
search methods. Its flexibility offers many oppor-
tunities for improvement, which we leave to future
work.
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