Chunk Parsing Revisited

Yoshimasa Tsuruoka'? and Jun’ichi Tsujii?3!
I CREST, JST (Japan Science and Technology Corporation)
2 Department of Computer Science, University of Tokyo
3 School of Informatics, University of Manchester
{tsuruoka, tsujii}@s.s.u-tokyo.ac.jp

Abstract

Chunk parsing is conceptually appealing
but its performance has not been satis-
factory for practical use. In this pa-
per we show that chunk parsing can
perform significantly better than previ-
ously reported by using a simple sliding-
window method and maximum entropy
classifiers for phrase recognition in each
level of chunking. Experimental results
with the Penn Treebank corpus show that
our chunk parser can give high-precision
parsing outputs with very high speed (14
msec/sentence). We also present a pars-
ing method for searching the best parse by
considering the probabilities output by the
maximum entropy classifiers, and show
that the search method can further im-
prove the parsing accuracy.

1 Introduction

Chunk parsing (Tjong Kim Sang, 2001; Brants,
1999) is a simple parsing strategy both in imple-
mentation and concept. The parser first performs
chunking by identifying base phrases, and convert
the identified phrases to non-terminal symbols. The
parser again performs chunking on the updated se-
quence and convert the newly recognized phrases
into non-terminal symbols. The parser repeats this
procedure until there are no phrases to be chunked.
After finishing these chunking processes, we can
reconstruct the complete parse tree of the sentence
from the chunking results.

133

Although the conceptual simplicity of chunk pars-
ing is appealing, satisfactory performance for prac-
tical use has not yet been achieved with this pars-
ing strategy. Sang achieved an f-score of 80.49 on
the Penn Treebank by using the 10OB tagging method
for each level of chunking (Tjong Kim Sang, 2001).
However, there is a very large gap between their per-
formance and that of widely-used practical parsers
(Charniak, 2000; Collins, 1999).

The performance of chunk parsing is heavily de-
pendent on the performance of phrase recognition in
each level of chunking. We show in this paper that
the chunk parsing strategy is indeed appealing in that
it can give considerably better performance than pre-
viously reported by using a different approach for
phrase recognition and that it enables us to build a
very fast parser that gives high-precision outputs.

This advantage could open up the possibility of
using full parsers for large-scale information extrac-
tion from the Web corpus and real-time information
extraction where the system needs to analyze the
documents provided by the users on run-time.

This paper is organized as follows. Section 2
introduces the overall chunk parsing strategy em-
ployed in this work. Section 3 describes the sliding-
window based method for identifying chunks. Two
filtering methods to reduce the computational cost
are presented in sections 4 and 5. Section 6 explains
the maximum entropy classifier and the feature set.
Section 7 describes methods for searching the best
parse. Experimental results on the Penn Treebank
corpus are given in Section 8. Section 10 offers
some concluding remarks.

Proceedings of the Ninth International Workshop on Parsing Technologies (IWPT), pages 133-140,
Vancouver, October 2005. (©2005 Association for Computational Linguistics

NP QP

PN
VBN NN VBDDT J CD CD NNS .

Estimated volume was a light 2.4 million ounces .

Figure 1: Chunk parsing, the 1st iteration.

NP
NP VBD DT X QP NNS .
| o | |
volume was a light million ounces .

Figure 2: Chunk parsing, the 2nd iteration.

2 Chunk Parsing

For the overall strategy of chunk parsing, we fol-
low the method proposed by Sang (Tjong Kim Sang,
2001). Figures 1 to 4 show an example of chunk
parsing. In the first iteration, the chunker identifies
two base phrases, (NP Estimated volume) and (QP
2.4 million), and replaces each phrase with its non-
terminal symbol and head. The head word is identi-
fied by using the head-percolation table (Magerman,
1995). In the second iteration, the chunker identifies
(NP a light million ounces) and converts this phrase
into NP. This chunking procedure is repeated until
the whole sentence is chunked at the fourth itera-
tion, and the full parse tree is easily recovered from
the chunking history.

This parsing strategy converts the problem of full
parsing into smaller and simpler problems, namely,
chunking, where we only need to recognize flat
structures (base phrases). Sang used the IOB tag-
ging method proposed by Ramshow(Ramshaw and
Marcus, 1995) and memory-based learning for each
level of chunking and achieved an f-score of 80.49
on the Penn Treebank corpus.

3 Chunking with a sliding-window
approach

The performance of chunk parsing heavily depends
on the performance of each level of chunking. The
popular approach to this shallow parsing is to con-
vert the problem into a tagging task and use a variety

134

VP
NP VBD NP .
| | | |
volume was ounces

Figure 3: Chunk parsing, the 3rd iteration.

S
NP VP .
| | |
volume was

Figure 4. Chunk parsing, the 4th iteration.

of machine learning techniques that have been de-
veloped for sequence labeling problems such as Hid-
den Markov Models, sequential classification with
SVMs (Kudo and Matsumoto, 2001), and Condi-
tional Random Fields (Sha and Pereira, 2003).

One of our claims in this paper is that we should
not convert the chunking problem into a tagging
task. Instead, we use a classical sliding-window
method for chunking, where we consider all sub-
sequences as phrase candidates and classify them
with a machine learning algorithm. Suppose, for ex-
ample, we are about to perform chunking on the se-
quence in Figure 4.

NP-volume VBD-was .-.

We consider the following sub sequences as the
phrase candidates in this level of chunking.

1. (NP-volume) VBD-was .-.
2. NP-volume (VBD-was) .-.

3. NP-volume VBD-was (.-.)

o

. (NP-volume VBD-was) .-.
5. NP-volume (VBD-was .-.)
6. (NP-volume VBD-was .-.)

The merit of taking the sliding window approach
is that we can make use of a richer set of features on
recognizing a phrase than in the sequential labeling

approach. We can define arbitrary features on the
target candidate (e.g. the whole sequence of non-
terminal symbols of the target) and the surrounding
context, which are, in general, not available in se-
quential labeling approaches.

We should mention here that there are some other
modeling methods for sequence labeling which al-
low us to define arbitrary features on the target
phrase. Semi-markov conditional random fields
(Semi-CRFs) are one of such modeling methods
(Sarawagi and Cohen, 2004). Semi-CRFs could
give better performance than the sliding-window
approach because they can incorporate features on
other phrase candidates on the same level of chunk-
ing. However, they require additional computational
resources for training and parsing, and the use of
Semi-CRFs is left for future work.

The biggest disadvantage of the sliding window
approach is the cost for training and parsing. Since
there are n(n + 1)/2 phrase candidates when the
length of the sequence is n, a naive application of
machine learning easily leads to prohibitive con-
sumption of memory and time.

In order to reduce the number of phrase candi-
dates to be considered by machine learning, we in-
troduce two filtering phases into training and pars-
ing. One is done by a rule dictionary. The other is
done by a naive Bayes classifier.

4 Filtering with the CFG Rule Dictionary

We use an idea that is similar to the method pro-
posed by Ratnaparkhi (Ratnaparkhi, 1996) for part-
of-speech tagging. They used a Tag Dictionary, with
which the tagger considers only the tag-word pairs
that appear in the training sentences as the candidate
tags.

A similar method can be used for reducing the
number of phrase candidates. We first construct a
rule dictionary consisting of all the CFG rules used
in the training data. In both training and parsing, we
filter out all the sub-sequences that do not match any
of the entry in the dictionary.

4,1 Normalization

The rules used in the training data do not cover all
the rules in unseen sentences. Therefore, if we take
a naive filtering method using the rule dictionary, we

135

| Original Symbol | Normalized Symbol |

NNP, NNS, NNPS, PRP NN
RBR, RBS RB
JIR, JJS, PRP$ J
VBD, VBZ VBP
7, NULL

Table 1: Normalizing preterminals.

16000 . . .

14000 g
12000 -
10000 .
8000
6000 T -
4000 T .

2000 /.~ Original |
. Normalized -
0

0 10000 20000 30000 40000
Number of Sentences

Size of Rule Dictionary

Figure 5: Number of sentences vs the size of the rule
dictionary..

substantially lose recall in parsing unseen data.

To alleviate the problem of the coverage of rules,
we conduct normalization of the rules. We first con-
vert preterminal symbols into equivalent sets using
the conversion table provided in Table 1. This con-
version reduces the sparseness of the rules.

We further normalize the Right-Hand-Side (RHS)
of the rules with the following heuristics.

e “X CC X" is converted to “X”.
e “X , X" is converted to “X”.

Figure 5 shows the effectiveness of this normal-
ization method. The figure illustrates how the num-
ber of rules increases in the rule dictionary as we
add training sentences. Without the normalization,
the number of rules continues to grow rapidly even
when the entire training set is read. The normaliza-
tion methods reduce the growing rate, which con-
siderably alleviates the sparseness problem (i.e. the
problems of unknown rules).

5 Filtering with the Naive Bayes classifier

Although the use of the rule dictionary significantly
reduced the number of phrase candidates, we still
found it difficult to train the parser using the entire
training set when we used a rich set of features.

To further reduce the cost required for training
and parsing, we propose to use a naive Bayes classi-
fier for filtering the candidates. A naive Bayes clas-
sifier is simple and requires little storage and com-
putational cost.

We construct a binary naive Bayes classifier for
each phrase type using the entire training data. We
considered the following information as the features.

e The Right-Hand-Side (RHS) of the CFG rule
e The left-adjacent nonterminal symbol.
e The right-adjacent nonterminal symbol.

By assuming the conditional independence
among the features, we can compute the probability
for filtering as follows:

P(c,l,rly)P(y)
P(e,l,T)
P(cly)P(lly)P(rly)P(y)
>y Plely) P(Uy) P(rly) P(y)’

P(yle,l,r)

where y is a binary output indicating whether the
candidate is a phrase of the target type or not, c is
the RHS of the CFG rule, [is the symbol on the
left, and = is the symbol on the right. We used
the Laplace smoothing method for computing each
probability. Note that the information about the re-
sult of the rule application, i.e., the LHS symbol, is
considered in this filtering scheme because different
naive Bayes classifiers are used for different LHS
symbols (phrase types).

Table 2 shows the filtering performance in train-
ing with sections 02-21 on the Penn Treebank. We
set the threshold probability for filtering to be 0.0001
for the experiments reported in this paper. The
naive Bayes classifiers effectively reduced the num-
ber of candidates with little positive samples that
were wrongly filtered out.

136

6 Phrase Recognition with a Maximum
Entropy Classifier

For the candidates which are not filtered out in the
above two phases, we perform classification with
maximum entropy classifiers (Berger et al., 1996).

We construct a binary classifier for each type of
phrases using the entire training set. The training
samples for maximum entropy consist of the phrase
candidates that have not been filtered out by the CFG
rule dictionary and the naive Bayes classifier.

One of the merits of using a maximum entropy
classifier is that we can obtain a probability from
the classifier in each decision. The probability of
each decision represents how likely the candidate is
a correct chunk. We accept a chunk only when the
probability is larger than the predefined threshold.
With this thresholding scheme, we can control the
trade-off between precision and recall by changing
the threshold value.

Regularization is important in maximum entropy
modeling to avoid overfitting to the training data.
For this purpose, we use the maximum entropy mod-
eling with inequality constraints (Kazama and Tsu-
jii, 2003). This modeling has one parameter to
tune as in Gaussian prior modeling. The parame-
ter is called the width factor. We set this parame-
ter to be 1.0 throughout the experiments. For nu-
merical optimization, we used the Limited-Memory
Variable-Metric (LMVM) algorithm (Benson and
Moré, 2001).

6.1 Features

Table 3 lists the features used in phrase recognition
with the maximum entropy classifier. Information
about the adjacent non-terminal symbols is impor-
tant. We use unigrams, bigrams, and trigrams of the
adjacent symbols. Head information is also useful.
We use unigrams and bigrams of the neighboring
heads. The RHS of the CFG rule is also informa-
tive. We use the features on RHSs combined with
symbol features.

7 Searching the best parse
7.1 Deterministic parsing

The deterministic version of chunk parsing is
straight-forward. All we need to do is to repeat
chunking until there are no phrases to be chunked.

| Symbol | # candidates

| # remaining candidates | # positives

| # false negative

ADJP 4,043,409 1,052,983 14,389 53
ADVP 3,459,616 1,159,351 19,765 78
NP 7,122,168 3,935,563 313,042 117
PP 3,889,302 1,181,250 94,568 126

S 3,184,827 1,627,243 95,305 99
VP 4,903,020 2,013,229 145,878 144

Table 2: Effectiveness of the naive Bayes filtering on some representative nonterminals.

Symbol Unigrams Si—1, Sj+1

Symbol Bigrams

8§85y 84—284—1, S§—1Sj+1, Sj4+15542

Symbol Trigrams

8§;-385i—28i—1, $§—28i—18j+1, $i—18j4+15j+2, Sj+15j4+255+3

Head Unigrams hi—1, hjt1

Head Bigrams

hi—ohi 1, hi—18i11, hiz1hiyo

Symbol-Head Unigrams

s;h;, thj, Skhk(k‘ S Zj)

CFG Rule RHS

CFG Rule + Symbol Unigram

Si_lRHS, Sj+1RHS

CFG Rule + Symbol Bigram

8;i—18j41RHS

Table 3: Feature templates used in chunking. s; and s; represent the non-terminal symbols at the beginning
and the ending of the target phrase respectively. h; and h; represent the head at the beginning and the ending
of the target phrase respectively. RHS represents the Right-Hand-Side of the CFG rule.

If the maximum entropy classifiers give contra-
dictory chunks in each level of chunking, we choose
the chunk which has a larger probability than the
other ones.

7.2 Parsing with search

We tried to perform searching in chunk parsing in
order to investigate whether or not extra effort of
searching gives a gain in parsing performance.

The problem is that because the modeling of our
chunk parsing provides no explicit probabilistic dis-
tribution over the entire parse tree, there is no deci-
sive way to properly evaluate the correctness of each
parse. Nevertheless, we can consider the following
score on each parse tree.

score = H FB;,
i€parse
where P; is the probability of a phrase given by the
maximum entropy classifier.

Because exploring all the possibilities of chunk-
ing requires prohibitive computational cost, we re-
duce the search space by focusing only on “uncer-
tain” chunk candidates for the search. In each level

(1)

137

of chunking, the chunker provides chunks with their
probabilities. We consider only the chunks whose
probabilities are within the predefined margin from
0.5. In other words, the chunks whose probabilities
are larger than (0.5 + margin) are considered as
assured chunks, and thus are fixed when we gener-
ate alternative hypotheses of chunking. The chunks
whose probabilities are smaller than (0.5 —margin)
are simply ignored.

We generate alternative hypotheses in each level
of chunking, and search the best parse in a depth-
first manner.

7.3 lterative parsing

We also tried an iterative parsing strategy, which
was successfully used in probabilistic HPSG pars-
ing (Ninomiya et al., 2005). The parsing strategy is
simple. The parser starts with a very low margin and
tries to find a successful parse. If the parser cannot
find a successful parse, then it increases the margin
by a certain step and tries to parse with the wider
margin.

8 Experiments

We ran parsing experiments using the Penn Tree-
bank corpus, which is widely used for evaluating
parsing algorithms. The training set consists of sec-
tions 02-21. We used section 22 as the development
data, with which we tuned the feature set and param-
eters for parsing. The test set consists of section 23
and we report the performance of the parser on the
set.

We used the evalb script provided by Sekine and
Collins for evaluating the labeled recall/precision
(LR/LP) of the parser outputs 1. All the experiments
were carried out on a server having a 2.6 GHz AMD
Opteron CPU and 16GB memory.

8.1 Speed and Accuracy

First, we show the performance that achieved by de-
terministic parsing. Table 4 shows the results. We
parsed all the sentences in section 23 using gold-
standard part-of-speech (POS) tags. The trade-off
between precision and recall can be controlled by
changing the threshold for recognizing chunks. The
fifth row gives the performance achieved with the
default threshold (=0.5), where the precision is over
90% but the recall is low (75%). By lowering the
threshold, we can improve the recall up to around
81% with 2% loss of precision. The best f-score is
85.06.

The parsing speed is very high. The parser takes
only about 34 seconds to parse the entire section.
Since this section contains 2,416 sentences, the av-
erage time required for parsing one sentence is 14
msec. The parsing speed slightly dropped when we
used a lower threshold (0.1).

Table 5 shows the performance achieved when we
used the search algorithm described in Section 7.2.
We limited the maximum number of the nodes in
the search space to 100 because further increase of
the nodes had shown little improvement in parsing
accuracy.

The search algorithm significantly boosted the
precisions and recalls and achieved an f-score of
86.52 when the margin was 0.3. It should be noted
that we obtain no gain when we use a tight margin.
We need to consider phrases having low probabili-
ties in order for the search to work.

"We used the parameter file “COLLINS.prm”

138

[Threshold [LR | LP [F-score [Time (sec) |
0.9 4761 | 96.43 | 63.75 30.6
0.8 58.06 | 94.29 71.87 32.4
0.7 65.33 | 92.82 | 76.69 33.2
0.6 70.89 | 91.67 79.95 33.2
0.5 75.38 | 90.71 | 82.34 345
0.4 79.11 | 89.87 84.15 34.2
0.3 80.95 | 88.80 84.69 33.9
0.2 8259 | 87.69 | 85.06 33.6
0.1 82.32 | 85.02 83.65 46.9

Table 4: Parsing performance on section 23 (all sen-
tences, gold-standard POS tags) with the determin-
istic algorithm.

[Margin [LR | LP] F-score | Time (sec) |
0.0 75.65 | 90.81 82.54 41.2
0.1 79.63 | 90.16 84.57 74.4
0.2 82.70 | 89.57 86.00 94.8
0.3 84.60 | 88.53 86.52 110.2
0.4 84.91 | 86.99 85.94 116.3

Table 5: Parsing performance on section 23 (all sen-
tences, gold-standard POS tags) with the search al-
gorithm.

One of the advantages of our chunk parser is its
parsing speed. For comparison, we show the trade-
off between parsing time and performance in Collins
parser (Collins, 1999) and our chunk parser in Fig-
ure 6. Collins parser allows the user to change the
size of the beam in parsing. We used Model-2 be-
cause it gave better performance than Model-3 when
the beam size was smaller than 1000. As for the
chunk parser, we controlled the trade-off by chang-
ing the maximum number of nodes in the search.
The uncertainty margin for chunk recognition was
0.3. Figure 6 shows that Collins parser clearly out-
performs our chunk parser when the beam size is
large. However, the performance significantly drops
with a smaller beam size. The break-even point is at
around 200 sec (83 msec/sentence).

8.2 Comparison with previouswork

Table 6 summarizes our parsing performance on sec-
tion 23 together with the results of previous studies.
In order to make the results directly comparable, we
produced POS tags as the input of our parsers by us-
ing a POS tagger (Tsuruoka and Tsujii, 2005) which
was trained on sections 0-18 in the WSJ corpus.
The table also shows the performance achieved

90 T T T T T T T r |
e X
85 //;,/ }]
L 80 r }
8 X
" !
@ !
w 75] }
70 + 4 i
Chunk parser —+—
Collins parser ---x---
65 1 I | \ i | | |

0 50 100 150 200 250 300 350 400 450 500
Time (sec)

Figure 6: Time vs F-score on section 23. The x-
axis represents the time required to parse the entire
section. The time required for making a hash table
in Collins parser is excluded.

| LR [LP [F-score |

Ratnaparkhi (1997) 863 | 875 86.9
Collins (1999) 88.1 | 88.3 88.2
Charniak (2000) 89.6 | 89.5 89.5

Kudo (2005) 89.3 | 89.6 89.4

Sang (2001) 78.7 | 82.3 80.5
Deterministic (tagger-POSs) 81.2 | 86.5 83.8
Deterministic (gold-POSs) 82.6 | 87.7 85.1
Sear ch (tagger-POSSs) 83.2 | 87.1 85.1
Sear ch (gold-POSs) 84.6 | 885 86.5
Iterative Search (tagger-POSs) | 85.0 | 86.8 85.9
Iterative Search (gold-POSs) | 86.2 | 88.0 87.1

Table 6: Comparison with other work. Parsing per-
formance on section 23 (all sentences).

with the iterative parsing method presented in sec-
tion 7.3. Our chunk parser achieved an f-score of
83.8 with the deterministic parsing methods using
the POS-tagger tags. This f-score is better than that
achieved by the previous study on chunk parsing by
3.3 points (Tjong Kim Sang, 2001). The search al-
gorithms gave an additional 1.3 point improvement.
Finally, the iterative parsing method achieved an f-
score of 85.9.

Although our chunk parser showed considerably
better performance than the previous study on chunk
parsing, the performance is still significantly lower
than those achieved by state-of-the-art parsers.

139

9 Discussion

There is a number of possible improvements in our
chunk parser. We used a rule dictionary to reduce
the cost required for training and parsing. However,
the use of the rule dictionary makes the parser fail
to identify a correct phrase if the phrase is not con-
tained in the rule dictionary. Although we applied
some normalization techniques in order to allevi-
ate this problem, we have not completely solved the
problem. Figure 5 indicates that still we will face
unknown rules even when we have constructed the
rule dictionary using the whole training data (note
that the dotted line does not saturate).

Additional feature sets for the maximum entropy
classifiers could improve the performance. The
bottom-up parsing strategy allows us to use infor-
mation about sub-trees that have already been con-
structed. We thus do not need to restrict ourselves
to use only head-information of the partial parses.
Since many researchers have reported that informa-
tion on partial parse trees plays an important role
for achieving high performance (Bod, 1992; Collins
and Duffy, 2002; Kudo et al., 2005), we expect that
additional features will improve the performance of
chunk parsing.

Also, the methods for searching the best parse
presented in sections 7.2 and 7.3 have much room
for improvement. the search method does not have
the device to avoid repetitive computations on the
same nonterminal sequence in parsing. A chart-like
structure which effectively stores the partial parse
results could enable the parser to explore a broader
search space and produce better parses.

Our chunk parser exhibited a considerable im-
provement in parsing accuracy over the previous
study on chunk parsing. However, the reason is not
completely clear. We believe that the sliding win-
dow approach, which enabled us to exploit a richer
set of features than the so-called 10B approach,
was the main contributer of the better performance.
However, the combination of the 10B approach and
a state-of-the-art machine learning algorithm such
as support vector machines could produce a simi-
lar level of performance. In our preliminary experi-
ments, the 10B tagging method with maximum en-
tropy markov models has not yet achieved a compa-
rable performance to the sliding window method.

10 Conclusion

In this paper we have shown that chunk parsing
can perform significantly better than previously re-
ported by using a simple sliding-window method
and maximum entropy classifiers in each level of
chunking. Experimental results on the Penn Tree-
bank corpus show that our chunk parser can give
high-precision parsing outputs with very high speed
(14 msec/sentence). We also show that searching
can improve the performance and the f-score reaches
85.9.

Although there is still a large gap between the
accuracy of our chunk parser and the state-of-the-
art, our parser can produce better f-scores than a
widely-used parser when the parsing speed is really
needed. This could open up the possibility of using
full-parsing for large-scale information extraction.

References

Steven J. Benson and Jorge Moré. 2001. A
limited-memory variable-metric algorithm for bound-
constrained minimization. Technical report, Mathe-
matics and Computer Science Division, Argonne Na-
tional Laboratory. ANL/MCS-P909-0901.

Adam L. Berger, Stephen A. Della Pietra, and Vincent
J. Della Pietra. 1996. A maximum entropy approach
to natural language processing. Computational Lin-
guistics, 22(1):39-71.

Rens Bod. 1992. Data oriented parsing. In Proceedings
of COLING 1992.

Thorsten Brants. 1999. Cascaded markov models. In
Proceedings of EACL 1999.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of NAACL 2000, pages 132—
139.

Michael Collins and Nigel Duffy. 2002. New ranking
algorithms for parsing and tagging: Kernels over dis-
crete structures, and the voted perceptron. In Proceed-
ings of ACL 2002.

Michael Collins. 1999. Head-Driven Satistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania.

Jun’ichi Kazama and Jun’ichi Tsujii. 2003. Evaluation

and extension of maximum entropy models with in-
equality constraints. In Proceedings of EMNLP 2003.

140

Taku Kudo and Yuji Matsumoto. 2001. Chunking with
support vector machines. In Proceedings of NAACL
2001.

Taku Kudo, Jun Suzuki, and Hideki Isozaki. 2005.
Boosting-based parse reranking with subtree features.
In Proceedings of ACL 2005.

1995. Statistical decision-tree
In Proceedings of ACL 1995,

David M. Magerman.
models for parsing.
pages 276-283.

Takashi Ninomiya, Yoshimasa Tsuruoka, Yusuke Miyao,
and Jun’ichi Tsujii. 2005. Efficacy of beam threshold-
ing, unification filtering and hybrid parsing in proba-
bilistic hpsg parsing. In Proceedings of IWPT 2005.

Lance Ramshaw and Mitch Marcus. 1995. Text chunk-
ing using transformation-based learning. In Proceed-
ings of the Third Workshop on Very Large Corpora,
pages 82-94.

Adwait Ratnaparkhi. 1996. A maximum entropy model
for part-of-speech tagging. In Proceedings of EMNLP
1996, pages 133-142.

Adwait Ratnaparkhi. 1997. A linear observed time sta-
tistical parser based on maximum entropy models. In
Proceedings of EMNLP 1997, pages 1-10.

Sunita Sarawagi and William W. Cohen. 2004. Semi-
markov conditional random fields for information ex-
traction. In Proceedings of ICML 2004.

Fei Sha and Fernando Pereira. 2003. Shallow pars-
ing with conditional random fields. In Proceedings of
HLT-NAACL 2003.

Erik Tjong Kim Sang. 2001. Transforming a chunker
to a parser. InJ. Veenstra W. Daelemans, K. Sima‘an
and J. Zavrel, editors, Computational Linguisticsin the
Netherlands 2000, pages 177-188. Rodopi.

Yoshimasa Tsuruoka and Jun’ichi Tsujii. 2005. Bidirec-
tional inference with the easiest-first strategy for tag-
ging sequence data. In Proceedings of HLT/EMNLP
2005.

