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Abstract 

We present a classifier-based parser that 
produces constituent trees in linear time.  
The parser uses a basic bottom-up shift-
reduce algorithm, but employs a classifier 
to determine parser actions instead of a 
grammar.  This can be seen as an exten-
sion of the deterministic dependency 
parser of Nivre and Scholz (2004) to full 
constituent parsing.  We show that, with 
an appropriate feature set used in classifi-
cation, a very simple one-path greedy 
parser can perform at the same level of 
accuracy as more complex parsers.  We 
evaluate our parser on section 23 of the 
WSJ section of the Penn Treebank, and 
obtain precision and recall of 87.54% and 
87.61%, respectively. 

1 Introduction 

Two classifier-based deterministic dependency 
parsers for English have been proposed recently 
(Nivre and Scholz, 2004; Yamada and Matsumoto, 
2003).  Although they use different parsing algo-
rithms, and differ on whether or not dependencies 
are labeled, they share the idea of greedily pursu-
ing a single path, following parsing decisions made 
by a classifier.  Despite their greedy nature, these 
parsers achieve high accuracy in determining de-
pendencies.  Although state-of-the-art statistical 
parsers (Collins, 1997; Charniak, 2000) are more 
accurate, the simplicity and efficiency of determi-

nistic parsers make them attractive in a number of 
situations requiring fast, light-weight parsing, or 
parsing of large amounts of data.  However, de-
pendency analyses lack important information con-
tained in constituent structures.  For example, the 
tree-path feature has been shown to be valuable in 
semantic role labeling (Gildea and Palmer, 2002). 

We present a parser that shares much of the 
simplicity and efficiency of the deterministic de-
pendency parsers, but produces both dependency 
and constituent structures simultaneously.  Like the 
parser of Nivre and Scholz (2004), it uses the basic 
shift-reduce stack-based parsing algorithm, and 
runs in linear time.  While it may seem that the 
larger search space of constituent trees (compared 
to the space of dependency trees) would make it 
unlikely that accurate parse trees could be built 
deterministically, we show that the precision and 
recall of constituents produced by our parser are 
close to those produced by statistical parsers with 
higher run-time complexity. 

One desirable characteristic of our parser is its 
simplicity.  Compared to other successful ap-
proaches to corpus-based constituent parsing, ours 
is remarkably simple to understand and implement.  
An additional feature of our approach is its modu-
larity with regard to the algorithm and the classifier 
that determines the parser’s actions.  This makes it 
very simple for different classifiers and different 
sets of features to be used with the same parser 
with very minimal work.  Finally, its linear run-
time complexity allows our parser to be considera-
bly faster than lexicalized PCFG-based parsers.  
On the other hand, a major drawback of the classi-
fier-based parsing framework is that, depending on 
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the classifier used, its training time can be much 
longer than that of other approaches. 

Like other deterministic parsers (and unlike 
many statistical parsers), our parser considers the 
problem of syntactic analysis separately from part-
of-speech (POS) tagging.  Because the parser 
greedily builds trees bottom-up in one pass, con-
sidering only one path at any point in the analysis, 
the task of assigning POS tags to words is done 
before other syntactic analysis.  In this work we 
focus only on the processing that occurs once POS 
tagging is completed.  In the sections that follow, 
we assume that the input to the parser is a sentence 
with corresponding POS tags for each word. 

2 Parser Description 

Our parser employs a basic bottom-up shift-reduce 
parsing algorithm, requiring only a single pass over 
the input string.  The algorithm considers only 

trees with unary and binary branching.  In order to 
use trees with arbitrary branching for training, or 
generating them with the parser, we employ an 
instance of the transformation/detransformation 
process described in (Johnson, 1998).  In our case, 
the transformation step involves simply converting 
each production with n children (where n > 2) into 
n – 1 binary productions.  Trees must be lexical-
ized1, so that the newly created internal structure of 
constituents with previous branching of more than 
two contains only subtrees with the same lexical 
head as the original constituent.  Additional non-
terminal symbols introduced in this process are 
clearly marked.  The transformed (or “binarized”) 
trees may then be used for training.  Detransforma-
tion is applied to trees produced by the parser.  
This involves the removal of non-terminals intro-

                                                           
1 If needed, constituent head-finding rules such as those men-
tioned in Collins (1996) may be used. 

 
                                        Transform 
 
 
                                                                                NP 
 
                    NP                                                               NP*                                          
                                                                                                                                                                                                                              
                                    PP                                                      NP*                                   
                                                                                                                                                                                                                                     
                                           NP                                                       PP                                       
                                                                                                                                                                  
  Det     Adj     N        P         N                                                              NP                                                                                             
                                                                                                                                                                                            
   The    big    dog    with    fleas                    Det   Adj      N       P         N                       
                                                                                                                                                                                                                     
                                                                      The   big    dog    with    fleas                    
                                                                                                                                                                                                                              
                                                                                                                                                                                                                              
                                     Detransform                                                                                                                                                        
                                                                                                                              
                                                                                                                              

Figure 1: An example of the binarization transform/detransform.  The original tree (left) has one 
node (NP) with four children.  In the transformed tree, internal structure (marked by nodes with as-
terisks) was added to the subtree rooted by the node with more than two children.  The word “dog” 
is the head of the original NP, and it is kept as the head of the transformed NP, as well as the head of 
each NP* node. 
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duced in the transformation process, producing 
trees with arbitrary branching.  An example of 
transformation/detransformation is shown in figure 
1. 

2.1 Algorithm Outline 

The parsing algorithm involves two main data 
structures: a stack S, and a queue W.  Items in S 
may be terminal nodes (POS-tagged words), or 
(lexicalized) subtrees of the final parse tree for the 
input string.  Items in W are terminals (words 
tagged with parts-of-speech) corresponding to the 
input string.  When parsing begins, S is empty and 
W is initialized by inserting every word from the 
input string in order, so that the first word is in 
front of the queue. 

Only two general actions are allowed: shift and 
reduce.  A shift action consists only of removing 
(shifting) the first item (POS-tagged word) from W 
(at which point the next word becomes the new 
first item), and placing it on top of S.  Reduce ac-
tions are subdivided into unary and binary cases.  
In a unary reduction, the item on top of S is 
popped, and a new item is pushed onto S.  The new 
item consists of a tree formed by a non-terminal 
node with the popped item as its single child.  The 
lexical head of the new item is the same as the 
lexical head of the popped item.  In a binary reduc-
tion, two items are popped from S in sequence, and 
a new item is pushed onto S.  The new item con-
sists of a tree formed by a non-terminal node with 
two children: the first item popped from S is the 
right child, and the second item is the left child.  
The lexical head of the new item is either the lexi-
cal head of its left child, or the lexical head of its 
right child. 

If S is empty, only a shift action is allowed.  If 
W is empty, only a reduce action is allowed.  If 
both S and W are non-empty, either shift or reduce 
actions are possible.  Parsing terminates when W is 
empty and S contains only one item, and the single 
item in S is the parse tree for the input string.  Be-
cause the parse tree is lexicalized, we also have a 
dependency structure for the sentence.  In fact, the 
binary reduce actions are very similar to the reduce 
actions in the dependency parser of Nivre and 
Scholz (2004), but they are executed in a different 
order, so constituents can be built.  If W is empty, 
and more than one item remain in S, and no further 
reduce actions take place, the input string is re-
jected. 

2.2 Determining Actions with a Classifier 

A parser based on the algorithm described in the 
previous section faces two types of decisions to be 
made throughout the parsing process.  The first 
type concerns whether to shift or reduce when both 
actions are possible, or whether to reduce or reject 
the input when only reduce actions are possible.  
The second type concerns what syntactic structures 
are created.  Specifically, what new non-terminal is 
introduced in unary or binary reduce actions, or 
which of the left or right children are chosen as the 
source of the lexical head of the new subtree pro-
duced by binary reduce actions.  Traditionally, 
these decisions are made with the use of a gram-
mar, and the grammar may allow more than one 
valid action at any single point in the parsing proc-
ess.  When multiple choices are available, a gram-
mar-driven parser may make a decision based on 
heuristics or statistical models, or pursue every 
possible action following a search strategy.  In our 
case, both types of decisions are made by a classi-
fier that chooses a unique action at every point, 
based on the local context of the parsing action, 
with no explicit grammar.  This type of classifier-
based parsing where only one path is pursued with 
no backtracking can be viewed as greedy or deter-
ministic. 

In order to determine what actions the parser 
should take given a particular parser configuration, 
a classifier is given a set of features derived from 
that configuration.  This includes, crucially, the 
two topmost items in the stack S, and the item in 
front of the queue W.  Additionally, a set of context 
features is derived from a (fixed) limited number 
of items below the two topmost items of S, and 
following the item in front of W.  The specific fea-
tures are shown in figure 2. 

The classifier’s target classes are parser actions 
that specify both types of decisions mentioned 
above.  These classes are: 

• SHIFT: a shift action is taken; 

• REDUCE-UNARY-XX: a unary reduce ac-
tion is taken, and the root of the new subtree 
pushed onto S is of type XX (where XX is a 
non-terminal symbol, typically NP, VP, PP, 
for example); 

• REDUCE-LEFT-XX: a binary reduce action 
is taken, and the root of the new subtree 
pushed onto S is of non-terminal type XX.  
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Additionally, the head of the new subtree is 
the same as the head of the left child of the 
root node; 

• REDUCE-RIGHT-XX: a binary reduce ac-
tion is taken, and the root of the new subtree 
pushed onto S is of non-terminal type XX.  
Additionally, the head of the new subtree is 
the same as the head of the right child of the 
root node. 

2.3 A Complete Classifier-Based Parser than 
Runs in Linear Time 

When the algorithm described in section 2.1 is 
combined with a trained classifier that determines 
its parsing actions as described in section 2.2, we 
have a complete classifier-based parser.  Training 
the parser is accomplished by training its classifier.  
To that end, we need training instances that consist 
of sets of features paired with their classes corre-

Let: 
 
 S(n) denote the nth item from the top of the stack S, and 
 W(n) denote the nth item from the front of the queue W. 
 
Features: 
 

• The head-word (and its POS tag) of: S(0), S(1), S(2), and S(3)  

• The head-word (and its POS tag) of: W(0), W(1), W(3) and W(3)  

• The non-terminal node of the root of: S(0), and S(1) 

• The non-terminal node of the left child of the root of: S(0), and S(1) 

• The non-terminal node of the right child of the root of: S(0), and S(1) 

• The non-terminal node of the left child of the root of: S(0), and S(1) 

• The non-terminal node of the left child of the root of: S(0), and S(1) 

• The linear distance (number of words apart) between the head-words of S(0) and S(1) 

• The number of lexical items (words) that have been found (so far) to be dependents of 
the head-words of: S(0), and S(1) 

• The most recently found lexical dependent of the head of the head-word of S(0) that is 
to the left of S(0)’s head 

• The most recently found lexical dependent of the head of the head-word of S(0) that is 
to the right of S(0)’s head 

• The most recently found lexical dependent of the head of the head-word of S(0) that is 
to the left of S(1)’s head 

• The most recently found lexical dependent of the head of the head-word of S(0) that is 
to the right of S(1)’s head 

Figure 2: Features used for classification.  The features described in items 1 – 7 are more di-
rectly related to the lexicalized constituent trees that are built during parsing, while the fea-
tures described in items 8 – 13 are more directly related to the dependency structures that are 
built simultaneously to the constituent structures. 
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sponding to the correct parsing actions.  These in-
stances can be obtained by running the algorithm 
on a corpus of sentences for which the correct 
parse trees are known.  Instead of using the classi-
fier to determine the parser’s actions, we simply 
determine the correct action by consulting the cor-
rect parse trees.  We then record the features and 
corresponding actions for parsing all sentences in 
the corpus into their correct trees.  This set of fea-
tures and corresponding actions is then used to 
train a classifier, resulting in a complete parser. 

When parsing a sentence with n words, the 
parser takes n shift actions (exactly one for each 
word in the sentence).  Because the maximum 
branching factor of trees built by the parser is two, 
the total number of binary reduce actions is n – 1, 
if a complete parse is found.  If the input string is 
rejected, the number of binary reduce actions is 
less than n – 1.  Therefore, the number of shift and 
binary reduce actions is linear with the number of 
words in the input string.  However, the parser as 
described so far has no limit on the number of 
unary reduce actions it may take.  Although in 
practice a parser properly trained on trees reflect-
ing natural language syntax would rarely make 
more than 2n unary reductions, pathological cases 
exist where an infinite number of unary reductions 
would be taken, and the algorithm would not ter-
minate.  Such cases may include the observation in 
the training data of sequences of unary productions 
that cycle through (repeated) non-terminals, such 
as A->B->A->B.  During parsing, it is possible that 
such a cycle may be repeated infinitely. 

This problem can be easily prevented by limit-
ing the number of consecutive unary reductions 
that may be made to a finite number.  This may be 
the number of non-terminal types seen in the train-
ing data, or the length of the longest chain of unary 
productions seen in the training data.  In our ex-
periments (described in section 3), we limited the 
number of consecutive unary reductions to three, 
although the parser never took more than two 
unary reduction actions consecutively in any sen-
tence.  When we limit the number of consecutive 
unary reductions to a finite number m, the parser 
makes at most (2n – 1)m unary reductions when 
parsing a sentence of length n.  Placing this limit 
not only guarantees that the algorithm terminates, 
but also guarantees that the number of actions 
taken by the parser is O(n), where n is the length of 
the input string.  Thus, the parser runs in linear 

time, assuming that classifying a parser action is 
done in constant time. 

3 Similarities to Previous Work 

As mentioned before, our parser shares similarities 
with the dependency parsers of Yamada and Ma-
tsumoto (2003) and Nivre and Scholz (2004) in 
that it uses a classifier to guide the parsing process 
in deterministic fashion.  While Yamada and Ma-
tsumoto use a quadratic run-time algorithm with 
multiple passes over the input string, Nivre and 
Scholz use a simplified version of the algorithm 
described here, which handles only (labeled or 
unlabeled) dependency structures. 

Additionally, our parser is in some ways similar 
to the maximum-entropy parser of Ratnaparkhi 
(1997).  Ratnaparkhi’s parser uses maximum-
entropy models to determine the actions of a shift-
reduce-like parser, but it is capable of pursuing 
several paths and returning the top-K highest scor-
ing parses for a sentence.  Its observed time is lin-
ear, but parsing is somewhat slow, with sentences 
of length 20 or more taking more than one second 
to parse, and sentences of length 40 or more taking 
more than three seconds.  Our parser only pursues 
one path per sentence, but it is very fast and of 
comparable accuracy (see section 4).  In addition, 
Ratnaparkhi’s parser uses a more involved algo-
rithm that allows it to work with arbitrary branch-
ing trees without the need of the binarization 
transform employed here.  It breaks the usual re-
duce actions into smaller pieces (CHECK and 
BUILD), and uses two separate passes (not includ-
ing the POS tagging pass) for determining chunks 
and higher syntactic structures separately. 

Finally, there have been other deterministic 
shift-reduce parsers introduced recently, but their 
levels of accuracy have been well below the state-
of-the-art.  The parser in Kalt (2004) uses a similar 
algorithm to the one described here, but the classi-
fication task is framed differently.  Using decision 
trees and fewer features, Kalt’s parser has signifi-
cantly faster training and parsing times, but its ac-
curacy is much lower than that of our parser.  
Kalt’s parser achieves precision and recall of about 
77% and 76%, respectively (with automatically 
tagged text), compared to our parser’s 86% (see 
section 4).  The parser of Wong and Wu (1999) 
uses a separate NP-chunking step and, like Ratna-
parkhi’s parser, does not require a binary trans-
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form.  It achieves about 81% precision and 82% 
recall with gold-standard tags (78% and 79% with 
automatically tagged text).  Wong and Wu’s parser 
is further differentiated from the other parsers 
mentioned here in that it does not use lexical items, 
working only from part-of-speech tags. 

4 Experiments 

We conducted experiments with the parser de-
scribed in section 2 using two different classifiers: 
TinySVM (a support vector machine implementa-
tion by Taku Kudo)2, and the memory-based 
learner TiMBL (Daelemans et al., 2004).  We 
trained and tested the parser on the Wall Street 
Journal corpus of the Penn Treebank (Marcus et 
al., 1993) using the standard split: sections 2-21 
were used for training, section 22 was used for de-
velopment and tuning of parameters and features, 
and section 23 was used for testing.  Every ex-
periment reported here was performed on a Pen-
tium IV 1.8GHz with 1GB of RAM. 

Each tree in the training set had empty-node 
and function tag information removed, and the 

                                                           
2 http://chasen.org/~taku/software/TinySVM 

trees were lexicalized using similar head-table 
rules as those mentioned in (Collins, 1996).  The 
trees were then converted into trees containing 
only unary and binary branching, using the binari-
zation transform described in section 2.  Classifier 
training instances of features paired with classes 
(parser actions) were extracted from the trees in the 
training set, as described in section 2.3.  The total 
number of training instances was about 1.5 million. 

The classifier in the SVM-based parser (de-
noted by SVMpar) uses the polynomial kernel with 
degree 2, following the work of Yamada and Ma-
tsumoto (2003) on SVM-based deterministic de-
pendency parsing, and a one-against-all scheme for 
multi-class classification.  Because of the large 
number of training instances, we used Yamada and 
Matsumoto’s idea of splitting the training instances 
into several parts according to POS tags, and train-
ing classifiers on each part.  This greatly reduced 
the time required to train the SVMs, but even with 
the splitting of the training set, total training time 
was about 62 hours.  Training set splitting comes 
with the cost of reduction in accuracy of the parser, 
but training a single SVM would likely take more 
than one week.  Yamada and Matsumoto experi-
enced a reduction of slightly more than 1% in de-

 Precision Recall Dependency Time (min) 

Charniak 89.5 89.6 92.1 28 

Collins 88.3 88.1 91.5 45 

Ratnaparkhi 87.5 86.3 Unk Unk 

Y&M - - 90.3 Unk 

N&S - - 87.3 21 

MBLpar 80.0 80.2 86.3 127 

SVMpar 87.5 87.6 90.3 11 

 

Table 1: Summary of results on labeled precision and recall of constituents, dependency accu-
racy, and time required to parse the test set.  The parsers of Yamada and Matsumoto (Y&M) and 
Nivre and Scholz (N&S) do not produce constituent structures, only dependencies.  “unk” indi-
cates unknown values.  Results for MBLpar and SVMpar using correct POS tags (if automatically 
produced POS tags are used, accuracy figures drop about 1.5% over all metrics).  
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pendency accuracy due to training set splitting, and 
we expect that a similar loss is incurred here. 

When given perfectly tagged text (gold tags ex-
tracted from the Penn Treebank), SVMpar has la-
beled constituent precision and recall of 87.54% 
and 87.61%, respectively, and dependency accu-
racy of 90.3% over all sentences in the test set.  
The total time required to parse the entire test set 
was 11 minutes.  Out of more than 2,400 sen-
tences, only 26 were rejected by the parser (about 
1.1%).  For these sentences, partial analyses were 
created by combining the items in the stack in flat 
structures, and these were included in the evalua-
tion.  Predictably, the labeled constituent precision 
and recall obtained with automatically POS-tagged 
sentences were lower, at 86.01% and 86.15%.  The 
part-of-speech tagger used in our experiments was 
SVMTool (Giménez and Márquez, 2004), and its 
accuracy on the test set is 97%. 

The MBL-based parser (denoted by MBLpar) 
uses the IB1 algorithm, with five nearest 
neighbors, and the modified value difference met-
ric (MVDM), following the work of Nivre and 
Scholz (2004) on MBL-based deterministic de-
pendency parsing.  MBLpar was trained with all 
training instances in under 15 minutes, but its ac-
curacy on the test set was much lower than that of 
SVMpar, with constituent precision and recall of 
80.0% and 80.2%, and dependency accuracy of 
86.3% (24 sentences were rejected).  It was also 
much slower than SVMpar in parsing the test set, 
taking 127 minutes.  In addition, the total memory 
required for running MBLpar (including the classi-
fier) was close to 1 gigabyte (including the trained 
classifier), while SVMpar required only about 200 
megabytes (including all the classifiers). 

Table 1 shows a summary of the results of our 
experiments with SVMpar and MBLpar, and also 
results obtained with the Charniak (2000) parser, 
the Bikel (2003) implementation of the Collins 
(1997) parser, and the Ratnaparkhi (1997) parser.  
We also include the dependency accuracy from 
Yamada and Matsumoto’s (2003) SVM-based de-
pendency parser, and Nivre and Scholz’s (2004) 
MBL-based dependency parser.  These results 
show that the choice of classifier is extremely im-
portant in this task.  SVMpar and MBLpar use the 
same algorithm and features, and differ only on the 
classifiers used to make parsing decisions.  While 
in many natural language processing tasks different 
classifiers perform at similar levels of accuracy, we 

have observed a dramatic difference between using 
support vector machines and a memory-based 
learner.  Although the reasons for such a large dis-
parity in results is currently the subject of further 
investigation, we speculate that a relatively small 
difference in initial classifier accuracy results in 
larger differences in parser performance, due to the 
deterministic nature of the parser (certain errors 
may lead to further errors).  We also believe classi-
fier choice to be one major source of the difference 
in accuracy between Nivre and Scholz’s parser and 
Yamada and Matsumoto’s parser.  

While the accuracy of SVMpar is below that of 
lexicalized PCFG-based statistical parsers, it is 
surprisingly good for a greedy parser that runs in 
linear time.  Additionally, it is considerably faster 
than lexicalized PCFG-based parsers, and offers a 
good alternative for when fast parsing is needed.  
MBLpar, on the other hand, performed poorly in 
terms of accuracy and speed. 

5 Conclusion and Future Work 

We have presented a simple shift-reduce parser 
that uses a classifier to determine its parsing ac-
tions and runs in linear time.  Using SVMs for 
classification, the parser has labeled constituent 
precision and recall higher than 87% when using 
the correct part-of-speech tags, and slightly higher 
than 86% when using automatically assigned part-
of-speech tags.  Although its accuracy is not as 
high as those of state-of-the-art statistical parsers, 
our classifier-based parser is considerably faster 
than several well-known parsers that employ 
search or dynamic programming approaches.  At 
the same time, it is significantly more accurate 
than previously proposed deterministic parsers for 
constituent structures. 

We have also shown that much of the success 
of a classifier-based parser depends on what classi-
fier is used.  While this may seem obvious, the dif-
ferences observed here are much greater than what 
would be expected from looking, for example, at 
results from chunking/shallow parsing (Zhang et 
al., 2001; Kudo and Matsumoto, 2001; Veenstra 
and van den Bosch, 2000). 

Future work includes the investigation of the ef-
fects of individual features, the use of additional 
classification features, and the use of different clas-
sifiers.  In particular, the use of tree features seems 
appealing.  This may be accomplished with SVMs 

131



using a tree kernel, or the tree boosting classifier 
BACT described in (Kudo and Matsumoto, 2004).  
Additionally, we plan to investigate the use of the 
beam strategy of Ratnaparkhi (1997) to pursue 
multiple parses while keeping the run-time linear. 
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