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Abstract

In this paper, we explore two extensions
to an existing statistical parsing model to
produce richer parse trees, annotated with
function labels. We achieve significant
improvements in parsing by modelling di-
rectly the specific nature of function la-
bels, as both expressions of the lexical se-
mantics properties of a constituent and as
syntactic elements whose distribution is
subject to structural locality constraints.
We also reach state-of-the-art accuracy
on function labelling. Our results sug-
gest that current statistical parsing meth-
ods are sufficiently robust to produce ac-
curate shallow functional or semantic an-
notation, if appropriately biased.

1 Introduction

Natural language processing methods producing
shallow semantic output are starting to emerge as the
next step towards successful developments in natural
language understanding. Incremental, robust pars-
ing systems will be the core enabling technology for
interactive, speech-based question answering and di-
alogue systems. In recent years, corpora annotated
with semantic and function labels have seen the light
(Palmer et al., 2005; Baker et al., 1998) and semantic
role labelling has taken centre-stage as a challenging
new task. State-of-the-art statistical parsers have not
yet responded to this challenge.

State-of-the-art statistical parsers trained on the
Penn Treebank (PTB) (Marcus et al., 1993) pro-
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Figure 1: A sample syntactic structure with function
labels.

duce trees annotated with bare phrase structure la-
bels (Collins, 1999; Charniak, 2000). The trees of
the Penn Treebank, however, are also decorated with
function labels, labels that indicate the grammatical
and semantic relationship of phrases to each other
in the sentence. Figure 1 shows the simplified tree
representation with function labels for a sample sen-
tence from the PTB corpus (section 00) The Gov-
ernment’s borrowing authority dropped at midnight
Tuesday to 2.80 trillion from 2.87 trillion. Unlike
phrase structure labels, function labels are context-
dependent and encode a shallow level of phrasal and
lexical semantics, as observed first in (Blaheta and
Charniak, 2000). For example, while the authority
in Figure 1 will always be a Noun Phrase, it could
be a subject, as in the example, or an object, as in
the sentence They questioned his authority, depend-
ing on its position in the sentence. To some extent,
function labels overlap with semantic role labels as
defined in PropBank (Palmer et al., 2005). Table 1
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Syntactic L abels Semantic Labels

DTV dative ADV  adverbial
LGS logical subject BNF  benefactive
PRD predicate DIR direction
PUT  compl of put EXT  extent
SBJ  surface subject Loc locative
VvOC vocative MNR  manner
Miscellaneous Labels Nom  nominal
CLF it-cleft PRP  purpose or rea-
son
HLN headline TMP  temporal
TTL title Topic Labels
CLR closely related TPC topicalized

Table 1: Complete set of function labels in the Penn
Treebank.

illustrates the complete list of function labels in the
Penn Treebank, partitioned into four classes. 1

Current statistical parsers do not use or output
this richer information because performance of the
parser usually decreases considerably, since a more
complex task is being solved. (Klein and Manning,
2003), for instance report a reduction in parsing ac-
curacy of an unlexicalised PCFG from 77.8% to
72.9% if using function labels in training. (Blaheta,
2004) also reports a decrease in performance when
attempting to integrate his function labelling system
with a full parser. Conversely, researchers interested
in producing richer semantic outputs have concen-
trated on two-stage systems, where the semantic la-
belling task is performed on the output of a parser,
in a pipeline architecture divided in several stages
(Gildea and Jurafsky, 2002; Nielsen and Pradhan,
2004; Xue and Palmer, 2004). See also the com-
mon task of (CoNLL, 2004; CoNLL, 2005; Sense-
val, 2004), where parsing has sometimes not been
used and has been replaced by chunking.

In this paper, we present a parser that produces
richer output using information available in a corpus
incrementally. Specifically, the parser outputs addi-
tional labels indicating the function of a constituent
in the tree, such as NP-SBJ or PP-TMP in the tree

1(Blaheta and Charniak, 2000) talk of function tags.We will
instead use the term function label, to indicate function identi-
fiers, as they can decorate any node in the tree. We keep the
word tag to indicate only those labels that decorate preterminal
nodes in a tree — part-of-speech tags — as is standard use.
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shown in Figure 1.

Following (Blaheta and Charniak, 2000), we con-
centrate on syntactic and semantic function labels.
We will ignore the other two classes, for they do
not form natural classes. Like previous work, con-
stituents that do not bear any function label will re-
ceive a NULL label. Strictly speaking, this label cor-
responds to two NULL labels: the sYN-NULL and the
SEM-NULL. A node bearing the sYN-NuLL label is
a node that does not bear any other syntactic label.
Analogously, the sEm-NuULL label completes the set
of semantic labels. Note that both the SYN-NULL
label and the SEM-NULL are necessary, since both a
syntactic and a semantic label can label a given con-
stituent.

We present work to test the hypothesis that a cur-
rent statistical parser (Henderson, 2003) can out-
put richer information robustly, that is without any
degradation of the parser’s accuracy on the original
parsing task, by explicitly modelling function labels
as the locus where the lexical semantics of the ele-
ments in the sentence and syntactic locality domains
interact. Briefly, our method consists in augmenting
the parser with features and biases that capture both
lexical semantics projections and structural regulari-
ties underlying the distribution of sequences of func-
tion labels in a sentence. We achieve state-of-the-art
results both in parsing and function labelling. This
result has several consequences.

On the one hand, we show that it is possible to
build a single integrated robust system successfully.
This is an interesting achievement, as a task com-
bining function labelling and parsing is more com-
plex than simple parsing. While the function of a
constituent and its structural position are often cor-
related, they sometimes diverge. For example, some
nominal temporal modifiers occupy an object posi-
tion without being objects, like Tuesday in the tree
above. Moreover, given current limited availabil-
ity of annotated tree banks, this more complex task
will have to be solved with the same overall amount
of data, aggravating the difficulty of estimating the
model’s parameters due to sparse data. Solving this
more complex problem successfully, then, indicates
that the models used are robust. Our results also pro-
vide some new insights into the discussion about the
necessity of parsing for function or semantic role la-
belling (Gildea and Palmer, 2002; Punyakanok et al.,



2005), showing that parsing is beneficial.

On the other hand, function labelling while pars-
ing opens the way to interactive applications that are
not possible in a two-stage architecture. Because the
parser produces richer output incrementally at the
same time as parsing, it can be integrated in speech-
based applications, as well as be used for language
models. Conversely, output annotated with more in-
formative labels, such as function or semantic labels,
underlies all domain-independent question answer-
ing (Jijkoun et al., 2004) or shallow semantic inter-
pretation systems (Collins and Miller, 1998; Ge and
Mooney, 2005).

2 TheBasic Architecture

To achieve the complex task of assigning function
labels while parsing, we use a family of statisti-
cal parsers, the Simple Synchrony Network (SSN)
parsers (Henderson, 2003), which do not make any
explicit independence assumptions, and are there-
fore likely to adapt without much modification to the
current problem. This architecture has shown state-
of-the-art performance.

SSN parsers comprise two components, one
which estimates the parameters of a stochastic
model for syntactic trees, and one which searches for
the most probable syntactic tree given the parame-
ter estimates. As with many other statistical parsers
(Collins, 1999; Charniak, 2000), SSN parsers use
a history-based model of parsing. Events in such
a model are derivation moves. The set of well-
formed sequences of derivation moves in this parser
is defined by a Predictive LR pushdown automaton
(Nederhof, 1994), which implements a form of left-
corner parsing strategy.

This pushdown automaton operates on config-
urations of the form (I',v), where T' represents
the stack, whose right-most element is the top,
and v the remaining input. The initial configu-
ration is (ROOT,w) where ROOT is a distin-
guished non-terminal symbol. The final configu-
ration is (ROOT,¢). Assuming standard notation
for context-free grammars (Nederhof, 1994), three
derivation moves are defined:
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shift
(1B — Bl,av) - (B — ][4 — a],v)
where A — a and B — (3C'"y are productions
such that A is a left-corner of C.

project
([B—BJ[A—av) k-
([B = Bl[D — A],v)
where A — o, D — Ad and B — [BC~ are
productions such that D is a left-corner of C.

attach
(B — fl[A — a],v) F (B — BA],v)
where both A — « and B — 3 A~ are produc-
tions.

The joint probability of a phrase-structure tree and
its terminal yield can be equated to the probability
of a finite (but unbounded) sequence of derivation
moves. To bound the number of parameters, stan-
dard history-based models partition the set of well-
formed sequences of transitions into equivalence
classes. While such a partition makes the problem
of searching for the most probable parse polyno-
mial, it introduces hard independence assumptions:
a derivation move only depends on the equivalence
class to which its history belongs. SSN parsers, on
the other hand, do not state any explicit indepen-
dence assumptions: they use a neural network ar-
chitecture, called Simple Synchrony Network (Hen-
derson and Lane, 1998), to induce a finite his-
tory representation of an unbounded sequence of
moves. The history representation of a parse history
dy,...,d;—1, which we denote h(dy,...,d;—1), IS
assigned to the constituent that is on the top of the
stack before the ith move.

The representation h(dy,...,d;—1) is computed
from a set f of features of the derivation move d;_
and from a finite set D of recent history representa-
tions h(dy,...,d;), where j < i — 1. Because the
history representation computed for the move i —1 is
included in the inputs to the computation of the rep-
resentation for the next move i, virtually any infor-
mation about the derivation history could flow from
history representation to history representation and
be used to estimate the probability of a derivation
move. However, the recency preference exhibited
by recursively defined neural networks biases learn-
ing towards information which flows through fewer



history representations. (Henderson, 2003) exploits
this bias by directly inputting information which is
considered relevant at a given step to the history
representation of the constituent on the top of the
stack before that step. To determine which history
representations are input to which others and pro-
vide SSNs with a linguistically appropriate induc-
tive bias, the set D includes history representations
which are assigned to constituents that are struc-
turally local to a given node on the top of the stack.
In addition to history representations, the inputs to
h(dy,...,d;—1) include hand-crafted features of the
derivation history that are meant to be relevant to
the move to be chosen at step . For each of the ex-
periments reported here, the set D that is input to
the computation of the history representation of the
derivation moves d, . .., d;_1 includes the most re-
cent history representation of the following nodes:
top;, the node on top of the pushdown stack be-
fore the ith move; the left-corner ancestor of top;
(that is, the second top-most node on the parser’s
stack); the leftmost child of top;; and the most re-
cent child of top;, if any. The set of features f in-
cludes the last move in the derivation, the label or
tag of top;, the tag-word pair of the most recently
shifted word, and the leftmost tag-word pair that
top; dominates. Given the hidden history represen-
tation h(dy,---,d;—1) of a derivation, a normalized
exponential output function is computed by SSNs to
estimate a probability distribution over the possible
next derivation moves d;.?

The second component of SSN parsers, which
searches for the best derivation given the parame-
ter estimates, implements a severe pruning strategy.
Such pruning handles the high computational cost
of computing probability estimates with SSNs, and
renders the search tractable. The space of possible
derivations is pruned in two different ways. The first
pruning occurs immediately after a tag-word pair
has been pushed onto the stack: only a fixed beam of
the 100 best derivations ending in that tag-word pair
are expanded. For training, the width of such beam
is set to five. A second reduction of the search space
prunes the space of possible project or attach deriva-

2The on-line version of Backpropagation is used to train
SSN parsing models. It performs the gradient descent with a
maximum likelihood objective function and weight decay regu-
larization (Bishop, 1995).
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tion moves: the best-first search strategy is applied
to the five best alternative decisions only.

3 Learning Lexical Projection and
L ocality Domains of Function Labels

Recent approaches to functional or semantic labels
are based on two-stage architectures. The first stage
selects the elements to be labelled, while the sec-
ond determines the labels to be assigned to the se-
lected elements. While some of these models are
based on full parse trees (Gildea and Jurafsky, 2002;
Blaheta, 2004), other methods have been proposed
that eschew the need for a full parse (CoNLL, 2004;
CoNLL, 2005). Because of the way the problem has
been formulated, — as a pipeline of parsing feeding
into labelling — specific investigations of the inter-
action of lexical projections with the relevant struc-
tural parsing notions during function labelling has
not been studied.

The starting point of our augmentation of SSN
models is the observation that the distribution of
function labels can be better characterised struc-
turally than sequentially. Function labels, similarly
to semantic roles, represent the interface between
lexical semantics and syntax. Because they are pro-
jections of the lexical semantics of the elements in
the sentence, they are projected bottom-up, they tend
to appear low in the tree and they are infrequently
found on the higher levels of the parse tree, where
projections of grammatical, as opposed to lexical,
elements usually reside. Because they are the inter-
face level with syntax, function and semantic labels
are also subject to distributional constraints that gov-
ern syntactic dependencies, especially those govern-
ing the distribution of sequences of long distance
elements. These relations often correspond to top-
down constraints. For example, languages like Ital-
ian allow inversion of the subject (the Agent) in
transitive sentences, giving rise to a linear sequence
where the Theme precedes the Agent (Mangia la
mela Gianni, eats the apple Gianni). Despite this
freedom in the linear order, however, it is never the
case that the structural positions can be switched. It
is a well-attested typological generalisation that one
does not find sentences where the subject is a Theme
and the object is the Agent. The hierarchical de-
scription, then, captures the underlying generalisa-



C-COMMAND

Figure 2: Flow of information in an SSN parser (dashed lines), enhanced by biases specific to function labels

to capture the notion of c-command (solid lines).

tion better than a model based on a linear sequence.

In our augmented model, inputs to each history
representation are selected according to a linguis-
tically motivated notion of structural locality over
which dependencies such as argument structure or
subcategorization could be specified. We attempt to
capture the sequence and the structural position by
indirectly modelling the main definition of syntac-
tic domain, the notion of c-command. Recall that
the c-command relation defines the domain of in-
teraction between two nodes in a tree, even if they
are not close to each other, provided that the first
node dominating one node also dominates the other.
This notion of c-command captures both linear and
hierarchical constraints and defines the domain in
which semantic role labelling applies, as well as
many other linguistic operations.

In SSN parsing models, the set D of nodes that
are structurally local to a given node on the top of
the stack defines the structural distance between this
given node and other nodes in the tree. Such a no-
tion of distance determines the number of history
representations through which information passes to
flow from the representation assigned to a node i to
the representation assigned to a node j. By adding
nodes to the set D, one can shorten the structural
distance between two nodes and enlarge the locality
domain over which dependencies can be specified.
To capture a locality domain appropriate for func-
tion parsing, we include two additional nodes in the
set D: the most recent child of top; labelled with a
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syntactic function label and the most recent child of
top; labelled with a semantic function label. These
additions yield a model that is sensitive to regulari-
ties in structurally defined sequences of nodes bear-
ing function labels, within and across constituents.
First, in a sequence of nodes bearing function labels
within the same constituent — possibly interspersed
with nodes not bearing function labels — the struc-
tural distance between a node bearing a function la-
bel and any of its right siblings is shortened and con-
stant. This effect comes about because the represen-
tation of a node bearing a function label is directly
input to the representation of its parent, until a far-
ther node with a function label is attached. Second,
the distance between a node labelled with a function
label and any node that it c-commands is kept con-
stant: since the structural distance between a node
[A — «f on top of the stack and its left-corner an-
cestor [B — 3] is constant, the distance between the
most recent child node of B labelled with a func-
tion label and any child of A is kept constant. This
modification of the biases is illustrated in Figure 2.

This figure displays two constituents, S and VP
with some of their respective child nodes. The VP
node is assumed to be on the top of the parser’s
stack, and the S one is supposed to be its left-corner
ancestor. The directed arcs represent the informa-
tion that flows from one node to another. Accord-
ing to the original SSN model in (Henderson, 2003),
only the information carried over by the leftmost
child and the most recent child of a constituent di-



rectly flows to that constituent. In the figure above,
only the information conveyed by the nodes « and
o is directly input to the node S. Similarly, the only
bottom-up information directly input to the VP node
is conveyed by the child nodes e and 6. In both the
no-biases and HO3 models, nodes bearing a function
label such as ¢ and ¢ are not directly input to their
respective parents. In our extended model, informa-
tion conveyed by ¢ and ¢ directly flows to their re-
spective parents. So the distance between the nodes
¢1 and ¢, which stand in a c-command relation, is
shortened and kept constant.

As well as being subject to locality constraints,
functional labels are projected by the lexical seman-
tics of the words in the sentence. We introduce this
bottom-up lexical information by fine-grained mod-
elling of function tags in two ways. On the one hand,
extending a technique presented in (Klein and Man-
ning, 2003), we split some part-of-speech tags into
tags marked with semantic function labels. The la-
bels attached to a non-terminal which appeared to
cause the most trouble to the parser in a separate ex-
periment (DIR, LOC, MNR, PRP Or TMP) were prop-
agated down to the pre-terminal tag of its head. To
affect only labels that are projections of lexical se-
mantics properties, the propagation takes into ac-
count the distance of the projection from the lexical
head to the label, and distances greater than two are
not included. Figure 3 illustrates the result of the tag
splitting operation.

On the other hand, we also split the NuLL label
into mutually exclusive labels. We hypothesize that
the label NULL (ie. SYN-NULL and SEM-NULL) is a
mixture of types, some of which of semantic nature,
such as CLR, which will be more accurately learnt
separately. The NuLL label was split into the mu-
tually exclusive labels cLR, oBJ and OTHER. Con-
stituents were assigned the oBJ label according to
the conditions stated in (Collins, 1999). Roughly, an
oBJnon-terminal is an NP, SBAR or S whose parent
is an S, VP or SBAR. Any such non-terminal must
not bear either syntactic or semantic function labels,
or the CLR label. In addition, the first child following
the head of a PP is marked with the oBJ label. (For
more detail on this lexical semantics projection, see
(Merlo and Musillo, 2005).)

We report the effects of these augmentations on
parsing results in the experiments described below.
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NP-SBJ VP

the authority

VBD PP-TMP ~ NP-TMP  PP-DIR

| N | P
dropped IN-TMP NP NNP-TMP TO-DIR NP

| | | |
at NN Tuesday to QP

midnight $2.80 trillion

Figure 3: A sample syntactic structure with function
labels lowered onto the preterminals.

4 Experiments and Discussion

To assess the relevance of our fine-grained tags and
history representations for functional labelling, we
compare two augmented models to two baseline
models without these augmentations indicated in Ta-
ble 2 as no-biases and H03. The baseline called HO3
refers to our runs of the parser described in (Hen-
derson, 2003), which is not trained on input anno-
tated with function labels. Comparison to this model
gives us an external reference to whether function
labelling improves parsing. The baseline called no-
biases refers to a model without any structural or
lexical biases, but trained on input annotated with
function labels. This comparison will tell us if the
biases are useful or if the reported improvements
could have been obtained without explicit manipu-
lation of the parsing biases.

All SSN function parsers were trained on sec-
tions 2-21 from the PTB and validated on section 24.
They are trained on parse trees whose labels include
syntactic and semantic function labels. The mod-
els, as well as the parser described in (Henderson,
2003), are run only once. This explains the little dif-
ference in performance between our results for HO3
in our table of results and those cited in (Henderson,
2003), where the best of three runs on the valida-
tion set is chosen. To evaluate the performance of
our function parsing experiments, we extend stan-
dard Parseval measures of labelled recall and preci-
sion to include function labels.

The augmented models have a total of 188 non-
terminals to represents labels of constituents, instead
of the 33 of the baseline HO3 parser. As a result



FLABEL FLABEL-less

F R P F R P

HO3 886 ©88.3 889
no-biases 846 844 849 882 830 884
split-tags 86.1 858 865 889 886 89.3
split-tags+locality 86.4 86.1 86.8 89.2 889 895

Table 2: Percentage F-measure (F), recall (R), and precision (P) of the SSN baseline and augmented parsers.

of lowering the five function labels, 83 new part-of-
speech tags were introduced to partition the original
tag set. SSN parsers do not tag their input sentences.
To provide the augmented models with tagged input
sentences, we trained an SVM tagger whose features
and parameters are described in detail in (Gimenez
and Marquez, 2004). Trained on section 2-21, the
tagger reaches a performance of 95.8% on the test
set (section 23) of the PTB using our new tag set.

Both parsing results taking function labels into
account in the evaluation (FLABEL) and results
not taking them into account in the evaluation
(FLABEL-less) are reported in Table 2, which
shows results on the test set, section 23 of the PTB.
Both the model augmented only with lexical in-
formation (through tag splitting) and the one aug-
mented both with finer-grained tags and represen-
tations of syntactic locality perform better than our
comparison baseline HO3, but only the latter is sig-
nificantly better (p < .01, using (Yeh, 2000)’s ran-
domised test). This indicates that while information
projected from the lexical items is very important,
only a combination of lexical semantics information
and careful modelling of syntactic domains provides
a significant improvement.

Parsing results outputting function labels (FLA-
BEL columns) reported in Table 2 indicate that pars-
ing function labels is more difficult than parsing bare
phrase-structure labels (compare the FLABEL col-
umn to the FLABEL-less column). They also show
that our model including finer-grained tags and lo-
cality biases performs better than the one including
only finer-grained tags when outputting function la-
bels. This suggests that our model with both lex-
ical and structural biases performs better than our
no-biases comparison baseline precisely because it
is able to learn to parse function labels more accu-
rately. Comparisons to the baseline without biases
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indicates clearly that the observed improvements,
both on function parsing and on parsing without
taking function labels into consideration would not
have been obtained without explicit biases.

Individual performance on syntactic and seman-
tic function labelling compare favourably to previ-
ous attempts (Blaheta, 2004; Blaheta and Charniak,
2000). Note that the maximal precision or recall
score of function labelling is strictly smaller than
one-hundred percent if the precision or the recall of
the parser is less than one-hundred percent. Follow-
ing (Blaheta and Charniak, 2000), incorrectly parsed
constituents will be ignored (roughly 11% of the to-
tal) in the evaluation of the precision and recall of
the function labels, but not in the evaluation of the
parser. Of the correctly parsed constituents, some
bear function labels, but the overwhelming major-
ity do not bear any label, or rather, in our notation,
they bear a NuLL label. To avoid calculating ex-
cessively optimistic scores, constituents bearing the
NULL label are not taken into consideration for com-
puting overall recall and precision figures. NULL-
labelled constituents are only needed to calculate the
precision and recall of other function labels. For
example, consider the confusion matrix M in Ta-
ble 3 below, which reports scores for the semantic
labels recovered by the no-biases model. Precision
Mi,i)

Zie{ADVmTMP} Recall is

is computed as -
je{ADV...TMp} MISUM.j]

computed analogously. Notice that M [n,n|, that is
the [sem-nuLL,sem-nuLL] cell in the matrix, is never
taken into account.

Syntactic labels are recovered with very high ac-
curacy (F 96.5%, R 95.5% and P 97.5%) by the
model with both lexical and structural biases, and
so are semantic labels, which are considerably more
difficult (F 85.6%, R 81.5% and P 90.2%). (Bla-
heta, 2004) uses specialised models for the two types



ASSIGNED LABELS

ADV BNF DIR EXT LOC MNR NOM PRP TMP SEM-NULL SUM

ADV 143 0 0 0 O 0 0 1 3 11 158

BNF 0O 0 O 0 o0 0 0 0 0 1 1

DIR 0 03 0 3 4 0 0 1 51 98

EXT 0 0 o0 37 0 0 0 0 0 17 54

ACTUAL | LOC 0 0 1 0 345 3 0 0 15 148 512
LABELS | MNR 0 0 0O O 3 35 0 0 16 40 94
NOM 2 0 0 0 o0 0 8 0 0 4 94

PRP 0O 0O O 0 o0 0 0 54 1 33 88

TMP 18 0 1 0 24 11 0 1 479 105 639
SEM-NULL 12 0 13 5 81 28 12 24 97 20292 | 20564

SUM 175 0 54 42 456 81 100 80 612 20702 | 22302

Table 3: Confusion matrix for the no-biases baseline

of function labels, reaching an F-measure of 98.7%
for syntactic labels and 83.4% for semantic labels as
best accuracy measure. Previous work that uses, like
us, a single model for both types of labels reaches an
F measure of 95.7% for syntactic labels and 79.0%
for semantic labels (Blaheta and Charniak, 2000).

Although functional information is explicitly an-
notated in the PTB, it has not yet been exploited by
any state-of-the-art statistical parser with the notable
exception of the second parsing model of (Collins,
1999). Collins’s second model uses a few func-
tion labels to discriminate between arguments and
adjuncts, and includes parameters to generate sub-
categorisation frames. Subcategorisation frames are
modelled as multisets of arguments that are sisters
of a lexicalised head child. Some major differ-
ences distinguish Collins’s subcategorisation para-
meters from our structural biases. First, lexicalised
head children are not explicitly represented in our
model. Second, we do not discriminate between ar-
guments and adjuncts: we only encode the distinc-
tions between syntactic function labels and seman-
tic ones. As shown in (Merlo, 2003; Merlo and
Esteve-Ferrer, 2004) this difference does not corre-
spond to the difference between arguments and ad-
juncts. Finally, our model does not implement any
distinction between right and left subcategorisation
frames. In Collins’s model, the left and right sub-
categorisation frames are conditionally independent
and arguments occupying a complement position (to
the right of the head) are independent of arguments
occurring in a specifier position (to the left of the
head). In our model, no such independence assump-
tions are stated, because the model is biased towards
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model, tested on the validation set (section 24 of PTB).

phrases related to each other by the c-command re-
lation. Such relation could involve both elements
at the left and at the right of the head. Relations
of functional assignments between subjects and ob-
jects, for example, could be captured.

The most important observation, however, is that
modelling function labels as the interface between
syntax and semantics yields a significant improve-
ment on parsing performance, as can be verified
in the FLABEL-less column of Table 2. This is a
crucial observation in the light of the current ap-
proaches to function or semantic role labelling and
its relation to parsing. An improvement in parsing
performance by better modelling of function labels
indicates that this complex problem is better solved
as a single integrated task and that current two-step
architectures might be missing on successful ways
to improve both the parsing and the labelling task.

In particular, recent models of semantic role la-
belling separate input indicators of the correlation
between the structural position in the tree and the
semantic label, such as path, from those indicators
that encode constraints on the sequence, such as the
previously assigned role (Kwon et al., 2004). In this
way, they can never encode directly the constraining
power of a certain role in a given structural position
onto a following node in its structural position. In
our augmented model, we attempt to capture these
constraints by directly modelling syntactic domains.

Our results confirm the findings in (Palmer et al.,
2005). They take a critical look at some commonly
used features in the semantic role labelling task,
such as the path feature. They suggest that the path
feature is not very effective because it is sparse. Its



sparseness is due to the occurrence of intermediate
nodes that are not relevant for the syntactic relations
between an argument and its predicate. Our model
of domains is less noisy, because it can focus only on
c-commanding nodes bearing function labels, thus
abstracting away from those nodes that smear the
pertinent relations.

(i and Palmer, 2005) share the motivation of our
work, although they apply it to a different task. Like
the current work, they observe that the distributions
of semantic labels could potentially interact with
the distributions of syntactic labels and redefine the
boundaries of constituents, thus yielding trees that
reflect generalisations over both these sources of in-
formation.

Our results also confirm the importance of lexi-
cal information, the lesson drawn from (Thompson
et al., 2004), who find that correctly modelling se-
quence information is not sufficient. Lexical infor-
mation is very important, as it reflects the lexical se-
mantics of the constituents. Both factors, syntactic
domains and lexical information, are needed to sig-
nificantly improve parsing.

5 Conclusions

In this paper, we have explored a new way to im-
prove parsing results in a current statistical parser
while at the same time enriching its output. We
achieve significant improvements in parsing and
function labelling by modelling directly the specific
nature of function labels, as both expressions of
the lexical semantics properties of a constituent and
as syntactic elements whose distribution is subject
to structural locality constraints. Differently from
other approaches, the method we adopt integrates
function labelling directly in the parsing process.
Future work will lie in exploring new ways of cap-
turing syntactic domains, different from the ones at-
tempted in the current paper, such as developing new
derivation moves for nodes bearing function labels.
A more detailed analysis of the parser will also shed
light on its behaviour on sequences of function la-
bels. Finally, we plan to extend this work to learn
Propbank-style semantic role labels, which might re-
quire explicit modelling of long distance dependen-
cies and syntactic movement.
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