Switch Graphsfor Parsing Type Logical Grammars®

Bob Carpenter Glyn Morrill
Alias-i Universitat Poliecnica de Catalunya
181 North 11th Street, #401 Departament de Llenguatges i Sistemes Infatios
Brooklyn, NY, 11211 E-08034 Barcelona
carp@colloquial.com morrill@lsi.upc.edu
Abstract the expression “book that Johnread” the term

that(ax.read(x)(j))(book) and type CN, and
Parsing in type logical grammars amounts “person that read the book” the tyg@N and term
to theorem proving in a substructural that(y.read(the(book))(y))(per son).
logic. This paper takes the proof net
presentation of Lambek’s associative cal- 2 Lambek’s Associative Calculus
culus as a case study. It introduces
switch graphs for online maintenance
of the Danos-Regnier acyclicity condi-
tion on proof nets. Early detection of
Danos-Regnier acyclicity violations sup-
ports early failure in shift-reduce parsers.
Normalized switch graphs represent the
combinatorial potential of a set of anal-
yses derived from lexical and structural
ambiguities. Packing these subanalyses
and memoizing the results leads directly
to a dynamic programming algorithm for
Lambek grammars.

Lambek’s associative calculus (Lambek 1958)
contains three connectives: concatenation, left divi-
sion, and right division. Logically, concatenation is
conjunction and the divisions are directed implica-
tions. Algebraically, concatenation is a free semi-
group product and the divisions its left and right
residuals. Viewed as a purely syntactic formalism,
L assigns syntactic types to linguistic expressions
modeled as sequences of tokens. From a stipulated
lexical assignment of expressions to syntactic types,
further assignments of expressions to types are de-
rived through purely logical inference, with the logic
representing a sound and complete axiomatization
and inference system over the algebraic structure
1 Introduction (Pentus 1995).

L appears near the bottom of a hierarchy of

Following Montague (1970), we take the goal,pqirctural logics obtained by dropping structural

of a theory of grammar to be that of assigny jes. | ambek proofs are valid as multiplicative
ing semantic terms to linguistic expressions

fntuitionistic linear proofs (restoring permutation)

Type logical grammar is a paradigm for devel'Which are valid as conjuntive and implicative rele-

oping grammatical theories based on a strong,,e nroofs (restoring contraction) which are valid

notion of typing for natural language expres,g conjuntive and implicative intuitionistic proofs

sions. Specifically, each linguistic expression i?restoring weakening). In type logical grammars,

assigned a syntactic type and a semantic t€Myyica| entries are associated with syntactic types

For instance, the expression “John read the boolg, jhyitionistic (in fact probably relevant) proofs

of English might be assigned a syntactic typeg semantic representations, notated as terms of the
S and the semantic ternread(the(book))(i). gimply typed -calculus with product, under the

Supported by CICYT project TIC2002-04019-C03-01. Curry-Howard correspondence. The semantics of a

18

Proceedings of the Ninth International Workshop on Parsing Technologies (IWPT), pages 18-29,
Vancouver, October 2005. (©2005 Association for Computational Linguistics

derived expression is the result of substituting thas follows:

lexical semantics into the reading of the derivation typ(A- B) = typ(A) x typ(B) [Product]
as an intuitionistic proof. typ(A/B) = typ(B) — typ(A) _[Right Division]
2.1 Syntactic and Semantic Types typ(B\A) = typ(B) — typ(A) [Left Division]

The set ofsyntactic types is defined recursively on e will often writea : Awherea is aA-term of type
the basis of a sedynAtom of atomic syntactictypes. typ(A).

The full setSynTyp of syntactic types is the least
set containing the atomic syntactic typ@gnAtom 2.2 Linguistic Expressions and the L exicon
and closed under the formation of produ@gifTyp- In the Lambek calculus, linguistic expressions are
SynTyp), left divisions SynTyp\SynTyp), and right modeled by sequences of atomic symbols. These
divisions SynTyp/SynTyp). The two division, or atomic symbols are drawn from a finite Sktk of
“slash”, typesA/B, readA over B, andB\A, readB tokens. The full set of linguisticexpressions Tok*
under A, refine the semantic function types by prois the set of sequences of tokens. For the sake of
viding a directionality of the argument with respecthis short version of the paper we admit the empty
to the function. A linguistic expression assigned t&equence; we will address its exclusion (as in the
type A/B combines with an expression of tyBeon original definition ofL) in a longer version.
its right side to produce an expression of typeAn The compositional assignment of semantic terms
expression of typ&\A combines with an expressionto linguistic expressions is grounded by a finite set
of syntactic typeB on its left to produce an expres- of assignments of terms and types to expressions.
sion of typeA. The product syntactic typ&-Bisas- A lexicon is a finite relationLex € Tok* x Term x
signed to the concatenation of an expression of tym®ynTyp, where alliw, a, Ay € Lex are such that the
A to an expression of typ8. The distinguishing semantic termy is of the appropriate type for the
feature of Lambek calculus with respect to the easyntactic typeA. We assume that the only terms
lier categorial grammar of Bar-Hillel is that as wellused in the lexicon aneslevant, in the sense of rele-
as the familar cancelation (modus ponens) rules, viance logic, in not containing vacuous abstractions.
admits also a form of the deduction theorem: if thé\ote that the set of atomic semantic types, atomic
result of concatenating an express@to eachBre- syntactic types and the semantic type mapping are
sults in an expression of typ& then it follows that assumed as part of the definition of a lexicon. Type
eis assigned to syntactic typ¥ B. logical grammar is an example of a fully lexicalized
Semantic representations in Lambek type logicgjrammar formalism in that the lexicon is the only
grammar are simply typettterms with product. We locus of language-specific information.
assume a seBemAtom of atomic semantic types,
which generate the usufilnction types o — 7 and 23 Proof Nets
product types o x 7. Terms are grounded on an in-A sequent I’ = « : Ais formed from arantecedent
finite set of distincwariables Var,, along with a set T consisting of a (possibly empty) sequencetef
of distinct contants Con,. for each typer. We as- term and syntactic type pairs, and@nsequent pair
sume the usual-terms consisting of variables, con- « : A, where the terms are of the appropritate type
stants function applications a(B), function abstrac- for the types. Following Roorda (1991), we define
tions Ax.a, pairs {a,B) and projections from pairs theoremhood with Girard-style proof nets (Girard
m16 androé onto the first and second element of thel987), a geometric alternative to Lambek’s Gentzen-
pair respectively. We say that a teumis closed if style calculus (Lambek 1958).
and only if it contains no free variables. Proof nets form a graph over nodes labeled by
A type map consists of a mappingyp : polar types, where polar type is the combination
SynAtom — SemTyp. That is, each atomic syn- of a syntactic type and one of twmlarities, input
tactic typeA € AtomCat is assigned to a (not neces-(negative) anautput (positive). We writeA® for the
sarily atomic) semantic typgp(A) € SemTyp. Se- input polar type, which corresponds to antecedent
mantic types are assigned to complex syntactic typégoes and is thus logicaly negative. We wrfie for

19

theoutput polar type, which is logically positive and with a set ofaxiom links linking pairs of comple-
corresponds to a consequent typelitaral is a po- mentary literals with at most one link per literal. Ax-
lar type with an atomic syntactic type. Wheteis iom links in both directions are shown in Figure 3.
an atomic syntactic type, the litera#8 andA° are A proof structure is a proof structure in which all
said to becomplementary. literals are connected to complementary literals by
Each polar type defines an ordered binary treaxiom links.
rooted at that polar type, known ap@alar tree. For a Proof nets are proof structures meeting certain
literal, the polar tree is a single node labeled by thatonditions. A proof structure iganar if and only if
literal. For polar types with complex syntactic typesits axiom links can be drawn in the half-plane with-
the polar tree is rooted at the polar type and unfoldesut crossing lines; this condition enforces the lack
upwards based on connective and polarity accordirgf commutativity of the Lambek calculus. The fi-
to the solid lines in Figure 1, which includes alsonal condition on proof structures involves switch-
other annotation. Examples for some linguisticallyng. A switching of a proof structure is a subgraph
motivated types are shown in Figure 2. that arises from the proof structure by removing ex-
The solid edges of the graphs are the edges attly one edge from each disjunctivg)(link. A
the logical links. Each unfolding is labeled with a proof structure is said to bBanos-Regnier (DR-)
multiplicative linear logic connective, eithenulti- acyclicif and only if each of its switchings is acyclic
plicative conjunction (®) or multiplicative disunc- (Danos and Regnier 1988\ proof net is a planar
tion (p). This derives from the logical interpretationDR-acyclic proof structure. Aheorem is any se-
of the polar type trees as formula trees in multiplicaguent forming the proof frame of a proof net.
tive linear logic. Unfolding the Lambek connectives Consider the three proof nets in Figure 4. The first
to their linear counterpartsA(B)® and B\A)* un- example has no logical links, and corresponds to the
fold to A*pB°; (A/B)° and B\A)° unfold toA°®B®; simplest sequent derivatidh= S. The second ex-
(A - B)* unfolds toA® ® B*; and (A - B)° unfolds to ample represents a determiner, noun and intransitive
A°pB°. The type unfoldings correspond to the clasverb sequence. Both of these examples are acyclic,
sical equivalences betweep &) and (¢ Vv), as must be every proof net with no logigallinks.
between—-(¢ —) and ¢ A —), and between The third example corresponds to the type-raising
=(¢ Ay) and Go Vv —¢). For atomic syntactic types sequentN = S/(N\S). Unlike the other examples,
A, A* becomes simplyA, whereasA® becomes its this proof net involves g-link and is cyclic. But
linear negation A*; this is the sense in which po- both of its switchings are acyclic, so it satisfies the
lar atomic types correspond to logical literals. Théanos-Regnier acyclicity condition.
non-commutatitive nature of the Lambek calculus is
reflected in the ordering of the subtrees in the urk.4 Essential Netsand Semantic Trips

foldings; for commutative logics, the proof trees are term is said to bepure if and only if it contains
not ordered. no constants. Thénear terms are closed, pura-

The proof frame for a syntactic sequent teyms that bind each variable exactly once. Each
Cs,...,Ch = Co is the ordered sequence ofproof net in the Lambek calculus corresponds to a
polar trees rooted &€, Cj,...,Cr. We convert jinear (i.e. binding each variable exactly once)
sequents to frames in this order, with the outpuerm via the Curry-Howard correspondence. This
polar tree first. In general, what follows applies tQerm apstracts over variables standing in for the se-
any cyclic reordering of these polar trees. Note thghantics of the inputs in the antecedent of the sequent
the antecedent typ&s, . .. Cy have input (negative) and has a body that is determined by the consequent
polarity inputs and the consequent ty@® has of the sequent. For instance, théerm Ax.AP.P(X)

output (positive) polarity. All of our proof frames ¢orresponds to the syntactic sequant N, P :

areintuitionistic in that they have a single output

conclusion, i.e. a unique polar tree rooted at an 1The_fuII Danos-Regnier condition is tha_lt every switching
be acyclic and connected. Fadda and Morrill (2005) show that

output type. for the intuitionistic case (i.e. single output conclusion, as for

A partial proof structure consists of a proof frame L), DR-acyclicity entails the connectedness of every switching.

20

a@) i A°— — — — — — >0 B°
\
\
AN
~a:A/B* /lX,a/ A/B°
y i
A | A |
| y
BB <—-—-—-—-—— a(B) : A°
/
\® s \ /
/
7/
a: B\A*~“ /lX,a B\A°
y i
[[A A
v
my @ A* myy : B B:
\ /
\ {Li} {Rl} /
\ 80 / \ /
N Ve
Ay:A-B’A (a/ﬁ) A-B°

|
\ I

Figure 1: Logical Links with Switch Paths (solid) and Semantic Trip (dashed)

X:S° X N° y(x) : S* u:CN° zZ(Axy)(u) : CN*® x: N° y:S°
Ne)/ ~Ne S NS
y: N\S* Z(AX.y)CN\CN?* AXy : S/N°
Z: (CN\CN)/(S/N)*
t:se viN® o orNe X(Ayw.u)(av.t)(r):S* u:s° w: Ne z:N° v@): S
NS ~. ¢/ NS Ne/
Av.t: N\S° X(Ayw.u)(Av.t) : N\S* Aw.u : N\S° y: N\S*
\ ® / \ 9 /
X(y.Aw.u) : (N\S)\(N\S)* Ay.Aw.u : (N\S)\(N\S)°

\ ® /

X (N\S)\(N\S)/(NAS)\(N\S))*

Figure 2: Examples of Polar Type Trees

21

Figure 3: Axiom Links with Switch Paths and Semantic Trip

S° S* ‘ ‘ ‘
N° S*
N°® CN° N° S* N ® /
\N® N ® N\S* Se
S° N/CN*® CN* N\S* NS

: S/(N\S)* N°
Figure 4: Three Example Proof Nets

N\S = P(X) : S and Ax.AP.P(x) corresponds to directly corresponds to the tree of the semantic term
the sequenk : N = APP(X) : S/(N\S). TheA- derived by the Curry-Howard correspondence.
term induced by the Curry-Howard correspondence
can be determined by a unification problem over a The well-formedness of a set of axiom linkings
proof net (Roorda 1991). Berent proof nets for the over a polar tree may be expressed in terms of the
same theorem correspond tdéfdrent interpretations essential net. Among the conditions are that an es-
through the Curry-Howard correspondence. e sential net must be acyclic and planar. In addition,
sential net of a proof structure is the directed graphessential nets must be connected in two ways. First,
rooted at the root node of the output polar type trethere must be a path from the root of the single out-
whose edges are shown as dashed lines in Figureput polar tree to the root of each of the input polar
and 3 (LaMarche 1994). Each output division typdrees. Second, there must be a path from each output
introduces a fresh variable on its input subtype (itdaughter of an output division to the input daugh-
argument), as indicated by the labgjsn Figure 1. ter. That is, wherA/B° is unfolded toB*A°, there
The essential nets for the examples in Figure 4 araust be a path fromA° to B*. These conditions ex-
shown in Figure 5. press the definition of linear semantic terms dictated
through the logic by the Curry-Howard correspon-
Terms are computed for the polar type trees bgence. The first condition requires each variable (or
assigning terms to the roots of the polar inputs. Thirm) corresponding to the root of an input polar tree
tree is then unfolded unifying in substitutions as ito occur in the output term, whereas the second con-
goes, as illustrated in the example polar type trees ilition requires that variables only occur within their
Figure 2. The direction of axiom links in the essenproper scopes so that they are bound. The essen-
tial net provide the substitutions necessary to solvéal nets presented in Figure 5 adhere to these con-
the unification problem ofi-terms in the proof net ditions and produce well-typed linearterms. The
established by equating the two halves of each aexample presented in Figure 6 shows a set of axiom
iom linked complementary pair of literals. A traver-links that does not form a proof net; it violates the
sal of an essential net carrying out the substitutionsondition on variable binding, as is seen from the
specified by axiom links constitutessamantic trip lack of path from theN° daughter to théN® daugh-
the end result of which is the Curry-Howaketerm ter of theN/N° node. The major drawback to us-
for the Lambek calculus theorem derived by théng these conditions directly in parsing is that they
proof net. All A-terms derived from a semantic trip are existential in the sense of requring the existence
with variables or constants assigned to input root paf a certain kind of path, and thusfiicult to refute
lar types will be inB-n long form. The essential net online during parsing. In comparison, the Danos-

22

|

t(k) : N* —= CN°

N

S° t: N/JCN*® k:CN*® r

N° < r(t(k)) : S*

tN\S*®

Ne <—x(j) : S°

ya x: N\S* Ss°

/!

AXX(j) 1 S/(N\S)°

o\
Figure 5: Semantic Trips

L
a(AxB)(y(x)) : N* — N° x: N* N°
N /7
a(AxB) : N/N® —— = AxB8 : N/N° N°e <—— y(X) : N°®
\ /
N° a : (N/N)/(N/N)® B:N°® v N\N*®
Figure 6: Unbound Variable in lllegal Semantic Trip
r—— """~~~ T T -~ 7
| R et : |
| : 1 |
N*® N° N°® N° I |
e, S i I
N/N°® N/N° N° N°*
S - ® - _ N . ®) v
N° (N/N)/(N/N)* N°® N\N*

Figure 7: Switching with Path Violating Danos-Regnier Acyclicity

23

Regnier acyclicity condition is violated by the at-both edges of g-link, add an edge; — n3 labeled
tempt to close fi the binding of the variable. The with X;UX,. An edgen—mlabeled byX is subsumed
path vilolating DR acyclicity is shown in Figure 7, by an edge between the same nodesn labeled by
with the path given in dashed lines and the switchY if Y € X. Thenormal switch graph of a partial
ing taking the right daughter dfi/N° as the arc to proof structure is derived by closing its the initial

remove. switch graph, removing edges that are subsumed by
other edges, and restricting to the literal nodes not
3 Parsing with Switch Graphs connected by an axiom link. These normal switch

i) i graphs define a unique representation of the combi-
The plangr connection of all I!tera|5 Into a pTOOfnatoriaI possibilities of a span of polar trees and their
structure is straightforward to implement. - AXIOM,sqciated links in a partial proof structure. That is,
links are simply added in such a way that planarity, hartial proof structure substructure that leads to

is maintained until a complete linkage is found. Inye same normal switch graph may be substituted in
our shift-reduce-style parser, planarity is mamtalnegny proof net while maintaining well-formedness.

by a stack in the usual way (Morrill 2000). For dy- 14 f,ndamental insight explored in this paper is

hamic programming, we combine switch graphs i, 1o Jiterals may be connected by an axiom link

the C?”S in a Cocke-Kasami-Younger (CKY) parsef, 4 partial proof structure without violating DR-
(Morrill 1996).

o The_m.ain challgnge is enforCingacyclicity if and only if they are not connected in
DR-acyclicity, and this is the main focus of the "€Sthe normal switch graph for the partial proof struc-

of the paper. We introduce switch graphs, which nqf, e the normal switch graph arising from the ad-
only maintain DR-acyclicity, but also lead the WaYgition of an axiom link is easily computed. Itis just

to a normal form for well-formed subsequence fragg,q ¢|osyre generated by adding the new axiom link,
ments of a partial proof structure. This normal forquith the two literals being linked removed
underlies the packing of ambiguities in subderiva-

tions in exactly the same way as usual in dynamig.2 Shift-Reduce Parsing

programming parsing. In this section, we present the search space for a

. shift-reduce-style parsing algorithm based on switch
3.1 Switch Graphs graphs. The states in the search consist giohal
Switch graphs are based on the observation thatsgack of literals, alexical stack of literals, the re-
proof structure is DR-acyclic if and only if every cy- maining tokens to be processed, and the set of links
cle contains both edges ofgalink. If a cycle con- among nodes on the stacks in the switch graph. The
tains both edges of @-link, then any switching re- shift-reducesearch space is characterized by an ini-
moves the cycle. Thus if every cycle in a proof structial state and statgansitions. These are shown in
ture contains both edges opalink, every switching schematic form in Figure 8. Thigitial state con-
is acyclic. tains the output type’s literals and switch graph. A
The (initial) switch graph of a partial proof struc- lexical transition is from a state with an empty lexi-
ture is defined as the undirected graph underlyingal stack to one containing the lexical literals of the
the partial proof structure with edges labeled witthext token; the lexical entry’s switch graph merges
sets ofp-edge identifiers as indicated in Figures lwith the current one. Ahift transition pops a literal
and 3. Each edge in a logicatlink is labeled with from the lexical stack and pushes it onto the global
the singleton set containing an identifier of the linkstack. Areduce transition adds an axiom link be-
itself, eitherL; for the left link of p-link i or R for tween the top of the global stack and lexical stack
the right link of p-link i. Edges of axiom links and if they are complementary and are not connected in
logical ®-links are labeled with the empty set. the switch graph; the resulting switch graph results
The closure of a switch graph is computed by it- from adding the axiom link and normalizing. The
erating the following operation: if there is an edgestack discipline insures that all partial proof struc-
n; — ny labeled with seX; and an edge edge —n3 tures considered are planar.
labeled with seK; such thaiX; UX, does not contain ~ Figure 10 displays as rows the shift-reduce search

24

Stack Lex Sw-Gr Op Stack Lex Sw-Gr Op
AS AL G
A° gr(A°) start®) S L (Gei=j)-{i,j} reducef j)
S G AS BL G
S A" Gogr(A®) lex(w,A) BAS L G shift(B)
Figure 8: Shift-Reduce Parsing Schematic
N3 N3 N; Nz N3 Ng N; Nz
N/ A4 N/ N/
Ng Ni/N3 N3 N;\Ng Ng Ni/N3 N3 Na\N2
Figure 9: Maodifier Attachment Ambiguity Proof Nets
| Stack| Lex | Tok| Sw-Gr| Ax [Op | | Stack| Lex| Tok|Sw-Gr| Ax | Op
Ng start Ng start
NG [NSNS | wy | 1-2(} lex Ng | NJNS | wy | 1-2(} lex
- NS 0=1| reduce N7 Ng N5 1-2{} shift
N3 shift NSN$Ng 1-2(} shift
NS N3 | W lex NININg NS [we | 1-2{} lex
N3 N3 shift NI Ng 2=3 | reduce
N3NS [NgN2 | ws | 4-5(} lex NSNG | NgN2 | ws | 4-5() lex
NS Ng 3=4 | reduce Ng Ng 1=4| reduce
2=5| reduce 0=5 | reduce

Figure 10: Modifier Attachment Ambiguity Shift-Reduce Search States

25

states corresponding to the two valid proof netsved from the input polar tree rooted &f. This
shown in Figure 9. The subscripts on syntactic typgsolar tree yields a switch graph, which is always a
in the diagram is only so that they can be indexedalid lexical entry in the phrase structure grammar.
in the rows of the table describing the search stateAny result of axiom linking adjacent complemen-
The initial state in both searches is created from th@ry pairs of literals in the polar tree that maintains
output type’s literal. The third column of the dia- switch-graph acyclicity is also permitted. For in-
grams indicate the token consumed at each lexicatlance, allowing empty left-hand sides of sequents,
entry. The switch graphs are shown for the rowshe input typeA/(B/B)* would produce the literals
for which they're active. Because there aregmo A}B5B; with links 1-2 :{L3},1-3 : {Rs}. This could
links, all sets of edges are empty. The fifth columibe reduced by taking the axiom link=3, to pro-
shows the axiom linking made at each reduce stegduce the single node switch gragl). In contrast,
The history of these decisions and lexical insertioB/B)/A® produces the switch grapB}BjA; with
choices determines the final proof net. Finally, théinks 1-2, 1-3, and 2-3. Thus the complementary
sixth column shows the operation used to derive th@erals may not be linked.
result. Note that reduction is from the top of the lex- Given a pair of normal switch graphs, the binary
ical stack to the top of the global stack and is onlyule scheme provides a finite set of derived switch
allowed if the nodes to be linked are not connected igraphs. One or more complementary literals may be
the switch graph. This is whi; cannot reduce with axiom linked in a nested fashion at the borders of
N, in the second diagram in Figure 10; the seconboth switch graphs. These sequences are marked as
shift is mandatory at this point. Note that as active\ andA and their positions are given relative to the
nodes are removed, as in the first diagram reductiarther literals in the switch graph in Figure 11. Un-
step linking G=2, the switch graph contracts to justlinked combinations are not necessary because the
the unlinked nodes. After the reduction, oM is graph must eventually be connected. This scheme
unlinked, so there can be no switch graph links. This non-deterministic in choice @f. For instance, an
link between node 4 and 5 is similarly removed aladverb input N1\S2)/(N4\S3)* produces the literals
most as soon as it's introduced in the second redubl; SJSZN; and connections 1-2, 1484}, 1-4{R4},
tion step. In the second diagram, the switch grap®-3:{L4}, and 2-4R4}. When it combines with a
links persist as lexical literals are pushed onto theerb phrase inputls\Sg with literalsNz Sg and con-
stack. nections 5-6, then either the nominals may be linked
Shift-reduce parses stand in one-to-one corrg¢4=5), or the nominals and sentential literals may be
spondence with proof nets. The shift and reduce oflinked (4=5, 3=6). The result of the single linking is
erations may be read directly from a proof net byN;S5S;Sg with connections 1-2, 1-8.4}, 1-6{R4},
working left to right through the literals. Between2-3{L,}, and 2-6{R4}. The result of the double link-
literals, the horizontal axiom links represent literalsng is simplyN;Sg with connection 1-6, or in other
on the stack. Literals in the current lexical syntacwords, a verb phrase.
tic type represent the lexical stack. Literals that are The dynamic programming equality condition is
shifted to the global stack eventually reduce by axthat two analyses are considered equal if they lead
iom linking with a literal to the right; literals that are to the same normalized switch graphs. This equality
reduced from the lexical stack axiom link to theiris only considered up to the renaming of nodes and
left with a literal on the global stack. edges. Backpointers to derivations allow semantic
readings to be packed in the form of lexical choices
and axiom linkings. For instance, consider the two
Using switch graphs, we reduce associative Lanparses in Figure 12.
bek calculus parsing to an infinite binary phrase- With a finite set of lexical entries, bottom-up
structure grammar, where the non-terminals ammemoized parsing schemes will terminate. We illus-
normalized switch graphs. The phrase structurieate two derivations of a simple subject-verb-object
schemes are shown in Steedman notation in Figonstruction in Figure 13. This is a so-callgalri-
ure 11. Lexical entries for syntactic typgeare de- ous ambiguity because the two derivations produce

3.3 Memoized Parsing

26

W I A AT

lex Lex(w, A), and e, . .
A A® has switch graph A=A | A=A,,....A,
c w. literals A, links G Il AR =iy inerin = |
GuGe(a=8) T Ty noan
Figure 11: Phrase-Structure Schemes over Switch Graphs
b:N3 C:N4\Ns a:N;/N, b:N3
Ny /N, b:N3 y:N; fgy):Ng a(x):l\ll;2 X:N3 b:N3 NG N
. 3=4 - 2=3
a(x):N; x:N; c(b):Nz2 a(b):N; y:Njc(y):N:
1-2 o5 4-5 124
a(b(c)):N; c(a(b)):Ng

Figure 12: Modifier Attachment Ambiguity Packing

the same semantic term. They are not spurious glofPentus 1997).
ally because the alternative linkings are required for
adverbial modification and object relativization re-34
spectively. The ambiguity in the phrase structuréambek’s calculus required the antecedéntn
grammar results from the associativity of the combia sequentl’ = « : A to be non-empty.
nation of axiom linkings. The two derivations do notProof nets derive theorems= CN/CN) and
propagate their ambiguity under the dynamic prorf(CN/CN)/(CN/CN) = CN/CN), as shown in Fig-
gramming scheme precisely because they produtee 15. These derivations both allow the construc-
equivalent results. Nevertheless, a worthwhile optiion of an output, namely the identity terax.x and
mization is to restrict the structure of combinationgnodifier syntactic typ€N/CN, out of no input.
of linkings in the phrase-structure schemes to corre- A literal A is said tosubtend a complementary
spond to an unambiguous left-most linking strategyliteral A if they are the leftmost and rightmost de-
this corresponds to the way in which other associscendants of g-link. In both of the examples in
tive operators are parsed in programming languagBigure 15, the output adjecti@&N/CN° unfolds to
For instancex+y+zwill be assumed to be+(y+2) the sequence of literalBN*CN° in which the input
if + is defined to be right associative. CN°* subtends the outp@Nr°. If literals that stand

An unambiguous right-associative context-fredn @ subtending relation are never linked, the set of
grammar for linkingsM over literalsA and their theorems s restricted to those derivable in Lambek’s
Comp|ementg_\ is: original calculus.

_ _ _ . Consider the proof net in Figure 16. An analysis
M- AA | AMA | AAM | AMAM in which S linked to S}, andNg linked to N is

An example of packing for subjgobject scope am- not ruled out by Danos-Regnier acyclicity. Itis ruled

biguities is shown in Figure 14. The derivations2UtPy the subtending condition becagesubtends
in Figure 14 produce dierent semantic interpreta- Si» P€ING the leftmost and right most daughters of

Empty Antecedents and Subtending

1
tions; one of these is subject-wide scope and tH9€ 9-node Nio\S11)\(Ne\Sg)°. Further note that
other object-wide scope. Unsurprisingly, the memtl€re are no cycles violating DR acyclicity; each of
oizing parser does not solfe= NP in the dfirmi- e Sixteen switchings is acyclic.

tive I(Pentus 2003). The size of the switch graphs %% conclusion

the intermediate structures is not bounded, nor is the

number of alternative switch-paths between literaldVe have introduced switch graphs for shift-reduce
It remains an open question as to whether the swit@nd CKY-style parsing of grammars in the asso-
graph parser could be bounded for a fixed lexiconiative Lambek calculus. Switch graphs encode

27

N (N\S)/N (N\S))N N

NS NS SYNg N3 S3Ng Ng N S3
2-32-4,3-4 N N 2-3,2-4,3-4 N ® S
- a5 NS N
Sz N, N3 N7 N3 S5 - (N\\ g)jN' A
3-4 - 2-3 o 1 2\ 93]/ Ny 5
S3 S3

Figure 13: Left vs. Right Attachment: Packing Locally Spurious Attachmembiguity

s 0 I

S N3Ny sl NS s N3N Sy | N:Sg

8 7 8
\v/ \®/ \»/ \v/ \®/ \v/

ST Na\S; NAST N; Sg/No S ST Na\S; NAS: N; Se/No S
\e/ \e/ \e/ \e/ \e/ \e/
S1/(N3\S2)* (N4\Ss)/N¢g (Ss/N7)\Sg S1/(N3\Syp)* (N4\S5)/Ng (Ss/N7)\Sg

SISINg NISINg NoSING N:S;S;
1-24Ls), 1-3{Rs) 4-5,4-656 4-54-656 7-94L7),8-9{Ry)
SINg N;S:S; SISINg N;S;

1-6 7-94L7), 8-94R7) 1-24L3), 1-3{Rs) 4-9
Ss St

Figure 14: Scope Ambiguity: Partial Proof Structure Fragments with PlStseture

]
X :CN*® CN°

AN y(AxX)W) : CN* CNe x: CN* CN®
Ax.x : CN/CN° N® NS
w: CN* CN° y(Ax.X) : CN/CN* AX.X: CN/CN°
AWY(AX.x)(w) : CN/CN®° y: (CN/CN)/(CN/CN)*

Figure 15: Subtending Examples

28

—

[
[
[
[
[
\
N: N S

:
:

:

:

:

| Ss° 7 Sg Ny Ny Si

. \»/ \e/ \9/ \®/

: NAS; NelS; Na\S; Ni\SH, Sp, Np N Sig
| e NS \9/ \®/
| N; S5 (N5\Sa)\(Ne\S?)* (N10\S11)\(No\Sg)° Ni13\S{, N14\S},
| ey L X

Sg NI N2\S3 ((N5\S4)\(N6\S7))/((N10\S11)\(Ng\Sg))* (N13\S12)\(N14\S15)*

Figure 16: Higher-Order Example: Adverbial Intensifier

the axiom-linking possibilities of a sequence of unR. Montague. 1970. Universal grammarTheoria,
linked literals deriving from underlying polar trees. 36:373-398.

We introduced two parsers based on switch graphg; pmorrill. 1996. Memoisation of categorial proof nets:
The shift-reduce parsers are memofiicient and parallelism in categorial processing. Technical Re-
parses correspond uniquely to (cut free) proof nets. port LSI-96-24-R, Dept. de Llenguatges i Sistemes In-
They can be made mordfieient by bounding stack formatics, Universitat Polétcnica de Catalunya.

size. The memoizing parsers are able to pack attacl- morrill. 2000. Incremental processing and accept-
ment and scope distinctions that lead tfietientA- ability. Comput. Ling., 26(3):319-338.

terms but have the same combinatory pOSSIbIlItIeS.M. Pentus. 1995. Models for the Lambek calculde:

nals of Pure and Applied Logic, 75(1-2):179-213.

References M. Pentus. 1997. Product-free Lambek calculus and

D. Bechet. 2003. Incremental parsing of lambek calculus ggn;exg:gezfsgorammars.JournaJ of Symbolic Logic,
using proof-net interfaces. Proc. of the 8th Interna- (2):648-660.

tional Workshop on Parsing Technologies. M. Pentus. 2003. Lambek calculus is NP-complete.
V. Danos and L. Regnier. 1989. The structure of multi- €chnical Report TR-203005, CUNY Graduate Cen-
plicatives.Arch. Math. Logic, 28:181-203. ter.

P. de Groote and C. Refar1996. On the semantic read-D. Roorda. 1991. Resource logics: Proof-theoretical
ings of proof nets. IProc. of Formal Grammar, pages investigations. Ph.D. thesis, Universiteit van Amster-
57-70. dam.

M. Faddo and G. Morrill. 2005. The Lambek calculus
with brackets. In P. Scott, C. Casadio, and R. Seely,
editors, Language and Grammar: Studies in Math.
Ling. and Nat. Lang. CSLI Press, Stanford.

J.-Y. Girard. 1987. Linear logicTheoret. Comput. <ci.,
50:1-102.

F. Lamarche. 1994. Proof nets for intuitionistic linear
logic I: Essential nets. Technical report, Imperial Col-
lege, London.

J. Lambek. 1958. The mathematics of sentence structure.
Amer. Math. Mon., 65:154-170.

29

