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Abstract

This paper presents the results of a large-
scale effort to construct a comprehensive
database of known human protein inter-
actions by combining and linking known
interactions from existing databases and
then adding to them by automatically min-
ing additional interactions from 750,000
Medline abstracts. The end result is a
network of 31,609 interactions amongst
7,748 proteins. The text mining sys-
tem first identifies protein names in the
text using a trained Conditional Random
Field (CRF) and then identifies interac-
tions through a filtered co-citation anal-
ysis. We also report two new strategies
for mining interactions, either by finding
explicit statements of interactions in the
text using learned pattern-based rules or
a Support-Vector Machine using a string
kernel. Using information in existing on-
tologies, the automatically extracted data
is shown to be of equivalent accuracy to
manually curated data sets.

1 Introduction

Proteins are often considered in terms of their net-
works of interactions, a view that has spurred con-
siderable effort in mapping large-scale protein in-
teraction networks. Thus far, the most complete
protein networks are measured for yeast and de-
rive from the synthesis of varied large scale experi-

mental interaction data and in-silico interaction pre-
dictions (summarized in (von Mering et al., 2002;
Lee et al., 2004; Jansen et al., 2003)). Unlike the
case of yeast, only minimal progress has been made
with respect to the human proteome. While some
moderate-scale interaction maps have been created,
such as for the purified TNFa/NFKB protein com-
plex (Bouwmeester et al., 2004) and the proteins in-
volved in the human Smad signaling pathway (Col-
land et al., 2004), the bulk of known human pro-
tein interaction data derives from individual, small-
scale experiments reported in Medline. Many of
these interactions have been collected in the Reac-
tome (Joshi-Tope et al., 2005), BIND (Bader et al.,
2003), DIP (Xenarios et al., 2002), and HPRD (Peri
et al., 2004) databases, with Reactome contributing
11,000 interactions that have been manually entered
from articles focusing on interactions in core cellular
pathways, and HPRD contributing a set of 12,000
interactions recovered by manual curation of Med-
line articles using teams of readers. Additional inter-
actions have been transferred from other organisms
based on orthology (Lehner and Fraser, 2004).

A comparison of these existing interaction data
sets is enlightening. Although the interactions from
these data sets are in principle derived from the same
source (Medline), the sets are quite disjoint (Fig-
ure 1) implying either that the sets are biased for
different classes of interactions, or that the actual
number of interactions in Medline is quite large.
We suspect both reasons. It is clear that each data
set has a different explicit focus (Reactome towards
core cellular machinery, HPRD towards disease-
linked genes, and DIP and BIND more randomly
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distributed). Due to these biases, it is likely that
many interactions from Medline are still excluded
from these data sets. The maximal overlap between
interaction data sets is seen for BIND: 25% of these
interactions are also in HPRD or Reactome; only 1%
of Reactome interactions are in HPRD or BIND.

Figure 1: Overlap diagram for known datasets.

Medline now has records from more than 4,800
journals accounting for around 15 million articles.
These citations contain thousands of experimentally
recorded protein interactions, and even a cursory in-
vestigation of Medline reveals human protein inter-
actions not present in the current databases. How-
ever, retrieving these data manually is made diffi-
cult by the large number of articles, all lacking for-
mal structure. Automated extraction of informa-
tion would be preferable, and therefore, mining data
from Medline abstracts is a growing field (Jenssen
et al., 2001; Rzhetsky et al., 2004; Liu and Wong,
2003; Hirschman et al., 2002).

In this paper, we describe a framework for
automatic extraction of protein interactions from
biomedical literature. We focus in particular on the
difficult and important problem of identifying inter-
actions concerning human proteins. We describe a
system for first accurately identifying the names of
human proteins in the documents, then on identify-
ing pairs of interacting human proteins, and demon-
strate that the extracted protein interactions are com-
parable to those extracted manually. In the pro-
cess, we consolidate the existing set of publically-
available human protein interactions into a network
of 31,609 interactions between 7,748 proteins.

2 Assembling existing protein interaction
data

We previously gathered the existing human protein
interaction data sets ((Ramani et al., 2005); sum-
marized in Table 1), representing the current sta-
tus of the publically-available human interactome.
This required unification of the interactions under
a shared naming and annotation convention. For
this purpose, we mapped each interacting protein
to LocusLink (now EntrezGene) identification num-
bers and retained only unique interactions (i.e., for
two proteins A and B, we retain only A–B or B–A,
not both). We have chosen to omit self-interactions,
A–A or B–B, for technical reasons, as their qual-
ity cannot be assessed on the functional benchmark
that we describe in Section 3. In most cases, a small
loss of proteins occurred in the conversion between
the different gene identifiers (e.g., converting from
the NCBI ’gi’ codes in BIND to LocusLink iden-
tifiers). In the case of Human Protein Reference
Database (HPRD), this processing resulted in a sig-
nificant reduction in the number of interactions from
12,013 total interactions to 6,054 unique, non-self
interactions, largely due to the fact that HPRD often
records both A-B and B-A interactions, as well as a
large number of self interactions, and indexes genes
by their common names rather than conventional
database entries, often resulting in multiple entries
for different synonyms. An additional 9,283 (or
60,000 at lower confidence) interactions are avail-
able from orthologous transfer of interactions from
large-scale screens in other organisms (orthology-
core and orthology-all) (Lehner and Fraser, 2004).

3 Two benchmark tests of accuracy for
interaction data

To measure the relative accuracy of each protein in-
teraction data set, we established two benchmarks
of interaction accuracy, one based on shared protein
function and the other based on previously known
interactions. First, we constructed a benchmark in
which we tested the extent to which interaction part-
ners in a data set shared annotation, a measure previ-
ously shown to correlate with the accuracy of func-
tional genomics data sets (von Mering et al., 2002;
Lee et al., 2004; Lehner and Fraser, 2004). We
used the functional annotations listed in the KEGG
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Dataset Version Total Is (Ps) Self (A-A) Is (Ps) Unique (A-B) Is (Ps)

Reactome 08/03/04 12,497 (6,257) 160 (160) 12,336 (807)
BIND 08/03/04 6,212 (5,412) 549 (549) 5,663 (4,762)
HPRD* 04/12/04 12,013 (4,122) 3,028 (3,028) 6,054 (2,747)
Orthology (all) 03/31/04 71,497 (6,257) 373 (373) 71,124 (6,228)
Orthology (core) 03/31/04 11,488 (3,918) 206 (206) 11,282 (3,863)

Table 1:Is = Interactions, Ps= Proteins.

(Kanehisa et al., 2004) and Gene Ontology (Ash-
burner et al., 2000) annotation databases. These
databases provide specific pathway and biological
process annotations for approximately 7,500 human
genes, assigning human genes into 155 KEGG path-
ways (at the lowest level of KEGG) and 1,356 GO
pathways (at level 8 of the GO biological process
annotation). KEGG and GO annotations were com-
bined into a single composite functional annotation
set, which was then split into independent testing
and training sets by randomly assigning annotated
genes into the two categories (3,800 and 3,815 anno-
tated genes respectively). For the second benchmark
based on known physical interactions, we assembled
the human protein interactions from Reactome and
BIND, a set of 11,425 interactions between 1,710
proteins. Each benchmark therefore consists of a
set of binary relations between proteins, either based
on proteins sharing annotation or physically inter-
acting. Generally speaking, we expect more accu-
rate protein interaction data sets to be more enriched
in these protein pairs. More specifically, we expect
true physical interactions to score highly on both
tests, while non-physical or indirect associations,
such as genetic associations, should score highly on
the functional, but not physical interaction, test.

For both benchmarks, the scoring scheme for
measuring interaction set accuracy is in the form of
a log odds ratio of gene pairs either sharing anno-
tations or physically interacting. To evaluate a data
set, we calculate a log likelihood ratio (LLR) as:LLR = ln P (DjI)P (Dj:I) = lnP (IjD)P (:I)P (:IjD)P (I) (1)

where P (DjI) and P (Dj:I) are the probability
of observing the dataD conditioned on the genes
sharing benchmark associations (I) and not sharing
benchmark associations (:I). In its expanded form

(obtained by applying Bayes theorem),P (IjD) andP (:IjD) are estimated using the frequencies of in-
teractions observed in the given data setD between
annotated genes sharing benchmark associations and
not sharing associations, respectively, while the pri-
orsP (I) andP (:I) are estimated based on the to-
tal frequencies of all benchmark genes sharing the
same associations and not sharing associations, re-
spectively. A score of zero indicates interaction part-
ners in the data set being tested are no more likely
than random to belong to the same pathway or to in-
teract; higher scores indicate a more accurate data
set.

Among the literature-derived interactions (Reac-
tome, BIND, HPRD), a total of 17,098 unique in-
teractions occur in the public data sets. Testing the
existing protein interaction data on the functional
benchmark reveals that Reactome has the highest
accuracy (LLR = 3.8), followed by BIND (LLR =
2.9), HPRD (LLR = 2.1), core orthology-inferred in-
teractions (LLR = 2.1) and the non-core orthology-
inferred interaction (LLR = 1.1). The two most
accurate data sets, Reactome and BIND, form the
basis of the protein interaction–based benchmark.
Testing the remaining data sets on this benchmark
(i.e., for their consistency with these accurate pro-
tein interaction data sets) reveals a similar ranking in
the remaining data. Core orthology-inferred interac-
tions are the most accurate (LLR = 5.0), followed by
HPRD (LLR = 3.7) and non-core orthology inferred
interactions (LLR = 3.7).

4 Framework for Mining Protein–Protein
Interactions

The extraction of interacting proteins from Medline
abstracts proceeds in two separate steps:

1. First, we automatically identify protein names
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using a CRF system trained on a set of 750
abstracts manually annotated for proteins (see
Section 5 for details).

2. Based on the output of the CRF tagger, we fil-
ter out less confident extractions and then try to
detect which pairs of the remaining extracted
protein names are interaction pairs.

For the second step, we investigate two general
methods:� Use co-citation analysis to score each pair of

proteins based on the assumption that proteins
co-occurring in a large number of abstracts tend
to be interacting proteins. Out of the resulting
protein pairs we keep only those that co-occur
in abstracts likely to discuss interactions, based
on a Naive Bayes classifier (see Section 6 for
details).� Given that we already have a set of 230 Med-
line abstracts manually tagged for both proteins
and interactions, we can use it to train an inter-
action extractor. In Section 7 we discuss two
different methods for learning this interaction
extractor.

5 A CRF Tagger for Protein Names

The task of identifying protein names is made diffi-
cult by the fact that unlike other organisms, such as
yeast or E. coli, the human genes have no standard-
ized naming convention, and thus present one of the
hardest sets of gene/protein names to extract. For
example, human proteins may be named with typ-
ical English words, such as ”light”, ”map”, ”com-
plement”, and ”Sonic Hedgehog”. It is therefore
necessary that an information extraction algorithm
be specifically trained to extract gene and protein
names accurately.

We have previously described (Bunescu et al.,
2005) effective protein and gene name tagging us-
ing a Maximum Entropy based algorithm. Condi-
tional Random Fields (CRF) (Lafferty et al., 2001)
are new types of probabilistic models that preserve
all the advantages of Maximum Entropy models and
at the same time avoid the label bias problem by al-
lowing a sequence of tagging decisions to compete
against each other in a global probabilistic model.

In both training and testing the CRF protein-name
tagger, the corresponding Medline abstracts were
processed as follows. Text was tokenized using
white-space as delimiters and treating all punctua-
tion marks as separate tokens. The text was seg-
mented into sentences, and part-of-speech tags were
assigned to each token using Brill’s tagger (Brill,
1995). For each token in each sentence, a vector of
binary features was generated using the feature tem-
plates employed by the Maximum Entropy approach
described in (Bunescu et al., 2005). Generally, these
features make use of the words occurring before and
after the current position in the text, their POS tags
and capitalization patterns. Each feature occurring
in the training data is associated with a parameter in
the CRF model. We used the CRF implementation
from (McCallum, 2002). To train the CRF’s parame-
ters, we used 750 Medline abstracts manually anno-
tated for protein names (Bunescu et al., 2005). We
then used the trained system to tag protein and gene
names in the entire set of 753,459 Medline abstracts
citing the word “human”.

In Figure 2 we compare the performance of the
CRF tagger with that of the Maximum Entropy tag-
ger from (Bunescu et al., 2005), using the same
set of features, by doing 10-fold cross-validation on
Yapex – a smaller dataset of 200 manually annotated
abstracts (Franzen et al., 2002). Each model assigns
to each extracted protein name a normalized confi-
dence value. The precision–recall curves from Fig-
ure 2 are obtained by varying a threshold on the min-
imum accepted confidence. We also plot the preci-
sion and recall obtained by simply matching textual
phrases against entries from a protein dictionary.
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Figure 2: Protein Tagging Performance.
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The dictionary of human protein names was
assembled from the LocusLink and Swissprot
databases by manually curating the gene names
and synonyms (87,723 synonyms between 18,879
unique gene names) to remove genes that were re-
ferred to as ’hypothetical’ or ’probable’ and also to
omit entries that referred to more than one protein
identifier.

6 Co-citation Analysis and Bayesian
Classification

In order to establish which interactions occurred
between the proteins identified in the Medline ab-
stracts, we used a 2-step strategy: measure co-
citation of protein names, then enrich these pairs for
physical interactions using a Bayesian filter. First,
we counted the number of abstracts citing a pair of
proteins, and then calculated the probability of co-
citation under a random model based on the hyper-
geometric distribution (Lee et al., 2004; Jenssen et
al., 2001) as:P (kjN;m; n) = � nk �� N � nm� k �� Nm � (2)

whereN equals the total number of abstracts,n of
which cite the first protein,m cite the second pro-
tein, andk cite both.

Empirically, we find the co-citation probability
has a hyperbolic relationship with the accuracy on
the functional annotation benchmark from Section 3,
with protein pairs co–cited with low random proba-
bility scoring high on the benchmark.

With a threshold on the estimated extraction con-
fidence of 80% (as computed by the CRF model)
in the protein name identification, close to 15,000
interactions are extracted with the co-citation ap-
proach that score comparable or better on the func-
tional benchmark than the manually extracted inter-
actions from HPRD, which serves to establish a min-
imal threshold for our mined interactions.

However, it is clear that proteins are co-cited for
many reasons other than physical interactions. We
therefore tried to enrich specifically for physical in-
teractions by applying a secondary filter. We applied
a Bayesian classifier (Marcotte et al., 2001) to mea-
sure the likelihood of the abstracts citing the pro-

tein pairs to discuss physical protein–protein inter-
actions. The classifier scores each of the co-citing
abstracts according to the usage frequency of dis-
criminating words relevant to physical protein inter-
actions. For a co-cited protein pair, we calculated
the average score of co-citing Medline abstracts and
used this to re-rank the top-scoring 15,000 co-cited
protein pairs.

Interactions extracted by co-citation and filtered
using the Bayesian estimator compare favorably
with the other interaction data sets on the functional
annotation benchmark (Figure 3). Testing the accu-
racy of these extracted protein pairs on the physi-
cal interaction benchmark (Figure 4) reveals that the
co-cited proteins scored high by this classifier are
indeed strongly enriched for physical interactions.
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Figure 4: Accuracy, physical benchmark

Keeping all the interactions that score better than
HPRD, our co-citation / Bayesian classifier analy-
sis yields 6,580 interactions between 3,737 proteins.
By combining these interactions with the 26,280 in-
teractions from the other sources, we obtained a fi-
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nal set of 31,609 interactions between 7,748 human
proteins.

7 Learning Interaction Extractors

In (Bunescu et al., 2005) we described a dataset of
230 Medline abstracts manually annotated for pro-
teins and their interactions. This can be used as a
training dataset for a method that learns interaction
extractors. Such a method simply classifies a sen-
tence containing two protein names as positive or
negative, where positive means that the sentence as-
serts an interaction between the two proteins. How-
ever a sentence in the training data may contain more
than two proteins and more than one pair of inter-
acting proteins. In order to extract the interacting
pairs, we replicate the sentences havingn proteins
(n � 2) into Cn2 sentences such that each one has
exactly two of the proteins tagged, with the rest of
the protein tags omitted. If the tagged proteins in-
teract, then the replicated sentence is added to the
set of positive sentences, otherwise it is added to the
set of negative sentences. During testing, a sentence
havingn proteins (n � 2) is again replicated intoCn2 sentences in a similar way.

7.1 Extraction using Longest Common
Subsequences (ELCS)

Blaschke et al. (Blaschke and Valencia, 2001;
Blaschke and Valencia, 2002) manually developed
rules for extracting interacting proteins. Each of
their rules (or frames) is a sequence of words (or
POS tags) and two protein-name tokens. Between
every two adjacent words is a number indicating
the maximum number of intervening words allowed
when matching the rule to a sentence. In (Bunescu
et al., 2005) we described a new method ELCS (Ex-
traction using Longest Common Subsequences) that
automatically learns such rules. ELCS’ rule repre-
sentation is similar to that in (Blaschke and Valen-
cia, 2001; Blaschke and Valencia, 2002), except that
it currently does not use POS tags, but allows dis-
junctions of words. Figure 5 shows an example of a
rule learned by ELCS. Words in square brackets sep-
arated by ‘j’ indicate disjunctive lexical constraints,
i.e. one of the given words must match the sen-
tence at that position. The numbers in parentheses
between adjacent constraints indicate the maximum

number of unconstrained words allowed between the
two (called aword gap). The protein names are de-
noted here with PROT. A sentence matches the rule
if and only if it satisfies the word constraints in the
given order and respects the respective word gaps.

- (7) interaction (0) [betweenj of] (5) PROT (9) PROT (17) .

Figure 5: Sample extraction rule learned by ELCS.

7.2 Extraction using a Relation Kernel (ERK)

Both Blaschke and ELCS do interaction extraction
based on a limited set of matching rules, where a rule
is simply a sparse (gappy) subsequence of words (or
POS tags) anchored on the two protein-name tokens.
Therefore, the two methods share a common limita-
tion: either through manual selection (Blaschke), or
as a result of the greedy learning procedure (ELCS),
they end up using only a subset of all possible an-
chored sparse subsequences. Ideally, we would want
to use all such anchored sparse subsequences as fea-
tures, with weights reflecting their relative accuracy.
However explicitly creating for each sentence a vec-
tor with a position for each such feature is infeasi-
ble, due to the high dimensionality of the feature
space. Here we can exploit an idea used before in
string kernels (Lodhi et al., 2002): computing the
dot-product between two such vectors amounts to
calculating the number of common anchored sub-
sequences between the two sentences. This can be
done very efficiently by modifying the dynamic pro-
gramming algorithm from (Lodhi et al., 2002) to ac-
count only for anchored subsequences i.e. sparse
subsequences which contain the two protein-name
tokens. Besides restricting the word subsequences
to be anchored on the two protein tokens, we can
further prune down the feature space by utilizing the
following property of natural language statements:
whenever a sentence asserts a relationship between
two entity mentions, it generally does this using one
of the following three patterns:� [FI] F ore–Inter: words before and between the

two entity mentions are simultaneously used to
express the relationship. Examples: ’interac-
tion of hP1i with hP2i’, ’activation of hP1i byhP2i’.
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� [I] I nter: only words between the two entity
mentions are essential for asserting the rela-
tionship. Examples: ’hP1i interacts withhP2i’,
’hP1i is activated byhP2i’.� [IA] I nter–After: words between and after the
two entity mentions are simultaneously used
to express the relationship. Examples:hP1i –hP2i complex’, ’hP1i andhP2i interact’.

Another useful observation is that all these pat-
terns use at most 4 words to express the relationship
(not counting the two entities). Consequently, when
computing the relation kernel, we restrict the count-
ing of common anchored subsequences only to those
having one of the three types described above, with a
maximum word-length of 4. This type of feature se-
lection leads not only to a faster kernel computation,
but also to less overfitting, which results in increased
accuracy (we omit showing here comparative results
supporting this claim, due to lack of space).

We used this kernel in conjunction with Support
Vector Machines (Vapnik, 1998) learning in or-
der to find a decision hyperplane that best separates
the positive examples from negative examples. We
modified thelibsvm package for SVM learning by
plugging in the kernel described above.

7.3 Preliminary experimental results

We compare the following three systems on the task
of retrieving protein interactions from the dataset of
230 Medline abstracts (assuming gold standard pro-
teins):� [Manual] : We report the performance of the

rule-based system of (Blaschke and Valencia,
2001; Blaschke and Valencia, 2002).� [ELCS] : We report the 10-fold cross-validated
results from (Bunescu et al., 2005) as a
precision-recall graph.� [ERK] : Based on the same splits as those
used by ELCS, we compute the corresponding
precision-recall graph.

The results, summarized in Figure 6, show that
the relation kernel outperforms both ELCS and the
manually written rules. In future work, we intend

to analyze the complete Medline with ERK and in-
tegrate the extracted interactions into a larger com-
posite set.
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Figure 6: PR curves for interaction extractors.

8 Conclusion

Through a combination of automatic text mining and
consolidation of existing databases, we have con-
structed a large database of known human protein
interactions containing 31,609 interactions amongst
7,748 proteins. By mining 753,459 human-related
abstracts from Medline with a combination of a
CRF-based protein tagger, co-citation analysis, and
automatic text classification, we extracted a set of
6,580 interactions between 3,737 proteins. By uti-
lizing information in existing knowledge bases, this
automatically extracted data was found to have an
accuracy comparable to manually developed data
sets. More details on our interaction database have
been published in the biological literature (Ramani
et al., 2005) and it is available on the web at
http://bioinformatics.icmb.utexas.edu/idserve. We
are currently exploring improvements to this
database by more accurately identifying assertions
of interactions in the text using an SVM that exploits
a relational string kernel.
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