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Abstract 
Gene and protein named-entity recognition (NER) and 
normalization is often treated as a two-step process. 
While the first step, NER, has received considerable 
attention over the last few years, normalization has 
received much less attention. We have built a dictionary 
based gene and protein NER and normalization system 
that requires no supervised training and no human 
intervention to build the dictionaries from online 
genomics resources. We have tested our system on the 
Genia corpus and the BioCreative Task 1B mouse and 
yeast corpora and achieved a level of performance 
comparable to state-of-the-art systems that require 
supervised learning and manual dictionary creation. Our 
technique should also work for organisms following 
similar naming conventions as mouse, such as human. 
Further evaluation and improvement of gene/protein 
NER and normalization systems is somewhat hampered 
by the lack of larger test collections and collections for 
additional organisms, such as human. 

1 Introduction 
In the genomics era, the field of biomedical research 
finds itself in the ironic situation of generating new 
information more rapidly than ever before, while at the 
same time individual researchers are having more 
difficulty getting the specific information they need. 
This hampers their productivity and efficiency. Text 
mining has been proposed as a means to assist 
researchers in handling the current expansion of the 
biomedical knowledge base (Hirschman et al., 2002). 
Fundamental tasks in text mining are named entity 
recognition (NER) and normalization. NER is the 
identification of text terms referring to items of interest, 
and normalization is the mapping of these terms to the 
unique concept to which they refer. Once the concepts 
of interest are identified, text mining can proceed to 
extract facts and other relationships of interest that 
involve these recognized entities. With the current 
research focus on genomics, identifying genes and 
proteins in biomedical text has become a fundamental 
problem in biomedical text mining research (Cohen and 
Hersh, 2005). The goal of our work here is to explore 
the potential of using curated genomics databases for 
dictionary-based NER and normalization. These 
databases contain a large number of the names, 
symbols, and synonyms and would likely enable 

recognition of a wide range of genes on a wide range of 
literature without corpus-specific training. 
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Gene and protein NER and normalization can be 
viewed as a two-step process. The first step, NER, 
identifies the strings within a sample of text that refer to 
genes and proteins. The second step, normalization, 
determines the specific genes and proteins referred to by 
the text strings. 

Many investigators have examined the initial step of 
gene and protein NER. One of the most successful 
rules-based approaches to gene and protein NER in 
biomedical texts has been the AbGene system (Tanabe 
and Wilbur, 2002), which has been used by several 
other researchers. After training on hand-tagged 
sentences from biomedical text, it applies a Brill-style 
tagger (Brill, 1992) and manually generated post-
processing rules. AbGene achieves a precision of 85.7% 
at a recall of 66.7% (F1 = 75%). Another successful 
system is GAPSCORE (Chang et al., 2004). It assigns a 
numeric score to each word in a sentence based on 
appearance, morphology, and context of the word and 
then applies a classifier trained on these features. After 
training on the Yapex corpus (Franzen et al., 2002), the 
system achieved a precision of 81.5% at a recall of 
83.3% for partial matches. 

For many applications of text mining, the second step, 
normalization is as important as the first step. Many 
biomedical concepts, including genes and proteins, have 
large numbers of synonymous terms (Yu and Agichtein, 
2003, Tuason et al., 2004). Without normalization, 
different terms for the same concept are treated as 
distinct items, which can distort statistical and other 
analysis. Normalization can aggregate references a 
given gene or protein and can therefore increase the 
sample size for concepts with common synonyms. 
However, normalization of gene and protein references 
has not received as much attention as the NER step. 

One recent conference, the BioCreative Critical 
Assessment for Information Extraction in Biology 
(Krallinger, 2004), had a challenge task that addressed 
gene and protein normalization. The task was to identify 
the specific genes mentioned in a set of abstracts given 
that the organism of interest was mouse, fly, or yeast. 
Training and test collections of about 250 abstracts were 
manually prepared and made available to the 
participants along with synonym lists. Seven groups 
participated in this challenge task (Hirschman et al., 
2004),  with the best F-measures ranging from 92.1% on 
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yeast to 79.1% on mouse. The overall best performing 
system used a combination of hand built dictionaries, 
approximate string matching, and parameter tuning 
based on the training data, and performed match 
disambiguation using a collection of biomedical 
abbreviations combined with approximate string match 
scoring and preferring concepts with a high count of 
occurring terms (Hanisch et al., 2004). 

 One thing that almost all of these systems have in 
common is that they need to be trained on a text corpus 
and/or use manually built dictionaries based on the 
training corpus. Since the training corpus may be a 
small sample of the total relevant biomedical literature, 
it is uncertain how the performance of these systems 
will change over time or when applied to other sources 
of biomedical text. Also, since new genes and proteins 
are being described all the time, it is unclear how these 
systems will handle genes discovered after system 
training is complete. This is may especially be a 
problem for normalization. 

Dictionary-based approaches to gene and protein NER 
and normalization that require no training have several 
advantages over orthographic, lexical, and contextual 
based approaches. Currently there are few test 
collections for gene and protein normalization, and they 
are relatively small (Hirschman et al., 2004). 
Unsupervised systems therefore may perform more 
uniformly over different data sets and over time for the 
near future. Since they are not dependent upon training 
to discover local orthographic or lexigraphic clues, they 
can recognize long multi-word names as easily as short 
forms. Dictionary-based approaches can also normalize 
gene and protein names, reducing many synonyms and 
phrases representing the same concept to a single 
identifier for that gene or protein.  

In addition, dictionary-based approaches can make 
use of the huge amount of information in curated 
genomics databases. Currently, there is an enormous 
amount of manual curation activity related to gene and 
protein function. Several genomics databases contain 
large amounts of curated gene and protein name 
symbols as well as full names. Groups such as the 
Human Genome Organisation (HUGO), Mouse Genome 
Institute (MGI), UniProt, and the National Center for 
Biotechnology Information (NCBI) collect and organize 
information on gene and proteins, much of it from the 
biomedical literature, including gene names, symbols, 
and synonyms. Dictionary-based approaches provide a 
way to make use of this information for gene and 
protein NER and normalization. As the databases are 
updated by the curating organization, a NER system 
based on these databases can automatically incorporate 
additional new names and symbols. These approaches 
can also be very fast. Much of the computation can be 

performed during the construction of the dictionary. 
This can leave the actual searching for dictionary terms 
a simple and rapid process. 

Tsuruoka and Tsujii recently studied the use of 
dictionary-based approaches for protein name 
recognition (Tsuruoka and Tsujii, 2004), although they 
did not evaluate the normalization performance. They 
applied a probabilistic term variant generator to expand 
the dictionary, and a Bayesian contextual filter with a 
sub-sentence window size to classify the terms in the 
GENIA corpus as likely to represent protein names. 
Overall they obtained a precision of 71.1%, at a recall of 
62.3% and an F-measure of 66.6%. Tsuruoka and Tsujii 
did not make use of curated database information, and 
instead split the GENIA corpus into training and test 
data sets of 1800 and 200 abstracts respectively, and 
extracted the tagged protein names from the training set 
to use as a dictionary. These results compare well to, 
being a bit below, other non-dictionary based methods 
applied to the GENIA corpus (Lee et al., 2004, Zhou et 
al., 2004).  

In this work we attempt to answer several questions 
pertaining to dictionary-based gene/protein NER: 

• What curated databases provide the best collection 
of names and symbols? 

• Can simple rules generate sufficient orthographic 
variants? 

• Can common English word lists be used to decrease 
false positives? 

• What is the overall normalization performance of 
an unsupervised dictionary-based approach? 

2 Methods 
A dictionary-based NER system starts out with a list, 

potentially very large, of text strings, called terms, 
which represent concepts of interest. In our system, the 
terms are organized by concept, in this case a unique 
identifier for the gene or protein. All terms for a given 
concept are kept together. The combination of terms 
indexed by concept is similar to a traditional thesaurus, 
and when used for NER and normalization is usually 
called a dictionary. When a term is found in a sample of 
text, it is a simple process to map the term to the unique 
gene or protein that it represents. There are several 
unique identifiers in use by the gene curation 
organizations, we chose to use the official symbol as a 
default, but it is easy to use other database identifiers as 
needed. 

2.1 Building the dictionary 
Building the initial dictionary is an essential first step 

in dictionary-based NER. The dictionaries we used in 
this study were built automatically from five databases 
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available for download: MGI, Saccharomyces, UniProt 
(the curated SwissProt portion only), LocusLink, and 
the Entrez Gene database. For each of these databases, 
the official symbol, unique identifiers, name, symbol, 
synonym, and alias fields were extracted. Symbols, 
synonyms, and aliases corresponding to the same 
official symbol were combined into a single list. At this 
stage in dictionary generation, any leading or trailing 
white space characters are removed. The original 
capitalization of each term is kept. This will be 
important in a later step 

Like several other investigators (Tanabe and Wilbur, 
2002, Chang et al., 2004), we do not discriminate 
between the names of genes and the proteins that they 
code for. For many text mining purposes, recognizing a 
mention of a gene or the coded protein has been treated 
as equivalent (Cohen and Hersh, 2005). Therefore, 
combining terms corresponding to the same official 
symbol is justified, even if one database is composed of 
genes and the other proteins. 

2.2 Generating orthographic variants 
Our previous work on gene and protein name synonyms 
(Cohen et al., 2005) led us to make the observation that 
many name synonyms are simple orthographic variants 
of each other, and that most of these variants can be 
generated with a few simple rules. The next step in 
dictionary generation is to generate variant terms for 
each term extracted from the downloaded databases. 

Our system uses seven simple rules to generate 
variants: 

(1) If the original term includes internal spaces, 
these can be replaced by hyphens (e.g., “IL 10” 
to “IL-10”). 

(2) If the original term includes internal hyphens, 
these can be replaced by spaces (e.g., “mmac-1” 
to “mmac 1”). 

(3) If the original term includes internal spaces or 
hyphens, these can be removed (e.g., “nf-kappa 
b” to “nfkappab”). 

(4) If the original term ends in a letter followed by 
single digit, or a letter followed by single digit 
and then a single letter, a hyphen can be added 
before the digit (e.g., “NFXL1” to “NFXL-1”). 

(5) If the original term ends in a digit, followed by 
the single letter ‘a’ or ‘b’, we can add a hyphen 
before the ‘a’ or ‘b’ and also expand ‘a’ to 
‘alpha’ and ‘b’ to ‘beta’ (e.g., “epm2b” to 
“epm2-beta”). 

(6) If the original term ends in ‘-1’ or a ‘-2’, replace 
this ending with the Roman numeral equivalent, 
‘-i’ or ‘-ii’ respectively. 

(7) For yeast only, if the original term consists of 
one space-delimited token, append a “p” (see 
(Cherry, 1995)). 

These rules are applied iteratively until no new terms 
are generated. 

2.3 Separating common English words 
The next step aids in discriminating mentions of gene 
and protein names from common English words. The 
dictionary now contains a large number of terms 
extracted from the databases along with generated 
variants. At this point the dictionary is split into two 
parts. Terms that case-insensitively match a list of 
common English words are put into the one dictionary, 
and other terms are put into a separate dictionary.  

In practice, this creates a small dictionary of terms 
easy to confuse with common English words (the 
confusion dictionary) and a much larger dictionary of 
terms that are not confused with English words (the 
main dictionary). When searching text for gene and 
protein names, the terms in the smaller dictionary will 
be handled differently than the terms in the larger 
dictionary. 

For the work presented here, a file of 74,550 common 
English words was used to filter the terms. This file is 
available as part of the Moby lexical resource, and is 
available at (Ward, 2000).  

2.4 Screening out the most common English 
words 

Some English words are so common that when they 
occur they are rarely references to gene and protein 
names. Our approach includes a list of about 300 
English words that is used as a “stop” list. In our system 
these words are never recognized as gene or protein 
terms, even if those terms appear in one of the curated 
databases. 

We obtained our list of the 300 most common words 
in the English language (Carroll et al., 1971). To this 
list we added a few terms that are commonly found in 
the biomedical literature that should not be confused 
with specific gene names. These include “gene”, 
“genes”, “protein”, “proteins”, ”locus”, ”site”, “alpha”, 
“beta”, and “as a”. 

Terms appearing in this most common word list are 
removed from both of the dictionaries. The final product 
of the four preceding steps are two dictionaries, a main 
dictionary and a confusion dictionary, each which map 
terms to the unique identifier for the gene/protein 
symbol corresponding to that term. 

2.5 Searching the text 
With the two dictionaries complete it is straightforward 
to search input text for mentions of gene and protein 
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names.  While the algorithm can handle practically any 
size input text, in practice the input will usually be 
individual sentences or abstracts, and this is the input 
size to which we have tuned our system. 

For speed and accuracy, we first search the input text 
for the terms within the dictionary, and if a term is 
found, we then check to ensure that the matching text is 
bounded by characters that are acceptable delimiters for 
gene and protein names. In our system this includes 
white space characters as well as these characters: 
.,/\\(){}[]=;?*!". Note that our approach does not 
prohibit these characters from appearing within the 
name, only that the matching sequence of characters is 
bounded by these delimiters. Also, the approach does 
not require tokenization of the input string. We consider 
this more flexible than delimiter-based tokenization, 
which would not allow delimiters to appear within the 
terms.  

This method of searching and checking delimiters is 
applied for every term in both the main and confusion 
dictionaries with one essential difference. Case-
insensitive search is performed on the terms in the main 
dictionary. Strict case-sensitive search is performed on 
terms in the confusion dictionary. This requires terms in 
the confusion dictionary to exactly match the 
capitalization of the input text. The observation here is 
that a string like “dark” appearing in biomedical text is 
most often being used as a normal English word, while 
a string like “DARK”, is likely being used as a gene 
name. 

Finally, the algorithm examines all matching terms on 
the input text. Overlaps are resolved with a combination 
of criteria based on comparing the confidence and 
length of each recognized entity. In the current 
implementation, the confidence of the dictionary-based 
NER is always 1.0, so in practice the system resolves 
overlap by keeping the entity recognized by the longest 
overlapping term and discarding any shorter 
overlapping entities. 

2.6 Disambiguation 
It has been shown that a large number of gene and 
protein terms refer to more than one actual concept with 
over 5% of terms being ambiguous intra-species and 
85% being ambiguous with gene names for other 
organisms (Tuason et al., 2004, Chen et al., 2005). For 
normalization, occurrences of these ambiguous terms 
need to be resolved to the correct concept. This is called 
disambiguation. 

Various disambiguation approaches have been 
proposed, including the method of Hanisch previously 
described, as well as simply ignoring ambiguous terms. 
Ignoring all ambiguous terms can be wasteful, since 
context may allow disambiguation to a unique concept. 

This can helpful for increasing the sample size for 
further text mining. For example NER and 
normalization can be performed on abstracts, and 
further processing (e.g., co-occurrence detection) 
performed at the sentence level. Our approach to 
disambiguation makes two assumptions about the 
biomedical literature. First, ambiguous terms are often 
synonyms for other, non-ambiguous terms within the 
same text sample, and second, authors usually explicitly 
provide sufficient context for readers to resolve 
ambiguous terms. 

For each ambiguous term, we collect the potential 
normalized concepts. If any of those concepts appears in 
the text sample using an unambiguous term for that 
concept, we assign the ambiguous term to the concept 
with the unambiguous term. If there is more than one 
concept with an unambiguous term (this occurs 
infrequently), we select one of these concepts at 
random. We ignore terms that cannot be resolved in this 
manner. Notice that this is a general dictionary 
disambiguation algorithm and does not require any 
information specific to genes and proteins. 

2.7 Optimization 
One of the benefits of the dictionary-based approach is 
that it is simple and amenable to code optimization. In 
our case we were able to gain almost a thousand-fold 
speed improvement over brute force searching against 
every term in the database. We accomplished this using 
an approach based on indexing the term prefixes, taking 
each unique sequence of n initial term characters as the 
index for all terms with that initial sequence. In our 
system we chose an n of 6 as a good balance between 
performance and memory requirements. 

Searching for gene and protein terms then becomes an 
efficient matter of only searching for the terms that 
correspond to 6 character sequences (prefixed by a 
delimiter) that actually exist in the input text. This 
greatly reduces the number of searching operations 
necessary. While other more complex optimization 
algorithms are possible, such as organizing the terms 
character-by-character into an n-way tree, or completely 
grouping the terms into a complete prefix tree, our 
approach is simple, very fast, and has modest memory 
needs.   

3 Evaluation 
We based our evaluation on two test corpora that have 
been previous used to evaluate gene and protein NER 
and normalization. We used the GENIA corpus, version 
3.02 (Kim et al., 2003), to evaluate the utility of each 
online database as a source of terms for gene and 
protein NER, and we used the BioCreative Task1B 
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mouse and yeast collections to evaluate the performance 
of our system for normalized gene and protein 
identification. 

The GENIA corpus is a key resource in biomedical 
text mining, and has been used by many investigators 
(e.g., (Collier and Takeuchi, 2004, Lee et al., 2004, 
Tsuruoka and Tsujii, 2004)). However, some system-
dependent decisions still need to be made in order to use 
it as a gold standard for gene and protein NER. First, 
GENIA marks genes separately from proteins. While 
the “protein_molecule” attribute appears to be used in a 
manner that tightly and specifically delimits mentions of 
proteins, other attributes such as the 
“DNA_domain_or_region” attribute and the 
“protein_family_or_group” attribute are used more 
loosely.  “DNA_domain_or_region” can be used to 
mark a specific gene (e.g., “IL-2 gene”, “peri kappa-B 
site”), sometimes including words such as “gene” and 
“site”. At other times the attribute marks a non-specific 
gene concept (e.g., “viral gene”). Similar observations 
are true about the “protein_family_or_group” attributes 
(e.g., “CD28”, “transcription factor”). Clearly when 
evaluating dictionary-based (possibly as opposed to 
corpus trained) gene/protein NER, many of the concepts 
marked with the  “DNA_domain_or_region”, 
“protein_family_or_group” and other similar attributes 
should be treated as correct for the purposes of 
precision. However, the large number of more generic 
concepts that these attributes mark should not be 
included in the calculation of recall. 

Because of these issues, here we have used a hybrid 
technique in order to produce the most meaningful 
results in choosing a database for wide coverage of gene 
and protein names and symbols. Entities marked with 
the “protein_molecule” attribute are included for 
computation of both precision and recall. The text 
marked with the DNA and protein family attributes are 
only used for the computation of precision. This method 
is different from that applied by others using the 
GENIA corpus for both training and testing and 
therefore our NER results here are not directly 
comparable to prior work using GENIA. 

In the first set of experiments we are primarily 
concerned with evaluating the richness of each database 
and combination of databases as a source of names for 
gene and protein NER. Therefore, we use the weak 
match criteria of Chang et al., to evaluate performance 
(Chang et al., 2004). The weak match criteria treats any 
overlap of identified text with the gold standard as a 
positive. 

In the second set of experiments we use the 
BioCreative mouse and yeast test collections to evaluate 
the performance of our unsupervised dictionary-based 
method of gene and protein NER and normalization. For 

mouse, the more challenging organism, we evaluate the 
effect of each system feature separately and in 
combination. We also evaluate the effect of using just 
the organism-specific database to populate the 
dictionary, along with the organism-specific database in 
combination with the richest database determined in the 
first set of experiments. Table 1 shows information on 
the databases that were used to generate the dictionaries 
and the fields taken from each database. 

4 Results 
Table 2 presents the results of applying our dictionary-
based NER to the GENIA 3.02 corpus using the three 
multi-organism databases individually. The Entrez Gene 
database performs the best, having both the highest F-
measure of 75.5% at a precision of 73.5% and a recall 
of 77.6%. The LocusLink database is next, and not 
significantly different in performance (LocusLink is 
being phased out and replaced with Entrez Gene as of 
March 2005). The UniProt database performs much 
worse overall. This is surprising, performing well on 
precision at 78.5%, but having recall of 59.1%, poorer 
than we expected for a multi-species database. 

Table 1. Databases used to create protein/gene NER dictionaries. 
Fields marked with an asterisk were used as the unique identifier. 

Table 2. Results of creating dictionary from a single database for 
NER of GENIA genes and proteins. 

Dictionary 

Database & 

Precision Recall F-measure 
Entrez 0.735 0.776 0.755 
LocusLink 0.723 0.773 0.747 
UniProt 0.785 0.474 0.591 

Organism 
Fields used Dictionary 

Size 
Entrez 
multi-organism 
 

SYMBOL*, SYNONYMS, 59 Mbytes 
DESCRIPTION 

LocusLink 
multi-organism 

PRODUCT, 
OFFICIAL_SYMBOL*, 

PREFERRED_SYMBOL, 
OFFICIAL_GENE_NAME, 
PREFERRED_GENE_NAME, 
PREFERRED_PRODUCT, 
ALIAS_SYMBOL, 

ALIAS_PROT 

14 Mbytes 

MGI  
mouse only 

MGI MARKER ACCESSION 
ID*, 

MGI GENE TERM, 
STATUS 

7 Mbytes 

UniProt 
multi-organism 

Name*, Synonyms, 
OrderedLocusNames, 

ORFNames 

5 MBytes 

Saccharomyces 
yeast only 

Locus, ORF, SGID*, alias, 
standard name, feature name 

1.5 MBytes 
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Table 3. Results of creating dictionary from a combination of two 
databases for NER of GENIA genes and proteins. 

Dictionaries Precision Recall F-measure 
Entrez 0.735 0.776 0.755 
Entrez+UniProt 0.707 0.792 0.747 
Entrez+LocusLink 0.734 0.780 0.756 

Table 4. Results of using dictionary created from databases for NER 
and normalization for mouse. 

Dictionary Precision Recall F-measure 
Entrez/MGI 0.775 0.726 0.750 
MGI 0.710 0.535 0.610 

 
Having found that Entrez Gene was the single best 

online database for dictionary creation, we tried 
combining it with the other databases. As can be seen 
from Table 3, this did not result in any meaningful 
performance improvement.  

For the remainder of our experiments we used the 
BioCreative mouse and yeast test collections and gold 
standard files to evaluate the performance of our system 
for gene/protein NER and normalization. The gold 
standard required the unique identifiers to be MGI or 
SGD accession numbers. To accomplish this, we 
performed a join between the Entrez database and the 
MGI (or Saccharomyces) database using a mapping 
identifier between the MGI (or SGI) database entries 
and the Entrez Gene ids while extracting dictionary 
terms. 

Table 4 shows the results of using the joined 
Entrez/MGI dictionary for mouse NER and 
normalization compared to using the dictionary created 
from the MGI database alone. Using the MGI database 
alone has much worse recall than using the dictionary 
created with a combination of Entrez and MGI 
databases, with recall falling almost 20%. Restricting 
the dictionary to the MGI database also results in a 
6.5% decrease in precision. 

Table 5 shows the results of individually removing 
each of the three main dictionary pre-processing 
features and the disambiguation algorithm and 
evaluating the NER and normalization performance for 
mouse. All four of these variations perform worse than 
our full system. Variant generation made the smallest 
difference, giving an F-measure improvement of 2.0%. 
Ambiguity resolution improves the F-measure 2.8%. 
The 300 most common word stop list contributed an 
improvement of 6.8%. Lastly, separation into case-
sensitive and case-insensitive dictionaries made the 
largest improvement of 15.6%. Removing all of the pre-
processing features at once and using the combined 
Entrez/MGI database as a “raw” term list performs very 
badly, with good recall but a precision of only 30.1%. 

Table 6 compares the results of our system to the 
participants of BioCreative Task 1B for the mouse and 
yeast corpora. On both mouse and yeast, our system 
performs above the median F-measure. On mouse the 
difference in F-measure between our system and the top 
scoring system is less than 5%. On the yeast corpus, our 
approach has among the highest precision, with recall 
slightly below the median, and F-measure about 3% 
below the highest scoring system.  

While ambiguity resolution resulted in a modest 
improvement, we wanted to get an idea of the 
magnitude of the ambiguity within our automatically 
created dictionaries. Table 7 shows the number and 
percentage of ambiguous terms and genes with at least 
one ambiguous term in the dictionaries that we created 
using Entrez in combination with the MGI database, as 
well as MGI alone. 

The system runs very rapidly. On a 1.7GHz Pentium 
4m laptop with 512M RAM, the 18,000 sentences in the 
GENIA corpus were processed in about 30 seconds. The 
250 abstracts in the BioCreative corpora were processed 
in less than 5 seconds. 

5 Discussion 
The Entrez Gene database was identified as the best 
general-purpose source of gene and protein terms for 
use in a dictionary-based NER and normalization. 
Including data from other databases did not improve 
NER performance. It appears that the producers of 
Entrez Gene are doing an excellent job in finding and 
curating this information from the available sources. 
One of the most common difficulties cited in 
recognizing gene and protein names is that the 
vocabulary of terms is continuously expanding 
(Hirschman et al., 2002). Online databases, such as 
Entrez Gene provide a curated central repository for 
these terms, making the task of keeping gene/protein 
NER and normalization systems up to date on new 
genes and proteins somewhat easier. 

All three of our dictionary pre-processing 
enhancements improved performance, as did the 
ambiguity resolution algorithm. Surprisingly, variant 
generation made the smallest difference in F-measure. 
This may be due to the tendency for genes to be 
mentioned multiple times within an abstract, or that 
authors are keeping to the forms collected in the 
genomics databases, or that the database curators are 
doing a good job in keeping up with the terms used by 
authors. The BioCreative test collection scores 
normalization at the level of an entire abstract. It is 
possible that variant generation might have made a 
larger difference if the test collection was scored at a 
sentence level. On the other hand, it may be that the 
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Entrez database itself contains sufficient variants. In 
either case, the small improvement gained from variant 
generation suggests that computationally expensive 
approximate string matching techniques may not be 
worth the effort. 

The next largest improvement was made by ambiguity 
resolution. Precision increased almost 8%, while recall 
dropped only about 2%. While an F-measure 
improvement of 2.8% is small, this figure is highly 
dependent upon the make up of the test corpus. 

 Certainly, as seen in Table 7, there are a large 
proportion of mouse genes with ambiguous terms in our 
dictionary. How often these ambiguous terms actually 
appear in the literature is an open question. Additional 
and larger test collections may be necessary to 
accurately measure the overall importance of ambiguity 
resolution.  

Table 5. NER and normalization performance results when removing 
dictionary pre-processing features and ambiguity resolution for 
mouse. 

System Precision Recall F-measure Difference 
full system 0.775 0.726 0.750 - 
- case 0.493 0.746 0.594 -15.6% 
- stop 0.643 0.726 0.682 -6.8% 
- variant 0.771 0.693 0.730 -2.0% 
- ambiguity 0.697 0.748 0.722 -2.8% 
- all 0.301 0.713 0.423 -32.7% 

Table 6. Comparison with results from BioCreative on mouse and 
yeast corpora. 

Organism System Precision Recall F-measure 
biocreative-

highest 0.765 0.819 0.791 
cohen 0.775 0.726 0.750 
biocreative-

median 0.765 0.730 0.738 

Mouse 

biocreative-
lowest 0.418 0.898 0.571 

biocreative-
highest 0.950 0.894 0.921 

cohen 0.950 0.837 0.890 
biocreative-

median 0.940 0.848 0.858 

Yeast 

biocreative-
lowest 0.661 0.902 0.763 

Table 7. Term ambiguity measurements for mouse genes. 

 Entrez/MGI MGI 
# All Distinct Genes 57185 57180 
# All Distinct Terms 336353 250435 
# Ambiguous Terms 6585 (1.96%) 2104 (0.84%) 
# Genes w/ Ambiguous 

Terms 8036 (14.05%) 2619 (4.58%) 

The stop-list made the next largest improvement in F-
measure, 6.8%. Use of the stop list improved precision 
greatly and did not change recall. Case-sensitivity using 
the common word file made the largest improvement of 
15.6%. While making a large, almost 30% difference in 
precision, case sensitivity decreased recall by only 2%.  

Overall, all three of the dictionary pre-processing 
methods we applied worked well, as did ambiguity 
resolution. Each method resulted in improvement in 
either precision or recall, and did not greatly degrade the 
other measure. Together the three techniques gave an F-
measure improvement of over 30% as compared to 
using a plain unprocessed dictionary. 

Chen et al. investigated the ambiguity of official gene 
names within and across organisms and found the level 
of shared official names within an organism to be low 
(~0.02%) but the level of ambiguity when considering 
all terms associated with a gene to be higher, about 5% 
(Chen et al., 2005). Our results are similar, with about 
5% of genes in the MGI database having terms also 
associated with other genes. This rises to 14% when 
combined with the information in the Entrez database. 
As previously noted, inter-organism ambiguity is much 
higher. Further work is needed to determine the extent 
of the problem present within in the actual literature. 

We did not apply our method to fly, the other 
organism in the BioCreative Task 1B test collection. We 
were unable to find direct mappings between identifiers 
in the fly database and Entrez Gene. Moreover, the fly 
corpus would present special problems for our method. 
Unlike for mouse and yeast, the fly genome contains 
many genes that have the same names as common 
English words, and the use of these words as gene 
names are not commonly delineated using capitalization 
as they are with mouse. For fly at least, methods such as 
ours are at a disadvantage compared to trained systems. 

However, the literature of one of the most important 
and interesting genomes (at least to us), human, does 
appear to follow the practice of differentiating common 
English words from gene and protein names by 
uppercase or initial capitalization similar to the mouse 
literature (Chen et al., 2005). Therefore we expect that 
our unsupervised approach will be useful for human 
genomics literature as well. 

Unfortunately at the present time we are unable to test 
this hypothesis. We are unaware of any human gene 
NER and normalization test collection. While there are 
several test collections widely available for NER alone 
(Franzen et al., 2002, Kim et al., 2003, Hu et al., 2004), 
the same cannot be said for the essential normalization 
step. More and larger collections, covering additional 
organisms such as human and rat, are necessary to 
measure and motivate progress in gene and protein NER 
and normalization.  
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6 Conclusions and Future Work 
These results demonstrate that an unsupervised 

dictionary-based approach to gene and protein NER and 
normalization can be effective. The dictionaries can be 
created automatically without human intervention or 
review. Dictionary-based systems such as ours can be 
set up to automatically update themselves by 
downloading the database files on the Internet and pre-
processing the files into updated dictionaries. This could 
be done on a nightly basis if necessary, since the entire 
dictionary creation process only takes a few minutes. 
One general database, combined with an organism-
specific database for each species, is sufficient. 

Our work is distinguished from other dictionary-based 
work such as Tsurukoka and Tsujii, and Hanisch et al. 
in several ways. Unlike both of these prior investigators, 
we use on-line curated information as our primary 
source of terms, instead of deriving them from a training 
set, and have shown both which databases to use and 
how to process them into effective sources of terms for 
NER. Our textual variants are generated by simple rules 
determined by domain knowledge instead of machine 
learning on training data. Lastly, the disambiguation 
algorithm presented here is unique and has been shown 
to have a positive impact on performance. 

The system is as accurate as other more complex 
approaches. It does not require training, and so may be 
less sensitive to specific characteristics of a given text 
corpus. It may also be applied to organisms for which 
there do not exist sufficient training and test collections. 
In addition, the system is very fast. This may enable 
some text mining tasks to be done for users in real time, 
rather than the batch processing mode that is currently 
most common in biomedical text mining research. 

Dictionary-based approaches are likely to remain an 
essential part of gene and protein normalization, even if 
the NER step is handled by other methods. Further work 
is necessary to determine the best manner to combine 
automatically created dictionaries with trained NER 
systems. It may be the case that different approaches 
work best for different organisms, depending upon the 
specific naming conventions of scientists working on 
that species.  

References 
Brill, E. (1992) A simple rule-based part of spech tagger. In 

Proceedings of the Third Conference on Applied Natural 
Language Processing. 

Carroll, J. B., Davies, P. and Richman, B. (1971) The 
American heritage word frequency book. Houghton Mifflin, 
Boston,. 

Chang, J. T., Schutze, H. and Altman, R. B. (2004) 
GAPSCORE: finding gene and protein names one word at a 
time. Bioinformatics, 20, 216-25. 

Chen, L., Liu, H. and Friedman, C. (2005) Gene name 
ambiguity of eukaryotic nomenclatures. Bioinformatics, 21, 
248-56. 

Cherry, J. M. (1995) Genetic nomenclature guide. 
Saccharomyces cerevisiae. Trends Genet, 11-2. 

Cohen, A. M. and Hersh, W. (2005) A Survey of Current 
Work in Biomedical Text Mining. Briefings in 
Bioinformatics, 6, 57-71. 

Cohen, A. M., Hersh, W. R., Dubay, C. and Spackman, K. 
(2005) Using co-occurrence network structure to extract 
synonymous gene and protein names from MEDLINE 
abstracts. BMC Bioinformatics, 6,  

Collier, N. and Takeuchi, K. (2004) Comparison of character-
level and part of speech features for name recognition in 
biomedical texts. J Biomed Inform, 37, 423-35. 

Franzen, K., Eriksson, G., Olsson, F., Asker, L., Liden, P. and 
Coster, J. (2002) Protein names and how to find them. Int J 
Med Inf, 67, 49-61. 

Hanisch, D., Fundel, K., Mevissen, H. T., Zimmer, R. and 
Fluck, J. (2004) ProMiner: Organism-specific protein name 
detection using approximate string matching. In 
BioCreative: Critical Assessment for Information 
Extraction in Biology. 

Hirschman, L., Morgan, A. A. and Yeh, A. S. (2002) Rutabaga 
by any other name: extracting biological names. J Biomed 
Inform, 35, 247-59. 

Hirschman, L., Colosimo, M., Morgan, A., Columbe, J. and 
Yeh, A. (2004) Task 1B: Gene List Task BioCreAtIve 
Workshop. In BioCreative: Critical Assessment for 
Information Extraction in Biology. 

Hu, Z. Z., Mani, I., Hermoso, V., Liu, H. and Wu, C. H. 
(2004) iProLINK: an integrated protein resource for 
literature mining. Comput Biol Chem, 28, 409-16. 

Kim, J. D., Ohta, T., Tateisi, Y. and Tsujii, J. (2003) GENIA 
corpus - a semantically annotated corpus for bio-textmining. 
Bioinformatics, 19, i180-i182. 

Krallinger, M. (2004) BioCreAtIvE - Critical Assessment of 
Information Extraction systems in Biology. 
http://www.pdg.cnb.uam.es/BioLINK/BioCreative.eval.htm
l

Lee, K. J., Hwang, Y. S., Kim, S. and Rim, H. C. (2004) 
Biomedical named entity recognition using two-phase 
model based on SVMs. J Biomed Inform, 37, 436-47. 

Tanabe, L. and Wilbur, W. J. (2002) Tagging gene and protein 
names in biomedical text. Bioinformatics, 18, 1124-32. 

Tsuruoka, Y. and Tsujii, J. (2004) Improving the performance 
of dictionary-based approaches in protein name recognition. 
J Biomed Inform, 37, 461-70. 

Tuason, O., Chen, L., Liu, H., Blake, J. A. and Friedman, C. 
(2004) Biological nomenclatures: a source of lexical 
knowledge and ambiguity. Pac Symp Biocomput, 238-49. 

Ward, G. (2000) Grady Ward's Moby. 
http://www.dcs.shef.ac.uk/research/ilash/Moby/mwords.htm
l

Yu, H. and Agichtein, E. (2003) Extracting synonymous gene 
and protein terms from biological literature. Bioinformatics, 
19, i340-i349. 

Zhou, G., Zhang, J., Su, J., Shen, D. and Tan, C. (2004) 
Recognizing names in biomedical texts: a machine learning 
approach. Bioinformatics, 20, 1178-90. 

 

24


