XFST2FSA: Comparing Two Finite-State Toolboxes

Yael Cohen-Sygal
Department of Computer Science
University of Haifa
yaelc@cs.haifa.ac.il

Abstract

This paper introduces xfst2fsa, a compiler
which translates grammars expressed in
the syntax of the XFST finite-state tool-
box to grammars in the language of the
FSA Utilities package. Compilation to
FSA facilitates the use of grammars de-
veloped with the proprietary XFST tool-
box on a publicly available platform. The
paper describes the non-trivial issues of
the compilation process, highlighting sev-
eral shortcomings of some published algo-
rithms, especially where replace rules are
concerned. The compiler augments FSA
with most of the operators supported by
XFST. Furthermore, it provides a means
for comparing the two systems on compa-
rable grammars. The paper presents the
results of such a comparison.

1 Introduction

Finite-state technology is widely considered to be
the appropriate means for describing the phonolog-
ical and morphological phenomena of natural lan-
guages since the pioneering works of Koskenniemi
(1983) and Kaplan and Kay (1994). Finite state
technology has some important advantages, making
it most appealing for implementing natural language
morphology. One can find it very hard, almost im-
possible, to build the full automaton or transducer
describing some morphological phenomena. This
difficulty arises from the fact that there are a great
number of morpho-phonological processes combin-
ing together to create the full language. However, it

Shuly Wintner
Department of Computer Science
University of Haifa
shuly@cs.haifa.ac.il

is usually very easy to build a finite state machine
to describe a specific morphological phenomenon.
The closure properties of regular languages make
it most convenient to implement each phenomenon
independently and combine them together. More-
over, finite state techniques have the advantage of
being efficient in their time and space complexity,
as the membership problem is solvable in time lin-
ear in the length of the input. Furthermore, there are
known algorithms for minimizing and determinizing
automata and some restricted kinds of transducers.
Several finite state toolboxes (software packages)
provide extended regular expression description lan-
guages and compilers of the expressions to finite
state devices, automata and transducers (Karttunen
et al.,, 1996; Beesley and Karttunen, 2003; Mohri,
1996; van Noord and Gerdemann, 2001a; van No-
ord and Gerdemann, 2001b). Such toolboxes typ-
ically include a language for extended regular ex-
pressions and a compiler from regular expressions
to finite-state devices (automata and transducers).
These toolboxes also include efficient implementa-
tions of several standard algorithms on finite state
machines, such as union, intersection, minimiza-
tion, determinization etc. More importantly, they
also implement special operators that are useful for
linguistic description, such as replacement (Kaplan
and Kay, 1994; Mohri and Sproat, 1996; Karttunen,
1997; Gerdemann and van Noord, 1999) or predi-
cates over alphabet symbols (van Noord and Gerde-
mann, 2001a; van Noord and Gerdemann, 2001b),
and even operators for particular linguistic theories
such as Optimality Theory (Karttunen, 1998; Gerde-
mann and van Noord, 2000). Unfortunately, there
are no standards for the syntax of extended regular
expression languages and switching from one tool-

box to another is a non-trivial task.

This work focuses on two toolboxes, XFST
(Beesley and Karttunen, 2003) and FSA Utilities
(van Noord, 2000). Both are powerful tools for spec-
ifying and manipulating finite state machines (ac-
ceptors and transducers) using extended regular ex-
pression languages. In addition to the standard oper-
ators, XFST also provides advanced operators such
as replacement, markup, and restriction (Karttunen,
1995; Karttunen, 1996; Karttunen, 1997; Karttunen
and Kempe, 1995), and advanced methods such as
compile-replace and flag-diacritics. FSA, on the
other hand, supports weighted finite state machines
and provides visualization of finite state networks.
In addition, FSA is built over Prolog, allowing the
additional usage of Prolog predicates. A first signifi-
cant difference between the two packages is the wide
variety of operators that XFST provides in compar-
ison to FSA. However, FSA has the clear advantage
of being a free, open source package, whereas XFST
is proprietary.

This paper describes xfst2fsa, a compiler which
translates XFST grammars to grammars in the lan-
guage of the FSA Utilities package.! There is a
strong parallelism between the languages, but cer-
tain constructs are harder to translate and require
more innovation. In particular, all the replace op-
erators that XFST provides do not exist in FSA and
had to be re-implemented. In this work we relate
only to the core of the finite state calculus — naive
automata and transducers. We do not deal with ex-
tended features such as the weighted networks of
FSA or with advanced methods such as Prolog ca-
pabilities in FSA and compile replace and flag dia-
critics in XFST.

The contribution of this work is manifold. Our
main motivation is to facilitate the use of grammars
developed with XFST on publicly available systems.
Furthermore, this work gives a closer insight into the
theoretical algorithms which XFST is based on. We
show that the algorithms published in the literature
are incomplete and require refinement in order to be
correct for all inputs. Moreover, our compiler en-
riches FSA with implementations of several replace
rules, thereby scaling up the system and improving

IThe system and the source code are available for download
from http://cl.haifa.ac.il/projects/fstfsa/index.shtml

its expressivity. Finally, this work offers an inves-
tigation of two similar, but different systems: the
compiler facilitates a comparison of the two systems
on very similar benchmarks.

2 The xfst2fsa compiler

Compilation of a given XFST grammar into an
equivalent FSA code is done in two main stages:
first, the XFST grammar is parsed, and a tree rep-
resenting its syntax is created. Then, by traversing
the tree, the equivalent FSA grammar is generated.

In order to parse XFST grammars, a specifica-
tion of the XFST syntax is required. Unfortunately,
we were unable to obtain a formal specification
and we resorted to reconstructing it from available
documentation (Beesley and Karttunen, 2003).This
turned out to be a minor inconvenience; a more ma-
jor obstacle was the semantics of XFST expressions,
especially those involving advanced operators such
as replace rules, markup and restriction. We exem-
plify in this section some of these issues.

XFST operators can be divided into three groups
with respect to their FSA equivalence: those which
have an equivalent operator in FSA, those which do
not but can be easily constructed from basic FSA op-
erators, and those whose constructions is more com-
plicated. In what follows we refer to operators of
the first two groups as basic operators. Figure 1 dis-
plays a comparison table of some basic operators in
XFST and FSA.? For example, consider the XFST
operator $7A (“contains at most one”). This opera-
tor is not provided by FSA but can be constructed as
{$A - ignore([A,A],?*),7* — $A}. It is now
provided by FSA in our publicly available package
of extended FSA operators. The same holds for
XFST operators such as A./.B (internally ignore),
$.A (contains one) etc. As another example con-
sider the XFST operator ~ (n-ary concatenation). It
does not have an equivalent operator in FSA, but it
can be simply constructed in FSA by explicitly ex-
pressing the concatenation as many times as needed.
Thus, the XFST regular expression [a*|b~3] is
translated into the equivalent FSA regular expres-
sion {a*,[b,b,b]}. Similar techniques are used
for other basic XFST operators such as A~>n (more

2The complete list of XFST operators and the way they
where translated into FSA can be found in Appendix A.

than n concatenations of A), A~{n,k} (n to k con-
catenations of A) etc.

Another minor issue is the different operator
precedence in XFST and FSA. This problem was
solved by bracketing each translated operator in
XFST with ‘() to force the correct precedence.

Special care is needed in order to deal with XFST
operators of the third group, e.g., all the replace,
markup and restriction rules in XFST. These rules
do not have any equivalents in FSA, and hence the
only way to use them in FSA is to implement them
from scratch. This was done using the existing
documentation (Karttunen, 1995; Karttunen, 1996;
Karttunen, 1997; Karttunen and Kempe, 1995) on
the construction of these operators from the basic
ones. However, not all the operators are fully doc-
umented and in some cases some innovation was
needed. As an example, consider the XFST opera-
tor A@<-B (obligatory, lower to upper, left to right,
longest match replacement). To the best of our
knowledge, this operator is not documented. How-
ever, by Karttunen (1995), the operator A<-B (oblig-
atory, lower to upper replacement) is defined as
[B->A] .i (where B->A is the obligatory, upper to
lower replacement of the language B by the lan-
guage A). We then concluded that A@<-B is con-
structed as [B@->A] .i (where [B@->A] is the oblig-
atory, upper to lower, left to right, longest match re-
placement of the language B by the language A) and
from Karttunen (1996) the construction of the oper-
ator B@->A is known.

For some of the documented operators, we found
that the published algorithms are erroneous in
some special cases. Consider the replace operator
A->B || L _ R (conditional replacement of the
language A by the language B, in the context of
L on the left and R on the right side, where both
contexts are on the upper side). In Karttunen (1997,
1995), a detailed description of the construction of
this operator is given. In addition, Karttunen (1997)
discusses some boundary cases, such as the case
in which the language A contains the empty string.
We discovered that there are some cases which are
not discussed as boundary ones in Karttunen (1997)
and for which the standard algorithm in Karttunen
(1997; 1995) does not produce the expected result
by the definition of the operator denotation. One
such case is a rule of the form A->B || _ ?, where

A and B are some regular expressions denoting
languages. This rule states that any member of the
language A on the upper side is replaced by all
members of the language B on the lower side when
the upper side member is not followed by the end of
the string on which the rule operates. For example,
the rule a->b || _ 7 is expected to generate
the automaton of Figure 2. However, a direct
implementation of the algorithms of Karttunen
(1997; 1995) always yields a network accepting the
empty language, independently of the way A and B
are defined. Other ambiguous cases are discussed in
Vaillette (2004).

Figure 2: Desired interpretation of the regular ex-
pression a— > b || _?

Furthermore, in some cases XFST produces net-
works that are somewhat different from the ones
in the literature: the relations (as sets) are equal
but the resulting automata (as graphs) are not iso-
morphic. For example, consider the replace rule
a->b || ¢ _ d. This expression is compiled by
XFST to the automaton shown in Figure 3. Imple-
menting this rule from basic operators as described
in Karttunen (1997; 1995), results in the automaton
of Figure 4. Observe that in some cases multiple ac-
cepting paths are obtained. This is probably a result
of adding &-self-loops in order to deal correctly with
€ symbols, following Pereira and Riley (1997); the
multiple paths can then be removed using filters. We
assume that the same solution is adopted by XFST.
This solution requires direct access to the underly-
ing network, and cannot be applied at the level of
the regular expression language. Therefore, we did
not utilitize it in our implementation of replace rules.

To validate the construction of the compiler, one
would ideally want to check that the obtained FSA

XFST syntax FSA syntax Meaning

Ax Ax Kleene star

A| B {A,B} union

AgB A&B intersection

A-B A -B A minus B

A/B ignore(A,B) A ignoring B

$A $A containment

$7A {$A - ignore([A,A],?*) , 7 - $A} maximum one containment
AB [A,B] concatenation

A°n does not exist n-ary concatenation
A.x.B AxB crossproduct

A.o0.B AoB composition

(4) A optionality

[1] Q) precedence

R.i invert (R) or inverse(R) regular relation inverse

Figure 1: A comparison table of some simple classic operators in XFST and FSA
?,a,b,d

Figure 3: Automaton created from the regular ex-
pression a— > b || ¢ _d by XFST

networks are equivalent to the XFST ones from
which they were generated. Unfortunately, this is
only possible for very small networks, since XFST
does not allow to print its networks, when they are
significantly large. We could only test XFST net-
works and their FSA images over test strings to vali-
date the identity of the outputs. In addition to check-
ing each operator by itself for several instances, we
tested the compiler on a more comprehensive code,
namely HAMSAH (Yona and Wintner, 2005), which
was designed and implemented using XFST. We
successfully converted the entire network into FSA
with the compiler. Exhaustive tests produced the
same outputs for both networks.

Figure 4. Automaton created from the regular ex-
pression a— > b || ¢ _d by the published algorithm

3 Comparison of XFST and FSA

A byproduct of the compiler is a full implementa-
tion, in FSA, of a vast majority of XFST’s opera-
tors.> In addition to the contribution to FSA users,
this also facilitates an effective comparison between
the two toolboxes on similar benchmarks. We now
describe the results of such a comparison, focusing
on usability and performance.

3.1 Display of networks

FSA displays networks in two possible formats: as
text, by listing the network states and transitions,

3We implemented in FSA all the operators of XFST, except
parallel conditional replace rules and some direct replacement
and markup rules.

and through a graphical user interface. The GUI that
FSA employs is user friendly, allows many kinds
of manipulations of the networks and significantly
helps to the understanding of the networks, espe-
cially when they are small. The viewing parame-
ters can be scaled by the user, thus improving the
visualization possibilities. Moreover, networks can
be saved in many different formats including bi-
nary (for fast loading and saving), text (allowing in-
spection of the network without the necessity to use
FSA) and postscript (for printing). FSA also enables
generation of C, C++, Java and Prolog code, imple-
menting analysis with a network.

XFST, on the other hand, prints its networks only
in text format, and even this is supported for small
networks only. Networks in XFST can be saved
in binary format only, thus requiring the usage of
XFST in order to inspect the network. With respect
to visual display and ease of use, therefore, FSA has
clear benefits over XFST.

3.2 Performance

A true comparison of the two systems should com-
pare two different grammars, each designed specifi-
cally for one of the two toolboxes, yielding the same
comprehensive network. However, as such gram-
mars are not available, we compared the two tool-
boxes using a grammar designed and implemented
in XFST and its conversion into FSA. Again we used
HAMSAH (Yona and Wintner, 2005) for this pur-
pose. The Hebrew morphological analyzer is a large
XFST grammar: the complete network consists of
approximately 2 million states and 2.2 million arcs.
We also inspected two subnetworks: the Hebrew ad-
jectives network (approximately 100,000 states and
120,000 arcs) and the Hebrew nouns network (ap-
proximately 700,000 states and 950,000 arcs). Each
of the networks was created by composing a series
of rules over a large-scale lexicon. Since Hebrew
morphology is non-trivial, the final network is cre-
ated by composing many intermediate complex reg-
ular expressions (including many replace rules and
compositions). The grammars were compiled and
executed on a 64-bit computer with 16Gb of mem-
ory. The table in Figure 5 shows the differences
in compilation and analysis times and memory re-
quirements between the two toolboxes. XFST per-
formed immeasurably better than FSA. In particular,

we were unable to use the complete FSA network for
analysis, compared to analyzing 70 words per sec-
ond with the full network in XFST. Another issue
that should be noticed is the difference in memory
requirements.

4 Conclusions

We presented a compiler which translates XFST
grammars to grammars in the language of the FSA
Utilities package. This work allows a closer look
into two of the most popular finite state toolboxes.
Although FSA has the advantage of being a pub-
licly available software, we discovered that it does
not scale up as well as XFST. However, for the non-
expert user or for teaching purposes, where more
modest networks are manipulated, FSA seems to be
more friendly, especially with regard to graphical
representation of networks. With our new imple-
mentation of replace rules in FSA, it seems that for
such uses FSA is better. However, for larger sys-
tems and when time performance is an issue, XFST
is preferable.

This work can be extended in several directions.
Not all XFST operators are implemented in FSA.
Some for lack of documentation and some simply
require more time for implementation. Thus, fur-
ther work can be done to construct more opera-
tors (see footnote 3). We believe that replace rules
still hide boundary cases which require special treat-
ment. More work is needed in order to locate such
cases. Furthermore, other finite state toolboxes ex-
ist (Mohri, 1996) which present different operators.
Extending the compiler to convert XFST grammars
into those formalisms will provide opportunities for
better comparison of different finite-state toolboxes.
On a different course, an fsa2xfst compiler can be
constructed. Such a compiler will enable a reverse
performance comparison, i.e. using a larger network
for FSA and making it operational in XFST. Notice
that in contrast to the xfst2fsa direction, this course
is rather trivial: FSA allows the user to save its net-
works in a readable format (listing the network states
and arcs). Although XFST is not capable of read-
ing any format but its own, Kleene (1954) presents a
simple algorithm for generating from a given FSA a
regular expression denoting it. Using this algorithm,
an XFST regular expression denoting the network

FSA XFST
Time Memory Time Memory

complete network 13h 43m ~11G 27m 41s ~3G
Compilation | nouns network 2h 29m 11m 4s

adjectives network 14m 56s 8m 21s

complete network, 350 words not possible S5s
Analysis nouns network, 120 nouns 1h 50m 0.17s

adjectives network, 50 adjectives | 2m 34s 0.17s

Figure 5: Times and memory requirements

can be generated. The only disadvantage of such an
approach is that the resulting XFST expression will
be most cumbersome.

Acknowledgments

This research was supported by The Israel Science
Foundation (grant no. 136/01). We are grateful to
Gertjan van Noord and Shlomo Yona for their help.

References

Kenneth R. Beesley and Lauri Karttunen. 2003. Finite-
State Morphology. CSLI Publications.

Dale Gerdemann and Gertjan van Noord. 1999. Trans-
ducers from rewrite rules with backreferences. In
Ninth Conference of the European Chapter of the As-
sociation for Computational Linguistics, pages 126—
133, Bergen Norway.

Dale Gerdemann and Gertjan van Noord. 2000. Approx-
imation and exactness in finite state optimality the-
ory. In Proceedings of Sigphon Workshop on Finite
State Phonology (invited paper), pages 34-45, Luxem-
bourg. http://xxx.lanl.gov/ps/cs.CL/0006038 or ROA-
403-08100 at http://ruccs.rutgers.edu/roa.html.

Ronald M. Kaplan and Martin Kay. 1994. Regular mod-
els of phonological rule systems. Computational Lin-
guistics, 20(3):331-378, September.

Lauri Karttunen and Andre Kempe. 1995. The parallel
replacement operation in finite state calculus. Tech-
nical Report 1995-021, Rank Xerox research centre —
Grenoble laboratory.

Lauri Karttunen, Jean-Pierre Chanod, Gregory Grefen-
stette, and Anne Schiller. 1996. Regular expressions
for language engineering. Natural Language Engi-
neering, 2(4):305-328.

Lauri Karttunen. 1995. The replace operator. In Pro-
ceedings of the 33rd Annual Meeting of the Associa-
tion for Computational Linguistics, pages 16-24.

Lauri Karttunen. 1996. Directed replacement. In Pro-
ceedings of ACL’96, pages 108—115.

Lauri Karttunen. 1997. The replace operator. In Em-
manuel Roche and Yves Schabes, editors, Finite-State
Language Processing, Language, Speech and Com-
munication, chapter 4, pages 117-147. MIT Press,
Cambridge, MA.

Lauri Karttunen. 1998. The proper treatment of Optimal-
ity Theory in computational phonology. In Finite-state
methods in natural language processing, pages 1—12,
Ankara, June.

S. C. Kleene. 1954. Representation of events in nerve
nets and finite automata. In C. E. Shannon and J. Mc-
Carthy, editors, Automata Studies, pages 3—42. Prince-
ton University Press.

Kimmo Koskenniemi. 1983. Two-Level Morphology: a
General Computational Model for Word-Form Recog-
nition and Production. The Department of General
Linguistics, University of Helsinki.

Mehryar Mohri and Richard Sproat. 1996. An efficient
compiler for weighted rewrite rules. In Proceedings of
the 34th Annual Meeting of the Association for Com-
putational Linguistics, pages 231-238, Santa Cruz.

Mehryar Mohri. 1996. On some applications of finite-
state automata theory to natural language processing.
Natural Language Engineering, 2(1):61-80.

Fernando Pereira and Michael Riley. 1997. Speech
recognition by composition of weighted finite au-
tomata. In Emmanuel Roche and Yves Schabes, ed-
itors, Finite-State Language Processing, pages 431—
453. MIT Press, Cambridge.

Nathan Vaillette. 2004. Logical Specification of Finite-
State Transductions for Natural Language Processing.
Ph.D. thesis, Ohio State University.

Gertjan van Noord and Dale Gerdemann. 2001a. An ex-
tendible regular expression compiler for finite-state ap-
proaches in natural language processing. In O. Boldt
and H. Jiirgensen, editors, Automata Implementation,
number 2214 in Lecture Notes in Computer Science.
Springer.

Gertjan van Noord and Dale Gerdemann. 2001b. Finite
state transducers with predicates and identity. Gram-
mars, 4(3):263-286.

Gertjan van Noord, 2000. F'SA6 Reference Manual.

Shlomo Yona and Shuly Wintner. 2005. A finite-
state morphological grammar of hebrew. In Proceed-
ings of the ACL-2005 Workshop on Computational Ap-
proaches to Semitic Languages.

Appendix

A A comparison table of XFST and FSA operators

A.1 Symbols

A2

‘ XFST syntax ‘ FSA syntax ‘ Meaning
a a single symbol a
9o or “*” escape(*) or ’*’ | escape literal symbol
abc abc multi-character symbol
? ? any symbol
Oor[Jor”" | [] epsilon symbol, the empty string
{abcd} [a,b,c,d] single character brace

Basic operators

‘ XFST syntax ‘ FSA syntax Meaning
Ax Ax Kleene star
A+ A+ iteration (Kleene plus)
A|B {A,B} union
A&B A&B intersection
A—B A—B A minus B
\A [~A] &? term complement
~A ~A complement
A/B ignore(A,B) A ignoring B
A./.B ignore(A,B) — {[B, 7], [?, B} A ignoring internally B
$A $A containment
$.A $A — ignore([A,A], 7%) one containment
$74 {$A —ignore([A,A],?%), 7% —$A} maximum one containment
AB [A,B] concatenation
A’n n-ary concatenation
A™{n,k} n to k concatenations of A
A" >n more than n concatenations of A
A" <n less than n concatenations of A
Ax.B AxB crossproduct
A.0.B AoB composition
(A) A" optionality
a:b a:b symbol pair
[] O) order control
R.P.Q {R, (domain(Q) — domain(R)) o Q} | upper-side priority union
R.p.O {R,0Q o (range(Q) — range(R))} lower-side priority union
R.—u.Q (domain(R) — domain(Q)) o R upper-side minus
R.—1.0Q R o (range(R) — range(Q)) lower-side minus
A<B ~ $[B,A] A before B
A>B ~ $[A,B] A after B
Ar reverse(A) reverse
RuorR.1 domain(R) upper language of the regular relation R
R.lorR.2 range(R) lower language of the regular relation R
R.i invert(R) or inverse(R) regular relation inverse

A.3 Restriction
XFST restriction rules are not provided by FSA, nor did we implement them. Therefore, we only present
their syntax in XFST.

e A=>L_R

e A=>L; R,L,_Ry,...,L,_R,

A.4 Replacement

XFST replace rules do not exist in FSA. We present implementation of most of them in FSA, based on
(Karttunen, 1995; Karttunen, 1996; Karttunen, 1997; Karttunen and Kempe, 1995). XFST replace rules can
be divided into 4 groups:

1. Unconditional replace rules (one rule with no context).

2. Unconditional parallel replace rules (several rules with no context that are performed at the same time).
3. Conditional replace rules (one rule and one condition).

4. Conditional parallel replace rules (several rules and/or several contexts).

A.4.1 — > (obligatory, upper to lower replacement)
o XFST syntax: A— > B

Meaning: Unconditional replacement of the language A by the language B.

Construction: [[NO_A [A .x. B]]« NO_A] where NO_ A abbreviates ~ $[A —[]].

e XFST syntax: Aj— > By,...,A,— > B,

Meaning: Unconditional parallel replacement of the language A by the language B; and the language
Aj by the language B; ... and the language A, by the language B,,.

Construction: [[N R]* N | where N denotes the language of strings that do not contain any A;:
N=~3[[A1] | A =[]
and R stands for the relation that pairs every A; with the corresponding B;:

R=[[A; xB]|...| [Aw x.B)]]

e XFST syntax: A— > B|| L _R

Meaning: Conditional replacement of the language A by the language B. This is like the relation
A— > B except that any instance of A in the upper string corresponds to an instance of B in the lower
string only when it is preceded by an instance of L and followed by an instance of R. Other instances of
A in the upper string remain unchanged. A, B, L, and R must all denote simple languages, not relations.
The slant of the double bars indicates whether the precede/follow constraints refer to the instance of A
in the upper string or to its image in the lower string. In the || version, both contexts refer to the upper
string.

Construction: InsertBrackets .0. ConstrainBrackets .o. Le ftContext .0. RightContext .0. Replace .o.
RemoveBrackets where:

— Let < and > be two symbols not in ¥. The escape character % is used since < and > are saved
symbols in XFST.

— InsertBrackets =[] < — % < | % >]
InserBrackets eliminates from the upper side language all context markers that appear on the lower
side.

— ConstrainBrackets = [~ $[% < % >]]
ConstrainBrackets denotes the language consisting of strings that do not contain <> anywhere.

— LeftContext = [~ [~ [...LEFT] [< ..]] & ~[[...LEFT] ~[<..]]]
LeftContext denotes the language in which any instance of < is immediately preceded by LEFT
and every LEFT is immediately followed by <, ignoring irrelevant brackets. [...LEFT| denotes
[[?7% L/[% < | % >]]—[?* % <]], the language of all strings ending in L, ignoring all brackets
except for a final <. [< ...] denotes [% < /% > ?x], the language of strings beginning with <,
ignoring the other bracket.

- RightContext = [~[[... >] ~[RIGHT...]] & ~[~[...>] [RIGHT...]]]
RightContext denotes the language in which any instance of > is immediately followed by RIGHT
and any RIGHT is immediately preceded by >, ignoring irrelevant brackets. [RIGHT...] denotes
[[R/[% < | % >] ™]—[% < ?«]], the language of all strings beginning with R, ignoring all
brackets except for an initial >. [... >] denotes [?* % > /% <], the language of strings ending
with >, ignoring the other bracket.

— The definition of Replace divides into three cases:

1. If A does not contain the empty string (epsilon) then
Replace =% < Al[% < |%>] %> —> %< B/[% < |% >] % >]

This is the unconditional replacement of < A > by < B >, ignoring irrelevant brackets.
2. If A is the empty string (i.e., A = €) then

Replace =% > % < — > % < B* % >]
3. If A contains the empty string but is not equal to it (i.e., contains other strings too) then

Replace =

(o< All% <|%>%> —> %< Bl[%<|%>%>],%> %< —> %< Bx %>

That is, the first two cases are performed in parallel.

— RemoveBrackets = [% < | % > — > []]. RemoveBrackets denotes the relation that maps the
strings of the upper language to the same strings without any context markers.

e XFST syntax: A—>B//L_R

Meaning: Conditional replacement of the language A by the language B. This is like the relation
A— > B|| L _R except that the // variant requires the left context on the lower side of the replacement
and the right context on the upper side.

Construction: InsertBrackets .0. ConstrainBrackets .o. RightContext .0. Replace .o. Le ftContext .o.
RemoveBrackets where InsertBrackets, ConstrainBrackets, RightContext, Replace, LeftContext and
RemoveBrackets are the same as above.

e XFST syntax: A—>B\\L_R

Meaning: Conditional replacement of the language A by the language B. This is like the relation
A— > B|| L _R except that the \\ variant requires the left context on the upper side of the replacement
and the right context on the lower side.

Construction: InsertBrackets .0. ConstrainBrackets .o. LeftContext .0. Replace .0. RightContext .o.
RemoveBrackets where InsertBrackets, ConstrainBrackets, RightContext, Replace, LeftContext and
RemoveBrackets are the same as above.

e XFST syntax: A— >B\/L_R

Meaning: Conditional replacement of the language A by the language B. This is like the relation
A— > B|| L _R except that in the \ / variant, both contexts refer to the lower string.

Construction: InsertBrackets .0. ConstrainBrackets .0. Replace .o. Le ftContext .0. RightContext .o.
RemoveBrackets where InsertBrackets, ConstrainBrackets, RightContext, Replace, LeftContext and
RemoveBrackets are the same as above.

The rest of the obligatory upper to lower replace rules are conditional parallel replace rules that where not
implemented. An example of such aruleis Ajj— > Bjy,...,A1n— > By || Lii-Ri1y- -+ s Lim- Rim-

A4.2 (— >) (optional, upper to lower replacement)
e XFST syntax: A(— >)B

Construction: [[?x [A .x. B]]x 7%].

e XFST syntax: A(— >)Bj,...,A,(— >)B,
Construction: [[7% R]* 7% | where R stands for the relation that pairs every A; with the corresponding
Bi: R=[[A| x.Bi]| ... | [An -x.By]].

e XFST syntax: A(— >)B||L_R,A(—>)B//L_R,A(—>)B\\L_R,A(—>)B\/L_R

Construction: The same as the construction for the corresponding rules with the operator — > with
the difference that in the Replace stage, for each one of the three cases the obligatory upper to lower
replace operator — > is replaced by the optional upper to lower replace operator (— >).

The rest of the optional upper to lower replace rules are conditional parallel replace rules and were not
implemented.

A.4.3 < — (obligatory, lower to upper replacement)
o XFST syntax: A < —B

Construction: [B— > A].i
e XFST syntax: A; < —By,...,A;, < —B,
Construction: [Bj— > Ay,...,By— > A,].i

o XFST syntax: A< —B||L_R,A<-B//L_RA<—-B\\L_R,A<—-B\/L_R

Construction: The same as the construction for the corresponding rules with the operator — > with
the difference that in the Replace stage, for each one of the three cases the obligatory upper to lower
replace operator — > is replaced by the operator < —.

The rest of the obligatory lower to upper replace rules are conditional parallel replace rules and were not
implemented.

A4.4 (< —) (optional, lower to upper replacement)
e XFST syntax: A(< —)B
Construction: [B(— >)A].i

e XFST syntax: A;(< —)Bj,...,A,(< —)By
Construction: [Bi(— >)Ay,...,B,(— >)A,].i

e XFST syntax: A(< —)B||L _R,A(< —)B//L_R,A(< —)B\\ L _R,A(< =)B\/L_R

Construction: The same as the construction for the corresponding rules with the operator — > with
the difference that in the Replace stage, for each one of the three cases the obligatory upper to lower
replace operator — > is replaced by the operator (< —).

The rest of the optional lower to upper replace rules are conditional parallel replace rules and were not
implemented.

A4.5 < — > (obligatory, upper to lower, lower to upper replacement)
e XFST syntax: A< —>B

Construction: Let @ be a character not in X. We use the escape character % to precede @, since @ is
a reserved character in XFST. Thus, A < — > B is defined as

~ $[% @]
.0.
A—> %@
.0.
%@ < —B
0.
~ $[% @]

e XFST syntax: A < — > By,...,A, < —>B,

Construction: Let @1,...,@n be characters not in X. We use the escape character % to precede each
@i, since @ is a reserved character in XFST. Thus, A < — > B is defined as

~$[%@1| ... | %@n]
.0.
Al —> %@L, ..., Ay —> %@n
.0.
%@1 <—By,..., %@n < — B,
.0.
~3$[%@1| ... | %@n]

The rest of the obligatory upper to lower and lower to upper replace rules are conditional replace rules
and they were not implemented.

A4.6 (< — >) (optional, upper to lower, lower to upper replacement)
e XFST syntax: A(< — >)B

Construction: Let @ be a character not in X. We use the escape character % to precede @, since @ is
a reserved character in XFST. Thus, A(< — >)B is defined as

~ $[% @]
A(- :) %@
%@ (i ~)B

s

The rest of the optional upper to lower and lower to upper replace rules are conditional and parallel replace
rules and they were not implemented.

A4.7 @— > (obligatory, upper to lower, left to right, longest match replacement)

The following operations are the same as in section A.4.1, except that instead of — > occurs @ — >. As
— > represented an obligatory upper to lower replacement, @ — > represents an obligatory upper to lower
left to right longest match replacement. Instances of the language A on the upper side of the relation are
replaced selectively. The selection factors each upper language string uniquely into A and non-A substrings.
The factoring is based on a left-to-right and longest match regimen. The starting locations are selected from
left-to-right. If there are overlapping instances of A starting at the same location, only the longest one is
replaced by all strings of B.

o XFST syntax: A@— > B
Construction: InitialMatch .o. LeftToRight .0. LongestMatch .o. Replacement
Where:

— Let ", <, > be characters not in X. We use the escape character % to precede them since they are
reserved characters in XFST.

— InitialMatch =
~$[% %< | %>]
.0.
[]J—> %" _-A

where [..] — > LOWER || LEFT_RIGHT is a version of empty string replacement that al-
lows only one application between any LEFT and RIGHT. The construction for [. .] — >
LOWER || LEFT_RIGHT is the same as for UPPER — > LOWER || LEFT _RIGHT except
that Replace = [% > % < — > % < LOWER % >].

— LeftToRight =
[~$[%"] % :% < UPPER' 0:% >]]x ~ $[%"]

%" —> []
where UPPER' =[A/[%"] —[?% %]]

— LongestMatch =~ $[% < [UPPER" & $[% >]]]
where UPPER" = A/[% < | % >] — [7% [% < | % >]]

— Replacement = % < ~ $[% > % > —> B

The rest of the obligatory upper to lower left to right longest match replace rules are conditional and
parallel replace rules and they were not implemented.
The following XFST operators were not implemented:

e @ > (obligatory, upper to lower, left to right, shortest match replacement)
e — > @ (obligatory, upper to lower, right to left, longest match replacement)
e > @ right (obligatory, upper to lower, right to left, shortest match replacement)

A.5 Markup

Markup rules take an input string and mark it by inserting some strings before and after it. XFST markup
rules do not exist in FSA. We present the implementation of most of them in FSA, based on Karttunen
(1996).

e XFST syntax: A— >L...R

Meaning: Markup. Instances of the language A on the upper side of the relation are selected for
markup. Each selected A string is marked by inserting all strings of L to its left and all strings of R to
its right. The selected A strings themselves remain unchanged, along with the non-A segments.

Construction: A — > LAR

e XFST syntax: A@— > L...R

Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under left-to-right, longest match regimen. Thus, the starting locations are selected from
left-to-right. If there are overlapping instances of A starting at the same location, only the longest one
is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its left
and all strings of S to its right. The selected A strings themselves remain unchanged, along with the
non-A segments.

Construction: InitialMatch .o. Le ftToRight .0. LongestMatch .o. Insrtion
Where:

— Let ", <, > be characters not in X. We use the escape character % to precede them since they are
reserved characters in XFST.

— InitialMatch =
~$[% %< | %>]

.0.
[]-> % ||_A

where [. .| — > LOWER || LEFT_RIGHT is a version of empty string replacement that al-
lows only one application between any LEFT and RIGHT. The construction for [. .] — >
LOWER || LEFT_RIGHT is the same as for UPPER — > LOWER || LEFT _RIGHT except
that Replace = [% > % < — > % < LOWER % >|.

— LeftToRight =
[~$[%][%":% < UPPER' 0:% >]]* ~ $[%"]

%" —>]

where UPPER' = [A][%"] — [?* %7]
— LongestMatch =~ $[% < [UPPER" & $[% >]]]
where UPPER" = A/[% < |%>] — [7% [% < | % >]]
- Insrtion= %< —> L, %> —> R

The rest of the markup rules were not implemented since we could not obtain any documentation of their
constructions. These operators are:

e XFST syntax: A@ >L...R

Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under left-to-right, shortest match regimen. Thus, the starting locations are selected from
left-to-right. If there are overlapping instances of A starting at the same location, only the shortest one
is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its left
and all strings of S to its right. The selected A strings themselves remain unchanged, along with the
non-A segments.

e XFST syntax: A— > @L...R

Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under right-to-left, longest match regimen. Thus, the starting locations are selected from
right-to-left. If there are overlapping instances of A starting at the same location, only the longest one
is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its left
and all strings of S to its right. The selected A strings themselves remain unchanged, along with the
non-A segments.

e XFST syntax: A > @L...R

Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under right-to-left, shortest match regimen. Thus, the starting locations are selected from
right-to-left. If there are overlapping instances of A starting at the same location, only the shortest one
is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its left
and all strings of S to its right. The selected A strings themselves remain unchanged, along with the
non-A segments.

A.6 Boundary symbol for restriction and replacement

In the restriction, =>, and conditional replacement, — >,(— >),< —,(< =), < — >, (< = >),@— >, @ >
,— > @, > @ expressions we can use a special boundary marker, .#., to refer to the beginning or to the end
of a string. In the left context, the boundary marker signals the beginning of the string; in the right context
it means the end of the string.

Construction: We do not deal with all the cases where the boundary symbol .#. can be used. We only
deal with boundary cases contexts that are in one of the following forms (Le ftContext and RightContext are
assumed not to contain .#.):

o # LeftContext _ RightContext

o [#. LeftContext] _ RightContext

o [#.] LeftContext _ RightContext

[[-#.] LeftContext] _ RightContext

LeftContext _ RightContext .#.

LeftContext _ [RightContext #.]

LeftContext _ RightContext [.#.]

LeftContext _ [RightContext [.#.]]

#. LeftContext _RightContext 4.

[#. LeftContext] _RightContext .#.

o [#.] LeftContext _RightContext #.

o [[.#.] LeftContext] _ RightContext .#.
o #. LeftContext _[RightContext #.]

o [#. LeftContext] _[RightContext #.]
o [#.] LeftContext _[RightContext .#.]
e [[#.] LeftContext] _ [RightContext #.]
o #. LeftContext _RightContext [4#.]

o [#. LeftContext] _ RightContext [.#.]
o [#.] LeftContext _RightContext [.#.]
o [[.#.] LeftContext] _ RightContext [#.]
o #. LeftContext _[RightContext [#.]]
o [#. LeftContext] _[RightContext [.#.]]
o [#.] LeftContext _[RightContext [.#.]]
o [[.#.] LeftContext] _ [RightContext [#.]]

As we do not deal with restriction rules we need to deal with boundary cases only in replace rules. The
replace rules were constructed from six stages: InsertBrackets, ConstrainBrackets, LeftContext, RightCon-
text, Replace and RemoveBrackets. In boundary cases where the left context is in the beginning of a string,
only the LeftContext stage is changed. The LeftContext stage was defined as

LeftContext =~ [~ [...LEFT] [< ..]]| & ~[[..LEFT] ~[<..]]]

where [...LEFT] denoted
[[?7% L/[% < | % >]]—[?% % <]]

and [< ...] denoted
(% < [% > 4]

The definition of LeftContext is not changed but the definition of [...LEFT] is changed into
[[L/[% < [% >]]=[7* % <]]

In boundary cases where the right context is at the end of a string, only the RightContext stage is changed.
The RightContext stage was defined as

RightContext = [~ [[... >] ~ [RIGHT...]] & ~[~[...>] [RIGHT...]]]

where [RIGHT...] denoted
[[R/[% < | % >] %] —[% < 7]]

and [... >] denoted
[7% % > % <]

The definition of RightContext is not changed but the definition of [RIGHT...] is changed into
[[R/[% < | % >]]=[% < 4]

In boundary cases where both the right context and the left context are at the end and in the beginning of
a string respectively, both the RightContext and the LeftContext stages are changed as described above.
The idea behind these changes is that the context part of replacement expression can be actually seen as
7% LEFT _RIGHT 7+ and by simply eliminating one of the ?* in one of the ends we can relate to a
boundary case. The definitions that were changed above did exactly that: eliminated the appropriate ?* for
each case. More complicated cases, for example a— > b || [.#. | a] - should be dealt by conditional parallel
replacement. For example, a— > b || [.#. | a] _, should be interpreted as

a—>b||[#]-,,a=>b]|[q] -
Since we do not deal with conditional parallel replacement, we cannot deal with these cases.

A.7 Order of Precedence
A.7.1 XFST

The following list defines the order of precedence of all XFST operators. Operators of same precedence
are evaluated from left to right, except the prefix operators (~ \ $ $? $.) that are evaluated from right
to left. The list begins with the operators of highest precedence, i.e., with the most tightly binding ones.
Operators of same precedence are on the same line.

~+ 2

=> —-> (—>) <—-(K) <> (<=>) @—> @> —>@ >@

A.7.2 FSA
The following list defines the order of precedence in FSA:

2/

+ %7

& —
0 X Xxx
I #

A.8 Advanced techniques

Both XFST and FSA have advanced techniques that do no exist in the other toolbox. For XFST these
techniques include Compile-Replace and Flag-Diacritics; for FSA these techniques include predicates and
weighted networks.

