Hunmorph: open source word analysis

Viktor Tréon Gyorgy Gyepesi Péter Halacsy
IGK, U of Edinburgh K-PRO Ltd. Centre of Media Research and Education
2 Buccleuch Place H-2092 Budakeszi Stoczek u. 2
EH8 9LW Edinburgh Villam u. 6. H-1111 Budapest

v.tron@ed.ac.uk

Andras Kornai

ggyepesi@kpro.hu

Laszlo Németh

hp@mokk . bme . hu

Daniel Varga

MetaCarta Inc. CMRE CMRE
350 Massachusetts Avenue Stoczek u. 2 Stoczek u. 2
Cambridge MA 02139 H-1111 Budapest H-1111 Budapest

andras@kornai.com

Abstract

Common tasks involving orthographic
words include spellchecking, stemming,
morphological analysis, and morpho-
logical synthesis. To enable signifi-
cant reuse of the language-specific re-
sources across all such tasks, we have
extended the functionality of the open
source spellchecker MySpell, yield-
ing a generic word analysis library, the
runtime layer of the hunmorph toolkit.
We added an offline resource manage-
ment component, hunlex, which com-
plements the efficiency of our runtime
layer with a high-level description lan-
guage and a configurable precompiler.

0 Introduction

Word-level analysis and synthesis problems range
from strict recognition and approximate matching
to full morphological analysis and generation. Our
technology is predicated on the observation that
all of these problems are, when viewed algorith-
mically, very similar: the central problem is to
dynamically analyze complex structures derived
from some lexicon of base forms. Viewing word
analysis routines as a unified problem means shar-
ing the same codebase for a wider range of tasks, a
design goal carried out by finding the parameters
which optimize each of the analysis modes inde-
pendently of the language-specific resources.

nemeth@mokk.bme.hu

daniel@mokk.bme.hu

The C/C++ runtime layer of our toolkit, called
hunmorph, was developed by extending the code-
base of MySpell, a reimplementation of the well-
known Ispell spellchecker. Our technology, like
the Ispell family of spellcheckers it descends
from, enforces a strict separation between the
language-specific resources (known as dictionary
and affix files), and the runtime environment,
which is independent of the target natural lan-

guage.

offline layer runtime layer
language
software
- T - 3
language
resources lexlcon grammar ar
morphdb task specific resource

Figure 1: Architecture

Compiling accurate wide coverage machine-
readable dictionaries and coding the morphology
of a language can be an extremely labor-intensive
task, so the benefit expected from reusing the
language-specific input database across tasks can
hardly be overestimated. To facilitate this resource
sharing and to enable systematic task-dependent
optimizations from a central lexical knowledge
base, we designed and implemented a powerful of-
fline layer we call hunlex. Hunlex offers an easy

to use general framework for describing the lexi-
con and morphology of any language. Using this
description it can generate the language-specific
aff/dic resources, optimized for the task at hand.
The architecture of our toolkit is depicted in Fig-
ure 1. Our toolkit is released under a permissive
LGPL-style license and can be freely downloaded
from mokk . bme . hu/resources/hunmorph.

The rest of this paper is organized as follows.
Section 1 is about the runtime layer of our toolkit.
We discuss the algorithmic extensions and imple-
mentational enhancements in the C/C++ runtime
layer over MySpell, and also describe the newly
created Java port jmorph. Section 2 gives an
overview of the offline layer hunlex. In Section 3
we consider the free open source software alterna-
tives and offer our conclusions.

1 The runtime layer

Our development is a prime example of code
reuse, which gives open source software devel-
opment most of its power. Our codebase is a
direct descendant of MySpell, a thread-safe C++
spell-checking library by Kevin Hendricks, which
descends from Ispell Peterson (1980), which in
turn goes back to Ralph Gorin’s spell (1971),
making it probably the oldest piece of linguistic
software that is still in active use and development
(see fmg-www.cs.ucla.edu/fmg-members/
geoff/ispell.html).

The key operation supported by this codebase is
affix stripping. Affix rules are specified in a static
resource (the aff file) by a sequence of conditions,
an append string, and a strip string: for example,
in the rule forming the plural of body the strip
string would be y, and the affix string would be
ies. The rules are reverse applied to complex input
wordforms: after the append string is stripped and
the edge conditions are checked, a pseudo-stem is
hypothesized by appending the strip string to the
stem which is then looked up in the base dictio-
nary (which is the other static resource, called the
dic file).

Lexical entries (base forms) are all associated
with sets of affix flags, and affix flags in turn are
associated to sets of affix rules. If the hypothe-
sized base is found in the dictionary after the re-

verse application of an affix rule, the algorithm
checks whether its flags contain the one that the
affix rule is assigned to. This is a straight table-
driven approach, where affix flags can be inter-
preted directly as lexical features that license en-
tire subparts of morphological paradigms. To pick
applicable affix rules efficiently, MySpell uses a
fast indexing technique to check affixation condi-
tions.

In theory, affix-rules should only specify gen-
uine prefixes and suffixes to be stripped before lex-
ical lookup. But in practice, for languages with
rich morphology, the affix stripping mechanism is
(ab)used to strip complex clusters of affix morphs
in a single step. For instance, in Hungarian, due
to productive combinations of derivational and in-
flectional affixation, a single nominal base can
yield up to a million word forms. To treat all
these combinations as affix clusters, legacy ispell
resources for Hungarian required so many com-
bined affix rule entries that its resource file sizes
were not manageable.

To solve this problem we extended the affix
stripping technique to a multistep method: after
stripping an affix cluster in step i, the resulting
pseudo-stem can be stripped of affix clusters in
step i + 1. Restrictions of rule application are
checked with the help of flags associated to affixes
analogously to lexical entries: this only required
a minor modification of the data structure coding
affix entries and a recursive call for affix stripping.
By cross-checking flags of prefixes on the suffix
(as opposed to the stem only), simultaneous pre-
fixation and suffixation can be made interdepen-
dent, extending the functionality to describe cir-
cumfixes like German participle ge+t, or Hungar-
ian superlative leg+bb, and in general provide the
correct handling of prefix-suffix dependencies like
English undrinkable (cf. *undrink), see Németh
et al. (2004) for more details.

Due to productive compounding in a lot of lan-
guages, proper handling of composite bases is a
feature indispensable for achieving wide coverage.
Ispell incorporates the possibility of specifying
lexical restrictions on compounding implemented
as switches in the base dictionary. However, the
algorithm allows any affixed form of the bases that
has the relevant switch to be a potential member

file:fmg-www.cs.ucla.edu/fmg-members/ geoff/ispell.html
file:fmg-www.cs.ucla.edu/fmg-members/ geoff/ispell.html

of a compound, which proves not to be restrictive
enough. We have improved on this by the intro-
duction of position-sensitive compounding. This
means that lexical features can specify whether
a base or affix can occur as leftmost, rightmost
or middle constituent in compounds and whether
they can only appear in compounds. Since these
features can also be specified on affixes, this pro-
vides a welcome solution to a number of resid-
ual problems hitherto problematic for open-source
spellcheckers. In some Germanic languages, ’fo-
gemorphemes’, morphemes which serve linking
compound constituents can now be handled easily
by allowing position specific compound licensing
on the foge-affixes. Another important example is
the German common noun: although it is capital-
ized in isolation, lowercase variants should be ac-
cepted when the noun is a compound constituent.
By handling lowercasing as a prefix with the com-
pound flag enabled, this phenomenon can be han-
dled in the resource file without resort to language
specific knowledge hard-wired in the code-base.

1.1 From spellchecking to morphological
analysis

We now turn to the extensions of the MySpell
algorithm that were required to equip hunmorph
with stemming and morphological analysis func-
tionality. The core engine was extended with an
optional output handling interface that can process
arbitrary string tags associated with the affix-rules
read from the resources. Once this is done, sim-
ply outputting the stem found at the stage of dic-
tionary lookup already yields a stemmer. In mul-
tistep affix stripping, registering output informa-
tion associated with the rules that apply renders
the system capable of morphological analysis or
other word annotation tasks. Thus the processing
of output tags becomes a mode-dependent param-
eter that can be:

e switched off (spell-checking)

e turned on only for tag lookup in the dictio-
nary (simple stemming)

e turned on fully to register tags with all rule-
applications (morphological analysis)

The single most important algorithmic aspect that
distinguishes the recognition task from analysis
is the handling of ambiguous structures. In the
original MySpell design, identical bases are con-
flated and once their switch-set licensing affixes
are merged, there is no way to tell them apart.
The correct handling of homonyms is crucial for
morphological analysis, since base ambiguities
can sometimes be resolved by the affixes. In-
terestingly, our improvement made it possible to
rule out homonymous bases with incorrect simul-
taneous prefixing and suffixing such as English
out+number+’s. Earlier these could be handled
only by lexical pregeneration of relevant forms or
duplication of affixes.

Most importantly, ambiguity arises in relation
to the number of analyses output by the system.
While with spell-checking the algorithm can ter-
minate after the first analysis found, performing
an exhaustive search for all alternative analyses is
a reasonable requirement in morphological analy-
sis mode as well as in some stemming tasks. Thus
the exploration of the search space also becomes
an active parameter in our enhanced implementa-
tion of the algorithm:

e search until the first correct analysis

e secarch restricted multiple analyses (e.g., dis-
abling compounds)

e search all alternative analyses

Search until the first analysis is a functionality for
recognizers used for spell-checking and stemming
for accelerated document indexing. Preemption
of potential compound analyses by existing lexi-
cal bases serves as a general way of filtering out
spurious ambiguities when a reduction is required
in the space of alternative analyses. In these cases,
frequent compounds which trick the analyzer can
be precompiled to the lexicon. Finally, there is a
possibility to give back a full set of possible anal-
yses. This output then can be passed to a tagger
that disambiguates among the candidate analyses.
Parameters can be used that guide the search (such
as "do lexical lookup first at all stages’ or ’strip the
shortest affix first’), which yield candidate rank-
ings without the use of numerical weights or statis-

tics. These rankings can be used as disambigua-
tion heuristics based on a general idea of blocking
(e.g., Times would block an analysis of time+s).
All further parametrization is managed offline by
the resource compiler layer, see Section 2.

1.2 Reimplementing the runtime layer

In our efforts to gear up the MySpell codebase
to a fully functional word analysis library we suc-
cessfully identified various resource-related, algo-
rithmic and implementational bottlenecks of the
affix-rule based technology. With these lessons
learned, a new project has been launched in or-
der to provide an even more flexible and efficient
open source runtime layer. A principled object-
oriented refactorization of the same basic algo-
rithm described above has already been imple-
mented in Java. This port, called jmorph also uses
the aff/dic resource formats.

In jmorph, various algorithmic options guiding
the search (shortest/longest matching affix) can
be controlled for each individual rule. The im-
plementation keeps track of affix and compound
matches checking conditions only once for a given
substring and caching partial results. As a conse-
quence, it ends up being measurably faster than
the C++ implementation with the same resources.

The main loop of jmorph is driven by config-
uring consumers, i.e., objects which monitor the
recursive step that is running. For example the
analysis of the form beszédesek ’talkative.PLUR’
begins by inspecting the global configuration of
the analysis: this initial consumer specifies how
many analyses, and what kind, need to be found.
In Step 1, the initial consumer finds the rule that
strips ek with stem beszédes, builds a consumer
that can apply this rule to the output of the analy-
sis returned by the next consumer, and launches
the next step with this consumer and stem. In
Step 2, this consumer finds the rule stripping es
with stem beszéd, which is found in the lexicon.
beszéd is not just a string, it is a complete lexi-
cal object which lists the rules that can apply to
it and all the homonyms. The consumer creates a
new analysis that reflects that beszédes is formed
from beszéd by suffixing es (a suffix object), and
passes this back to its parent consumer, which ver-
ifies whether the ek suffixation rule is applicable.

If not, the Step 1 consumer requests further anal-
yses from the Step 2 consumer. If, however, the
answer is positive, the Step 1 consumer returns its
analysis to the Step O (initial) consumer, which de-
cides whether further analyses are needed.

In terms of functionality, there are a number of
differences between the Java and the C++ variants.
jmorph records the full parse tree of rule appli-
cations. By offering various ways of serializing
this data structure, it allows for more structured
information in the outputs than would be possible
by simple concatenation of the tag chunks asso-
ciated with the rules. Class-based restrictions on
compounding is implemented and will eventually
supersede the overgeneralizing position-based re-
strictions that the C++ variant and our resources
currently use.

Two major additional features of jmorph are
its capability of morphological synthesis as well
as acting as a guesser (hypothesizing lemmas).
Synthesis is implemented by forward application
of affix rules starting with the base. Rules have
to be indexed by their tag chunks for the search,
so synthesis introduces the non-trivial problem of
chunking the input tag string. This is currently im-
plemented by plug-ins for individual tag systems,
however, this should ideally be precompiled off-
line since the space of possible tags is limited.

2 Resource development and offline
precompilation

Due to the backward compatibility of the runtime
layer with MySpell-style resources, our software
can be used as a spellchecker and simplistic stem-
mer for some 50 languages for which MySpell
resources are available, see lingucomponent.
openoffice.org/spell dic.html.

For languages with complex morphology, com-
piling and maintaining these resources is a painful
undertaking. Without using a unified framework
for morphological description and a principled
method of precompilation, resource developers for
highly agglutinative languages like Hungarian (see
magyarispell.sourceforge.net) have to re-
sort to a maze of scripts to maintain and precom-
pile aff and dic files. This problem is intolerably
magnified once morphological tags or additional

file:lingucomponent.openoffice.org/spell_dic.html
file:lingucomponent.openoffice.org/spell_dic.html
file:magyarispell.sourceforge.net

lexicographic information are to be entered in or-
der to provide resources for the analysis routines
of our runtime layer.

The offline layer of our toolkit seeks to remedy
this by offering a high-level description language
in which grammar developers can specify rule-
based morphologies and lexicons (somewhat in
the spirit of 1lexc Beesley and Karttunen (2003),
the frontend to Xerox’s Finite State Toolkit). This
promises rapid resource development which can
then be used in various tasks. Once primary re-
sources are created, hunlex, the offline precom-
piler can generate aff and dic resources op-
timized for the runtime layer based on various
compile-time configurations.

Figure 2 illustrates the description language
with a fragment of English morphology describ-
ing plural formation. Individual rules are sepa-
rated by commas. The syntax of the rule descrip-
tions organized around the notion of information
blocks. Blocks are introduced by keywords (like
IF:) and allow the encoding of various properties
of a rule (or a lexical entry), among others speci-
fying affixation (+es), substitution, character trun-
cation before affixation (CLIP: 1), regular ex-
pression matches (MATCH: [~o]o), positive and
negative lexical feature conditions on application
(IF: f-v_altern), feature inheritance, output
(continuation) references (OUT: PL_P0SS), out-
put tags (TAG: " [PLURI").

One can specify the rules that can be applied to
the output of a rule and also one can specify appli-
cation conditions on the input to the rule. These
two possibilities allow for many different styles
of morphological description: one based on in-
put feature constraints, one based on continuation
classes (paradigm indexes), and any combination
between these two extremes. On top of this, reg-
ular expression matches on the input can also be
used as conditions on rule application.

Affixation rules “grouped together” here under
PLUR can be thought of as allomorphic rules of the
plural morpheme. Practically, this allows informa-
tion about the morpheme shared among variants
(e.g., morphological tag, recursion level, some
output information) to be abstracted in a pream-
ble which then serves as a default for the individ-
ual rules. Most importantly, the grouping of rules

PL

TAG: "[PLUR]"

0UT: PL_POSS
house -> houses
, +s MATCH: ["shoxy] IF: regular
kiss -> kisses
, tes MATCH: [“cls IF: regular
...
ethics
, + MATCH: cs IF: regular
body -> bodies <C> is a regexp macro

+ies MATCH: <C>y CLIP:1 IF: regular

H -

zloty -> zlotys
, +s MATCH: <C>y IF: y-ys
macro -> macros
, +s MATCH: ["oJo IF: regular
potato -> potatoes
, +tes MATCH: ["o]o IF: o-oes
wife -> wives
, tves MATCH: fe CLIP: 2 IF: f-ves
leaf -> leaves
, tves MATCH: f CLIP: 1 IF: f-ves

Figure 2: hunlex grammar fragment

into morphemes serves to index those rules which
can be referenced in output conditions, For exam-
ple, in the above the plural morpheme specifies
that the plural possessive rules can be applied to
its output (QUT: PL_P0SS). This design makes it
possible to handle some morphosyntactic dimen-
sions (part of speech) very cleanly separated from
the conditions regulating the choice of allomorphs,
since the latter can be taken care of by input fea-
ture checking and pattern matching conditions of
rules. The lexicon has the same syntax as the
grammar only that morphemes stand for lemmas
and variant rules within the morpheme correspond
to stem allomorphs.

Rules with zero affix morph can be used as
filters that decorate their inputs with features
based on their orthographic shape or other features
present. This architecture enables one to let only
exceptions specify certain features in the lexicon
while regular words left unspecified are assigned
a default feature by the filters (see PL_FILTER in

REGEXP: C [bcdfgklmnprstvwxyz] ;

DEFINE: N
OUT: SG PL_FILTER
TAG: NOUN
PL_FILTER
OUT:
PL
FILTER:
f-ves
y-ys
o-oes
regular
, DEFAULT:
regular

Figure 3: Macros and filters in hunlex

Figure 3) potentially conditioned the same way as
any rule application. Feature inheritance is fully
supported, that is, filters for particular dimensions
of features (such as the plural filter in Figure 3)
can be written as independent units. This design
makes it possible to engineer sophisticated filter
chains decorating lexical items with various fea-
tures relevant for their morphological behavior.
With this at hand, extending the lexicon with a reg-
ular lexeme just boils down to specifying its base
and part of speech. On the other hand, indepen-
dent sets of filter rules make feature assignments
transparent and maintainable.

In order to support concise and maintainable
grammars, the description language also allows
(potentially recursive) macros to abbreviate arbi-
trary sets of blocks or regular expressions, illus-
trated in Figure 3.

The resource compiler hunlex is a stand-
alone program written in OCaml which comes
with a command-line as well as a Makefile as
toplevel control interface. The internal workings
of hunlex are as follows.

As the morphological grammar is parsed by the
precompiler, rule objects are created. A block is
read and parsed into functions which each trans-

form the ‘affix-rule’ data-structure by enriching its
internal representation according to the semantic
content of the block. At the end of each unit,
the empty rule is passed to the composition of
block functions to result in a specific rule. Thanks
to OCaml’s flexibility of function abstraction and
composition, this design makes it easy to imple-
ment macros of arbitrary blocks directly as func-
tions. When the grammar is parsed, rules are ar-
ranged in a directed (possibly cyclic) graph with
edges representing possible rule applications as
given by the output specifications.

Precompilation proceeds by performing a re-
cursive closure on this graph starting from lexi-
cal nodes. Rules are indexed by ’levels’ and con-
tiguous rule-nodes that are on the same level are
merged along the edges if constraints on rule ap-
plication (feature and match conditions, etc.) are
satisfied. These precompiled affix-clusters and
complex lexical items are to be placed in the aff
and dic file, respectively.

Instead of affix merging, closure between rules
a and b on different levels causes the affix clus-
ters in the closure of b to be registered as rules in
a hash and their indexes recorded on a. After the
entire lexicon is read, these index sets registered
on rules are considered. The affix cluster rules to
be output into the affix file are arranged into max-
imal subsets such that if two output affix cluster
rules a and b are in the same set, then every item
or affix to which a can be applied, b can also be
applied. These sets of affix clusters correspond to
partial paradigms which each full paradigm either
includes or is disjoint with. The resulting sets of
output rules are assigned to a flag and items ref-
erencing them will specify the appropriate com-
bination of flags in the output dic and aff file.
Since equivalent affix cluster rules are conflated,
the compiled resources are always optimal in the
following three ways.

First, the affix file is redundancy free: no two af-
fix rules have the same form. With hand-coded af-
fix files this can almost never be guaranteed since
one is always inclined to group affix rules by lin-
guistically motivated paradigms thereby possibly
duplicating entries. A redundancy-free set of affix
rules will enhance performance by minimizing the
search space for affixes. Note that conflation of

identical rules by the runtime layer is not possible
without reindexing the flags which would be very
computationally intensive if done at runtime.

Second, given the redundancy free affix-set,
maximizing homogeneous rulesets assigned to a
flag minimizes the number of flags used. Since the
internal representation of flags depends on their
number, this has the practical advantage of reduc-
ing memory requirements for the runtime layer.

Third, identity of output affix rules is calculated
relative to mode and configuration settings, there-
fore identical morphs with different morphologi-
cal tags will be conflated for recognizers (spell-
checking) where ambiguity is irrelevant, while for
analysis it can be kept apart. This is impossible
to achieve without a precompilation stage. Note
that finite state transducer-based systems perform
essentially the same type of optimizations, elimi-
nating symbol redundancy when two symbols be-
have the same in every rule, and eliminating state
redundancy when two states have the exact same
continuations.

Though the bulk of the knowledge used by
spellcheckers, by stemmers, and by morphologi-
cal analysis and generation tools is shared (how
affixes combine with stems, what words allow
compounding), the ideal resources for these var-
ious tasks differ to some extent. Spellcheck-
ers are meant to help one to conform to ortho-
graphic norms and therefore should be error sen-
sitive, stemmers and morphological analyzers are
expected to be more robust and error tolerant espe-
cially towards common violations of standard use.
Although this seems at first to justify the individ-
ual efforts one has to invest in tailoring one’s re-
sources to the task at hand, most of the resource
specifics are systematic, and therefore allow for
automatic fine-tuning from a central knowledge
base. Configuration within hunlex allows the
specification of various features, among others:

e selection of registers and degree of normativ-
ity based on usage qualifiers in the database
(allows for boosting robustness for analysis
or stick to normativity for synthesis and spell-
checking)

o flexible selection of output information:

choice of tagset for different encodings, sup-
port for sense indexes

e arbitrary selection of morphemes

e setting levels of morphemes (grouping of
morphs that are precompiled as a cluster to
be stripped with one rule application by the
runtime layer)

e fine-tuning which morphemes are stripped
during stemming

e arbitrary selection of morphophonological
features that are to be observed or ignored
(allows for enhancing robustness by e.g., tol-
erating non-standard regularizations)

The input description language allows for arbi-
trary attributes (ones encoding part of speech, ori-
gin, register, etc.) to be specified in the descrip-
tion. Since any set of attributes can be selected to
be compiled into the runtime resources, it takes
no more than precompiling the central database
with the appropriate configuration for the runtime
analyzer to be used as an arbitrary word annota-
tion tool, e.g., style annotator or part of speech
tagger. We also provide an implementation of a
feature-tree based tag language which we success-
fully used for the description of Hungarian mor-
phology.

If the resources are created for some filtering
task, say, extracting (possibly inflected) proper
nouns in a text, resource optimization described
above can save considerable amounts of time com-
pared to full analysis followed by post-processing.
While the relevant portion of the dictionary might
be easily filtered therefore speeding up lookup, tai-
loring a corresponding redundancy-free affix file
would be a hopeless enterprise without the pre-
compiler.

As we mentioned, our offline layer can be con-
figured to cluster any or no sets of affixes together
on various levels, and therefore resources can be
optimized for either memory use (affix by affix
stripping) or speed (generally toward one level
stripping). This is a major advantage given po-
tential applications as diverse as spellchecking on
the word processor of an old 386 at one end, and

industrial scale stemming on terabytes of web con-
tent for IR at the other.

In sum, our offline layer allows for the princi-
pled maintenance of a central resource, saving the
redundant effort that would otherwise have to be
invested in encoding very similar knowledge in a
task-specific manner for each word level analysis
task.

3 Conclusion

The importance of word level analysis can hardly
be questioned: spellcheckers reach the extremely
wide audience of all word processor users, stem-
mers are used in a variety of areas ranging from
information retrieval to statistical machine transla-
tion, and for non-isolating languages morpholog-
ical analysis is the initial phase of every natural
language processing pipeline.

Over the past decades, two closely intertwined
methods emerged to handle word analysis tasks,
affix stripping and finite state transducers (FSTs).
Since both technologies can provide industrial
strength solutions for most tasks, when it comes
to choice of actual software and its practical use,
the differences that have the greatest impact are
not lodged in the algorithmic core. Rather, two
other factors play a role: the ease with which one
can integrate the software into applications and the
infrastructure offered to translate the knowledge of
the grammarian to efficient and maintainable com-
putational blocks.

To be sure, in an end-to-end machine learning
paradigm, the mundane differences between how
the systems interact with the human grammari-
ans would not matter. But as long as the gram-
mars are written and maintained by humans, an of-
fline framework providing a high-level language to
specify morphologies and supporting configurable
precompilation that allows for resource sharing
across word-analysis tasks addresses a major bot-
tleneck in resource creation and management.

The Xerox Finite State Toolkit provides com-
prehensive high-level support for morphology
and lexicon development (Beesley and Karttunen,
2003). These descriptions are compiled into mini-
mal deterministic FST-s, which give excellent run-
time performance and can also be extended to

error-tolerant analysis for spellchecking Oflazer
(1996). Nonetheless, XFST is not free software,
and as long as the work is not driven by aca-
demic curiosity alone, the LGPL-style license of
our toolkit, explicitly permitting reuse for com-
mercial purposes as well, can already decide the
choice.

There are other free open source ana-
lyzer technologies, either stand-alone an-
alyzers such as the Stuttgart Finite State
Toolkit (SFST, available only wunder the
GPL, see www.ims.uni-stuttgart.de/
projekte/gramotron/SOFTWARE/SFST.html,
Smid et al. (2004)) or as part of a power-
ful integrated NLP platform such as In-
tex/NooJ (freely available for academic re-
search to individuals affiliated with a university
only, see intex.univ-fcomte.fr; a clone
called Unitex is available under LGPL, see
www—igm.univ-mlv.fr/ unitex.) Unfortu-
nately, NooJ has its limitations when it comes
to implementing complex morphologies (Vajda
et al., 2004) and SFST provides no high-level
offline component for grammar description and
configurable resource creation.

We believe that the liberal license policy and the
powerful offline layer contributed equally to the
huge interest that our project generated, in spite
of its relative novelty. MySpell was not just our
choice: it is also the spell-checking library incor-
porated into OpenOffice.org, a free open-source
office suite with an ever wider circle of users. The
Hungarian build of OpenOffice is already running
our C++ runtime library, but OpenOffice is now
considering to completely replace MySpell with
our code. This would open up the possibility of
introducing morphological analysis capabilities in
the program, which in turn could serve as the first
step towards enhanced grammar checking and hy-
phenation.

Though in-depth grammars and lexica are avail-
able for nearly as many languages in FST-
based frameworks (InXight Corporation’s Lin-
guistX platform supports 31 languages), very lit-
tle of this material is available for grammar hack-
ing or open source dictionary development. In ad-
dition to permissive license and easy to integrate
infrastructure, the fact that the hunmorph routines

file:www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html
file:www.ims.uni-stuttgart.de/projekte/gramotron/SOFTWARE/SFST.html
file:intex.univ-fcomte.fr

are backward compatible with already existing and
freely available spellchecking resources for some
50 languages goes a long way toward explaining
its rapid spread.

For Hungarian, hunlex already serves as the
development framework for the MORPHDB project
which merges three independently developed lex-
ical databases by critically unifying their contents
and supplying it with a comprehensive morpho-
logical grammar. It also provided a framework
for our English morphology project that used the
XTAG morphological database for English (see
ftp.cis.upenn.edu/pub/xtag/morph-1.5,
Karp et al. (1992)). A project describing the
morphology of the Beds dialect of Romani with
hunlex is also under way.

The hunlex resource precompiler is not archi-
tecturally bound to the aff/dic format used by
our toolkit, and we are investigating the possibility
of generating FST resources with it. This would
decouple the offline layer of our toolkit from the
details of the runtime technology, and would be an
important step towards a unified open source so-
lution for method-independent resource develop-
ment for word analysis software.

Acknowledgements

The development of hunmorph and hunlex is fi-
nancially supported by the Hungarian Ministry
of Informatics and Telecommunications and by
MATAV Telecom Co., and is led by the Centre
for Media Research and Education at the Budapest
University of Technology. We would like to thank
the anonymous reviewers of the ACL Software
Workshop for their valuable comments on this pa-
per.

Availability

Due to the confligting needs of Unix, Windows,
and MacOs users, the packaging/build environ-
ment for our software has not yet been final-
ized. However, a version of our tools, and
some of the major language resources that have
been created using these tools, are available at
mokk .bme.hu/resouces.

References

Kenneth R. Beesley and Lauri Karttunen. 2003.
Finite State Morphology. CSLI Publications.

Daniel Karp, Yves Schabes, Martin Zaidel, and
Dania Egedi. 1992. A freely available wide cov-
erage morphological analyzer for english. In
Proceedings of the 14th International Confer-
ence on Computational Linguistics (COLING-
92) Nantes, France.

Lészl6 Németh, Viktor Trén, Péter Halécsy,
Andrés Kornai, Andrds Rung, and Istvdn Sza-
kadat. 2004. Leveraging the open-source is-
pell codebase for minority language analysis.
In Proceedings of SALTMIL 2004. European
Language Resources Association. URL http:
//www.lrec-conf.org/lrec2004.

Kemal Oflazer. 1996. Error-tolerant finite-state
recognition with applications to morphological
analysis and spelling correction. Computational
Linguistics, 22(1):73-89.

James Lyle Peterson. 1980. Computer programs
for spelling correction: an experiment in pro-
gram design, volume 96 of Lecture Notes in
Computer Science. Springer.

Helmut Smid, Arne Fitschen, and Ulrich Heid.
2004. SMOR: A German computational mor-
phology covering derivation, composition, and
inflection. In Proceedings of the IVth Interna-

tional Conference on Language Resources and
Evaluation (LREC 2004), pages 1263-1266.

Péter Vajda, Viktor Nagy, and Emilia Dancsecs.
2004. A Ragozasi szotartol a NooJ morfoldgiai
moduljaig [from a morphological dictionary to
a morphological module for Nool]. In 2nd Hun-
garian Computational Linguistics Conference,
pages 183-190.

file:ftp.cis.upenn.edu/pub/xtag/morph-1.5
http://www.lrec-conf.org/lrec2004
http://www.lrec-conf.org/lrec2004

	0 Introduction
	1 The runtime layer
	1.1 From spellchecking to morphological analysis
	1.2 Reimplementing the runtime layer

	2 Resource development and offline precompilation
	3 Conclusion

