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Abstract

We describe the evolution of solvers
for dominance constraints, a formalism
used in underspecified semantics, and
present a new graph-based solver using
charts. An evaluation on real-world data
shows that each solver (including the
new one) is significantly faster than its

In this paper, we advocate a third option: Use a
general, powerful formalism, analyse what makes
it complex and what inputs actually occur in prac-
tice, and then find a restricted fragment of the for-
malism that supports all practical inputs and can
be processed efficiently. We demonstrate this ap-
proach by describing the evolution of solvers for
dominance constrain{&gg et al., 2001), a certain
formalism used for the underspecified descrip-

tion of scope ambiguities in computational seman-
tics. General dominance constraints have an NP-
complete satisfiability problem, buiormal dom-
inance constraints, which subsume all constraints
that are used in practice, have linear-time satisfia-
bility and can be solved extremely efficiently.

We describe a sequence of four solvers, rang-

In many areas of computational linguistics, there id'd from a purely logic-based saturation algorithm
zKoller et al., 1998) over a solver based on con-

a tension between a need for powerful formalisms . . . )
. - . . straint programming (Duchier and Niehren, 2000)
and the desire for efficient processing. Expressive

formalisms are useful because they allow us t efficient solvers based on graph algorithms
L . Bodirsky et al., 2004). The first three solvers have
specify linguistic facts at the right level of abstrac-

tion, and in a way that supports the creation anBeen described in the literature before, but we also

maintenance of large language resources. On ﬂ%esent a new variant of the graph solver that uses

other hand, by choosing a more powerful formalg:aching to obtain a considerable speedup. Finally

ism, we typically run the risk that our processingwe present a new evaluation that compares all four

tasks (say, parsing or inference) can no longer bseolvers with each other and with a different under-

performed efficiently. specification solver from the LKB grammar devel-

One way to address this tension is to switch 6 pment syste.m (Copestake and Fllcklnger,.ZOIOO).
The paper is structured as follows. We will first

simpler formalisms. This makes processing more

efficient, but sacrifices the benefits of expressivgketch the problem that our algorithms solve (Sec-

formalisms in terms of modelling. Another com—tIon 2). Then we present the solvers (Section 3)

: . and conclude with the evaluation (Section 4).
mon strategy is to simply use the powerful for-

mall_sms anyway. This sometlr_ngs vv_orks Pretty  The Problem

well in practice, but a system built in this way can-

not give any runtime guarantees, and may becomiehe problem we use to illustrate the progress to-
slow for certain inputs unpredictably. wards efficient solvers is that of enumerating all

predecessors. We believe that our strat-
egy of successively tailoring a powerful
formalism to the actual inputs is more
generally applicable.

1 Introduction



readings of amunderspecified descriptiotunder- Vx Ty

specification is a technique for dealing with the — A
combinatorial problems associated with quantifier ~ stud Jy book Vx
scope ambiguities, certain semantic ambiguities X A y —
that occur in sentences such as the following: book read stud read
y ex y X e X y

(1) Every student reads a book.

_ _ . Figure 1: Trees for the readings (2) and (3).
This sentence has two different readings. Read-

ing (2) expresses that each studentreads a possibly vy

different book, while reading (3) claims that there - 22(8%))2\4) A
is a single book which is read by every student. stud Xs : studXg) A
X Xg i XA
(2) Vx.student(x) — (Jy.book(y) Aread(X,y)) % < X0 A
(3) Jy.book(y) A (Vx.student(x) — read(x,Y)) Z )r(eja\o)l((;%,yxg) "

' The_ number of readings can grow exponenrigyre 2: A dominance constraint (right) and its
tially in the number of quantifiers and othergraphical representation (left); the solutions of the

scope-bearing operators occuring in the sentencynsraint are the two trees in Fig. 1.
A patrticularly extreme example is the follow-

ing sentence from the Rondane Treebank, which _ .
the English Resource Grammar (Copestake arfgPminance constraints. The particular under-

Flickinger, 2000) claims to have about 2.4 trillionSPecification formalism whose enumeration prob-
readings. lem we consider in this paper is the formalism

of dominance constraintéEgg et al., 2001). The
(4) Myrdal is the mountain terminus of the Flambasic idea behind using dominance constraints in
rail line (or Flamsbana) which makes its wayunderspecification is that the semantic representa-
down the lovely Flam Valley (Fldmsdalen) totions (2) and (3) can be consideredte=es(see
its sea-level terminus at Flam. Fig. 1). Then a set of semantic representations can
(Rondane 650) be characterised as the set of models of a formula

_ . in the following language:
Of course, this huge number of readings results

not only from genuine meaning differences, but ¢ ::= X E (X, X)) | XY [ XAY [ OAD
from the (quite reasonable) decision of the ERG
developers to uniformly treat all noun phrases, in- The labelling atom Xf(Xi,...,X,) expresses
cluding proper names and definites, as quantifierthat the node in the tree which is denoted by the
But a system that builds upon such a grammar stillariableX has the labef, and its children are de-
has to deal with these readings in some way.  noted by the variableX¥; to X,. Dominance atoms
The key idea of underspecification is now to noX <* Y say that there is a path (of length O or more)
enumerate all these semantic readings from a syfrom the node denoted b¥ to the node denoted
tactic analysis during or after parsing, but to derivdy Y; andinequality atoms X£ Y require thatX
from the syntactic analysis a single, compant andY denote different nodes.
derspecified descriptiorThe individual readings ~ Dominance constraint¢ can be drawn infor-
can beenumeratedrom the description if they are mally as graphs, as shown in Fig. 2. Each node
needed, and this enumeration process should béthe graph stands for a variable; node labels and
efficient; but it is also possible to eliminate read-ssolid edges stand for labelling atoms; and the dot-
ings that are infelicitous given knowledge abouted edges represent dominance atoms. The con-
the world or the context on the level of underspecstraint represented by the drawing in Fig. Z&-
ified descriptions. isfiedby both trees shown in Fig. 1. Thus we can



use it as an underspecified description represerithis rule checks for the presence of two variables
ing these two readings. X andY that are known to both dominate the same
The two obvious processing problems convariable Z. Because models must be trees, this
nected to dominance constraints aggisfiability means thaX andY must dominate each other in
(is there a model that satisfies the constraint3ome order; but we can't know yet whether is
and enumeration(compute all models of a con- orY that dominates the other one. Hence the solver
straint). Because every satisfiable dominance cotries both choices. This makes it possible to derive
straint technically has an infinite number of modsmultiple solved forms (one for each reading of the
els, the algorithms below solve the enumeratiosentence), such as the two different trees in Fig. 1.

problem by computingolved formsof the con- It can be shown that a dominance constraint is
straint, which are finite characterisations of infinitesatisfiable iff it is not possible to derifalsefrom
model sets. it using the rules in the algorithm. In addition, ev-
ery model of the original constraint satisfies ex-
3 The Solvers actly one solved form. So the saturation algorithm

We present four different solvers for dominance&an indeed be used to solve dominance constraints.
constraints. As we go along, we analyse whdtdowever, even checking satisfiability takes nonde-
makes dominance constraint solving hard, antgrministic polynomial time. Because all choices
what characterises the constraints that occur iRl the distribution rule applications have to be

practice. checked, a deterministic program will take expo-
nential time to check satisfiability in the worst
3.1 A saturation algorithm case.

The first dominance constraint solver (Koller etal., Indeed, satisfiability of dominance constraints
1998; Duchier and Niehren, 2000) is an algorithnis an NP-complete problem (Koller et al., 1998),
that operates directly on the constraint as a logic&ind hence itis likely that any solver for dominance
formula. It is asaturation algorithm which suc- constraints will take exponential worst-case run-
Cessive|y enriches the constraint us'ﬂ;ﬂjuration time. At first Sight, it seems that we have fallen
rules The algorithm terminates if it either derivesinto the expressivity trap: We have a formalism
a contradiction (marked by the special attatse), that allows us to model scope underspecification
or if no rule can contribute any new atoms. In thevery cleanly, but actually computing with this for-
first case, it claims that the constraint is unsatisfimalism is expensive.
able; in the second case, it reports the end result 8f
the computation as solved formand claims that ™
it is satisfiable. In reaction to this NP-completeness result,
The saturation rules in the solver try to matcHPuchier and Niehren (2000) applied techniques
their preconditions to the constraint, and if theyfrom constraint programmingp the problem in or-
do match, add their conclusions to the constrainéler to get a more efficient solver. Constraint pro-
For example, the following rules express that domgramming (Apt, 2003) is a standard approach to
inance is a transitive relation, and that trees hawolving NP-complete combinatorial problems. In

2 Reduction to Set Constraints

no cycles: this paradigm, a problem is modelled as a for-
mula in a logical constraint language. The pro-

XTYANY 4 Z — X'z gram searches for values for the variables in the
XA(LY, L )AY X —  false formula that satisfy the formula. In order to reduce

Some rules have disjunctive right-hand sides; if1€ Size of the search space, it performs cheap de-

they are applicable, they perform a case distinctioWrminiStiC inferences that exclude some values of

and add one of the disjuncts. One example is tHE€ Variablegpropagation) and only after prop-
Choice Rulewhich looks as follows: agation can supply no further information it per-
forms a non-deterministic case distinctighstri-

XIZAY S Z - XITYVY <X bution).
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Sidey Downy
Figure 3: The four node sets Figure 4: Search tree for constraint 42 from the
Rondane Treebank.

Duchier and Niehren solved dominance con-

straints by encoding them &aite set constraints the dominance constraint). Interestingly, all leaves

Finite set constraints (Muller and Mdiller, 1997)0]c the search tree in Fig. 4 are solution nodes:

Zreirrigrr:;]l:?fj;:g:e;aflﬁi ; bosléisr?)lftilr?tzs e?gt\’\;iecqﬂe search never runs into inconsistent constraints.
gers, his seems to happen systematically when solving

as inclusionX C Y or equalityX =Y. Efficient . .
. . any constraints that come from underspecification.
solvers for set constraints are available, e.g. as part

of the Mozart/Oz programming system (Oz Devel-
3 A h- I
opment Team, 2004). 33 graph-based solver
Reducti _ The basic id This behaviour of the set-constraint solver is ex-
eduction to set constraints. The basic idea tremely surprising: The key characteristic of an

underlying the rec_iuption is that a tree can be relCNP—compIete problem is that the search tree must
resented by specifying for each nodef this tree necessarily contain failed nodes on some inputs.

which nodes are dominated ywhich ones dom- The fact that the solver never runs into failure is a

malltev, gh'ﬁh rc])nes are ?39?" _M’”('f'e' Jus_tvg- strong indication that there is a fragment of domi-
self), and which ones are Isjoint rom(Fig. 3). nance constraints that contains all constraints that
These four node sets are a partition of the nodes I}, . <eq in practice, and that the solver automat-
the tree. ically exploits this fragment. This begs the ques-

. NO;V th_e solver mtrodgcefs for eapf;)lvagab(e tion: What is this fragment, and can we develop
In & dominance constraint four variablesEdy, gy en faster solvers that are specialised to it?

Upy, Dowry, Side for the sets of node variables One such fragment is the fragment mérmal

that denote nodes in the respective region of th . .
iree, relative toX. The atoms inp are translated Jominance constraints (Althaus et al., 2003). The

. . . . most important restriction that a normal domi-
into constraints on these variables. For instance, a

. . . nan nstrairgi m isfy is that it isverlap-
dominance atonX <* Y is translated into ance constrain usts_atsfy sthat t's erap
free Whenever¢ contains two labelling atoms

Upy C Up, A Downy C Downy A Side C Sider X:f(...) _and Yi(...) (wher_e f and g may be
equal), it must also contain an inequality atom
This constraint encodes that all variables whos¥ # Y. As a consequence, no two labelled vari-
denotation dominates the denotationXf(Upy) ables in a normal constraint may be mapped to the
must also dominate the denotatiorifofUpy ), and same node. This is acceptable or even desirable in
the analogous statements for the dominated andhderspecification: We are not interested in solu-
disjoint variables. tions of the constraint in Fig. 2 in which the quan-
In addition, the constraint program contains vartifier representations overlap. On the other hand,
ious redundant constraints that improve propagdhe NP-completeness proof in (Koller et al., 1998)
tion. Now the search for solutions consists in findis no longer applicable to overlap-free constraints.
ing satisfying assignments to the set variables. THdence normal dominance constraints are a frag-
result is a search tree as shown in Fig. 4: Thewent that is sufficient from a modelling perspec-
blue circles represent case distinctions, wheredige, and possibly admits polynomial-time solvers.
each green diamond represents a solution of thelndeed, it can be shown that the satisfiability
set constraint (and therefore, a solved form gproblem of normal dominance constraints can be



GRAPH-SOLVER(G)

fI ! I 1 if G is already in solved form
- : 2  thenreturn G’
T g
}\ }\ /\ 3 free«— FREE-FRAGMENTS(G)
o Yo e Te e e 4 if free=10
a boa boa b 5 then fail
) ) 6 chooseF c free
Figure 5: An example computation of the graph - Gi,...,Gx — WcesG —F)
solver. 8 for eachG; € Gy, ...,Gy
9 doS < GRAPH-SOLVER(G)

decided in linear time (Thiel, 2004), and the lin-10 S« AttachS,...,S underF

ear algorithm can be used to enumendtesolved 11 return S

forms of a constraint of sizein time O(n’N). We

now present the simpled(n’N) enumeration al- _

gorithm by Bodirsky et al. (2004).Note thatN Figure 6: The graph solver.
may still be exponential in.

ing dominance edge. By contrast, the other two

Dominance Graphs. The crucial insight under- . .
) ; dominance graphs are in solved form. Because the
lying the fast solvers for normal dominance con-

straints is that such constraints can be seelvas graph on the right has the same tree edges as the

) : ne on the left and extends its reachability relation,
inance graphsand can be processed using grapl) .

. . . It is also a solved form of the left-hand graph.
algorithms. Dominance graphs are directed graphs

with two kinds of edgesree edgeanddominance  the gigorithm. The graph-based enumeration

edges The graph without the dominance edgesqorithm is a recursive procedure that succes-
must be a forest; the trees of thls_f_orest are callegvely splits a dominance graph into smaller parts,
the fragmentsof the graph. In addition, the dom- gq)ye5 them recursively, and combines them into
inance edges must go froholes(i.e., unlabelled complete solved forms. In each step, the algo-
leaves) of fragments tmots of other fragments. (i identifies thefree fragmentsof the domi-

For instance, we can view the graph in Fig. 2nance (sub-)graph. A fragment is free if it has no

which we introduced as an informal notation forincoming dominance edges, and all of its holes are

a dominance constraint, directly as a dominancg, gtterent biconnected components of the undi-
graph with three fragments and two (dotted) doMgecteq version of the dominance graph. It can be
inance edges. o _ shown (Bodirsky et al., 2004) that if a gragrhas

A dominance grapfs which is a forest is called any solved form andF is a free fragment of5,
in solved formWe say thaG' is asolved form of {henG has a solved form in which is at the root.

DA ,

a graphG iff G'is in solved formG andG' con-  pg gxact algorithm is shown in Fig. 6. It com-
tain the same tree edges, and the reachability relameS the free fragments of a sub-dominance graph
tion of G’ extends that o6. Using this definition, « in line 3. Then it chooses one of the free frag-
itis possible to define a mapping between Normaha s, removes it from the graph, and calls itself
dominance constraints and dominance graphs S“F&:ursively on the weakly connected components
that the solved forms of the graph can serve g, G, of the resulting graph. Each recursive
solved forms of the constraint —i.e., we can reducgy; il compute a solved forn§ of the con-
constraint solving to graph solving. nected componer®. Now for eachG; there is
~ By way of example, consider Fig. 5. The dom-gyactly one holéy of F that is connected to some
inance graph on the left is not in solved form, bey,qde inG; by a dominance edge. We can obtain a
cause it contains nodes with more than one incomved form forG’ by combiningF and all theS

1The original paper defines the algorithm feeaklynor- with _dommance edges from to the root of§ for
mal dominance constraints, a slight generalisation. eachi.
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Figure 7: An unsolvable dominance graph. Figure 8: The chain of length 4.

{1,2,3,4,5,6,7} : (1,hy— {2,3,4,5,6,7})

2,hp1 — {1,5},hop — {3,4,6,7})

The algorithm is written as a nondeterministic
3,h31+— {1,2,5,6},hz2+ {4,7})

(
(
procedure which makes a nondeterministic choice 247 hy— {1,2,3.5,6,7})
inline 6, and can failinline 5. We canturnitintoa {2,3,4,56,7}: (2 hy;+— {5}, hoo— {3,4,6,7})
deterministic algorithm by considering the nonde- EZ 231:{{22’35756%’ '7% = {47}
terministic choices as case distinctions in a search;; > 3567,: (1, hi — {2.3,5.6,7})
tree, as in Fig. 4. However, if the input gragh (2,hg1— {1,5},hpo— {3,6,7})
is solvable, we know that every single leaf of the Eg 231: %’}2;157 Gii ?%2;7{};”
search tree must correspond to a (different) solved <3Z hi — {2, 5, éi,hgz o {7})
form, because for every free fragment that can be
chosenin line 6, there is a solved form that has thi
fragment as its root. Conversely, @ is unsolv-
able, every single branch of the search tree w
run into failure, because it would claim the exis-
tence of a solved form otherwise. So the algorithmpecause it will solve it anew each time. In solv-
decides solvability in polynomial time. ing, for instance, the graph shown in Fig. 8, it
An example computation of RAPH-SOLVER  will solve the subgraph consisting of the fragments
is shown in Fig. 5. The input graph is shown on{2 35 6,7} twice, because it can pick the frag-
the left. It contains exactly one free fragmdfnt ments 1 and 4 in either order.
this is the fragment whose root is labelled with e will now present a previously unpublished
f. (The single-node fragments both have incomgptimisation for the solver that uses caching to al-
ing dominance edges, and the two holes of thRviate this problem. The data structure we use for
fragment with labeg are in the same biconnectedcaching (we call it “chart” below because of its
component.) So the algorithm removesrom the  ghvious parallels to charts in parsing) assigns each
graph, resulting in the graph in the middle. Thissybgraph of the original graph a setsplits Splits
graph is in solved form (it is a tree), so we are finencode the splittings of the graph into weakly con-
ished. F|na”y the algorithm builds a solved formnected Components that take p|ace when a free
for the whole graph by plugging the solved formgragment is removed. Formally, a split for the sub-
in the middle into the single hole &, the resultis graphG’ consists of a reference to a fragmént
shown on the right. By contrast, the graph in Fig. fhat is free inG’ and a partial function that maps
has no solved forms. The solver will recognise thiSome nodes df to subgraphs of'. A split is de-
immediately, because none of the fragments is fra@rmined uniquely by’ andF.
(they either have incoming dominance edges, or Consider, by way of example, Fig. 9, which dis-
their holes are biconnected). plays a part of the chart that we want to compute
for the constraint in Fig. 8. In the entire gragh
(represented by the séi,..., 7} of fragments),
The graph solver is a great step forward towardthe fragments 1, 2, 3, and 4 are free. As a conse-
efficient constraint solving, and towards an underguence, the chart contains a split for each of these
standing of why (normal) dominance constraint$our fragments. If we remove fragment 1 fra®&
can be solved efficiently. But it wastes time wherwe end up with a weakly connected graphcon-
it is called multiple times for the same subgraphtaining the fragment$2,...,7}. There is a dom-

{2,3,5,6,7} :

I§igure 9: A part of the chart computed for the con-
ircrtraint in Fig. 8.

3.4 A graph solver with charts



GRAPH-SOLVER-CHART(G') G that the GRAPH-SOLVER algorithm would have

1 if thereis an entry fo@' in the chart visited. It is also guaranteed that every split in the
2 thenreturn true chart is used in a solved form of the graph. Ex-
3 free— FREE-FRAGMENTS(G) tracting the actual solved forms from the chart is
4 if free=0 straightforward, and can be done essentially like
5  thenreturn false for parse charts of context-free grammar.
6 if G’ contains only one fragment
7 then return true Runtime analysis. The chart computed by the
8 chart solver for a dominance graph with
9 for eachF € free nodes andm edges can grow to at mo€(n-
10 do split— SPLIT(G,F) wcsg G)) entries, where weg6) is the number of
11 for eachSe Wces(G' —F) weakly connected subgraphs @f All subgraphs
12 do if GRAPH-SOLVER-CHART(S) = false for which GRAPH-SOLVER-CHART is called are
13 then return false weakly connected, and for each such subgraph
14 add(G, split) to the chart there can be at most different splits. Because a
15 return true recursive call returns immediately if its argument

is already present in the chart, this means that at
mostO(n-wcsg G)) calls spend more than the ex-
Figure 10: The graph solver with charts pected constant time that it takes to look@pin
the chart. Each of these calls needs t@{en+n),
the cost of computing the free fragments.
As a consequence, the total time thag A H-
SOLVER-CHART takes to fill the chart i©(n(n+
m)wecsg G)). Applied to a dominanceonstraint

inance edge from the holle; into G4, so once
we have a solved form o651, we will have to
plug it into hy to get a solved form o6; there-
fore G; is assigned tdy in the split. On the other "'’ . o
hand, if we remove fragment 2 fro@, G is split with k atoms, th_e runtime i©(k WCSQG)_)' On
into two weakly connected componerits 5} and the other hand, if5 hasN solved forms, it takes

{3,4,6,7}, whose solved forms must be pluggeotime O(N) to extract these solved forms from the
int’o Hzi an’dhzz respectively chart. This is a significant improvement over the

We can compute a chart like this using the algog)(n(n +mN) time that G{APH'SO"V_ER takes
rithm shown in Fig. 10. This recursive algorithmtO epumerqte all solvgd forms. A pgrtlculgrly dra-
gets some subgrag® of the original graplG as matic case is that athains— graphs with a zig-zag
its first argument. It returnsue if G’ is solvable, sha_lpe ,Ofn upper anch — 1 lower fragments such
andfalseif it isn't. If an entry for its argumen@’ as in Fig. 8, which occur frequently as part of un-

was already computed and recorded in the charq,erSpeC'f'ed descriptions. A chain has o@ljn°)
the procedure returns immediately. Otherwise, Ixf;/]eak:]y connectecllc_”subgraphs a(?ldn) edg_es, rs10
computes the free fragments @f. If there are no the chart can b? illed |r12nt|m@(n ), despite _t _e
free fragmentsG was unsolvable, and thus the al-fct that the chain has () solved forms (this is
gorithm returndalse: on the other hand, &' only the n-th Catalan number, which grgws.faster thqn
contains one fragment, it is solved and we can imr-'!_)' The worst case for the chart size is shown in
mediately returrirue. Fig. 11. If such a graph has upper fragments,

If none of these special cases apply, the algdt— has O(2") weakly connected subgraphs, so the

rithm iterates over all free fragmenfsof G’ and chart-filling phase takes tim@(n2"). But this is
computes the (unique) split that placEsat the st[ll dominated by theN = n! solved forms that
root of the solved forms. If all weakly connectedthls graph has.
components represented in the split are soIvabIe,A'rt
records the split as valid f@®’, and returngrue.

If the algorithm returns with valuérue, the We conclude this paper with a comparative run-
chart will be filled with splits for all subgraphs of time evaluation of the presented dominance con-

Evaluation



gI fI hI iI Runtimes. As Fig. 12 shows, the chart solver
is the only solver that could solve all constraints
in the test set; all other solvers ran into memory
limitations on some inputs.The increased com-
plexity of constraints that each solver can handle
Figure 11: A worst-case graph for the chart solvefgiven as the maximum number of solved forms of
a solvable constraint) is a first indication that the
Srepeated analysis and improvement of dominance

‘v
a

constraints  max. solved form . . .

Rondane 961 ? constraint solvers described earlier was successful.
Nets 879 24.1012 Fig. 13 displays the result of the runtime com-
Nets< 1(° solved forms| 852 997920 nharison, taking into account only those 682 con-
Solver solvable max. solved forms .

Saturation 631 757 10030 straints that all solvers could solve. For each con-
Setconstraints  (83.2) 841 557472 straint size (counted in number of fragments), the
g‘g;th ggi’)) ggg gg%gg graph shows the mean quotient of the time to enu-
KB : 682 17760 merate all solved forms by the number of solved
Al 682 7742 forms, averaged over all constraints of this size.

Note that the vertical axis is logarithmic, and that

the runtimes of the LKB and the chart solver for

constraints up to size 6 are too small for accurate
straint solvers. To put the results into context, wéneasurement.

also compare the runtimes with a solver for Min- The figure shows that each new generation of
imal Recursion Semantics (MRS) (Copestake etominance constraint solvers improves the perfor-
al., 2004), a different formalism for scope underimance by an order of magnitude. Another differ-

specification. ence is in the slopes of the graphs. While the sat-

_ uration solver takes increasingly more time per
Resources. Asour test setwe use constraints exsolved form as the constraint grows, the set con-

tracted from the Rondane treebank, which is disstraint and graph solvers remain mostly constant
tributed as part of the English Resource Grammagy |arger constraints, and the line for the chart
(Copestake and Flickinger, 2000). The treebanks|ver even goes down. This demonstrates an im-
contains syntactic annotations for sentences fromoved management of the combinatorial explo-
the tourism domain such as (4) above, togeth&fion. |t is also interesting that the line of the set-
with corresponding semantic representations.  constraint solver is almost parallel to that of the
The semantics is represented using MRS depaph solver, which means that the solver really
scriptions, which we convert into normal domi-does exploit a polynomial fragment on real-world
nance constraints using the translation specified y4t5.
Niehren and Thater (2003). The translation is re- The LKB solver performs very well for smaller

stricted to MRS constraints having certain strucggnstraints (which make up about half of the data
tural properties (calleshety. The treebank con- get): Except for the chart algorithm introduced in
tains 961 MRS constrains, 879 of which are netsypig paper, it outperforms all other solvers. For
For the runtime evaluation, we restricted th@arger constraints, however, the LKB solver gets
test set to the 852 nets with less than one milery slow. What isn't visible in this graph is that
lion solved forms. The distribution of these contne KB solver also exhibits a dramatically higher
straints over the different constraint sizes (i.eyariation in runtimes for constraints of the same
number of fragments) is shown in Fig. 15. Wesjze, compared to the dominance solvers. We be-
solved them using implementations of the prefieve this is because the LKB solver has been op-

sented dominance constraint solvers, as well 3gnised by hand to deal with certain classes of in-
with the MRS solver in the LKB system (Copes-

take and Flickinger, 2000). 20n a 1.2 GHz PC with 2 GB memory.

Figure 12: Sizes of the data sets.



puts, but at its core is still an uncontrolled exposuccessively searching for a fragment that con-
nential algorithm. tains all practically relevant inputs and excludes
We should note that the chart-based solver ithe pathologically hard cases is applicable to other
implemented in C++, while the other dominanceroblems in computational linguistics as well.
solvers are implemented in Oz, and the MRS . .
e . : . However, itis clear that the concept of “all prac-
solver is implemented in Common Lisp. This ac-. . . . .
. . t{cally relevant inputs” is a moving target. In this
counts for some constant factor in the runtime, bu A
) : ) .paper, we have equated it with “all inputs that can
shouldn't affect the differences in slope and vari; o N
o be generated by a specific large-scale grammar”,
ability. . o .
but new grammars or different linguistic theories
Effect of the chart. Because the chart solver ismay generate underspecified descriptions that no
especially efficient if the chart remains small, wdonger fall into the efficient fragments. In our case,
have compared how the number of solved formi is hard to imagine what dominance constraint
and the chart size (i.e. number of splits) grow wittised in scope underspecification wouldn’t be nor-
the constraint size (Fig. 14). The graph shows thamal, and we have strong intuitions that all use-
the chart size grows much more slowly than théul constraints must be nets, but it is definitely an
number of solved forms, which supports our intuinteresting question how our algorithms could be
ition that the runtime of the chart solver is asympadapted to, say, the alternative scope theory advo-

totically less than that of the graph solver by a sigcated by Joshi et al. (2003).
nificant margin. The chart for the most ambigu- An immediate line of future research is to ex-

ous sentence in the treebank (sentence (4) abo‘fﬁz)re uses of the chart data structure that go be-

tcr:)ntatms 74'968 Spé'ts' It can _be computed Itn le nd pure caching. The general aim of underspec-
an ten seconds. by comparison, enumerating g¢f.iion is not to simply enumerate all readings

solved forms of the constraint would take about Af 2 sentence. but to use the underspecified de-

year on a modern PC. Even determining the nums.'cription as a platform on which readings that are

bgr of solved forms of this constraint is only pOS"theoretically possible, but infelicitous in the actual
sible based on the chart.

context, can be eliminated. The chart may prove
to be an interesting platform for such operations,
which combines advantages of the underspecified
In this paper we described the evolution of solverdescription (size) and the readings themselves (ex-
for dominance constraints, a logical formalisnplicitness).

used for the underspecified processing of scope

ambiguities. We also presented a new solver,

which caches the intermediate results of a grapﬂcknowledgements The work has been funded
solver in a chart. An empirical evaluation showsOy the DEG in the Collaborative Research Cen-

that each solver is significantly faster than the Prefe 378Ressource-Adaptive Cognitive Processes
vious one, and that the new chart-based SOIV%rrojectMl 2 (CHORUS).

is the fastest underspecification solver available
today. It is available online atttp://utool. We would like to thank Joachim Niehren and

sourceforge.net. Denys Duchier for the extremely fruitful col-

Each new solver was based on an analysis of th@boration on dominance constraint solving, Ann
main sources of inefficiency in the previous solverCopestake and Dan Flickinger for helpful discus-
as well as an increasingly good understanding &fions about the ERG and the LKB solver, and our
the input data. The main breakthrough was the réeviewers for their comments. The primary imple-
alisation that normal dominance constraints hav@entors of the various earlier constraint solvers
polynomial satisfiability and can be solved usingvere Katrin Erk and Sebastian Pado (83.1), Denys
graph algorithms. We believe that this strategy oPuchier (83.2), and Sebastian Miele (8§3.3).
starting with a clean, powerful formalism and then

5 Conclusion
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Figure 13: Average runtimes per solved form, for each constraint size (number of fragments).
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Figure 14: Average size of the chart compared to the average number of solved forms, for each constraint
size. Notice that the measurements are based upon the same set of constraints as in Fig. 13, which
contains very few constraints of size 20 or more.
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Figure 15: Distribution of the constraints in Rondane over the different constraint sizes. The solid line in-
dicates the 852 nets with less than one million solved forms; the dashed line indicates the 682 constraints



