
The evolution of dominance constraint solvers

Alexander Koller and Stefan Thater
Dept. of Computational Linguistics

Saarland University, Saarbrücken, Germany
{koller,stth}@coli.uni-sb.de

Abstract

We describe the evolution of solvers
for dominance constraints, a formalism
used in underspecified semantics, and
present a new graph-based solver using
charts. An evaluation on real-world data
shows that each solver (including the
new one) is significantly faster than its
predecessors. We believe that our strat-
egy of successively tailoring a powerful
formalism to the actual inputs is more
generally applicable.

1 Introduction

In many areas of computational linguistics, there is
a tension between a need for powerful formalisms
and the desire for efficient processing. Expressive
formalisms are useful because they allow us to
specify linguistic facts at the right level of abstrac-
tion, and in a way that supports the creation and
maintenance of large language resources. On the
other hand, by choosing a more powerful formal-
ism, we typically run the risk that our processing
tasks (say, parsing or inference) can no longer be
performed efficiently.

One way to address this tension is to switch to
simpler formalisms. This makes processing more
efficient, but sacrifices the benefits of expressive
formalisms in terms of modelling. Another com-
mon strategy is to simply use the powerful for-
malisms anyway. This sometimes works pretty
well in practice, but a system built in this way can-
not give any runtime guarantees, and may become
slow for certain inputs unpredictably.

In this paper, we advocate a third option: Use a
general, powerful formalism, analyse what makes
it complex and what inputs actually occur in prac-
tice, and then find a restricted fragment of the for-
malism that supports all practical inputs and can
be processed efficiently. We demonstrate this ap-
proach by describing the evolution of solvers for
dominance constraints(Egg et al., 2001), a certain
formalism used for the underspecified descrip-
tion of scope ambiguities in computational seman-
tics. General dominance constraints have an NP-
complete satisfiability problem, butnormal dom-
inance constraints, which subsume all constraints
that are used in practice, have linear-time satisfia-
bility and can be solved extremely efficiently.

We describe a sequence of four solvers, rang-
ing from a purely logic-based saturation algorithm
(Koller et al., 1998) over a solver based on con-
straint programming (Duchier and Niehren, 2000)
to efficient solvers based on graph algorithms
(Bodirsky et al., 2004). The first three solvers have
been described in the literature before, but we also
present a new variant of the graph solver that uses
caching to obtain a considerable speedup. Finally
we present a new evaluation that compares all four
solvers with each other and with a different under-
specification solver from the LKB grammar devel-
opment system (Copestake and Flickinger, 2000).

The paper is structured as follows. We will first
sketch the problem that our algorithms solve (Sec-
tion 2). Then we present the solvers (Section 3)
and conclude with the evaluation (Section 4).

2 The Problem

The problem we use to illustrate the progress to-
wards efficient solvers is that of enumerating all



readings of anunderspecified description. Under-
specification is a technique for dealing with the
combinatorial problems associated with quantifier
scope ambiguities, certain semantic ambiguities
that occur in sentences such as the following:

(1) Every student reads a book.

This sentence has two different readings. Read-
ing (2) expresses that each student reads a possibly
different book, while reading (3) claims that there
is a single book which is read by every student.

(2) ∀x.student(x)→ (∃y.book(y)∧ read(x,y))

(3) ∃y.book(y)∧ (∀x.student(x)→ read(x,y))

The number of readings can grow exponen-
tially in the number of quantifiers and other
scope-bearing operators occuring in the sentence.
A particularly extreme example is the follow-
ing sentence from the Rondane Treebank, which
the English Resource Grammar (Copestake and
Flickinger, 2000) claims to have about 2.4 trillion
readings.

(4) Myrdal is the mountain terminus of the Flåm
rail line (or Flåmsbana) which makes its way
down the lovely Flåm Valley (Flåmsdalen) to
its sea-level terminus at Flåm.
(Rondane 650)

Of course, this huge number of readings results
not only from genuine meaning differences, but
from the (quite reasonable) decision of the ERG
developers to uniformly treat all noun phrases, in-
cluding proper names and definites, as quantifiers.
But a system that builds upon such a grammar still
has to deal with these readings in some way.

The key idea of underspecification is now to not
enumerate all these semantic readings from a syn-
tactic analysis during or after parsing, but to derive
from the syntactic analysis a single, compactun-
derspecified description. The individual readings
can beenumeratedfrom the description if they are
needed, and this enumeration process should be
efficient; but it is also possible to eliminate read-
ings that are infelicitous given knowledge about
the world or the context on the level of underspec-
ified descriptions.
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Figure 1: Trees for the readings (2) and (3).
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X1 : ∀x(X2) ∧
X2 :→(X3,X4) ∧
X5 : stud(X6) ∧
X6 : x∧
. . .
X4 /∗ X7 ∧
X7 : read(X8,X9) ∧
X8 : x ∧X9 : y

Figure 2: A dominance constraint (right) and its
graphical representation (left); the solutions of the
constraint are the two trees in Fig. 1.

Dominance constraints. The particular under-
specification formalism whose enumeration prob-
lem we consider in this paper is the formalism
of dominance constraints(Egg et al., 2001). The
basic idea behind using dominance constraints in
underspecification is that the semantic representa-
tions (2) and (3) can be considered astrees(see
Fig. 1). Then a set of semantic representations can
be characterised as the set of models of a formula
in the following language:

ϕ ::= X: f (X1, . . . ,Xn) | X /∗ Y | X 6= Y | ϕ∧ϕ

The labelling atom X: f (X1, . . . ,Xn) expresses
that the node in the tree which is denoted by the
variableX has the labelf , and its children are de-
noted by the variablesX1 to Xn. Dominance atoms
X /∗Y say that there is a path (of length 0 or more)
from the node denoted byX to the node denoted
by Y; and inequality atoms X6= Y require thatX
andY denote different nodes.

Dominance constraintsϕ can be drawn infor-
mally as graphs, as shown in Fig. 2. Each node
of the graph stands for a variable; node labels and
solid edges stand for labelling atoms; and the dot-
ted edges represent dominance atoms. The con-
straint represented by the drawing in Fig. 2 issat-
isfiedby both trees shown in Fig. 1. Thus we can



use it as an underspecified description represent-
ing these two readings.

The two obvious processing problems con-
nected to dominance constraints aresatisfiability
(is there a model that satisfies the constraint?)
and enumeration(compute all models of a con-
straint). Because every satisfiable dominance con-
straint technically has an infinite number of mod-
els, the algorithms below solve the enumeration
problem by computingsolved formsof the con-
straint, which are finite characterisations of infinite
model sets.

3 The Solvers

We present four different solvers for dominance
constraints. As we go along, we analyse what
makes dominance constraint solving hard, and
what characterises the constraints that occur in
practice.

3.1 A saturation algorithm

The first dominance constraint solver (Koller et al.,
1998; Duchier and Niehren, 2000) is an algorithm
that operates directly on the constraint as a logical
formula. It is asaturation algorithm, which suc-
cessively enriches the constraint usingsaturation
rules. The algorithm terminates if it either derives
a contradiction (marked by the special atomfalse),
or if no rule can contribute any new atoms. In the
first case, it claims that the constraint is unsatisfi-
able; in the second case, it reports the end result of
the computation as asolved formand claims that
it is satisfiable.

The saturation rules in the solver try to match
their preconditions to the constraint, and if they
do match, add their conclusions to the constraint.
For example, the following rules express that dom-
inance is a transitive relation, and that trees have
no cycles:

X /∗ Y∧Y /∗ Z → X /∗ Z
X: f (. . . ,Y, . . .)∧Y /∗ X → false

Some rules have disjunctive right-hand sides; if
they are applicable, they perform a case distinction
and add one of the disjuncts. One example is the
Choice Rule, which looks as follows:

X /∗ Z∧Y /∗ Z → X /∗ Y∨Y /∗ X

This rule checks for the presence of two variables
X andY that are known to both dominate the same
variable Z. Because models must be trees, this
means thatX andY must dominate each other in
some order; but we can’t know yet whether it isX
orY that dominates the other one. Hence the solver
tries both choices. This makes it possible to derive
multiple solved forms (one for each reading of the
sentence), such as the two different trees in Fig. 1.

It can be shown that a dominance constraint is
satisfiable iff it is not possible to derivefalsefrom
it using the rules in the algorithm. In addition, ev-
ery model of the original constraint satisfies ex-
actly one solved form. So the saturation algorithm
can indeed be used to solve dominance constraints.
However, even checking satisfiability takes nonde-
terministic polynomial time. Because all choices
in the distribution rule applications have to be
checked, a deterministic program will take expo-
nential time to check satisfiability in the worst
case.

Indeed, satisfiability of dominance constraints
is an NP-complete problem (Koller et al., 1998),
and hence it is likely that any solver for dominance
constraints will take exponential worst-case run-
time. At first sight, it seems that we have fallen
into the expressivity trap: We have a formalism
that allows us to model scope underspecification
very cleanly, but actually computing with this for-
malism is expensive.

3.2 Reduction to Set Constraints

In reaction to this NP-completeness result,
Duchier and Niehren (2000) applied techniques
fromconstraint programmingto the problem in or-
der to get a more efficient solver. Constraint pro-
gramming (Apt, 2003) is a standard approach to
solving NP-complete combinatorial problems. In
this paradigm, a problem is modelled as a for-
mula in a logical constraint language. The pro-
gram searches for values for the variables in the
formula that satisfy the formula. In order to reduce
the size of the search space, it performs cheap de-
terministic inferences that exclude some values of
the variables(propagation), and only after prop-
agation can supply no further information it per-
forms a non-deterministic case distinction(distri-
bution).
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Duchier and Niehren solved dominance con-
straints by encoding them asfinite set constraints.
Finite set constraints (Müller and Müller, 1997)
are formulas that talk about relations between
(terms that denote) finite sets of integers, such
as inclusionX ⊆ Y or equalityX = Y. Efficient
solvers for set constraints are available, e.g. as part
of the Mozart/Oz programming system (Oz Devel-
opment Team, 2004).

Reduction to set constraints. The basic idea
underlying the reduction is that a tree can be rep-
resented by specifying for each nodev of this tree
which nodes are dominated byv, which ones dom-
inate v, which ones are equal tov (i.e. just v it-
self), and which ones are “disjoint” fromv (Fig. 3).
These four node sets are a partition of the nodes in
the tree.

Now the solver introduces for each variableX
in a dominance constraintϕ four variablesEqX,
UpX, DownX, SideX for the sets of node variables
that denote nodes in the respective region of the
tree, relative toX. The atoms inϕ are translated
into constraints on these variables. For instance, a
dominance atomX /∗ Y is translated into

UpX ⊆ UpY∧DownY ⊆ DownX ∧SideX ⊆ SideY

This constraint encodes that all variables whose
denotation dominates the denotation ofX (UpX)
must also dominate the denotation ofY (UpY), and
the analogous statements for the dominated and
disjoint variables.

In addition, the constraint program contains var-
ious redundant constraints that improve propaga-
tion. Now the search for solutions consists in find-
ing satisfying assignments to the set variables. The
result is a search tree as shown in Fig. 4: The
blue circles represent case distinctions, whereas
each green diamond represents a solution of the
set constraint (and therefore, a solved form of

Figure 4: Search tree for constraint 42 from the
Rondane Treebank.

the dominance constraint). Interestingly, all leaves
of the search tree in Fig. 4 are solution nodes;
the search never runs into inconsistent constraints.
This seems to happen systematically when solving
any constraints that come from underspecification.

3.3 A graph-based solver

This behaviour of the set-constraint solver is ex-
tremely surprising: The key characteristic of an
NP-complete problem is that the search tree must
necessarily contain failed nodes on some inputs.
The fact that the solver never runs into failure is a
strong indication that there is a fragment of domi-
nance constraints that contains all constraints that
are used in practice, and that the solver automat-
ically exploits this fragment. This begs the ques-
tion: What is this fragment, and can we develop
even faster solvers that are specialised to it?

One such fragment is the fragment ofnormal
dominance constraints (Althaus et al., 2003). The
most important restriction that a normal domi-
nance constraintϕ must satisfy is that it isoverlap-
free: Wheneverϕ contains two labelling atoms
X: f (. . .) and Y:g(. . .) (where f and g may be
equal), it must also contain an inequality atom
X 6= Y. As a consequence, no two labelled vari-
ables in a normal constraint may be mapped to the
same node. This is acceptable or even desirable in
underspecification: We are not interested in solu-
tions of the constraint in Fig. 2 in which the quan-
tifier representations overlap. On the other hand,
the NP-completeness proof in (Koller et al., 1998)
is no longer applicable to overlap-free constraints.
Hence normal dominance constraints are a frag-
ment that is sufficient from a modelling perspec-
tive, and possibly admits polynomial-time solvers.

Indeed, it can be shown that the satisfiability
problem of normal dominance constraints can be
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Figure 5: An example computation of the graph
solver.

decided in linear time (Thiel, 2004), and the lin-
ear algorithm can be used to enumerateN solved
forms of a constraint of sizen in timeO(n2N). We
now present the simplerO(n2N) enumeration al-
gorithm by Bodirsky et al. (2004).1 Note thatN
may still be exponential inn.

Dominance Graphs. The crucial insight under-
lying the fast solvers for normal dominance con-
straints is that such constraints can be seen asdom-
inance graphs, and can be processed using graph
algorithms. Dominance graphs are directed graphs
with two kinds of edges:tree edgesanddominance
edges. The graph without the dominance edges
must be a forest; the trees of this forest are called
the fragmentsof the graph. In addition, the dom-
inance edges must go fromholes(i.e., unlabelled
leaves) of fragments toroots of other fragments.
For instance, we can view the graph in Fig. 2,
which we introduced as an informal notation for
a dominance constraint, directly as a dominance
graph with three fragments and two (dotted) dom-
inance edges.

A dominance graphG which is a forest is called
in solved form. We say thatG′ is asolved form of
a graphG iff G′ is in solved form,G andG′ con-
tain the same tree edges, and the reachability rela-
tion of G′ extends that ofG. Using this definition,
it is possible to define a mapping between normal
dominance constraints and dominance graphs such
that the solved forms of the graph can serve as
solved forms of the constraint – i.e., we can reduce
constraint solving to graph solving.

By way of example, consider Fig. 5. The dom-
inance graph on the left is not in solved form, be-
cause it contains nodes with more than one incom-

1The original paper defines the algorithm forweaklynor-
mal dominance constraints, a slight generalisation.

GRAPH-SOLVER(G′)
1 if G′ is already in solved form
2 then return G’
3 free← FREE-FRAGMENTS(G′)
4 if free= /0
5 then fail
6 chooseF ∈ free
7 G1, . . . ,Gk←WCCS(G′−F)
8 for eachGi ∈G1, . . . ,Gk

9 do Si ← GRAPH-SOLVER(Gi)
10 S← AttachS1, . . . ,Sk underF
11 return S

Figure 6: The graph solver.

ing dominance edge. By contrast, the other two
dominance graphs are in solved form. Because the
graph on the right has the same tree edges as the
one on the left and extends its reachability relation,
it is also a solved form of the left-hand graph.

The algorithm. The graph-based enumeration
algorithm is a recursive procedure that succes-
sively splits a dominance graph into smaller parts,
solves them recursively, and combines them into
complete solved forms. In each step, the algo-
rithm identifies thefree fragmentsof the domi-
nance (sub-)graph. A fragment is free if it has no
incoming dominance edges, and all of its holes are
in different biconnected components of the undi-
rected version of the dominance graph. It can be
shown (Bodirsky et al., 2004) that if a graphG has
any solved form andF is a free fragment ofG,
thenG has a solved form in whichF is at the root.

The exact algorithm is shown in Fig. 6. It com-
putes the free fragments of a sub-dominance graph
G′ in line 3. Then it chooses one of the free frag-
ments, removes it from the graph, and calls itself
recursively on the weakly connected components
G1, . . . ,Gk of the resulting graph. Each recursive
call will compute a solved formSi of the con-
nected componentGi . Now for eachGi there is
exactly one holehi of F that is connected to some
node inGi by a dominance edge. We can obtain a
solved form forG′ by combiningF and all theSi

with dominance edges fromhi to the root ofSi for
eachi.
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Figure 7: An unsolvable dominance graph.

The algorithm is written as a nondeterministic
procedure which makes a nondeterministic choice
in line 6, and can fail in line 5. We can turn it into a
deterministic algorithm by considering the nonde-
terministic choices as case distinctions in a search
tree, as in Fig. 4. However, if the input graphG
is solvable, we know that every single leaf of the
search tree must correspond to a (different) solved
form, because for every free fragment that can be
chosen in line 6, there is a solved form that has this
fragment as its root. Conversely, ifG is unsolv-
able, every single branch of the search tree will
run into failure, because it would claim the exis-
tence of a solved form otherwise. So the algorithm
decides solvability in polynomial time.

An example computation of GRAPH-SOLVER

is shown in Fig. 5. The input graph is shown on
the left. It contains exactly one free fragmentF ;
this is the fragment whose root is labelled with
f . (The single-node fragments both have incom-
ing dominance edges, and the two holes of the
fragment with labelg are in the same biconnected
component.) So the algorithm removesF from the
graph, resulting in the graph in the middle. This
graph is in solved form (it is a tree), so we are fin-
ished. Finally the algorithm builds a solved form
for the whole graph by plugging the solved form
in the middle into the single hole ofF ; the result is
shown on the right. By contrast, the graph in Fig. 7
has no solved forms. The solver will recognise this
immediately, because none of the fragments is free
(they either have incoming dominance edges, or
their holes are biconnected).

3.4 A graph solver with charts

The graph solver is a great step forward towards
efficient constraint solving, and towards an under-
standing of why (normal) dominance constraints
can be solved efficiently. But it wastes time when
it is called multiple times for the same subgraph,

f1 f2 f3 f4

a5 a6 a7

h1 h21 h22 h31 h32 h4
1 2 3 4

5 6 7

Figure 8: The chain of length 4.

{1,2,3,4,5,6,7} : 〈1,h1 7→ {2,3,4,5,6,7}〉
〈2,h21 7→ {1,5},h22 7→ {3,4,6,7}〉
〈3,h31 7→ {1,2,5,6},h32 7→ {4,7}〉
〈4,h4 7→ {1,2,3,5,6,7}〉

{2,3,4,5,6,7} : 〈2,h21 7→ {5},h22 7→ {3,4,6,7}〉
〈3,h31 7→ {2,5,6},h32 7→ {4,7}〉
〈4,h4 7→ {2,3,5,6,7}〉

{1,2,3,5,6,7} : 〈1,h1 7→ {2,3,5,6,7}〉
〈2,h21 7→ {1,5},h22 7→ {3,6,7}〉
〈3,h31 7→ {1,2,5,6},h32 7→ {7}〉

{2,3,5,6,7} : 〈2,h21 7→ {5},h22 7→ {3,6,7}〉
〈3,h31 7→ {2,5,6},h32 7→ {7}〉

. . . . . .

Figure 9: A part of the chart computed for the con-
straint in Fig. 8.

because it will solve it anew each time. In solv-
ing, for instance, the graph shown in Fig. 8, it
will solve the subgraph consisting of the fragments
{2,3,5,6,7} twice, because it can pick the frag-
ments 1 and 4 in either order.

We will now present a previously unpublished
optimisation for the solver that uses caching to al-
leviate this problem. The data structure we use for
caching (we call it “chart” below because of its
obvious parallels to charts in parsing) assigns each
subgraph of the original graph a set ofsplits. Splits
encode the splittings of the graph into weakly con-
nected components that take place when a free
fragment is removed. Formally, a split for the sub-
graphG′ consists of a reference to a fragmentF
that is free inG′ and a partial function that maps
some nodes ofF to subgraphs ofG′. A split is de-
termined uniquely byG′ andF .

Consider, by way of example, Fig. 9, which dis-
plays a part of the chart that we want to compute
for the constraint in Fig. 8. In the entire graphG
(represented by the set{1, . . . ,7} of fragments),
the fragments 1, 2, 3, and 4 are free. As a conse-
quence, the chart contains a split for each of these
four fragments. If we remove fragment 1 fromG,
we end up with a weakly connected graphG1 con-
taining the fragments{2, . . . ,7}. There is a dom-



GRAPH-SOLVER-CHART(G′)
1 if there is an entry forG′ in the chart
2 then return true
3 free← FREE-FRAGMENTS(G′)
4 if free= /0
5 then return false
6 if G′ contains only one fragment
7 then return true
8
9 for eachF ∈ free

10 do split← SPLIT(G′,F)
11 for eachS∈WCCS(G′−F)
12 do if GRAPH-SOLVER-CHART(S) = false
13 then return false
14 add(G′,split) to the chart
15 return true

Figure 10: The graph solver with charts

inance edge from the holeh1 into G1, so once
we have a solved form ofG1, we will have to
plug it into h1 to get a solved form ofG; there-
fore G1 is assigned toh1 in the split. On the other
hand, if we remove fragment 2 fromG, G is split
into two weakly connected components{1,5} and
{3,4,6,7}, whose solved forms must be plugged
into h21 andh22 respectively.

We can compute a chart like this using the algo-
rithm shown in Fig. 10. This recursive algorithm
gets some subgraphG′ of the original graphG as
its first argument. It returnstrue if G′ is solvable,
andfalse if it isn’t. If an entry for its argumentG′

was already computed and recorded in the chart,
the procedure returns immediately. Otherwise, it
computes the free fragments ofG′. If there are no
free fragments,G was unsolvable, and thus the al-
gorithm returnsfalse; on the other hand, ifG′ only
contains one fragment, it is solved and we can im-
mediately returntrue.

If none of these special cases apply, the algo-
rithm iterates over all free fragmentsF of G′ and
computes the (unique) split that placesF at the
root of the solved forms. If all weakly connected
components represented in the split are solvable, it
records the split as valid forG′, and returnstrue.

If the algorithm returns with valuetrue, the
chart will be filled with splits for all subgraphs of

G that the GRAPH-SOLVER algorithm would have
visited. It is also guaranteed that every split in the
chart is used in a solved form of the graph. Ex-
tracting the actual solved forms from the chart is
straightforward, and can be done essentially like
for parse charts of context-free grammar.

Runtime analysis. The chart computed by the
chart solver for a dominance graph withn
nodes andm edges can grow to at mostO(n ·
wcsg(G)) entries, where wcsg(G) is the number of
weakly connected subgraphs ofG: All subgraphs
for which GRAPH-SOLVER-CHART is called are
weakly connected, and for each such subgraph
there can be at mostn different splits. Because a
recursive call returns immediately if its argument
is already present in the chart, this means that at
mostO(n·wcsg(G)) calls spend more than the ex-
pected constant time that it takes to look upG′ in
the chart. Each of these calls needs timeO(m+n),
the cost of computing the free fragments.

As a consequence, the total time that GRAPH-
SOLVER-CHART takes to fill the chart isO(n(n+
m)wcsg(G)). Applied to a dominanceconstraint
with k atoms, the runtime isO(k2wcsg(G)). On
the other hand, ifG hasN solved forms, it takes
time O(N) to extract these solved forms from the
chart. This is a significant improvement over the
O(n(n + m)N) time that GRAPH-SOLVER takes
to enumerate all solved forms. A particularly dra-
matic case is that ofchains– graphs with a zig-zag
shape ofn upper andn−1 lower fragments such
as in Fig. 8, which occur frequently as part of un-
derspecified descriptions. A chain has onlyO(n2)
weakly connected subgraphs andO(n) edges, so
the chart can be filled in timeO(n4), despite the
fact that the chain has1n+1

(2n
n

)
solved forms (this is

then-th Catalan number, which grows faster than
n!). The worst case for the chart size is shown in
Fig. 11. If such a graph hasn upper fragments,
it hasO(2n) weakly connected subgraphs, so the
chart-filling phase takes timeO(n22n). But this is
still dominated by theN = n! solved forms that
this graph has.

4 Evaluation

We conclude this paper with a comparative run-
time evaluation of the presented dominance con-
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Figure 11: A worst-case graph for the chart solver.

constraints max. solved forms
Rondane 961 ?
Nets 879 2.4·1012

Nets< 106 solved forms 852 997920
Solver solvable max. solved forms
Saturation (§3.1) 757 10030
Set constraints (§3.2) 841 557472
Graph (§3.3) 850 768254
Chart (§3.4) 852 997920
LKB 682 17760
All 682 7742

Figure 12: Sizes of the data sets.

straint solvers. To put the results into context, we
also compare the runtimes with a solver for Min-
imal Recursion Semantics (MRS) (Copestake et
al., 2004), a different formalism for scope under-
specification.

Resources. As our test set we use constraints ex-
tracted from the Rondane treebank, which is dis-
tributed as part of the English Resource Grammar
(Copestake and Flickinger, 2000). The treebank
contains syntactic annotations for sentences from
the tourism domain such as (4) above, together
with corresponding semantic representations.

The semantics is represented using MRS de-
scriptions, which we convert into normal domi-
nance constraints using the translation specified by
Niehren and Thater (2003). The translation is re-
stricted to MRS constraints having certain struc-
tural properties (callednets). The treebank con-
tains 961 MRS constrains, 879 of which are nets.

For the runtime evaluation, we restricted the
test set to the 852 nets with less than one mil-
lion solved forms. The distribution of these con-
straints over the different constraint sizes (i.e.
number of fragments) is shown in Fig. 15. We
solved them using implementations of the pre-
sented dominance constraint solvers, as well as
with the MRS solver in the LKB system (Copes-
take and Flickinger, 2000).

Runtimes. As Fig. 12 shows, the chart solver
is the only solver that could solve all constraints
in the test set; all other solvers ran into memory
limitations on some inputs.2 The increased com-
plexity of constraints that each solver can handle
(given as the maximum number of solved forms of
a solvable constraint) is a first indication that the
repeated analysis and improvement of dominance
constraint solvers described earlier was successful.

Fig. 13 displays the result of the runtime com-
parison, taking into account only those 682 con-
straints that all solvers could solve. For each con-
straint size (counted in number of fragments), the
graph shows the mean quotient of the time to enu-
merate all solved forms by the number of solved
forms, averaged over all constraints of this size.
Note that the vertical axis is logarithmic, and that
the runtimes of the LKB and the chart solver for
constraints up to size 6 are too small for accurate
measurement.

The figure shows that each new generation of
dominance constraint solvers improves the perfor-
mance by an order of magnitude. Another differ-
ence is in the slopes of the graphs. While the sat-
uration solver takes increasingly more time per
solved form as the constraint grows, the set con-
straint and graph solvers remain mostly constant
for larger constraints, and the line for the chart
solver even goes down. This demonstrates an im-
proved management of the combinatorial explo-
sion. It is also interesting that the line of the set-
constraint solver is almost parallel to that of the
graph solver, which means that the solver really
does exploit a polynomial fragment on real-world
data.

The LKB solver performs very well for smaller
constraints (which make up about half of the data
set): Except for the chart algorithm introduced in
this paper, it outperforms all other solvers. For
larger constraints, however, the LKB solver gets
very slow. What isn’t visible in this graph is that
the LKB solver also exhibits a dramatically higher
variation in runtimes for constraints of the same
size, compared to the dominance solvers. We be-
lieve this is because the LKB solver has been op-
timised by hand to deal with certain classes of in-

2On a 1.2 GHz PC with 2 GB memory.



puts, but at its core is still an uncontrolled expo-
nential algorithm.

We should note that the chart-based solver is
implemented in C++, while the other dominance
solvers are implemented in Oz, and the MRS
solver is implemented in Common Lisp. This ac-
counts for some constant factor in the runtime, but
shouldn’t affect the differences in slope and vari-
ability.

Effect of the chart. Because the chart solver is
especially efficient if the chart remains small, we
have compared how the number of solved forms
and the chart size (i.e. number of splits) grow with
the constraint size (Fig. 14). The graph shows that
the chart size grows much more slowly than the
number of solved forms, which supports our intu-
ition that the runtime of the chart solver is asymp-
totically less than that of the graph solver by a sig-
nificant margin. The chart for the most ambigu-
ous sentence in the treebank (sentence (4) above)
contains 74.960 splits. It can be computed in less
than ten seconds. By comparison, enumerating all
solved forms of the constraint would take about a
year on a modern PC. Even determining the num-
ber of solved forms of this constraint is only pos-
sible based on the chart.

5 Conclusion

In this paper we described the evolution of solvers
for dominance constraints, a logical formalism
used for the underspecified processing of scope
ambiguities. We also presented a new solver,
which caches the intermediate results of a graph
solver in a chart. An empirical evaluation shows
that each solver is significantly faster than the pre-
vious one, and that the new chart-based solver
is the fastest underspecification solver available
today. It is available online athttp://utool.
sourceforge.net.

Each new solver was based on an analysis of the
main sources of inefficiency in the previous solver,
as well as an increasingly good understanding of
the input data. The main breakthrough was the re-
alisation that normal dominance constraints have
polynomial satisfiability and can be solved using
graph algorithms. We believe that this strategy of
starting with a clean, powerful formalism and then

successively searching for a fragment that con-
tains all practically relevant inputs and excludes
the pathologically hard cases is applicable to other
problems in computational linguistics as well.

However, it is clear that the concept of “all prac-
tically relevant inputs” is a moving target. In this
paper, we have equated it with “all inputs that can
be generated by a specific large-scale grammar”,
but new grammars or different linguistic theories
may generate underspecified descriptions that no
longer fall into the efficient fragments. In our case,
it is hard to imagine what dominance constraint
used in scope underspecification wouldn’t be nor-
mal, and we have strong intuitions that all use-
ful constraints must be nets, but it is definitely an
interesting question how our algorithms could be
adapted to, say, the alternative scope theory advo-
cated by Joshi et al. (2003).

An immediate line of future research is to ex-
plore uses of the chart data structure that go be-
yond pure caching. The general aim of underspec-
ification is not to simply enumerate all readings
of a sentence, but to use the underspecified de-
scription as a platform on which readings that are
theoretically possible, but infelicitous in the actual
context, can be eliminated. The chart may prove
to be an interesting platform for such operations,
which combines advantages of the underspecified
description (size) and the readings themselves (ex-
plicitness).
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Figure 13: Average runtimes per solved form, for each constraint size (number of fragments).
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Figure 14: Average size of the chart compared to the average number of solved forms, for each constraint
size. Notice that the measurements are based upon the same set of constraints as in Fig. 13, which
contains very few constraints of size 20 or more.
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