1

Designing an Extensible API for
Integrating Language Modeling and Realization

Michael White
School of Informatics
University of Edinburgh
Edinburgh EH8 9LW, UK

http://www.iccs.informatics.ed.ac.uk/ "mwhite/

Abstract

We present an extensible API for inte-
grating language modeling and realiza-
tion, describing its design and efficient
implementation in the OpenCCG sur-
face realizer. With OpenCCG, language
models may be used to select realiza-
tions with preferred word orders, pro-
mote alignment with a conversational
partner, avoid repetitive language use,
and increase the speed of the best-first
anytime search. The API enables a vari-
ety of n-gram models to be easily com-
bined and used in conjunction with ap-
propriate edge pruning strategies. The
n-gram models may be of any order,
operate in reverse (“right-to-left”), and
selectively replace certain words with
their semantic classes. Factored lan-
guage models with generalized backoff
may also be employed, over words rep-
resented as bundles of factors such as
form, pitch accent, stem, part of speech,
supertag, and semantic class.

Introduction

CCG’s unique accounts of coordination and infor-
mation structure—based prosody.

Like other surface realizers, the OpenCCG re-
alizer takes as input a logical form specifying the
propositional meaning of a sentence, and returns
one or more surface strings that express this mean-
ing according to the lexicon and grammar. A dis-
tinguishing feature of OpenCCG is that it imple-
ments a hybrid symbolic-statistical chart realiza-
tion algorithm that combines (1) a theoretically
grounded approach to syntax and semantic com-
position, with (2) the use of integrated language
models for making choices among the options
left open by the grammar (thereby reducing the
need for hand-crafted rules). In contrast, previous
chart realizers (Kay, 1996; Shemtov, 1997; Car-
roll et al., 1999; Moore, 2002) have not included
a statistical component, while previous statisti-
cal realizers (Knight and Hatzivassiloglou, 1995;
Langkilde, 2000; Bangalore and Rambow, 2000;
Langkilde-Geary, 2002; Oh and Rudnicky, 2002;
Ratnaparkhi, 2002) have employed less general
approaches to semantic representation and com-
position, and have not typically made use of fine-
grained logical forms that include specifications
of such information structural notions as theme,
rheme and focus.

In this paper, we present OpenCCG’s extensi-
ble API (application programming interface) for

The OpenCCG& realizer (White and Baldridge, . . . o
2003; White, 2004a: White, 2004c) is an c)pedntegratlng language modeling and realization, de-

source surface realizer for Steedman’s (Zooog,cribing its design and efficient implementation in

2000b) Combinatory Categorial Grammar (CCG)‘.]ava' With OpenQCQ, Iangyage models may be
It is designed to be the first practical, reusable reised to select realizations with preferred word or-
alizer for CCG, and includes implementations Ofiers (Wh'_te’ 2004c), promote alignment with a

conversational partner (Brockmann et al., 2005),

Ihttp://openccg.sourceforge.net and avoid repetitive language use. In addition,

by integrating language model scoring into theules in the grammar’s rule group. Derived signs
search, it also becomes possible to use more acauaintain a derivation history, and their word lists
rate models to improve realization times, when thehare structure with the word lists of their input
realizer is run in anytime mode (White, 2004b). signs.

To allow language models to be combined As mentioned in the introduction, for general-
in flexible ways—as well as to enable researchy, the realizer makes use of a configurable sign
on how to best combine language modeling angsicorer and pruning strategy. A sign scorer imple-
realization—OpenCCG'’s design includes interments a function that returns a number between
faces that allow user-defined functions to be use@ and 1 for an input sign. For example, a stan-
for scoring partial realizations and for pruningdard trigram language model can be used to im-
low-scoring ones during the search. The desigplement a sign scorer, by returning the probability
also includes classes for supporting a range @f a sign's words as its score. A pruning strat-
language models and typical ways of combininggy implements a method for determining which
them. As we shall see, experience to date indiedges to prune during the realizer’s search. The
cates that the benefits of employing a highly gennput to the method is a ranked list of edges for
eralized approach to scoring and pruning can bggns that have equivalent categories (but different
enjoyed with little or no loss of performance. words); grouping edges in this way ensures that

The rest of this paper is organized as followsPruning cannot “break” the realizer, i.e. prevent it
Section 2 gives an overview of the realizer archifrom finding some grammatical derivation when
tecture, highlighting the role of the interfaces forone exists. By default, an N-best pruning strategy
plugging in custom scoring and pruning functionsis employed, which keeps the N highest scoring in-
and illustrating how n-gram scoring affects accuput edges, pruning the rest (where N is determined
racy and speed. Sections 3 and 4 present Opdp the current preference settings).

CCG’s classes for defining scoring and pruning The realization algorithm is implemented by the
functions, respectively, giving examples of theirrealize method. As in the chart realizers cited
usage. Finally, Section 5 summarizes the desigearlier, the algorithm makes use of a chart and

and concludes with a discussion of future work. an agenda to perform a bottom-up dynamic pro-
gramming search for signs whose LFs completely

2 Realizer Overview cover the elementary predications in the input log-
ical form. See Figure 9 (Section 3.1) for a real-
The UML class diagram in Figure 1 shows thezation trace; the algorithm’s details and a worked
high-level architecture of the OpenCCG realizerexample appear in (White, 2004a; White, 2004c).
sample Java code for using the realizer appears ftherealize method returns the edge for the best
Figure 2. A realizer instance is constructed withealization of the input LF, as determined by the
a reference to a CCG grammar (which supportsign scorer. After a realization request, the N-best
both parsing and realization). The grammar’s lexeomplete edges—or more generally, all the edges
icon has methods for looking up lexical items viafor complete realizations that survived pruning—
their surface forms (for parsing), or via the prin-are also available from the chart.
cipal predicates or relations in their semantics (for The search for complete realizations proceeds
realization). A grammar also has a set of hierain one of two modes, anytime and two-stage
chically organized atomic types, which can servgpacking/unpacking). In the anytime mode, a best-
as the values of features in the syntactic categorifiist search is performed with a configurable time
or as ontological sorts for the discourse referentimit (which may be a limit on how long to look
in the logical forms (LFs). for a better realization, after the first complete one
Lexical lookup yields lexical signs. A sign pairsis found). With this mode, the scores assigned by
a list of words with a category, which itself pairsthe sign scorer determine the order of the edges
a syntactic category with a logical form. Lexicalon the agenda, and thus have an impact on realiza-
signs are combined into derived signs using th#on speed. In the two-stage mode, a packed forest

Lexicon

+getSignsFromWord(...): Set<Sign>
+getSignsFromPred(...): Set<Sign>
+getSignsFromRel(...): Set<Sign>

Types

A realizer for a CCG grammar makes use of

a configurable sign scorer and pruning strategy.
The realize method takes a logical form (LF)

as input and returns the edge for the best
realization of that LF.

/ «interface»
! SignScorer

+score(sign: Sign, complete: boolean): double

Realizer
+timeLimitMS: int

< Grammar

RuleGroup

+applyRules(...): List<Sign>

The lexico-grammar and signs
are the same for parsing and
realization.

+Realizer(grammar: Grammar)
+realize(If: LF): Edge

+getChart(): Chart

«interface»
PruningStrategy

+pruneEdges(edges: List<Edge>): List<Edge>

Chart

+bestEdge: Edge
+bestEdges(): List<Edge> |

are also available from the chart.

After a realization request, the N-best edges j
*
Edge

+score: double
+completeness: double

T

Word

1. 0..
<1 Sign =<4 DerivationHistory

T

«interface»
Category

+getLF(): LF

Figure 1: High-level architecture of the OpenCCG realizer

// load grammar, instantiate realizer

URL grammarURL = ...;

Grammar grammar = new Grammar (grammarURL);
Realizer realizer = new Realizer (grammar);

// configure realizer with trigram backoff model

// and 10-best pruning strategy

realizer.signScorer = new StandardNgramModel (3, "1lm.3bo");
realizer.pruningStrategy = new NBestPruningStrategy (10);

// ... then, for each request:

// get LF from input XML
Document inputDoc = ...
LF 1f = realizer. gethFromDoc(lnputDoc)

// rTealize LF and get output words in XML
Edge bestEdge = realizer.realize(lf);
Document outputDoc = bestEdge.sign.getWordsInXml ();

// return output
outputDoc ...;

Figure 2: Example realizer usage

of all possible realizations is created in the firs{Baldridge, 2002). Table 1 gives the sizes of the
stage; then in the second stage, the packed reptest suites. Using these two test suites, we timed
sentation is unpacked in bottom-up fashion, withhow long it took on a 2.2 GHz Linux PC to realize
scores assigned to the edge for each sign as itéach logical form under each realizer configura-
unpacked, much as in (Langkilde, 2000). In bothion. To measure accuracy, we counted the num-
modes, the pruning strategy is invoked to deteber of times the best scoring realization exactly
mine whether to keep or prune newly constructechatched the target, and also computed a modified
edges. For single-best output, the anytime modeesrsion of the Bleu n-gram precision metric (Pap-
can provide signficant time savings by cutting offineni et al., 2001) employed in machine translation
the search early; see (White, 2004c) for discusevaluation, using 1- to 4-grams, with the longer
sion. For N-best output—especially when a comn-grams given more weight (cf. Section 3.4). To
plete search (up to the edges that survive the prurank candidate realizations, we used standard n-
ing strategy) is desirable—the two-stage mode cagram backoff models of orders 2 through 6, with
be more efficient. semantic class replacement, as described in Sec-
To illustrate how n-gram scoring can guide thdion 3.1. For smoothing, we used Ristad’s nat-
best-first anytime search towards preferred reaitral discounting (Ristad, 1995), a parameter-free
izations and reduce realization times, we repramethod that seems to work well with relatively
duce in Table 1 and Figures 3 through 5 the crossmall amounts of data.
validation tests reported in (White, 2004b). In
these tests, we measured the realizer’s accur
and speed, under a variety of configurations, on
the regression test suites for two small but linguis-
tically rich grammars: the English grammar for
the COMIC dialogue system—the core of which
is shared with the FLIGHTS system (Moore et al.
2004)—and the Worldcup grammar discussed in

To gauge how the amount of training data af-
cts performance, we ran cross-validation tests
with increasing numbers of folds, with 25 as the
maximum number of folds. We also compared the
realization results using the n-gram scorers with
two baselines and one topline (oracle method).
“The first baseline assigns all strings a uniform
score of zero, and adds new edges to the end of the
2http://www.hcrc.ed.ac.uk/comic/ agenda, corresponding to breadth-first search. The

LF/target Unique up Length Input nodes
pairs to SC Mean Min Max Mean Min Max

COMIC 549 219 131 6 34 84 2 20
Worldcup 276 138 9.2 4 18 6.8 3 13

Table 1: Test suite sizes.

COMIC: First Worldcup: First

500 200

400 - —e—Baseline 1 160 —eo—Baseline 1
I ; &&= " |, Raseline?2 m —#— Baseline 2
E 300 _—— N2 E 120 — N2
3 o
E 200 | M N3 E 80 N3
[—%—N4 = —%—N4

100 - —e—N5 401 ——N5

0 : : : ; ; ——N6 0 . : : : : : : . . —+—N6
104 11 12 133 15 2 3 5 10 25 |——Topline 104 11 12 133 15 2 3 5 10 25 |——Topline
Num Folds Num Folds

Figure 3: Mean time (in ms.) until first realization is found using n-grams of different orders and Ristad’s
natural discounting (N), for cross-validation tests with increasing numbers of folds.

COMIC: Exact Worldcup: Exact
600 300
500 ’4‘&’./ = | [~e—Baseline 1 250 —e—Baseline 1
@ 400 —#—Baseline 2 % 200 —#—Baseline 2
£ £
o 300 N2 < 150 N2
E N3 £ N3
i 200 Na £ 100 Na
* 8§88 8§ 8 8 8 8 *
100 —o—N5 50 4 —o—N5
0 T T T T T T T T T —+—N6 0 T T T T T T T T T ——N6
1.04 11 12 133 15 2 3 5 10 25 |——Topline 1.04 11 12 133 15 2 3 5 10 25 |——Topline
Num Folds Num Folds

Figure 4: Number of realizations exactly matching target using n-grams of different orders.

COMIC: Score Worldcup: Score
T % 1
08 —+—Baseline 1 08 1 -//'—“"r_.—ﬁ —o—Baseline 1
I —=—Baseline 2 I —#—Baseline 2
E 061 N2 FUCTE B e S S s —" m———— N2
_g 041 = = = = = = = = =un N3 .E 0.4 N3
= —*—N4 = —*—N4
027 —e—N5 0.2 —e—N5
0 T T T T T T T T T —+—N6 0 T T T T T T T T T ——N6
1.04 11 12 133 15 2 3 5 10 25 |——Topline 104 11 12 133 15 2 3 5 10 25 |——Topline
Num Folds Num Folds

Figure 5: Modified BLEU scores using n-grams of different orders.

second baseline uses the same scorer, but adds re#asses for scoring with n-gram models, in order to
edges at the front of the agenda, corresponding &void any necessary runtime dependencies on the
depth-first search. The topline uses the modifieBRILM toolkit.
Bleu score, computing n-gram precision against The n-gram tables are efficiently stored in a trie
just the target string. With this setup, Figures 3data structure (as in the SRILM toolkit), thereby
5 show how initial realization times decrease andvoiding any arbitrary limit on the n-gram order.
accuracy increases when longer n-grams are effie save memory and speed up equality tests, each
ployed. Figure 3 shows that trigrams offer a substring is interned (replaced with a canonical in-
stantial speedup over bigrams, while n-grams daftance) at load time, which accomplishes the same
orders 4-6 offer a small further improvement. Figpurpose as replacing the strings with integers, but
ures 4 and 5 show that with the COMIC test suitewithout the need to maintain a separate mapping
all n-gram orders work well, while with the World- from integers back to strings. For better gener-
cup test suite, n-grams of orders 3-6 offer somalization, certain words may be dynamically re-
improvement over bigrams. placed with the names of their semantic classes
To conclude this section, we note that togethewhen looking up n-gram probabilities. Words are
with OpenCCG'’s other efficiency methods, n-assigned to semantic classes in the lexicon, and the
gram scoring has helped to achieve realizatiogemantic classes to use in this way may be config-
times adequate for interactive use in both thered atthe grammar level. Note that (Oh and Rud-
COMIC and FLIGHTS dialogue systems, alongnicky, 2002) and (Ratnaparkhi, 2002) make simi-
with very high quality. Estimates indicate thatlar use of semantic classes in n-gram scoring, by
n-gram scoring typically accounts for only 2-5%deferring the instantiation of classes (suchdas
of the time until the best realization is found,parture city) until the end of the generation pro-
while it can more than double realization speed bgess; our approach accomplishes the same goal in
accurately guiding the best-first anytime searcta slightly more flexible way, in that it also allows
This experience suggests that more complex scdhe specific word to be examined by other scoring
ing models can more than pay for themselvesnodels, if desired.
efficiency-wise, if they yield significantly more ac- As discussed in (White, 2004c), with dialogue

curate preference orders on edges. systems like COMIC n-gram models can do an
excellent job of placing underconstrained adjec-
3 Classes for Scoring Signs tival and adverbial modifiers—as well as bound-

. _ _ ary tones—without resorting to the more com-
The classes for implementing sign scorers appegfex methods investigated for adjective ordering in
in Figure 6. In the diagram, classes for n-gramishaw and Hatzivassiloglou, 1999; Malouf, 2000).
scoring appear towards the bottom, while classgsyr jnstance, in examples like those in (1), they
for combining scorers appear on the left, and thggrectly select the preferred positions fiareand
class for avoiding repetition appears on the right.5iso (as well as for the boundary tones), with re-

spect to the verbal head and sister dependents:
3.1 Standard N-gram Models

(1) a. Herg . LH% we have a design in

The StandardNgramModel class can load stan- .
& the classig. style LL% .

dard n-gram backoff models for scoring, as shown _ _
earlier in Figure 2. Such models can be con- b. This ;. design LH% herg,n. LH%
structed with the SRILM toolkit (Stolcke, 2002), is alsqy. classic LL% .

which we have found to be very useful; in princi- We have also found that it can be useful to

ple, other toolkits could be used instead, as long e reverse (or “right-to-left") models, as they can
their output could be converted into the same ﬁl%elp to place adverbs likiough as in ’(2)_
formats. Since the SRILM toolkit has more re- '

strictive licensing conditions than those of Open- (2) Thetiles are alsg. from the Jazg, series
CCG’s LGPL license, OpenCCG includes its own though LL% .

SignScorerProduct

Utility classes for combining
scorers multiplicatively or

RepetitionScorer

+penalty: double

+resetContext()

+updateContext(sign: Sign)

«interface»
SignScorer

via linear interpolation.

+score(sign: Sign, complete: boolean): double

+ageContext

Returns a score that is linear in
log space with the number of
repeated items times the penalty.

SignScorerinterpolation

#weights: double[]

Utility class for interpolating
n-gram models at the word leve

Returns zero for all signs, thereby
providing no distinguishing information.

]

NgramScorer

LinearNgramScorerCombo

#order: int
#reverse: lean
2.n|#reverse: booleal

#weights: double[]
#logProbFromNgram(i: int, order: int): float

N-gram models can be of any order,
can reverse the words, and

#useSemClasses: boolean
#wordsToScore: List<Word>
#prepareToScoreWords()
#score(): double

#logProbFromNgram(i; int, order: int): float T

«interface»
NgrampFilter

Filters bigrams with the wrong
choice ofa oran given

+ilterOut(words: List<Word>): boolean

the initial letter of the following

word, with configurable exceptions.

AAnFilter

can replace certain words with
their semantic classes.

StandardNgramModel

#prepareToScorewords()
#logProbFromNgram(i: int

der: int, filer

, order: int): float

FactoredNgramModel

1.n

1: String, w2: String)

NgramPrecisionModel

+NgramPrecisionModel(targets: String[], order: int)
#prepareToScoreWords() -

#score(): double

FactoredNgramModelFamily

#prepareToScoreWords()
#logProbFromNgram(i: int, order: int): float

+FactoredNgramModel(child: String, parents: String[], filename: String)

String)
#prepareToScoreWords()

#logProbFromNgram(i: int, order: int): float

into families.

Factored n-gram models return the probability of the
child factor of the current word given a sequence of
parent factors. Multiple models can be organized

Figure 6: Classes for scoring signs

Returns a modified version of the
BLEU score used in MT evaluation.

]

In principle, the forward and reverse probabilitiesearch, high probability phrases suchtlas tiles
should be the same—as they are both derived vare alsq, can be added to the chart before low-
the chain rule from the same joint probability offrequency words such ahough have even left
the words in the sequence—but we have found th#fte agenda. The first complete realization, cor-
with sparse data the estimates can differ substaresponding to (2), also turns out to be the best
tially. In particular, sincghoughtypically appears one here. As noted in the figure, complete realiza-
at the end of a variety of clauses, its right contextions are scored with sentence delimiters, which—
is much more predictable than its left context, anthy changing the contexts of the initial and final
thus reverse models yield more accurate estimata®rds—can result in a complete realization hav-
of its likelihood of appearing clause-finally. To il- ing a higher probability than its input partial real-
lustrate, Figures 7 and 8 show the forward and rezations (see next section for discussion). One way
verse trigram probabilities for two competing realto achieve more monotonic scores—and thus more
izations of (2) in a 2-fold cross-validation test (i.e.efficient search, in principle—could be to include
with models trained on the half of the test suitesentence delimiters in the grammar; we leave this
not including this example). With the forward tri- question for future work.
gram model, sincé¢houghhas not been observed
following series and sinceseriesis a frequently 3-2 N-gram Scorers
occurring word, the penalty for backing off to theThe StandardNgramModel class is implemented
unigram probability forthoughis high, and thus as a subclass of the base claggramScorer.
the probability is quite low. The medial placementAll NgramScorer instances may have any num-
(following alsay.) also yields a low probability, ber of NgramFilter instances, whoséilter-
but not as low as the clause-final one, and thusut methods are invoked prior to n-gram scoring;
the forward model ends up preferring the mediaif any of these methods return true, a score of zero
placement, which is quite awkward. By contrastis immediately returned. TheAnFilter provides
the reverse model yields a very clear preferenoene concrete implementation of tigramFilter
for the clause-final position dhough and for this interface, and returns true if it finds a bigram con-
reason interpolating the forward and reverse modisting ofa followed by a vowel-inital word, oan
els (see Section 3.3) also yields the desired prefdillowed by a consonant-initial word, subject to a
ence order. configurable set of exceptions that can be culled
Figure 9 shows a trace of realizing (2) with sucHrom bigram counts. We have found that such n-
an interpolated model. In the trace, the interpogram filters can be more efficient, and more reli-
lated model is loaded by the claggEvenScorer. able, than relying on n-gram scores alone; in par-
The input LF appears at the top. It is flattenedicular, with a/an since the unigram probability
into a list of elementary predications, so that covfor atends to be much higher than thataof, with
erage of these predications can be tracked using bihseen words beginning with a vowel, there may
vectors. The LF chunks ensure that the subtreemt be a clear preference for the bigram beginning
underh1 ands1 are realized as independent subwith an.
problems; cf. (White, 2004a) for discussion. The The base clas§gramScorer implements the
edges produced by lexical lookup and instantiatiobulk of thescore method, using an abstrabég-
appear next, under the headitgitial Edges, ProbFromNgram method for subclass-specific cal-
with only the edges foalsay, andthoughshown culation of the log probabilities (with backoff) for
in the figure. For each edge, the coverage percenidividual n-grams. Thecore method also in-
age and score (here a probability) appear first, folrokes theprepareToScoreWords method, in or-
lowed by the word(s) and the coverage vector, thegler to allow for subclass-specific pre-processing
the syntactic category (with features suppressed)f the words in the given sign. Withtandard-
and finally any active LF chunks. The edges addeligramModel, this method is used to extract the
to the chart appear (unsorted) under the headivgord forms or semantic classes into a list of strings
A11 Edges. As this trace shows, in the best-firstto score. It also appends any pitch accents to the

the tiles are also_H* from the SERIES_H* series though LLY% .
p(the | <s>) = [2gram] 0.0999418 [-1.00025]
p(tiles | the ...) = [3gram] 0.781102 [-0.107292]
p(are | tiles ...) = [3gram] 0.484184 [-0.31499]
p(also_H*x | are ...) = [3gram] 0.255259 [-0.593018]
p(from | also_H* ...) = [3gram] 0.0649038 [-1.18773]
p(the | from ...) = [3gram] 0.5 [-0.30103]
p(SERIES_H* | the ...) = [3gram] 0.713421 [-0.146654]
p(series | SERIES_H* ...) = [3gram] 0.486827 [-0.312626]
p(though | series ...) = [lgram] 1.58885e-06 [-5.79892]
pC LL% | though ...) = [2gram] 0.416667 [-0.380211]
pC . | LL% ...) = [3gram] 0.75 [-0.124939]
p(</s> |) = [3gram] 0.999977 [-1.00831e-05]
1 sentences, 11 words, 0 00Vs
0 zeroprobs, logprob= -10.2677 ppl= 7.17198 ppll= 8.57876

the tiles are also_H* though from the SERIES_H* series LL% .
p(the | <s>) = [2gram] 0.0999418 [-1.00025]
p(tiles | the ...) = [3gram] 0.781102 [-0.107292]
p(are | tiles ...) = [3gram] 0.484184 [-0.31499]
p(also_H* | are ...) = [3gram] 0.255259 [-0.593018]
p(though | also_H* ...) = [l1gram] 1.11549e-05 [-4.95254]
p(from | though ...) [1gram] 0.00805451 [-2.09396]
p(the | from ...) = [2gram] 0.509864 [-0.292545]
p(SERIES_H* | the ...) = [3gram] 0.713421 [-0.146654]
p(series | SERIES_H* ...) = [3gram] 0.486827 [-0.312626]
p(LL% | series ...) = [3gram] 0.997543 [-0.00106838 1]
pC . | LL% ...) = [3gram] 0.733867 [-0.134383]
p(</s> |) = [3gram] 0.999977 [-1.00831e-05]
1 sentences, 11 words, O 00Vs
0 zeroprobs, logprob= -9.94934 ppl= 6.74701 ppll= 8.02574

I~

Figure 7: Forward probabilities for two placementstafugh(COMIC test suite, 2-fold cross validation)

the tiles are also_H* from the SERIES_H* series though LLY% .
pC . | <s>) = [2gram] 0.842366 [-0.0744994]
pC LLY% |) = [3gram] 0.99653 [-0.00150975]
p(though | LL% ...) = [3gram] 0.00677446 [-2.16913]
p(series | though ...) = [igram] 0.00410806 [-2.38636]
p(SERIES_H* | series ...) = [2gram] 0.733867 [-0.134383]
p(the | SERIES_H* ...) = [3gram] 0.744485 [-0.128144]
p(from | the ...) = [3gram] 0.765013 [-0.116331]
p(also_H* | from ...) = [3gram] 0.0216188 [-1.66517]
p(are | also_H*x ...) = [3gram] 0.5 [-0.30103]
p(tiles | are ...) = [3gram] 0.432079 [-0.364437]
p(the | tiles ...) = [3gram] 0.9462 [-0.0240173]
p(</s> | the ...) = [3gram] 0.618626 [-0.208572]

1 sentences, 11 words, 0 00Vs

0 zeroprobs, logprob= -7.57358 ppl= 4.27692 ppli= 4.88098

the tiles are also_H* though from the SERIES_H* series LL% .
pC . | <s>) = [2gram] 0.842366 [-0.0744994]
pCLL% |) = [3gram] 0.99653 [-0.00150975]
p(series | LL% ...) = [3gram] 0.0948425 [-1.023]
p(SERIES_H* | series ...) = [3gram] 0.733867 [-0.134383]
p(the | SERIES_H* ...) = [3gram] 0.744485 [-0.128144]
p(from | the ...) = [3gram] 0.765013 [-0.116331]
p(though | from ...) = [lgram] 3.50735e-08 [-7.45502]
p(also_H* | though ...) = [1gram] 0.00784775 [-2.10525]
p(are | also_Hx ...) = [2gram] 0.2291 [-0.639975]
p(tiles | are ...) = [3gram] 0.432079 [-0.364437]
p(the | tiles ...) [3gram] 0.9462 [-0.0240173]
p(</s> | the ...) = [3gram] 0.618626 [-0.208572]

1 sentences, 11 words, O 00Vs

0 zeroprobs, logprob= -12.2751 ppl= 10.5421 ppli= 13.0594

Figure 8: Reverse probabilities for two placementshoigh(COMIC test suite, 2-fold cross validation)

Input LF:
@bl:state(be ~ <info>rh " <mood>dcl "~ <tense>pres <owner>s "~ <kon>- ~
<Arg>(tl:phys-obj " tile ~ <det>the "~ <num>pl ~ <info>rh ~ <owner>s " <kon>-) "~
<Prop>(hl:proposition ~ has-rel ~ <info>rh " <owner>s ~ <kon>-
<0f>t1:phys-obj ~
<Source>(sl:abstraction ~ series ~ <det>the "~ <num>sg ~ <info>rh ~ <owner>s
<HasProp>(jl:series "~ Jazz ~ <kon>+ " <info>rh ~ <owner>s))) ~
<HasProp>(al:proposition ~ also ~ <kon>+ ~ <info>rh " <owner>s) ~
<HasProp>(t2:proposition ~ though ~ <info>rh ~ <owner>s ~ <kon>-))

<kon>-

Instantiating scorer from class: MyEvenScorer

Preds:

ep[0]: @al:proposition(also)
ep[1]: @al:proposition(<info>rh)
ep[2]: @al:proposition(<kon>+)
ep[3]: @al:proposition(<owner>s)
ep[4]: @bl:state(be)

ep[5]: @bl:state(<info>rh)

LF chunks:
chunk[0]: {14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}
chunk[1]: {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

Initial Edges:

{0.12} [0.011] also_H* {0, 1, 2, 3, 12} :- s\.s
{0.12} [0.011] also_H* {0, 1, 2, 3, 12} :- s\np/~(s\np)
{0.12} [0.011] also_H* {0, 1, 2, 3, 12} :- s/"s

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\np/~(s\np)
{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\.s
{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s/"s

Uninstantiated Semantically Null Edges:
{0.00} [0.073] LL% {} :- s$1\x(s$1)
{0.00} [0.011] L {} :- s$1*(s$1)

All Edges:

{0.02} [0.059] . {7} :- sent\xs

{0.02} [0.059] . {7} :- sent*(s\np)

{0.02} [0.052] the {25} :- np/n < 0 1 >

{0.02} [0.052] the {32} :- np/"n

{0.12} [0.032] tiles {31, 33, 34, 35, 36} :- n

{0.02} [0.018] from {19} :- n\n/<np < 0 >

{0.15} [0.018] from {14, 15, 16, 17, 18, 19} :- s\!np/<np < 0 >
{0.17} [0.017] is {4, 5, 6, 8, 9, 10, 11} :- s\np/(s\!np)

{0.15} [0.009] the tiles {31, 32, 33, 34, 35, 36} :- np

{0.15} [0.009] the tiles {31, 32, 33, 34, 35, 36} :- s/@i(s\@inp)

{0.15} [0.009] the tiles {31, 32, 33, 34, 35, 36} :- s$1\0i(s$1/@inp)

{0.44} [0.001] the tiles are also_Hx {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 31, 32, 33, 34, 35, 36} :- s/(s\!np)
{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\np/~(s\np)

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\.s

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s/"s

{0.85} [1.32E-5] the tiles are also_Hx from the Jazz_H* series {...} :- s
{0.85} [1.32E-5] the tiles are also_H* from the Jazz_H* series LL} {...} :- s

{0.24} [2.64E-6] also_H* though {0, 1, 2, 3, 12, 13, 37, 38, 39, 40} :- s\np/~(s\np)
{0.24} [2.64E-6] also_H* though {0, 1, 2, 3, 12, 13, 37, 38, 39, 40} :- s\.s

%6:88} [5.44E-8] the tiles are from the Jazz_H* series though LL% . {...} :- sent
ié:85} [4.85E-8] the tiles are from the Jazz_H* series also_Hx {...} :- s

i6:88} [3.14E-9] the tiles also_Hx are from the Jazz_H* series LL) . {...} :- sent
%6:98} [2.96E-9] the tiles are also_H* from the Jazz_H* series though {...} :- s

{0.98} [1.51E-9] the tiles are also_H* from the Jazz_H* series though LL% {...} :- s
{1.00} [1.34E-8] the tiles are also_H* from the Jazz_H* series though LL% . {...} :- sent

**kxxkk first complete realization; scored with <s> and </s> tags *kx¥kx

{0.24} [1.44E-9] also_H* though L {...} :- s\np/~(s\np)

{0.56} [2E-10] though the tiles are also_H* LL% {...} :- s/(s\!np)

Complete Edges (sorted):
{1.00} [1.34E-8] the tiles are also_H* from the Jazz_H* series though LL% . {...} :- sent
{1.00} [1.33E-8] the tiles are also_H* from the Jazz_H* series LL}, though LL% . {...} :- sent

Figure 9: Realizer trace for example (2) with interpolated model

word forms or semantic classes, effectively treattombined using thBignScorerInterpolation
ing them as integral parts of the words. class. For example, Figure 10 shows how forward
Since the realizer builds up partial realizationgnd reverse n-gram models may be interpolated.
bottom-up rather than left-to-right, it only adds With n-gram models of the same direction, it is
start of sentence (and end of sentence) tags witllso possible to linearly interpolate models at the
complete realizations. As a consequence, theord level, using th&inearNgramScorerCombo
words with less than a fulh— 1 words of history class. Word-level interpolation makes it easier to
are scored with appropriate sub-models. For exise cache models created with maximum likeli-
ample, the first word of a phrase is scored witthood estimation, as word-level interpolation with
a unigram sub-model, without imposing backoffa base model avoids problems with zero probabil-
penalties. ities in the cache model. As discussed in (Brock-
Another consequence of bottom-up realizatiomann et al., 2005), cache models can be used to
is that both the left- and right-contexts may changpromote alignment with a conversational partner,
when forming new signs from a given input signby constructing a cache model from the bigrams
Consequently, it is often not possible (even in prinin the partner’s previous turn, and interpolating it
ciple) to use the score of an input sign directly irwith a base modél. Figure 11 shows one way to
computing the score of a new result sign. If onereate such an interpolated model.
could make assumptions about how the score of an
input sign has been computed—e.g., by a bigra®4 N-gram Precision Models
model—one could determine the score of the refhe NgramPrecisionModel subclass ofigram-
sult sign from the scores of the input signs togeth&$corer computes a modified version of the Bleu
with an adjustment for the word(s) whose contexécore used in MT evaluation (Papineni et al.,
has changed. However, our general approach f®01). Its constructor takes as input an array of
sign scoring precludes making such assumptiongrget strings—from which it extracts the n-gram
Nevertheless, itis still possible to improve the effisequences to use in computing the n-gram preci-
ciency of n-gram scoring by caching the log probsjon score—and the desired order. Unlike with
ability of a sign’s words, and then looking up thatthe Bleu score, rank order centroid weights (rather
log probability when the sign is used as the firsthan the geometric mean) are used to combine
input sign in creating a new combined sign—thuscores of different orders, which avoids problems
retaining the same left context—and only recomwiith scoring partial realizations which have no n-
puting the log probabilities for the words of any in-gram matches of the target order. For simplicity,
put signs past the first one. (With reverse modelshe score also does not include the Bleu score’s
the sign must be the last sign in the combinationfells and whistles to make cheating on length dif-
In principle, the derivation history could be con-ficyit.
sulted further to narrow down the words whose n- e have found n-gram precision models to be

gram probabilities must be recomputed to the mingery useful for regression testing the grammar, as
imum possible, thougligramScorer only imple- an n-gram precision model created just from the
ments a single-step lookup at preséntinally, target string nearly always leads the realizer to
note that a JavéleakHashMap is used to imple- choose that exact string as its preferred realiza-
ment the cache, in order to avoid an undesirablgon. Such models can also be useful for evaluating
buildup of entries across realization requests. the success of different scoring models in a cross-
validation setup, though with high quality output,

manual inspection is usually necessary to deter-

Scoring models may be linearly interpolated inmine the importance of any differences between

two ways. Sign scorers of any variety may be

- 4At present, such cache models must be constructed with
3Informal experiments indicate that caching log probabil-a call to the SRILM toolkit; it would not be difficult to add

ities in this way can yield an overall reduction in best-firstOpenCCG support for constructing them though, since these

realization times of 2-3% on average. models do not require smoothing.

3.3 Interpolation

// configure realizer with 4-gram forward and reverse backoff models,
// interpolated with equal weight
NgramScorer forwardModel = new StandardNgramModel (4, "1lm.4bo");
NgramScorer reverseModel = new StandardNgramModel(4, "lm-r.4bo");
reverseModel .setReverse (true);
realizer.signScorer = new SignScorerInterpolation(

new SignScorer[] { forwardModel, reverseModel }

)
Figure 10: Example interpolated n-gram model

// configure realizer with 4-gram backoff base model,
// 4nterpolated at the word level with a bigram mazimum-likelihood
// cache model, with more weight given to the base model
NgramScorer baseModel = new StandardNgramModel (4, "1lm.4bo");
NgramScorer cacheModel = new StandardNgramModel (2, "lm-cache.mle");
realizer.signScorer = new LinearNgramScorerCombo (

new SignScorer[] { baseModel, cacheModel },

new double([] { 0.6, 0.4 }
)

Figure 11: Example word-level interpolation of a cache model

the preferred realization and the target string. distant word first, but rather may be specified as
a path through the set of contextual parent vari-
3.5 Factored Language Models ables; additionally, parallel backoff paths may be

A factored language model (Bilmes and Kirch-specified, with the possibility of combining these
hoff, 2003) is a new kind of language model thaPaths dynamically in various ways. In OpenCCG,
treats words as bundles of factors. To suppotheFactoredNgramModel class supports scoring
scoring with such models, OpenCCG represeniith factored language models that employ gen-
words as objects with a surface form, pitch accengralized backoff, though parallel backoff is not
stem, part of speech, supertag, and semantic cla¥§t supported, as it remains somewhat unclear
Words may also have any number of further atwhether the added complexity of parallel backoff
tributes, such as associated gesture classes, in rworth the implementation effort. Typically, sev-
der to handle in a general way elements like pitcgral related factored language models are specified
accents that are “coarticulated” with words. in a single file and loaded byFactoredNgram-

To represent words efficiently, and to speed uffodelFamily, which can multiplicatively score
equality tests, all attribute values are interned, anfgfodels for different child variables, and include
theword objects themselves are interned via a facdifferent sub-models for the same child variable.

tory method. Note that in Java, it is straightfor- 1q jjjystrate, let us consider a simplified version

ward to intern objects other than strings by Mg the factored language model family used in the
ploying aWeakHashMap to map from an object cowc realizer. This model computes the proba-
key to a weak reference to itself as the canonicgjjjity of the current word given the preceding ones
instance. (Using a weak reference avoids acClccording to the formula shown in (3), where a
mulating interned objects that would otherwise b§orq consists of the factors word (W), pitch accent
garbage collected.) (A), gesture class (GC), and gesture instance (Gl),

With the SRILM toolkit, factored language piys the other standard factors which the model ig-
models can be constructed that supmeheral- ores:

ized parallel backoff that is, backoff order is
not restricted to just dropping the most temporally

P((W,A,GC,GI) | (W,A,GC,Gl)_y ...) ~ extracting the appropriate sequence of factor keys,

P(W [W_ 1WA 1A ; ”
3) pEGC||W§ i 2) and using them to compute the log probability as
P(GI|GC) with standard n-gram models. Thectored-

NgramModelFamily class computes log probabil-
In (3), the probability of the current word is ap-ities by delegating to its component factored n-
proximated by the probability of the current wordgram models (choosing appropriate sub-models,
form given the preceding two word forms and prewhen appropriate) and summing the results.
ceding two pitch accents, multiplied by the proba-
bility of the current gesture class given the curren8.6 Avoiding Repetition

word form, and by the probability of the current,, . -
. . While cache models appear to be a promising av-
gesture instance given the current gesture class.

Note that in the COMIC grammar, the choice o nue to promote_ lexical and synta_ctlc alignment
. .) with a conversational partner, a different mech-
pitch accent is entirely rule governed, so the cur- . A
:) .~ anism appears to be called for to avoid “self-

rent pitch accent is not scored separately in the. . . . "
alignment’—that is, to avoid the repetitive use of

model. However, the preceding pitch accents aré .
. . I~ ords and phrases. As a means to experiment
taken into account in predicting the current word . - " .
. . ith avoiding repetition, OpenCCG includes the
form, as perplexity experiments have suggeste

) " . . RepetitionScorer class. This class makes use
that they do provide additional information be_ofaconfi urable penalty plus a set of methods for
yond that provided by the previous word forms. 9 P yp

e g : _dynamically managing the context. It returns a
The specification file for this model appears in.. .o ¢ 1gcxp whereg, is the count of repeated
Figure 12. The format of the file is a restncteditems, andp is the penalty. Note that this formula

for'm of the files used by the SRILM,tOOIkit to returns 1 if there are no repeated items, and returns
build factored language _model_s. The file specmeg score that is linear in log space with the number
four models, where the flrst, thqu and fo'urth mod-mc repeated items otherwise.
els correspond to those in (3). With the first model

since the previous words are typically more infor Arepetition scorer can be combined multiplica-
P ypically %vely with an n-gram model, in order to discount

mative than the previous pitch accents, the backoff _,._ _.. .
order specifies that the most distant accet2) realizations that repeat items from the recent con-
raer speciiies stais 2 text. Figure 13 shows such a combination, to-

should be dropped first, foIIovyed by the preVlousgether with the operations for updating the con-
accentA(-1), then the most distant word(-2),

.) text. By default, open class stems are the consid-
and finally the previous wordy(-1). The sec- y P

. . ~__ered the relevant items over which to count rep-
ond model is considered a sub-model of the first—.. . : . o

) N : etitions, though this behavior can be specialized
since it likewise predicts the current word—to b

. by subclassin®epetitionScorer and overrid-
used when there is only one word of context avail- .
) S . Ing theupdateItems method. Note that in count-
able (i.e. with bigrams). Note that when scorin

) . . 1ng repetitions, full counts are given to items in the
a bigram, the second model will take the previous grep g

itch accent into account. whereas the first mool&revious words or recent context, while fractional
P ' counts are given to older items; the exact details

would not. For documentation of the file formatas ' cwise be chanaed in a subclass. by over-
it is used in the SRILM toolkit, see (Kirchhoff et 12y g 0y

al., 2002). riding therepeatedItems method.

Like StandardNgramModel, the Factored- 4 Pruning Strategies

NgramModel class stores its n-gram tables in a trie

data structure, except that it stores an interned fadhe classes for defining edge pruning strategies
tor key (i.e. a factor name and value pair, or just appear in Figure 14. As mentioned in Section 2,
string, in the case of the word form) at each nodean N-best pruning strategy is employed by default,
rather than a simple string. During scoring, thevhere N is determined by the current preference
logProbFromNgram method determines the log settings. Itis also possible to define custom strate-
probability (with backoff) of a given n-gram by gies. To support the definition of a certain kind

Simplified COMIC realizer FLM spec file

Trigram Word model based on previous words and accents, dropping accents first,
with bigram sub-model;

Unigram Gesture Class model based on current word; and

Unigram Gesture Instance model based on current gesture class

4

3gram with A
W : 4 W(-1) W(-2) A(-1) A(-2) w_wlw2ala2.count w_wiw2ala2.lm 5
W1,W2,A1,A2 A2 ndiscount gtmin 1
W1,W2,A1 Al ndiscount gtmin 1
W1,W2 W2 ndiscount gtmin 1
Wl W1l ndiscount gtmin 1
0 0 ndiscount gtmin 1

bigram with A

W : 2 W(-1) A(-1) w_wlal.count w_wlal.lm 3
W1,A1 A1 ndiscount gtmin 1
Wl Wl ndiscount gtmin 1
0 0 ndiscount gtmin 1

Gesture class depends on current word
GC : 1 W(0) gc_wO.count gc_w0.1lm 2

WO WO ndiscount gtmin 1

0 O mndiscount gtmin 1

Gesture instance depends only on class
GI : 1 GC(0) gi_gcO.count gi_gc0.1m 2

GCO GCO ndiscount gtmin 1

00

Figure 12: Example factored language model family specification

// set up n-gram scorer and repetition scorer
String 1lmfile = "ngrams/combined.flm";
boolean semClasses = true;

NgramScorer ngramScorer = new FactoredNgramModelFamily(lmfile, semClasses);

ngramScorer .addFilter (new AAnFilter ());
RepetitionScorer repetitionScorer = new RepetitionScorer ();

// combine n-gram scorer with repetition scorer
realizer.signScorer = new SignScorerProduct (
new SignScorer[] { ngramScorer, repetitionScorer }

);

// ... then, after each realization request,
Edge bestEdge = realizer.realize(lf);

// ... update repetition context for next realization:
repetitionScorer.ageContext ();
repetitionScorer.updateContext (bestEdge.getSign());

Figure 13: Example combination of an n-gram scorer and a repetition scorer

of custom strategy, the abstract classersity- 5 Conclusions and Future Work

PruningStrate rovides an N-best prunin .
& gy p . - P g In this paper, we have presented OpenCCG’s ex-
strategy that promotes diversity in the edges that . - . .
. . . tensible API for efficiently integrating language
are kept, according to the equivalence relation

established by the abstranbtCompellingly- {in(;de\lllvr;g]anrd frerartllza\tl:lor;(,jm ;Jdrdrertorserlr:e(i[t realtillzna—
Different method. In particular, in order to de- ons preterred word orders, promote allg

._ment with a conversational partner, avoid repeti-
termine which edges to keep, a diversity prunin Lo lan nd incr th d of th
strategy clusters the edges into a ranked list f/e language use, a crease the speed ot the

. - . %est—first anytime search. As we have shown,
equivalence classes, which are sequentially sarﬂ{e desian enables a variety of n-aram models
pled until the limit N is reached. If theingle- 9 y 9

: : to be easily combined and used in conjunction
BestPerGroup flag is set, then a maximum of one . , : .
: . : with appropriate edge pruning strategies. The n-
edge per equivalence class is retained.

As an example, the COMIC realizer's diversitygram models may be of any order, operate in re-

pruning strategy appears in Figure 15. The iqeyerse (“right-to-left”), and selectively replace cer-

: . . . : ttain words with their semantic classes. Factored
behind this strategy is to avoid having the N-besI . .
. : . anguage models with generalized backoff may
lists become full of signs whose words differ onl

yﬁllso be employed, over words represented as bun-

in the exact gesture instance associated with o d? .
) . . es of factors such as form, pitch accent, stem,
or more of the words. With this strategy, if two .
part of speech, supertag, and semantic class.

signs differ in just this way, the edge for the lower- In future work, we plan to further explore

scoring sign will be considered “not compellingly :
. . . how to best employ factored language models; in
different” and pruned from the N-best list, mak- . . .
ing way for other edges whose signs exhibit mor articular, inspired by (Bangalore and Rambow,
000), we plan to examine whether factored lan-

interesting differences. uage models using supertags can provide an ef
OpenCCG also provides a concrete subcla‘% 9 g supertag b

of DiversityPruningStrategy namedigram- ective way to combine syntactic and lexical prob-

DiversityPruningStrategy, which general- gbllltles. We also plan tq |mp'Iemen_t the capabll-
ty to useone-of alternations in the input logical

. . . . |
izes the approach to pruning described in (Lang : .
ilde, 2000). With this class, two signs are Conatorms (Foster and White, 2004),in order to more

ered not compellingly different if they share theefficiently defer lexical choice decisions to the lan-
samen—1 initial and final words, where is the guage models.

n-gram order. When one is interested in SingleAcknowledgements

best output, an n-gram diversity pruning strategy

can increase efficiency while guaranteeing no losEhanks to Jason Baldridge, Carsten Brockmann,
in quality—as long as the reduction in the searcMary Ellen Foster, Philipp Koehn, Geert-Jan Krui-
space outweighs the extra time necessary to cheffik Johanna Moore, Jon Oberlander, Miles Os-
for the same initial and final words—since anyborne, Mark Steedman, Sebastian Varges and the
words in between an input sign's-1 initial and anonymous reviewers for helpful discussion.

final ones cannot affect the n-gram score of a

new sign formed from the input sign. However,

when N-best outputs are desired, or when repeti-

tion scoring is employed, it is less clear whether

it makes sense to use an n-gram diversity pruning

strategy; for this reason, a simple N-best strategy

remains the default option.

«interface» Returns the edges pruned from
. the given ones, which always have
PfUﬂlngStfateQ)’ T equivalent categories and are

sorted by score.

+pruneEdges(edges: List<Edge>): List<Edge>

NBestPruningStrategy | ----.--------------- Keeps only the n-best edges. T

#CAT_PRUNE_VAL: int

Prunes edges that are not
B compellingly different.

DiversityPruningStrategy

+singleBestPerGroup: boolean

+notCompellinglyDifferent(sign1: Sign, sign2: Sign): boolean

: f B Defines edges to be not compellingly different
NgramDlverS|tyPrun|ngStrategy when the n-1 initial and final words are the same
#order: int (where n is the order).
+notCompellinglyDifferent(signl: Sign, sign2: Sign): boolean

Figure 14: Classes for defining pruning strategies

// configure realizer with gesture diversity pruner
realizer .pruningStrategy = new DiversityPruningStrategy () {
VAZ
* Returns true 1ff the given signs are not compellingly different;
* 4n particular, returns true iff the words differ only in their
* gesture instances. */
public boolean notCompellinglyDifferent(Sign signl, Sign sign2) {

List wordsl = signl.getWords(); List words2 = sign2.getWords();

if (wordsl.size() != words2.size()) return false;

for (int i = 0; i < wordsl.size(); i++) {
Word wl = (Word) wordsl.get(i); Word w2 = (Word) words2.get(i);
if (wl == w2) continue;
if (wl.getForm() != w2.getForm()) return false;
if (wl.getPitchAccent() != w2.getPitchAccent()) return false;
if (wl.getVal("GC") != w2.getVal("GC")) return false;
// nb: assuming that they differ 4n the wval of GI at this point

return true;

Figure 15: Example diversity pruning strategy

References Alice H. Oh and Alexander I. Rudnicky. 2002.
Stochastic natural language generation for spoken
dialog systems. Computer, Speech & Language
16(3/4):387-407.

Jason Baldridge. 2002Lexically Specified Deriva-
tional Control in Combinatory Categorial Gram-
mar. Ph.D. thesis, School of Informatics, University
of Edinburgh. Kishore Papineni, Salim Roukos, Todd Ward, and Wei-

- Jing Zhu. 2001. Bleu: a Method for Automatic
Srinivas Bangalore and Owen Rambow. 2000. Ex- Evaluation of Machine Translation. Technical Re-

ploiting a probabilistic hierarchical model for gen-
eration. InProc. COLING-00 port RC22176, IBM.

. L Adwait Ratnaparkhi. 2002. Trainable approaches to
Jeff Bilmes and Katrin Kirchhoff. 2003. Factored lan- surface natural language generation and their appli-

guageHT_?c(i)%ls and general parallelized backoff. In cation to conversational dialog systenSomputer,
roc. AL1- Speech & Languagd 6(3/4):435-455.

Carsten Brockmann, Amy Isard, Jon Oberlander, anéric S. Ristad. 1995. A Natural Law of Succession.

Michael White. 2005. Variable alignment in affec- ; TDR.40E. ; ;
tive dialogue. InProc. UM-05 Workshop on Affec- Technical Report CS-TR-495-95, Princeton Univ.

tive Dialogue SystemJo appear. James Shaw and Vasileios Hatzivassiloglou. 1999. Or-

John Carroll, Ann Copestake, Dan Flickinger, and Vic- dering among premodifiers. froc. ACL-99

tor Poznaski. 1999. An efficient chart generator Hadar Shemtov. 199Ambiguity Management in Nat-
for (semi-) lexicalist grammars. IRroc. EWNLG- yra Language Generation Ph.D. thesis, Stanford
99. University.

Mary Ellen Foster and Michael White. 2004. Tech-Mark Steedman. 2000a. Information structure and

niqueS for Text Planning with XSLT. IRroc. 4th the Syntax_phono'ogy interface_inguistic |nquiry
NLPXML Workshop 31(4):649-689.

Martin Kay. 1996. Chart generation. Rtoc. ACL-96 Mark Steedman. 2000bThe Syntactic ProcessvIT

Katrin Kirchhoff, Jeff Bilmes, Sourin Das, Nico- Press.

lae Duta, Melissa Egan, Gang Ji, Feng He, JOhAngreas Stolcke. 2002. SRILM — An extensible lan-

Henderson, Daben Liu, Mohamed Noamany, Pat gyage modeling toolkit. IfProc. ICSLP-02

Schone, Richard Schwartz, and Dimitra Vergyri.

2002. Novel Approaches to Arabic Speech RecogniMichael White and Jason Baldridge. 2003. Adapting

tion: Report from the 2002 Johns-Hopkins Summer Chart Realization to CCG. IRroc. EWNLG-03

Workshop.

Michael White. 2004a. Efficient Realization of Coor-

Kevin Knight and Vasileios Hatzivassiloglou. 1995. dinate Structures in Combinatory Categorial Gram-

Two-level, many-paths generation. Rroc. ACL- mar. Research on Language and Computatidio

95. appear.

Irene Langkilde-Geary. 2002. An empirical verifi- Michael White. 2004b. Experiments with multimodal
cation of coverage and correctness for a general- output in human-machine interaction. IST Project
purpose sentence generatorPioc. INLG-02 COMIC Public Deliverable 7.4.

Irene Langkilde. 2000. Forest-based statistical semichael White. 2004c. Reining in CCG Chart Real-
tence generation. IRroc. NAACL-00 ization. InProc. INLG-04

Robert Malouf. 2000. The order of prenominal adjec-
tives in natural language generation. Rroc. ACL-
00.

Johanna Moore, Mary Ellen Foster, Oliver Lemon, and
Michael White. 2004. Generating tailored, com-
parative descriptions in spoken dialogue. Rroc.
FLAIRS-04

Robert C. Moore. 2002. A complete, efficient
sentence-realization algorithm for unification gram-
mar. InProc. INLG-02

