
Designing an Extensible API for
Integrating Language Modeling and Realization

Michael White
School of Informatics

University of Edinburgh
Edinburgh EH8 9LW, UK

http://www.iccs.informatics.ed.ac.uk/~mwhite/

Abstract

We present an extensible API for inte-
grating language modeling and realiza-
tion, describing its design and efficient
implementation in the OpenCCG sur-
face realizer. With OpenCCG, language
models may be used to select realiza-
tions with preferred word orders, pro-
mote alignment with a conversational
partner, avoid repetitive language use,
and increase the speed of the best-first
anytime search. The API enables a vari-
ety of n-gram models to be easily com-
bined and used in conjunction with ap-
propriate edge pruning strategies. The
n-gram models may be of any order,
operate in reverse (“right-to-left”), and
selectively replace certain words with
their semantic classes. Factored lan-
guage models with generalized backoff
may also be employed, over words rep-
resented as bundles of factors such as
form, pitch accent, stem, part of speech,
supertag, and semantic class.

1 Introduction

The OpenCCG1 realizer (White and Baldridge,
2003; White, 2004a; White, 2004c) is an open
source surface realizer for Steedman’s (2000a;
2000b) Combinatory Categorial Grammar (CCG).
It is designed to be the first practical, reusable re-
alizer for CCG, and includes implementations of

1http://openccg.sourceforge.net

CCG’s unique accounts of coordination and infor-
mation structure–based prosody.

Like other surface realizers, the OpenCCG re-
alizer takes as input a logical form specifying the
propositional meaning of a sentence, and returns
one or more surface strings that express this mean-
ing according to the lexicon and grammar. A dis-
tinguishing feature of OpenCCG is that it imple-
ments a hybrid symbolic-statistical chart realiza-
tion algorithm that combines (1) a theoretically
grounded approach to syntax and semantic com-
position, with (2) the use of integrated language
models for making choices among the options
left open by the grammar (thereby reducing the
need for hand-crafted rules). In contrast, previous
chart realizers (Kay, 1996; Shemtov, 1997; Car-
roll et al., 1999; Moore, 2002) have not included
a statistical component, while previous statisti-
cal realizers (Knight and Hatzivassiloglou, 1995;
Langkilde, 2000; Bangalore and Rambow, 2000;
Langkilde-Geary, 2002; Oh and Rudnicky, 2002;
Ratnaparkhi, 2002) have employed less general
approaches to semantic representation and com-
position, and have not typically made use of fine-
grained logical forms that include specifications
of such information structural notions as theme,
rheme and focus.

In this paper, we present OpenCCG’s extensi-
ble API (application programming interface) for
integrating language modeling and realization, de-
scribing its design and efficient implementation in
Java. With OpenCCG, language models may be
used to select realizations with preferred word or-
ders (White, 2004c), promote alignment with a
conversational partner (Brockmann et al., 2005),
and avoid repetitive language use. In addition,

by integrating language model scoring into the
search, it also becomes possible to use more accu-
rate models to improve realization times, when the
realizer is run in anytime mode (White, 2004b).

To allow language models to be combined
in flexible ways—as well as to enable research
on how to best combine language modeling and
realization—OpenCCG’s design includes inter-
faces that allow user-defined functions to be used
for scoring partial realizations and for pruning
low-scoring ones during the search. The design
also includes classes for supporting a range of
language models and typical ways of combining
them. As we shall see, experience to date indi-
cates that the benefits of employing a highly gen-
eralized approach to scoring and pruning can be
enjoyed with little or no loss of performance.

The rest of this paper is organized as follows.
Section 2 gives an overview of the realizer archi-
tecture, highlighting the role of the interfaces for
plugging in custom scoring and pruning functions,
and illustrating how n-gram scoring affects accu-
racy and speed. Sections 3 and 4 present Open-
CCG’s classes for defining scoring and pruning
functions, respectively, giving examples of their
usage. Finally, Section 5 summarizes the design
and concludes with a discussion of future work.

2 Realizer Overview

The UML class diagram in Figure 1 shows the
high-level architecture of the OpenCCG realizer;
sample Java code for using the realizer appears in
Figure 2. A realizer instance is constructed with
a reference to a CCG grammar (which supports
both parsing and realization). The grammar’s lex-
icon has methods for looking up lexical items via
their surface forms (for parsing), or via the prin-
cipal predicates or relations in their semantics (for
realization). A grammar also has a set of hierar-
chically organized atomic types, which can serve
as the values of features in the syntactic categories,
or as ontological sorts for the discourse referents
in the logical forms (LFs).

Lexical lookup yields lexical signs. A sign pairs
a list of words with a category, which itself pairs
a syntactic category with a logical form. Lexical
signs are combined into derived signs using the

rules in the grammar’s rule group. Derived signs
maintain a derivation history, and their word lists
share structure with the word lists of their input
signs.

As mentioned in the introduction, for general-
ity, the realizer makes use of a configurable sign
scorer and pruning strategy. A sign scorer imple-
ments a function that returns a number between
0 and 1 for an input sign. For example, a stan-
dard trigram language model can be used to im-
plement a sign scorer, by returning the probability
of a sign’s words as its score. A pruning strat-
egy implements a method for determining which
edges to prune during the realizer’s search. The
input to the method is a ranked list of edges for
signs that have equivalent categories (but different
words); grouping edges in this way ensures that
pruning cannot “break” the realizer, i.e. prevent it
from finding some grammatical derivation when
one exists. By default, an N-best pruning strategy
is employed, which keeps the N highest scoring in-
put edges, pruning the rest (where N is determined
by the current preference settings).

The realization algorithm is implemented by the
realize method. As in the chart realizers cited
earlier, the algorithm makes use of a chart and
an agenda to perform a bottom-up dynamic pro-
gramming search for signs whose LFs completely
cover the elementary predications in the input log-
ical form. See Figure 9 (Section 3.1) for a real-
ization trace; the algorithm’s details and a worked
example appear in (White, 2004a; White, 2004c).
Therealize method returns the edge for the best
realization of the input LF, as determined by the
sign scorer. After a realization request, the N-best
complete edges—or more generally, all the edges
for complete realizations that survived pruning—
are also available from the chart.

The search for complete realizations proceeds
in one of two modes, anytime and two-stage
(packing/unpacking). In the anytime mode, a best-
first search is performed with a configurable time
limit (which may be a limit on how long to look
for a better realization, after the first complete one
is found). With this mode, the scores assigned by
the sign scorer determine the order of the edges
on the agenda, and thus have an impact on realiza-
tion speed. In the two-stage mode, a packed forest

 Realizer
 +timeLimitMS: int

 +Realizer(grammar: Grammar)
 +realize(lf: LF): Edge
 +getChart(): Chart

 Grammar

 Chart

 +bestEdge: Edge

 +bestEdges(): List<Edge>

 «interface»

 SignScorer

 +score(sign: Sign, complete: boolean): double

 «interface»

 PruningStrategy

 +pruneEdges(edges: List<Edge>): List<Edge>

 Lexicon

 +getSignsFromWord(...): Set<Sign>
 +getSignsFromPred(...): Set<Sign>
 +getSignsFromRel(...): Set<Sign>

 RuleGroup

 +applyRules(...): List<Sign>

 Types

 Edge

 +score: double
 +completeness: double

 Sign

 «interface»

 Category

 +getLF(): LF

 Word DerivationHistory

 A realizer for a CCG grammar makes use of
 a configurable sign scorer and pruning strategy.
 The realize method takes a logical form (LF)
 as input and returns the edge for the best
 realization of that LF.

 After a realization request, the N−best edges
 are also available from the chart.

 The lexico−grammar and signs
 are the same for parsing and
 realization.

*

1..n 0..2

Figure 1: High-level architecture of the OpenCCG realizer

// load grammar , instantiate realizer
URL grammarURL = ...;
Grammar grammar = new Grammar(grammarURL);
Realizer realizer = new Realizer(grammar);

// configure realizer with trigram backoff model
// and 10-best pruning strategy
realizer.signScorer = new StandardNgramModel (3, "lm.3bo");
realizer.pruningStrategy = new NBestPruningStrategy (10);

// ... then , for each request:

// get LF from input XML
Document inputDoc = ...;
LF lf = realizer.getLfFromDoc(inputDoc);

// realize LF and get output words in XML
Edge bestEdge = realizer.realize(lf);
Document outputDoc = bestEdge.sign.getWordsInXml ();

// return output
... outputDoc ...;

Figure 2: Example realizer usage

of all possible realizations is created in the first
stage; then in the second stage, the packed repre-
sentation is unpacked in bottom-up fashion, with
scores assigned to the edge for each sign as it is
unpacked, much as in (Langkilde, 2000). In both
modes, the pruning strategy is invoked to deter-
mine whether to keep or prune newly constructed
edges. For single-best output, the anytime mode
can provide signficant time savings by cutting off
the search early; see (White, 2004c) for discus-
sion. For N-best output—especially when a com-
plete search (up to the edges that survive the prun-
ing strategy) is desirable—the two-stage mode can
be more efficient.

To illustrate how n-gram scoring can guide the
best-first anytime search towards preferred real-
izations and reduce realization times, we repro-
duce in Table 1 and Figures 3 through 5 the cross-
validation tests reported in (White, 2004b). In
these tests, we measured the realizer’s accuracy
and speed, under a variety of configurations, on
the regression test suites for two small but linguis-
tically rich grammars: the English grammar for
the COMIC2 dialogue system—the core of which
is shared with the FLIGHTS system (Moore et al.,
2004)—and the Worldcup grammar discussed in

2http://www.hcrc.ed.ac.uk/comic/

(Baldridge, 2002). Table 1 gives the sizes of the
test suites. Using these two test suites, we timed
how long it took on a 2.2 GHz Linux PC to realize
each logical form under each realizer configura-
tion. To measure accuracy, we counted the num-
ber of times the best scoring realization exactly
matched the target, and also computed a modified
version of the Bleu n-gram precision metric (Pap-
ineni et al., 2001) employed in machine translation
evaluation, using 1- to 4-grams, with the longer
n-grams given more weight (cf. Section 3.4). To
rank candidate realizations, we used standard n-
gram backoff models of orders 2 through 6, with
semantic class replacement, as described in Sec-
tion 3.1. For smoothing, we used Ristad’s nat-
ural discounting (Ristad, 1995), a parameter-free
method that seems to work well with relatively
small amounts of data.

To gauge how the amount of training data af-
fects performance, we ran cross-validation tests
with increasing numbers of folds, with 25 as the
maximum number of folds. We also compared the
realization results using the n-gram scorers with
two baselines and one topline (oracle method).
The first baseline assigns all strings a uniform
score of zero, and adds new edges to the end of the
agenda, corresponding to breadth-first search. The

LF/target Unique up
pairs to SC Mean Min Max Mean Min Max

COMIC 549 219 13.1 6 34 8.4 2 20
Worldcup 276 138 9.2 4 18 6.8 3 13

Input nodesLength

Table 1: Test suite sizes.

Folds Baseline 1 Baseline 2 N2 N3 N4 N5 N6 Topline
1.04 459.464 370.889 460.454 450.548 450.843 458.592 460.228 147.818
1.1 459.464 370.889 406.743 365.058 360.705 370.678 372.869 147.818
1.2 459.464 370.889 366.007 305.226 306.098 314.825 308.131 147.818

1.33 459.464 370.889 349.035 279.426 266.956 274.539 275.559 147.818
1.5 459.464 370.889 342.078 272.148 256.851 260.654 262.124 147.818

2 459.464 370.889 320.536 238.563 217.597 222.8 221.709 147.818
3 459.464 370.889 311.634 234.106 210.492 211.816 212.674 147.818
5 459.464 370.889 307.725 225.306 202.372 203.661 201.568 147.818

10 459.464 370.889 302.233 223.579 199.632 200.148 198.929 147.818
25 459.464 370.889 302.286 220.612 197.918 199.415 196.361 147.818

COMIC: First

0

100

200

300

400

500

1.04 1.1 1.2 1.33 1.5 2 3 5 10 25

Num Folds

Ti
m

e
(m

s)

Baseline 1
Baseline 2
N2
N3
N4
N5
N6
Topline

Folds Baseline 1 Baseline 2 N2 N3 N4 N5 N6 Topline
1.04 151.819 115.243 159.754 156.134 158.022 160.493 160.38 49.127
1.1 151.819 115.243 158.638 152.946 154.062 155.007 154.71 49.127
1.2 151.819 115.243 145.496 130.123 131.138 130.167 131.674 49.127

1.33 151.819 115.243 138.312 119.837 119.029 119.754 119.815 49.127
1.5 151.819 115.243 136.243 121.29 120.185 120.757 121.083 49.127

2 151.819 115.243 128.822 102.221 98.844 97.772 97.54 49.127
3 151.819 115.243 124.475 97.652 92.931 92.373 93.493 49.127
5 151.819 115.243 122.656 94.051 90.649 89.957 90.627 49.127

10 151.819 115.243 125.087 92.471 88.446 87.96 88.928 49.127
25 151.819 115.243 121.076 92.623 88.043 86.149 87.293 49.127

Worldcup: First

0

40

80

120

160

200

1.04 1.1 1.2 1.33 1.5 2 3 5 10 25

Num Folds

Ti
m

e
(m

s)

Baseline 1
Baseline 2
N2
N3
N4
N5
N6
Topline

Figure 3: Mean time (in ms.) until first realization is found using n-grams of different orders and Ristad’s
natural discounting (N), for cross-validation tests with increasing numbers of folds.

Folds Baseline 1 Baseline 2 N2 N3 N4 N5 N6 Topline
1.04 241 41 524 512 513 513 513 549
1.1 241 41 493 477 469 469 469 549
1.2 241 41 542 542 542 542 542 549

1.33 241 41 538 541 541 541 541 549
1.5 241 41 548 542 542 542 542 549

2 241 41 549 547 547 547 547 549
3 241 41 549 548 548 548 548 549
5 241 41 549 548 548 548 548 549

10 241 41 549 548 548 548 548 549
25 241 41 549 548 548 548 548 549

COMIC: Exact

0

100

200

300

400

500

600

1.04 1.1 1.2 1.33 1.5 2 3 5 10 25

Num Folds

Ti
m

e
(m

s)

Baseline 1
Baseline 2
N2
N3
N4
N5
N6
Topline

Folds Baseline 1 Baseline 2 N2 N3 N4 N5 N6 Topline
1.04 86 70 112 114 114 114 114 276
1.1 86 70 148 156 154 157 157 276
1.2 86 70 177 173 174 180 177 276

1.33 86 70 187 198 199 203 201 276
1.5 86 70 200 210 211 211 213 276

2 86 70 210 227 225 231 232 276
3 86 70 221 239 238 242 245 276
5 86 70 222 245 241 244 247 276

10 86 70 224 242 235 246 246 276
25 86 70 228 248 238 250 252 276

Worldcup: Exact

0

50

100

150

200

250

300

1.04 1.1 1.2 1.33 1.5 2 3 5 10 25

Num Folds

Ti
m

e
(m

s)

Baseline 1
Baseline 2
N2
N3
N4
N5
N6
Topline

Figure 4: Number of realizations exactly matching target using n-grams of different orders.

Folds Baseline 1 Baseline 2 N2 N3 N4 N5 N6 Topline
1.04 0.754 0.379 0.974 0.963 0.963 0.963 0.963 1
1.1 0.754 0.379 0.967 0.953 0.942 0.942 0.942 1
1.2 0.754 0.379 0.996 0.996 0.996 0.996 0.996 1

1.33 0.754 0.379 0.992 0.995 0.995 0.995 0.995 1
1.5 0.754 0.379 1 0.996 0.996 0.996 0.996 1

2 0.754 0.379 1 0.999 0.999 0.999 0.999 1
3 0.754 0.379 1 0.999 0.999 0.999 0.999 1
5 0.754 0.379 1 0.999 0.999 0.999 0.999 1

10 0.754 0.379 1 0.999 0.999 0.999 0.999 1
25 0.754 0.379 1 0.999 0.999 0.999 0.999 1

COMIC: Score

0

0.2

0.4

0.6

0.8

1

1.04 1.1 1.2 1.33 1.5 2 3 5 10 25

Num Folds

Ti
m

e
(m

s)

Baseline 1
Baseline 2
N2
N3
N4
N5
N6
Topline

Folds Baseline 1 Baseline 2 N2 N3 N4 N5 N6 Topline
1.04 0.6 0.538 0.646 0.658 0.656 0.656 0.656 1
1.1 0.6 0.538 0.766 0.767 0.764 0.768 0.768 1
1.2 0.6 0.538 0.806 0.794 0.8 0.804 0.803 1

1.33 0.6 0.538 0.833 0.849 0.852 0.859 0.856 1
1.5 0.6 0.538 0.87 0.877 0.873 0.873 0.877 1

2 0.6 0.538 0.875 0.888 0.886 0.894 0.895 1
3 0.6 0.538 0.901 0.923 0.92 0.924 0.924 1
5 0.6 0.538 0.9 0.93 0.925 0.927 0.931 1

10 0.6 0.538 0.905 0.93 0.915 0.928 0.922 1
25 0.6 0.538 0.915 0.938 0.917 0.932 0.935 1

Worldcup: Score

0

0.2

0.4

0.6

0.8

1

1.04 1.1 1.2 1.33 1.5 2 3 5 10 25

Num Folds

Ti
m

e
(m

s)

Baseline 1
Baseline 2
N2
N3
N4
N5
N6
Topline

Figure 5: Modified BLEU scores using n-grams of different orders.

second baseline uses the same scorer, but adds new
edges at the front of the agenda, corresponding to
depth-first search. The topline uses the modified
Bleu score, computing n-gram precision against
just the target string. With this setup, Figures 3-
5 show how initial realization times decrease and
accuracy increases when longer n-grams are em-
ployed. Figure 3 shows that trigrams offer a sub-
stantial speedup over bigrams, while n-grams of
orders 4-6 offer a small further improvement. Fig-
ures 4 and 5 show that with the COMIC test suite,
all n-gram orders work well, while with the World-
cup test suite, n-grams of orders 3-6 offer some
improvement over bigrams.

To conclude this section, we note that together
with OpenCCG’s other efficiency methods, n-
gram scoring has helped to achieve realization
times adequate for interactive use in both the
COMIC and FLIGHTS dialogue systems, along
with very high quality. Estimates indicate that
n-gram scoring typically accounts for only 2-5%
of the time until the best realization is found,
while it can more than double realization speed by
accurately guiding the best-first anytime search.
This experience suggests that more complex scor-
ing models can more than pay for themselves,
efficiency-wise, if they yield significantly more ac-
curate preference orders on edges.

3 Classes for Scoring Signs

The classes for implementing sign scorers appear
in Figure 6. In the diagram, classes for n-gram
scoring appear towards the bottom, while classes
for combining scorers appear on the left, and the
class for avoiding repetition appears on the right.

3.1 Standard N-gram Models

The StandardNgramModel class can load stan-
dard n-gram backoff models for scoring, as shown
earlier in Figure 2. Such models can be con-
structed with the SRILM toolkit (Stolcke, 2002),
which we have found to be very useful; in princi-
ple, other toolkits could be used instead, as long as
their output could be converted into the same file
formats. Since the SRILM toolkit has more re-
strictive licensing conditions than those of Open-
CCG’s LGPL license, OpenCCG includes its own

classes for scoring with n-gram models, in order to
avoid any necessary runtime dependencies on the
SRILM toolkit.

The n-gram tables are efficiently stored in a trie
data structure (as in the SRILM toolkit), thereby
avoiding any arbitrary limit on the n-gram order.
To save memory and speed up equality tests, each
string is interned (replaced with a canonical in-
stance) at load time, which accomplishes the same
purpose as replacing the strings with integers, but
without the need to maintain a separate mapping
from integers back to strings. For better gener-
alization, certain words may be dynamically re-
placed with the names of their semantic classes
when looking up n-gram probabilities. Words are
assigned to semantic classes in the lexicon, and the
semantic classes to use in this way may be config-
ured at the grammar level. Note that (Oh and Rud-
nicky, 2002) and (Ratnaparkhi, 2002) make simi-
lar use of semantic classes in n-gram scoring, by
deferring the instantiation of classes (such asde-
parture city) until the end of the generation pro-
cess; our approach accomplishes the same goal in
a slightly more flexible way, in that it also allows
the specific word to be examined by other scoring
models, if desired.

As discussed in (White, 2004c), with dialogue
systems like COMIC n-gram models can do an
excellent job of placing underconstrained adjec-
tival and adverbial modifiers—as well as bound-
ary tones—without resorting to the more com-
plex methods investigated for adjective ordering in
(Shaw and Hatzivassiloglou, 1999; Malouf, 2000).
For instance, in examples like those in (1), they
correctly select the preferred positions forhereand
also (as well as for the boundary tones), with re-
spect to the verbal head and sister dependents:

(1) a. HereL+H∗ LH% we have a design in
the classicH∗ style LL% .

b. ThisL+H∗ design LH% hereL+H∗ LH%
is alsoH∗ classic LL% .

We have also found that it can be useful to
use reverse (or “right-to-left”) models, as they can
help to place adverbs likethough, as in (2):

(2) The tiles are alsoH∗ from the JazzH∗ series
though LL% .

 «interface»

 SignScorer

 +score(sign: Sign, complete: boolean): double
 +nullScorer: SignScorer

 SignScorerInterpolation

 #weights: double[]

 SignScorerProduct
 RepetitionScorer

 +penalty: double
 +updateContext(sign: Sign)
 +resetContext()
 +ageContext()

 Returns zero for all signs, thereby
 providing no distinguishing information.

 NgramScorer
 #order: int
 #reverse: boolean
 #useSemClasses: boolean
 #wordsToScore: List<Word>
 #prepareToScoreWords()
 #score(): double
 #logProbFromNgram(i: int, order: int): float

 «interface»

 NgramFilter

 +filterOut(words: List<Word>): boolean

 AAnFilter

 +addException(w1: String, w2: String)

 LinearNgramScorerCombo

 #weights: double[]

 #logProbFromNgram(i: int, order: int): float

 Returns a score that is linear in
 log space with the number of
 repeated items times the penalty.

 StandardNgramModel

 +StandardNgramModel(order: int, filename:String)
 #prepareToScoreWords()
 #logProbFromNgram(i: int, order: int): float

 NgramPrecisionModel

 +NgramPrecisionModel(targets: String[], order: int)
 #prepareToScoreWords()
 #score(): double

 FactoredNgramModel

 +FactoredNgramModel(child: String, parents: String[], filename: String)
 #prepareToScoreWords()
 #logProbFromNgram(i: int, order: int): float

 FactoredNgramModelFamily

 +FactoredNgramModelFamily(filename: String)
 #prepareToScoreWords()
 #logProbFromNgram(i: int, order: int): float

 Utility classes for combining
 scorers multiplicatively or
 via linear interpolation.

 Utility class for interpolating
 n−gram models at the word level.

 N−gram models can be of any order,
 can reverse the words, and
 can replace certain words with
 their semantic classes.

 Returns a modified version of the
 BLEU score used in MT evaluation.

 Filters bigrams with the wrong
 choice of a or an given
 the initial letter of the following
 word, with configurable exceptions.

 Factored n−gram models return the probability of the
 child factor of the current word given a sequence of
 parent factors. Multiple models can be organized
 into families.

2..n

*2..n

1..n

Figure 6: Classes for scoring signs

In principle, the forward and reverse probabilities
should be the same—as they are both derived via
the chain rule from the same joint probability of
the words in the sequence—but we have found that
with sparse data the estimates can differ substan-
tially. In particular, sincethoughtypically appears
at the end of a variety of clauses, its right context
is much more predictable than its left context, and
thus reverse models yield more accurate estimates
of its likelihood of appearing clause-finally. To il-
lustrate, Figures 7 and 8 show the forward and re-
verse trigram probabilities for two competing real-
izations of (2) in a 2-fold cross-validation test (i.e.
with models trained on the half of the test suite
not including this example). With the forward tri-
gram model, sincethoughhas not been observed
following series, and sinceseriesis a frequently
occurring word, the penalty for backing off to the
unigram probability forthough is high, and thus
the probability is quite low. The medial placement
(following alsoH∗) also yields a low probability,
but not as low as the clause-final one, and thus
the forward model ends up preferring the medial
placement, which is quite awkward. By contrast,
the reverse model yields a very clear preference
for the clause-final position ofthough, and for this
reason interpolating the forward and reverse mod-
els (see Section 3.3) also yields the desired prefer-
ence order.

Figure 9 shows a trace of realizing (2) with such
an interpolated model. In the trace, the interpo-
lated model is loaded by the classMyEvenScorer.
The input LF appears at the top. It is flattened
into a list of elementary predications, so that cov-
erage of these predications can be tracked using bit
vectors. The LF chunks ensure that the subtrees
underh1 ands1 are realized as independent sub-
problems; cf. (White, 2004a) for discussion. The
edges produced by lexical lookup and instantiation
appear next, under the headingInitial Edges,
with only the edges foralsoH∗ andthoughshown
in the figure. For each edge, the coverage percent-
age and score (here a probability) appear first, fol-
lowed by the word(s) and the coverage vector, then
the syntactic category (with features suppressed),
and finally any active LF chunks. The edges added
to the chart appear (unsorted) under the heading
All Edges. As this trace shows, in the best-first

search, high probability phrases such asthe tiles
are alsoH∗ can be added to the chart before low-
frequency words such asthough have even left
the agenda. The first complete realization, cor-
responding to (2), also turns out to be the best
one here. As noted in the figure, complete realiza-
tions are scored with sentence delimiters, which—
by changing the contexts of the initial and final
words—can result in a complete realization hav-
ing a higher probability than its input partial real-
izations (see next section for discussion). One way
to achieve more monotonic scores—and thus more
efficient search, in principle—could be to include
sentence delimiters in the grammar; we leave this
question for future work.

3.2 N-gram Scorers

TheStandardNgramModel class is implemented
as a subclass of the base classNgramScorer.
All NgramScorer instances may have any num-
ber of NgramFilter instances, whosefilter-
Out methods are invoked prior to n-gram scoring;
if any of these methods return true, a score of zero
is immediately returned. TheAAnFilter provides
one concrete implementation of theNgramFilter
interface, and returns true if it finds a bigram con-
sisting ofa followed by a vowel-inital word, oran
followed by a consonant-initial word, subject to a
configurable set of exceptions that can be culled
from bigram counts. We have found that such n-
gram filters can be more efficient, and more reli-
able, than relying on n-gram scores alone; in par-
ticular, with a/an, since the unigram probability
for a tends to be much higher than that ofan, with
unseen words beginning with a vowel, there may
not be a clear preference for the bigram beginning
with an.

The base classNgramScorer implements the
bulk of thescore method, using an abstractlog-
ProbFromNgrammethod for subclass-specific cal-
culation of the log probabilities (with backoff) for
individual n-grams. Thescore method also in-
vokes theprepareToScoreWords method, in or-
der to allow for subclass-specific pre-processing
of the words in the given sign. WithStandard-
NgramModel, this method is used to extract the
word forms or semantic classes into a list of strings
to score. It also appends any pitch accents to the

the tiles are also_H* from the SERIES_H* series though LL% .
p(the | <s>) = [2gram] 0.0999418 [-1.00025]
p(tiles | the ...) = [3gram] 0.781102 [-0.107292]
p(are | tiles ...) = [3gram] 0.484184 [-0.31499]
p(also_H* | are ...) = [3gram] 0.255259 [-0.593018]
p(from | also_H* ...) = [3gram] 0.0649038 [-1.18773]
p(the | from ...) = [3gram] 0.5 [-0.30103]
p(SERIES_H* | the ...) = [3gram] 0.713421 [-0.146654]
p(series | SERIES_H* ...) = [3gram] 0.486827 [-0.312626]
p(though | series ...) = [1gram] 1.58885e-06 [-5.79892]
p(LL% | though ...) = [2gram] 0.416667 [-0.380211]
p(. | LL% ...) = [3gram] 0.75 [-0.124939]
p(</s> |) = [3gram] 0.999977 [-1.00831e-05]

1 sentences, 11 words, 0 OOVs
0 zeroprobs, logprob= -10.2677 ppl= 7.17198 ppl1= 8.57876

the tiles are also_H* though from the SERIES_H* series LL% .
p(the | <s>) = [2gram] 0.0999418 [-1.00025]
p(tiles | the ...) = [3gram] 0.781102 [-0.107292]
p(are | tiles ...) = [3gram] 0.484184 [-0.31499]
p(also_H* | are ...) = [3gram] 0.255259 [-0.593018]
p(though | also_H* ...) = [1gram] 1.11549e-05 [-4.95254]
p(from | though ...) = [1gram] 0.00805451 [-2.09396]
p(the | from ...) = [2gram] 0.509864 [-0.292545]
p(SERIES_H* | the ...) = [3gram] 0.713421 [-0.146654]
p(series | SERIES_H* ...) = [3gram] 0.486827 [-0.312626]
p(LL% | series ...) = [3gram] 0.997543 [-0.00106838]
p(. | LL% ...) = [3gram] 0.733867 [-0.134383]
p(</s> |) = [3gram] 0.999977 [-1.00831e-05]

1 sentences, 11 words, 0 OOVs
0 zeroprobs, logprob= -9.94934 ppl= 6.74701 ppl1= 8.02574

Figure 7: Forward probabilities for two placements ofthough(COMIC test suite, 2-fold cross validation)

the tiles are also_H* from the SERIES_H* series though LL% .
p(. | <s>) = [2gram] 0.842366 [-0.0744994]
p(LL% |) = [3gram] 0.99653 [-0.00150975]
p(though | LL% ...) = [3gram] 0.00677446 [-2.16913]
p(series | though ...) = [1gram] 0.00410806 [-2.38636]
p(SERIES_H* | series ...) = [2gram] 0.733867 [-0.134383]
p(the | SERIES_H* ...) = [3gram] 0.744485 [-0.128144]
p(from | the ...) = [3gram] 0.765013 [-0.116331]
p(also_H* | from ...) = [3gram] 0.0216188 [-1.66517]
p(are | also_H* ...) = [3gram] 0.5 [-0.30103]
p(tiles | are ...) = [3gram] 0.432079 [-0.364437]
p(the | tiles ...) = [3gram] 0.9462 [-0.0240173]
p(</s> | the ...) = [3gram] 0.618626 [-0.208572]

1 sentences, 11 words, 0 OOVs
0 zeroprobs, logprob= -7.57358 ppl= 4.27692 ppl1= 4.88098

the tiles are also_H* though from the SERIES_H* series LL% .
p(. | <s>) = [2gram] 0.842366 [-0.0744994]
p(LL% |) = [3gram] 0.99653 [-0.00150975]
p(series | LL% ...) = [3gram] 0.0948425 [-1.023]
p(SERIES_H* | series ...) = [3gram] 0.733867 [-0.134383]
p(the | SERIES_H* ...) = [3gram] 0.744485 [-0.128144]
p(from | the ...) = [3gram] 0.765013 [-0.116331]
p(though | from ...) = [1gram] 3.50735e-08 [-7.45502]
p(also_H* | though ...) = [1gram] 0.00784775 [-2.10525]
p(are | also_H* ...) = [2gram] 0.2291 [-0.639975]
p(tiles | are ...) = [3gram] 0.432079 [-0.364437]
p(the | tiles ...) = [3gram] 0.9462 [-0.0240173]
p(</s> | the ...) = [3gram] 0.618626 [-0.208572]

1 sentences, 11 words, 0 OOVs
0 zeroprobs, logprob= -12.2751 ppl= 10.5421 ppl1= 13.0594

Figure 8: Reverse probabilities for two placements ofthough(COMIC test suite, 2-fold cross validation)

Input LF:

@b1:state(be ^ <info>rh ^ <mood>dcl ^ <tense>pres ^ <owner>s ^ <kon>- ^

<Arg>(t1:phys-obj ^ tile ^ <det>the ^ <num>pl ^ <info>rh ^ <owner>s ^ <kon>-) ^

<Prop>(h1:proposition ^ has-rel ^ <info>rh ^ <owner>s ^ <kon>- ^

<Of>t1:phys-obj ^

<Source>(s1:abstraction ^ series ^ <det>the ^ <num>sg ^ <info>rh ^ <owner>s ^ <kon>- ^

<HasProp>(j1:series ^ Jazz ^ <kon>+ ^ <info>rh ^ <owner>s))) ^

<HasProp>(a1:proposition ^ also ^ <kon>+ ^ <info>rh ^ <owner>s) ^

<HasProp>(t2:proposition ^ though ^ <info>rh ^ <owner>s ^ <kon>-))

Instantiating scorer from class: MyEvenScorer

Preds:

ep[0]: @a1:proposition(also)

ep[1]: @a1:proposition(<info>rh)

ep[2]: @a1:proposition(<kon>+)

ep[3]: @a1:proposition(<owner>s)

ep[4]: @b1:state(be)

ep[5]: @b1:state(<info>rh)

...

LF chunks:

chunk[0]: {14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

chunk[1]: {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

Initial Edges:

{0.12} [0.011] also_H* {0, 1, 2, 3, 12} :- s\.s

{0.12} [0.011] also_H* {0, 1, 2, 3, 12} :- s\np/^(s\np)

{0.12} [0.011] also_H* {0, 1, 2, 3, 12} :- s/^s

...

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\np/^(s\np)

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\.s

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s/^s

...

Uninstantiated Semantically Null Edges:

{0.00} [0.073] LL% {} :- s$1*(s$1)

{0.00} [0.011] L {} :- s$1*(s$1)

All Edges:

{0.02} [0.059] . {7} :- sent*s

{0.02} [0.059] . {7} :- sent*(s\np)

{0.02} [0.052] the {25} :- np/^n < 0 1 >

{0.02} [0.052] the {32} :- np/^n

{0.12} [0.032] tiles {31, 33, 34, 35, 36} :- n

{0.02} [0.018] from {19} :- n\n/<np < 0 >

{0.15} [0.018] from {14, 15, 16, 17, 18, 19} :- s\!np/<np < 0 >

{0.17} [0.017] is {4, 5, 6, 8, 9, 10, 11} :- s\np/(s\!np)

...

{0.15} [0.009] the tiles {31, 32, 33, 34, 35, 36} :- np

{0.15} [0.009] the tiles {31, 32, 33, 34, 35, 36} :- s/@i(s\@inp)

{0.15} [0.009] the tiles {31, 32, 33, 34, 35, 36} :- s$1\@i(s$1/@inp)

...

{0.44} [0.001] the tiles are also_H* {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 31, 32, 33, 34, 35, 36} :- s/(s\!np)

...

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\np/^(s\np)

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\.s

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s/^s

...

{0.85} [1.32E-5] the tiles are also_H* from the Jazz_H* series {...} :- s

{0.85} [1.32E-5] the tiles are also_H* from the Jazz_H* series LL% {...} :- s

...

{0.24} [2.64E-6] also_H* though {0, 1, 2, 3, 12, 13, 37, 38, 39, 40} :- s\np/^(s\np)

{0.24} [2.64E-6] also_H* though {0, 1, 2, 3, 12, 13, 37, 38, 39, 40} :- s\.s

...

{0.88} [5.44E-8] the tiles are from the Jazz_H* series though LL% . {...} :- sent

...

{0.85} [4.85E-8] the tiles are from the Jazz_H* series also_H* {...} :- s

...

{0.88} [3.14E-9] the tiles also_H* are from the Jazz_H* series LL% . {...} :- sent

...

{0.98} [2.96E-9] the tiles are also_H* from the Jazz_H* series though {...} :- s

...

{0.98} [1.51E-9] the tiles are also_H* from the Jazz_H* series though LL% {...} :- s

{1.00} [1.34E-8] the tiles are also_H* from the Jazz_H* series though LL% . {...} :- sent

****** first complete realization; scored with <s> and </s> tags ******

...

{0.24} [1.44E-9] also_H* though L {...} :- s\np/^(s\np)

...

{0.56} [2E-10] though the tiles are also_H* LL% {...} :- s/(s\!np)

...

Complete Edges (sorted):

{1.00} [1.34E-8] the tiles are also_H* from the Jazz_H* series though LL% . {...} :- sent

{1.00} [1.33E-8] the tiles are also_H* from the Jazz_H* series LL% though LL% . {...} :- sent

...

Figure 9: Realizer trace for example (2) with interpolated model

word forms or semantic classes, effectively treat-
ing them as integral parts of the words.

Since the realizer builds up partial realizations
bottom-up rather than left-to-right, it only adds
start of sentence (and end of sentence) tags with
complete realizations. As a consequence, the
words with less than a fulln−1 words of history
are scored with appropriate sub-models. For ex-
ample, the first word of a phrase is scored with
a unigram sub-model, without imposing backoff
penalties.

Another consequence of bottom-up realization
is that both the left- and right-contexts may change
when forming new signs from a given input sign.
Consequently, it is often not possible (even in prin-
ciple) to use the score of an input sign directly in
computing the score of a new result sign. If one
could make assumptions about how the score of an
input sign has been computed—e.g., by a bigram
model—one could determine the score of the re-
sult sign from the scores of the input signs together
with an adjustment for the word(s) whose context
has changed. However, our general approach to
sign scoring precludes making such assumptions.
Nevertheless, it is still possible to improve the effi-
ciency of n-gram scoring by caching the log prob-
ability of a sign’s words, and then looking up that
log probability when the sign is used as the first
input sign in creating a new combined sign—thus
retaining the same left context—and only recom-
puting the log probabilities for the words of any in-
put signs past the first one. (With reverse models,
the sign must be the last sign in the combination.)
In principle, the derivation history could be con-
sulted further to narrow down the words whose n-
gram probabilities must be recomputed to the min-
imum possible, thoughNgramScorer only imple-
ments a single-step lookup at present.3 Finally,
note that a JavaWeakHashMap is used to imple-
ment the cache, in order to avoid an undesirable
buildup of entries across realization requests.

3.3 Interpolation

Scoring models may be linearly interpolated in
two ways. Sign scorers of any variety may be

3Informal experiments indicate that caching log probabil-
ities in this way can yield an overall reduction in best-first
realization times of 2-3% on average.

combined using theSignScorerInterpolation
class. For example, Figure 10 shows how forward
and reverse n-gram models may be interpolated.

With n-gram models of the same direction, it is
also possible to linearly interpolate models at the
word level, using theLinearNgramScorerCombo
class. Word-level interpolation makes it easier to
use cache models created with maximum likeli-
hood estimation, as word-level interpolation with
a base model avoids problems with zero probabil-
ities in the cache model. As discussed in (Brock-
mann et al., 2005), cache models can be used to
promote alignment with a conversational partner,
by constructing a cache model from the bigrams
in the partner’s previous turn, and interpolating it
with a base model.4 Figure 11 shows one way to
create such an interpolated model.

3.4 N-gram Precision Models

TheNgramPrecisionModel subclass ofNgram-
Scorer computes a modified version of the Bleu
score used in MT evaluation (Papineni et al.,
2001). Its constructor takes as input an array of
target strings—from which it extracts the n-gram
sequences to use in computing the n-gram preci-
sion score—and the desired order. Unlike with
the Bleu score, rank order centroid weights (rather
than the geometric mean) are used to combine
scores of different orders, which avoids problems
with scoring partial realizations which have no n-
gram matches of the target order. For simplicity,
the score also does not include the Bleu score’s
bells and whistles to make cheating on length dif-
ficult.

We have found n-gram precision models to be
very useful for regression testing the grammar, as
an n-gram precision model created just from the
target string nearly always leads the realizer to
choose that exact string as its preferred realiza-
tion. Such models can also be useful for evaluating
the success of different scoring models in a cross-
validation setup, though with high quality output,
manual inspection is usually necessary to deter-
mine the importance of any differences between

4At present, such cache models must be constructed with
a call to the SRILM toolkit; it would not be difficult to add
OpenCCG support for constructing them though, since these
models do not require smoothing.

// configure realizer with 4-gram forward and reverse backoff models ,
// interpolated with equal weight
NgramScorer forwardModel = new StandardNgramModel (4, "lm.4bo");
NgramScorer reverseModel = new StandardNgramModel (4, "lm -r.4bo");
reverseModel.setReverse(true);
realizer.signScorer = new SignScorerInterpolation(

new SignScorer [] { forwardModel , reverseModel }
);

Figure 10: Example interpolated n-gram model

// configure realizer with 4-gram backoff base model ,
// interpolated at the word level with a bigram maximum -likelihood
// cache model , with more weight given to the base model
NgramScorer baseModel = new StandardNgramModel (4, "lm.4bo");
NgramScorer cacheModel = new StandardNgramModel (2, "lm -cache.mle");
realizer.signScorer = new LinearNgramScorerCombo(

new SignScorer [] { baseModel , cacheModel },
new double [] { 0.6, 0.4 }

);

Figure 11: Example word-level interpolation of a cache model

the preferred realization and the target string.

3.5 Factored Language Models

A factored language model (Bilmes and Kirch-
hoff, 2003) is a new kind of language model that
treats words as bundles of factors. To support
scoring with such models, OpenCCG represents
words as objects with a surface form, pitch accent,
stem, part of speech, supertag, and semantic class.
Words may also have any number of further at-
tributes, such as associated gesture classes, in or-
der to handle in a general way elements like pitch
accents that are “coarticulated” with words.

To represent words efficiently, and to speed up
equality tests, all attribute values are interned, and
theWord objects themselves are interned via a fac-
tory method. Note that in Java, it is straightfor-
ward to intern objects other than strings by em-
ploying a WeakHashMap to map from an object
key to a weak reference to itself as the canonical
instance. (Using a weak reference avoids accu-
mulating interned objects that would otherwise be
garbage collected.)

With the SRILM toolkit, factored language
models can be constructed that supportgeneral-
ized parallel backoff: that is, backoff order is
not restricted to just dropping the most temporally

distant word first, but rather may be specified as
a path through the set of contextual parent vari-
ables; additionally, parallel backoff paths may be
specified, with the possibility of combining these
paths dynamically in various ways. In OpenCCG,
theFactoredNgramModel class supports scoring
with factored language models that employ gen-
eralized backoff, though parallel backoff is not
yet supported, as it remains somewhat unclear
whether the added complexity of parallel backoff
is worth the implementation effort. Typically, sev-
eral related factored language models are specified
in a single file and loaded by aFactoredNgram-
ModelFamily, which can multiplicatively score
models for different child variables, and include
different sub-models for the same child variable.

To illustrate, let us consider a simplified version
of the factored language model family used in the
COMIC realizer. This model computes the proba-
bility of the current word given the preceding ones
according to the formula shown in (3), where a
word consists of the factors word (W), pitch accent
(A), gesture class (GC), and gesture instance (GI),
plus the other standard factors which the model ig-
nores:

(3)
P(〈W,A,GC,GI〉 | 〈W,A,GC,GI〉−1 . . .)≈

P(W |W−1W−2A−1A−2)×
P(GC|W)×
P(GI |GC)

In (3), the probability of the current word is ap-
proximated by the probability of the current word
form given the preceding two word forms and pre-
ceding two pitch accents, multiplied by the proba-
bility of the current gesture class given the current
word form, and by the probability of the current
gesture instance given the current gesture class.
Note that in the COMIC grammar, the choice of
pitch accent is entirely rule governed, so the cur-
rent pitch accent is not scored separately in the
model. However, the preceding pitch accents are
taken into account in predicting the current word
form, as perplexity experiments have suggested
that they do provide additional information be-
yond that provided by the previous word forms.

The specification file for this model appears in
Figure 12. The format of the file is a restricted
form of the files used by the SRILM toolkit to
build factored language models. The file specifies
four models, where the first, third and fourth mod-
els correspond to those in (3). With the first model,
since the previous words are typically more infor-
mative than the previous pitch accents, the backoff
order specifies that the most distant accent,A(-2),
should be dropped first, followed by the previous
accent,A(-1), then the most distant word,W(-2),
and finally the previous word,W(-1). The sec-
ond model is considered a sub-model of the first—
since it likewise predicts the current word—to be
used when there is only one word of context avail-
able (i.e. with bigrams). Note that when scoring
a bigram, the second model will take the previous
pitch accent into account, whereas the first model
would not. For documentation of the file format as
it is used in the SRILM toolkit, see (Kirchhoff et
al., 2002).

Like StandardNgramModel, the Factored-
NgramModel class stores its n-gram tables in a trie
data structure, except that it stores an interned fac-
tor key (i.e. a factor name and value pair, or just a
string, in the case of the word form) at each node,
rather than a simple string. During scoring, the
logProbFromNgram method determines the log
probability (with backoff) of a given n-gram by

extracting the appropriate sequence of factor keys,
and using them to compute the log probability as
with standard n-gram models. TheFactored-
NgramModelFamily class computes log probabil-
ities by delegating to its component factored n-
gram models (choosing appropriate sub-models,
when appropriate) and summing the results.

3.6 Avoiding Repetition

While cache models appear to be a promising av-
enue to promote lexical and syntactic alignment
with a conversational partner, a different mech-
anism appears to be called for to avoid “self-
alignment”—that is, to avoid the repetitive use of
words and phrases. As a means to experiment
with avoiding repetition, OpenCCG includes the
RepetitionScorer class. This class makes use
of a configurable penalty plus a set of methods for
dynamically managing the context. It returns a
score of 10−cr×p, wherecr is the count of repeated
items, andp is the penalty. Note that this formula
returns 1 if there are no repeated items, and returns
a score that is linear in log space with the number
of repeated items otherwise.

A repetition scorer can be combined multiplica-
tively with an n-gram model, in order to discount
realizations that repeat items from the recent con-
text. Figure 13 shows such a combination, to-
gether with the operations for updating the con-
text. By default, open class stems are the consid-
ered the relevant items over which to count rep-
etitions, though this behavior can be specialized
by subclassingRepetitionScorer and overrid-
ing theupdateItems method. Note that in count-
ing repetitions, full counts are given to items in the
previous words or recent context, while fractional
counts are given to older items; the exact details
may likewise be changed in a subclass, by over-
riding therepeatedItems method.

4 Pruning Strategies

The classes for defining edge pruning strategies
appear in Figure 14. As mentioned in Section 2,
an N-best pruning strategy is employed by default,
where N is determined by the current preference
settings. It is also possible to define custom strate-
gies. To support the definition of a certain kind

Simplified COMIC realizer FLM spec file

Trigram Word model based on previous words and accents, dropping accents first,
with bigram sub-model;
Unigram Gesture Class model based on current word; and
Unigram Gesture Instance model based on current gesture class

4

3gram with A
W : 4 W(-1) W(-2) A(-1) A(-2) w_w1w2a1a2.count w_w1w2a1a2.lm 5

W1,W2,A1,A2 A2 ndiscount gtmin 1
W1,W2,A1 A1 ndiscount gtmin 1
W1,W2 W2 ndiscount gtmin 1
W1 W1 ndiscount gtmin 1
0 0 ndiscount gtmin 1

bigram with A
W : 2 W(-1) A(-1) w_w1a1.count w_w1a1.lm 3

W1,A1 A1 ndiscount gtmin 1
W1 W1 ndiscount gtmin 1
0 0 ndiscount gtmin 1

Gesture class depends on current word
GC : 1 W(0) gc_w0.count gc_w0.lm 2

W0 W0 ndiscount gtmin 1
0 0 ndiscount gtmin 1

Gesture instance depends only on class
GI : 1 GC(0) gi_gc0.count gi_gc0.lm 2

GC0 GC0 ndiscount gtmin 1
0 0

Figure 12: Example factored language model family specification

// set up n-gram scorer and repetition scorer
String lmfile = "ngrams/combined.flm";
boolean semClasses = true;
NgramScorer ngramScorer = new FactoredNgramModelFamily(lmfile , semClasses);
ngramScorer.addFilter(new AAnFilter ());
RepetitionScorer repetitionScorer = new RepetitionScorer ();

// combine n-gram scorer with repetition scorer
realizer.signScorer = new SignScorerProduct(

new SignScorer [] { ngramScorer , repetitionScorer }
);

// ... then , after each realization request ,
Edge bestEdge = realizer.realize(lf);

// ... update repetition context for next realization:
repetitionScorer.ageContext ();
repetitionScorer.updateContext(bestEdge.getSign ());

Figure 13: Example combination of an n-gram scorer and a repetition scorer

of custom strategy, the abstract classDiversity-
PruningStrategy provides an N-best pruning
strategy that promotes diversity in the edges that
are kept, according to the equivalence relation
established by the abstractnotCompellingly-
Different method. In particular, in order to de-
termine which edges to keep, a diversity pruning
strategy clusters the edges into a ranked list of
equivalence classes, which are sequentially sam-
pled until the limit N is reached. If thesingle-
BestPerGroup flag is set, then a maximum of one
edge per equivalence class is retained.

As an example, the COMIC realizer’s diversity
pruning strategy appears in Figure 15. The idea
behind this strategy is to avoid having the N-best
lists become full of signs whose words differ only
in the exact gesture instance associated with one
or more of the words. With this strategy, if two
signs differ in just this way, the edge for the lower-
scoring sign will be considered “not compellingly
different” and pruned from the N-best list, mak-
ing way for other edges whose signs exhibit more
interesting differences.

OpenCCG also provides a concrete subclass
of DiversityPruningStrategy namedNgram-
DiversityPruningStrategy, which general-
izes the approach to pruning described in (Langk-
ilde, 2000). With this class, two signs are consid-
ered not compellingly different if they share the
samen−1 initial and final words, wheren is the
n-gram order. When one is interested in single-
best output, an n-gram diversity pruning strategy
can increase efficiency while guaranteeing no loss
in quality—as long as the reduction in the search
space outweighs the extra time necessary to check
for the same initial and final words—since any
words in between an input sign’sn−1 initial and
final ones cannot affect the n-gram score of a
new sign formed from the input sign. However,
when N-best outputs are desired, or when repeti-
tion scoring is employed, it is less clear whether
it makes sense to use an n-gram diversity pruning
strategy; for this reason, a simple N-best strategy
remains the default option.

5 Conclusions and Future Work

In this paper, we have presented OpenCCG’s ex-
tensible API for efficiently integrating language
modeling and realization, in order to select realiza-
tions with preferred word orders, promote align-
ment with a conversational partner, avoid repeti-
tive language use, and increase the speed of the
best-first anytime search. As we have shown,
the design enables a variety of n-gram models
to be easily combined and used in conjunction
with appropriate edge pruning strategies. The n-
gram models may be of any order, operate in re-
verse (“right-to-left”), and selectively replace cer-
tain words with their semantic classes. Factored
language models with generalized backoff may
also be employed, over words represented as bun-
dles of factors such as form, pitch accent, stem,
part of speech, supertag, and semantic class.

In future work, we plan to further explore
how to best employ factored language models; in
particular, inspired by (Bangalore and Rambow,
2000), we plan to examine whether factored lan-
guage models using supertags can provide an ef-
fective way to combine syntactic and lexical prob-
abilities. We also plan to implement the capabil-
ity to useone-of alternations in the input logical
forms (Foster and White, 2004), in order to more
efficiently defer lexical choice decisions to the lan-
guage models.

Acknowledgements

Thanks to Jason Baldridge, Carsten Brockmann,
Mary Ellen Foster, Philipp Koehn, Geert-Jan Krui-
jff, Johanna Moore, Jon Oberlander, Miles Os-
borne, Mark Steedman, Sebastian Varges and the
anonymous reviewers for helpful discussion.

 «interface»

 PruningStrategy

 +pruneEdges(edges: List<Edge>): List<Edge>

 NBestPruningStrategy

 #CAT_PRUNE_VAL: int

 DiversityPruningStrategy

 +singleBestPerGroup: boolean

 +notCompellinglyDifferent(sign1: Sign, sign2: Sign): boolean

 NgramDiversityPruningStrategy

 #order: int

 +notCompellinglyDifferent(sign1: Sign, sign2: Sign): boolean

 Returns the edges pruned from
 the given ones, which always have
 equivalent categories and are
 sorted by score.

 Keeps only the n−best edges.

 Prunes edges that are not
 compellingly different.

 Defines edges to be not compellingly different
 when the n−1 initial and final words are the same
 (where n is the order).

Figure 14: Classes for defining pruning strategies

// configure realizer with gesture diversity pruner
realizer.pruningStrategy = new DiversityPruningStrategy () {

/**
* Returns true iff the given signs are not compellingly different;
* in particular , returns true iff the words differ only in their
* gesture instances. */

public boolean notCompellinglyDifferent(Sign sign1 , Sign sign2) {

List words1 = sign1.getWords (); List words2 = sign2.getWords ();
if (words1.size() != words2.size ()) return false;
for (int i = 0; i < words1.size (); i++) {

Word w1 = (Word) words1.get(i); Word w2 = (Word) words2.get(i);
if (w1 == w2) continue;
if (w1.getForm () != w2.getForm ()) return false;
if (w1.getPitchAccent () != w2.getPitchAccent ()) return false;
if (w1.getVal("GC") != w2.getVal("GC")) return false;
// nb: assuming that they differ in the val of GI at this point

}
return true;

}
};

Figure 15: Example diversity pruning strategy

References

Jason Baldridge. 2002.Lexically Specified Deriva-
tional Control in Combinatory Categorial Gram-
mar. Ph.D. thesis, School of Informatics, University
of Edinburgh.

Srinivas Bangalore and Owen Rambow. 2000. Ex-
ploiting a probabilistic hierarchical model for gen-
eration. InProc. COLING-00.

Jeff Bilmes and Katrin Kirchhoff. 2003. Factored lan-
guage models and general parallelized backoff. In
Proc. HLT-03.

Carsten Brockmann, Amy Isard, Jon Oberlander, and
Michael White. 2005. Variable alignment in affec-
tive dialogue. InProc. UM-05 Workshop on Affec-
tive Dialogue Systems. To appear.

John Carroll, Ann Copestake, Dan Flickinger, and Vic-
tor Poznánski. 1999. An efficient chart generator
for (semi-) lexicalist grammars. InProc. EWNLG-
99.

Mary Ellen Foster and Michael White. 2004. Tech-
niques for Text Planning with XSLT. InProc. 4th
NLPXML Workshop.

Martin Kay. 1996. Chart generation. InProc. ACL-96.

Katrin Kirchhoff, Jeff Bilmes, Sourin Das, Nico-
lae Duta, Melissa Egan, Gang Ji, Feng He, John
Henderson, Daben Liu, Mohamed Noamany, Pat
Schone, Richard Schwartz, and Dimitra Vergyri.
2002. Novel Approaches to Arabic Speech Recogni-
tion: Report from the 2002 Johns-Hopkins Summer
Workshop.

Kevin Knight and Vasileios Hatzivassiloglou. 1995.
Two-level, many-paths generation. InProc. ACL-
95.

Irene Langkilde-Geary. 2002. An empirical verifi-
cation of coverage and correctness for a general-
purpose sentence generator. InProc. INLG-02.

Irene Langkilde. 2000. Forest-based statistical sen-
tence generation. InProc. NAACL-00.

Robert Malouf. 2000. The order of prenominal adjec-
tives in natural language generation. InProc. ACL-
00.

Johanna Moore, Mary Ellen Foster, Oliver Lemon, and
Michael White. 2004. Generating tailored, com-
parative descriptions in spoken dialogue. InProc.
FLAIRS-04.

Robert C. Moore. 2002. A complete, efficient
sentence-realization algorithm for unification gram-
mar. InProc. INLG-02.

Alice H. Oh and Alexander I. Rudnicky. 2002.
Stochastic natural language generation for spoken
dialog systems. Computer, Speech & Language,
16(3/4):387–407.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2001. Bleu: a Method for Automatic
Evaluation of Machine Translation. Technical Re-
port RC22176, IBM.

Adwait Ratnaparkhi. 2002. Trainable approaches to
surface natural language generation and their appli-
cation to conversational dialog systems.Computer,
Speech & Language, 16(3/4):435–455.

Eric S. Ristad. 1995. A Natural Law of Succession.
Technical Report CS-TR-495-95, Princeton Univ.

James Shaw and Vasileios Hatzivassiloglou. 1999. Or-
dering among premodifiers. InProc. ACL-99.

Hadar Shemtov. 1997.Ambiguity Management in Nat-
ural Language Generation. Ph.D. thesis, Stanford
University.

Mark Steedman. 2000a. Information structure and
the syntax-phonology interface.Linguistic Inquiry,
31(4):649–689.

Mark Steedman. 2000b.The Syntactic Process. MIT
Press.

Andreas Stolcke. 2002. SRILM — An extensible lan-
guage modeling toolkit. InProc. ICSLP-02.

Michael White and Jason Baldridge. 2003. Adapting
Chart Realization to CCG. InProc. EWNLG-03.

Michael White. 2004a. Efficient Realization of Coor-
dinate Structures in Combinatory Categorial Gram-
mar. Research on Language and Computation. To
appear.

Michael White. 2004b. Experiments with multimodal
output in human-machine interaction. IST Project
COMIC Public Deliverable 7.4.

Michael White. 2004c. Reining in CCG Chart Real-
ization. InProc. INLG-04.

