
Interleaved Preparation and Output
in the COMIC Fission Module

Mary Ellen Foster
Institute for Communicating and Collaborative Systems

School of Informatics, University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW United Kingdom

M.E.Foster@ed.ac.uk

Abstract

We give a technical description of the
fission module of the COMIC mul-
timodal dialogue system, which both
plans the multimodal content of the sys-
tem turns and controls the execution of
those plans. We emphasise the parts of
the implementation that allow the sys-
tem to begin producing output as soon as
possible by preparing and outputting the
content in parallel. We also demonstrate
how the module was designed to ensure
robustness and configurability, and de-
scribe how the module has performed
successfully as part of the overall sys-
tem. Finally, we discuss how the tech-
niques used in this module can be ap-
plied to other similar dialogue systems.

1 Introduction

In a multimodal dialogue system, even minor de-
lays in processing at each stage can add up to pro-
duce a system that produces an overall sluggish
impression. It is therefore critical that the output
system avoid as much as possible adding any de-
lays of its own to the sequence; there should be as
little time as possible between the dialogue man-
ager’s selection of the content of the next turn and
the start of that turn’s output. When the output in-
corporates temporal modalities such as speech, it
is possible to take advantage of this by planning
later parts of the turn even as the earlier parts are

being played. This means that the initial parts of
the output can be produced more quickly, and any
delay in preparing the later parts is partly or en-
tirely eliminated. The net effect is that the over-
all perceived delay in the output is much shorter
than if the whole turn had been prepared before
any output was produced.

In this paper, we give a technical description of
the output system of the COMIC multimodal dia-
logue system, which is designed to allow exactly
this interleaving of preparation and output. The
paper is arranged as follows. InSection 2, we
begin with a general overview of multimodal di-
alogue systems, concentrating on the design de-
cisions that affect how output is specified and
produced. InSection 3, we then describe the
COMIC multimodal dialogue system and show
how it addresses each of the relevant design de-
cisions. Next, inSection 4, we describe how
the segments of an output plan are represented in
COMIC, and how those segments are prepared and
executed in parallel. InSection 5, we discuss two
aspects of the module implementation that are rel-
evant to its role within the overall COMIC system:
the techniques that were used to ensure the robust-
ness of the fission module, and how it can be con-
figured to support a variety of requirements. In
Section 6, we then assess the practical impact of
the parallel processing on the overall system re-
sponsiveness, and show that the output speed has
a perceptible effect on the overall user experiences
with the system. Finally, inSection 7, we outline
the aspects of the COMIC output system that are
applicable to similar systems.

ASR

Pen

...

Fusion Dialogue
manager

Speech

Animation

...

Fission

Dialogue and
domain knowledge

Input modules Output modules

User

Figure 1: High-level architecture of a typical multimodal dialogue system

2 Output in Multimodal Dialogue
Systems

Most multimodal dialogue systems use the basic
high-level architecture shown inFigure 1. Input
from the user is analysed by one or more input-
processing modules, each of which deals with an
individual input channel; depending on the ap-
plication, the input channels may include speech
recognition, pen-gesture or handwriting recogni-
tion, or information from visual sensors, for ex-
ample. The messages from the various sources are
then combined by a fusion module, which resolves
any cross-modal references and produces a com-
bined representation of the user input. This com-
bined representation is sent to the dialogue man-
ager, which uses a set of domain and dialogue
knowledge sources to process the user input, in-
teract with the underlying application if necessary,
and specify the content to be output by the sys-
tem in response. The output specification is sent to
the fission module, which creates a presentation to
meet the specification, using a combination of the
available output channels. Again, depending on
the application, a variety of output channels may
be used; typical channels are synthesised speech,
on-screen displays, or behaviour specifications for
an animated agent or a robot.

This general structure is typical across mul-
timodal dialogue systems; however, there are a
number of design decisions that must be made
when implementing a specific system. As this pa-

per concentrates on the output components high-
lighted inFigure 1, we will discuss the design de-
cisions that have a particular impact on those parts
of the dialogue system: the domain of the applica-
tion, the output modalities, the turn-taking proto-
col, and the division of labour among the modules.
We will use as examples the the WITAS (Lemon
et al., 2002), MATCH (Walker et al., 2002), and
SmartKom (Wahlster, 2005) systems.

The domain of the system and the interactions
that it is intended to support both have an influ-
ence on the type of output that is to be gener-
ated. Many systems are designed primarily to sup-
port information exploration and presentation, and
concentrate on effectively communicating the nec-
essary information to the user. SmartKom and
MATCH both fall into this category: SmartKom
deals with movie and television listings, while
MATCH works in the domain of restaurant rec-
ommendations. In a system such as WITAS,
which incorporates real-time control of a robot he-
licopter, very different output must be generated
to communicate the current state and goals of the
robot to the user.

The choice of output modalities also affects the
output system—different combinations of modali-
ties require different types of temporal and spatial
coordination, and different methods of allocating
the content across the channels. Most multimodal
dialogue systems use synthesised speech as an out-
put modality, often in combination with lip-synch

and other behaviours of an animated agent (e.g.,
MATCH, SmartKom). Various types of visual
output are also often employed, including inter-
active maps (MATCH, WITAS), textual informa-
tion presentations (SmartKom, MATCH), or im-
ages from visual sensors (WITAS). Some systems
also dynamically adapt the output channels based
on changing constraints; for example, SmartKom
chooses a spoken presentation over a visual one in
an eyes-busy situation.

Another factor that has an effect on the design
of the output components is the turn-taking proto-
col selected by the system. Some systems—such
as WITAS—supportbarge-in (Ström and Seneff,
2000); that is, the user may interrupt the system
output at any time. Allowing the user to inter-
rupt can permit a more intuitive interaction with
the system; however, supporting barge-in creates
many technical complications. For example, it is
crucial that the output system be prepared to stop
at any point, and that any parts of the system that
track the dialogue history be made aware of how
much of the intended content was actually pro-
duced. For simplicity, many systems—including
SmartKom—instead use half-duplex turn-taking:
when the system is producing output, the input
modules are not active. This sort of system is tech-
nically more straightforward to implement, but re-
quires that the user be given very clear signals as
to when the system is and is not paying attention to
their input. MATCH uses a click-to-talk interface,
where the user presses a button on the interface
to indicate that they want to speak; it is not clear
whether the system supports barge-in.

The division of labour across the modules also
differs among implemented systems. First of all,
not all systems actually incorporate a separate
component that could be labelledfission: for ex-
ample, in WITAS, the dialogue manager itself also
addresses the tasks of presentation planning and
coordination. The components of the typical nat-
ural language generation “pipeline” (Reiter and
Dale, 2000) may be split across the modules in a
variety of ways. When it comes to content selec-
tion, for instance, in MATCH the dialogue man-
ager specifies the content at a high level, while the
text planner selects and structures the actual facts
to include in the presentation; in WITAS, on the

other hand, the specific content is selected by the
dialogue manager. The tasks of text planning and
sentence planning may be addressed by various
combinations of the fission module and any text-
generation modules involved—SmartKom creates
the text in a separate generation module, while
in MATCH text and sentence planning is more
tightly integrated with content selection.

Coordination across multiple output channels is
also implemented in various ways. If the only pre-
sentation modality is an animated agent, in many
cases the generated text is sent directly to the
agent, which then communicates privately with
the speech synthesiser to ensure synchronisation.
This “visual text-to-speech” configuration is the
default behaviour of the Greta (de Rosis et al.,
2003) and RUTH (DeCarlo et al., 2004) animated
presentation agents, for instance. However, if the
behaviour of the agent must be coordinated with
other forms of output, it is necessary that the be-
haviour of all synchronised modules be coordi-
nated centrally. How this is accomplished in prac-
tice depends on the capabilities of selected speech
synthesiser that is used. In SmartKom, for exam-
ple, the presentation planner pre-synthesises the
speech and uses the schedule returned by the syn-
thesiser to create the full multimodal schedule; in
MATCH, on the other hand, the speech synthe-
siser sends progress messages as it plays its out-
put, which are used to control the output in the
other modalities at run time.

3 The COMIC Dialogue System

COMIC1 (COnversational Multimodal Interac-
tion with Computers) is an EU IST 5th frame-
work project combining fundamental research on
human-human dialogues with advanced technol-
ogy development for multimodal conversational
systems. The COMIC multimodal dialogue sys-
tem adds a dialogue interface to a CAD-like ap-
plication used in sales situations to help clients
redesign their bathrooms. The input to COMIC
consists of speech, pen gestures, and handwriting;
turn-taking is strictly half-duplex, with no barge-in
or click-to-talk. The output combines the follow-
ing modalities:

1http://www.hcrc.ed.ac.uk/comic/

http://www.hcrc.ed.ac.uk/comic/

“ [Nod] Okay. [Choose design] [Look at screen]THIS design[circling gesture]is CLAS-
SIC. It uses tiles from VILLEROY AND BOCH’s CENTURY ESPRIT series. There are
FLORAL MOTIFS andGEOMETRIC SHAPESon theDECORATIVE tiles.”

Figure 2: COMIC interface and sample output

• Synthesised speech, created using the
OpenCCG surface realiser (White, 2005a;b)
and synthesised by a custom Festival 2 voice
(Clark et al., 2004) with support for APML
prosodic markup (de Carolis et al., 2004).

• Facial expressions and gaze shifts of a talking
head (Breidt et al., 2003).

• Direct commands to the design application.

• Deictic gestures at objects on the application
screen, using a simulated mouse pointer.

Figure 2shows the COMIC interface and a typical
output turn, including commands for all modali-
ties; the small capitals indicate pitch accents in the
speech, with corresponding facial emphasis.

The specifications from the COMIC dialogue
manager are high-level and modality-independent;
for example, the specification of the output shown
in Figure 2 would indicate that system should
show a particular set of tiles on the screen, and
should give a detailed description of those tiles.
When the fission module receives input from the
dialogue manager, it selects and structures mul-
timodal content to create an output plan, us-
ing a combination of scripted and dynamically-
generated output segments. The fission module
addresses the tasks of low-level content selec-
tion, text planning, and sentence planning; sur-
face realisation of the sentence plans is done by

the OpenCCG realiser. The fission module also
controls the output of the planned presentation by
sending appropriate messages to the output mod-
ules including the text realiser, speech synthesiser,
talking head, and bathroom-design GUI. Coordi-
nation across the modalities is implemented using
a technique similar to that used in SmartKom: the
synthesised speech is prepared in advance, and the
timing information from the synthesiser is used to
create the schedule for the other modalities.

The plan for an output turn in COMIC is rep-
resented in a tree structure; for example,Figure 3
shows part of the plan for the output inFigure 2.
A plan tree like this is created from the top down,
with the children created left-to-right at each level,
and is executed in the same order. The planning
and execution processes for a turn are started to-
gether and run in parallel, which makes it possible
to begin producing output as soon as possible and
to continue planning while output is active. In the
following section, we describe the set of classes
and algorithms that make this interleaved prepara-
tion and execution possible.

The COMIC fission module is implemented in a
combination of Java and XSLT. The current mod-
ule consists of 18 000 lines of Java code in 88
source files, and just over 9000 lines of XSLT tem-
plates. In the diagrams and algorithm descriptions
that follow, some non-essential details are omitted
for simplicity.

Turn

Choose design Describe design

“This design
is classic.”

“It uses tiles
from ...”

[...]

Look at screenAcknowledge

Nod “Okay.”

Figure 3: Output plan

4 Representing an Output Plan

Each node in a output-plan tree such as that shown
in Figure 3 is represented by an instance of the
Segment class. The structure of this abstract class
is shown inFigure 4; the fields and methods de-
fined in this class control the preparation and out-
put of the corresponding segment of the plan tree,
and allow preparation and output to proceed in
parallel.

Each Segment instance stores a reference to its
parent in the tree, and defines the following three
methods:

• plan() Begins preparing the output.

• execute() Produces the prepared output.

• reportDone() Indicates to the Segment’s
parent that its output has been completed.

plan() and execute() are abstract methods of
the Segment class; the concrete implementations
of these methods on the subclasses of Segment
are described later in this section. Each Segment
also has the following Boolean flags that control
its processing; all are initially false.

• ready This flag is set internally once the Seg-
ment has finished all of its preparation and is
ready to be output.

• skip This flag is set internally if the Segment
encounters a problem during its planning, and
indicates that the Segment should be skipped
when the time comes to produce output.

Segment
parent : Sequence
ready : boolean
skip : boolean
active : boolean
+ plan()
+ execute()
reportDone()

Figure 4: Structure of the Segment class

• active This flag is set externally by the Seg-
ment’s parent, and indicates that this Seg-
ment should produce its output as soon as it
is ready.

The activity diagram inFigure 5 shows how
these flags and methods are used during the prepa-
ration and output of a Segment. Note that a
Segment may send asynchronous queries to other
modules as part of its planning. When such a
query is sent, the Segment sets its internal state
and exits itsplan() method; when the response
is received, preparation continues from the last
state reached. Since planning and execution pro-
ceed in parallel across the tree, and the planning
process may be interrupted to wait for responses
from other modules, theready andactive flags
may be set in either order on a particular Seg-
ment. Once both of these flags have been set, the
execute() method is called automatically. If both
skip andactive are set, the Segment instead au-
tomatically callsreportDone() without ever ex-

plan()

Set activeSet ready Set skip

execute()

reportDone()

Called by parent

Called by parent

Calls
parent.childIsDone()

Success Error

Communicates
with other modules

Figure 5: Segment preparation and output

S
e
g
m
e
n
t

#
 p

a
re

n
t

:
S

e
q

u
e
n
ce

#
 r

e
a
d

y
 :

 b
o
o
le

a
n

#
 a

ct
iv

e
 :

 b
o
o
le

a
n

#
 s

ki
p
 :

 b
o
o
le

a
n

+
 p
la
n
()

+
 e
x
e
cu
te
()

#
 r

e
p
o
rt

D
o
n
e
()

S
e
q
u
e
n
c
e

#
 c

h
ild

re
n
 :

 L
is

t<
S

e
g
m

e
n
t>

#
 c

u
r

:
in

t

+
 e

x
e
cu

te
()

+
 c

h
ild

Is
D

o
n
e
()

B
a
ll
is
ti
c
S
e
g
m
e
n
t

+
 p

la
n
()

+
 e

x
e
cu

te
()

S
ta
n
d
a
lo
n
e
A
v
a
ta
rC

o
m
m
a
n
d

+
 e

x
e
cu

te
()

+
 h

a
n
d

le
P
o
o
lM

e
ss

a
g

e
()

S
ta
n
d
a
lo
n
e
A
v
a
ta
rC

o
m
m
a
n
d

+
 e

x
e
cu

te
()

+
 h

a
n
d

le
P
o
o
lM

e
ss

a
g

e
()

S
e
n
te
n
c
e

+
 e

x
e
cu

te
()

+
 h

a
n
d

le
P
o
o
lM

e
ss

a
g

e
()

S
c
ri
p
te
d
S
e
n
te
n
c
e

+
 p

la
n
()

-
se

n
d

S
p
e
e
ch

M
e
ss

a
g

e
()

P
la
n
n
e
d
S
e
n
te
n
c
e

+
 p

la
n
()

-
se

n
d

R
e
a
lis

e
rM

e
ss

a
g

e
()

P
la
n
n
e
d
S
e
q
u
e
n
c
e

+
 h

a
n
d

le
P
o
o
lM

e
ss

a
g

e
()

T
u
rn

+
 p

la
n
()

+
 h

a
n
d

le
P
o
o
lM

e
ss

a
g

e
()

T
u
rn
S
e
q
u
e
n
c
e

+
 a

d
d

T
u
rn

()
+

 p
la

n
()

+
 c

h
ild

Is
D

o
n
e
()

S
c
ri
p
te
d
S
e
q
u
e
n
c
e

+
 p

la
n
()

A
s
k
S
e
e

#
 p

ro
p
N

a
m

e
 :

 S
tr

in
g

#
 p

ro
p
V

a
l
:

S
tr

in
g

+
 p

la
n
()

D
e
s
c
ri
b
e

#
 o

b
jID

s
:

Li
st

<
S

tr
in

g
>

#
 r

e
q

u
e
st

e
d

F
e
a
ts

 :
 L

is
t<

S
tr

in
g

>
#

 u
m

R
e
sp

o
n
se

 :
 U

M
R

a
n
k
in

g
s

#
 d

e
ta

ile
d

 :
 b

o
o
le

a
n

#
 p

ro
p
V

a
l
:

S
tr

in
g

+
 p

la
n
()

Figure 6: Segment class hierarchy

ecuting; this allows Segments with errors to be
skipped without affecting the output of the rest of
the turn.

The full class hierarchy under Segment is shown
in Figure 6. There are three main top-level sub-
classes of Segment, which differ primarily based
on how they implementexecute():

Sequence An ordered sequence of Segments. It
is executed by activating each child in turn.

BallisticSegment A single command whose du-
ration is determined by the module producing the
output. It is executed by sending a message to the
appropriate module and waiting for that module to
report back that it has finished.

Sentence A single sentence, incorporating coor-
dinated output in all modalities. Its schedule is
computed in advance, as part of the planning pro-
cess; it is executed by sending a “go” command to
the appropriate output modules.

In the remainder of this section, we discuss each
of these classes and its subclasses in more detail.

4.1 Sequence

All internal nodes in a presentation-plan tree
(coloured blue inFigure 3) are instances of some
type of Sequence. A Sequence stores a list of child
Segments, which it plans and activates in order,
along with a pointer to the currently active Seg-
ment.Figure 7shows the pseudocode for the main
methods of a typical Sequence.

Note that a Sequence calls sets itsready flag as
soon as all of its necessary child Segments have
been created, and only then begins callingplan()
on them. This allows the Sequence’sexecute()
method to be called as soon as possible, which
is critical to allowing the fission module to begin
producing output from the tree before the full tree
has been created.

When execute() is called on a Sequence, it
callsactivate() on the first child in its list. All
subsequent children are activated by calls to the
childIsDone() method, which is called by each
child as part of itsreportDone() method after its
execution is completed. Note that this ensures that
the children of a Sequence will always be executed
in the proper order, even if they are prepared out of

public void plan() {
// Create child Segments

cur = 0;
ready = true ;

for (Segment seg: children) {
seg.plan();

}
}

public void execute() {
children.get(0).activate();

}

public void childIsDone() {
cur++;
if (cur >= children.size()) {

reportDone();
} else {

children.get(cur).activate();
}

}

Figure 7: Pseudocode for Sequence methods

order. Once all of the Sequence’s children have re-
ported that they are done, the Sequence itself calls
reportDone().

The main subclasses of Sequence, and their rel-
evant features, are as follows:

TurnSequence The singleton class that is the
parent of all Turns. It is always active, and new
children can be added to its list at any time.

Turn Corresponds to a single message from the
dialogue manager; the root of the output plan in
Figure 3 is a Turn. Itsplan() implementation
creates a Segment corresponding to each dialogue
act from the dialogue manager; in some cases, the
Turn adds additional children not directly speci-
fied by the DAM, such as the verbal acknowledge-
ment and the gaze shift inFigure 3.

ScriptedSequence A sequence of canned output
segments stored as an XSLT template. A Scripted-
Sequence is used anywhere in the dialogue where
dynamically-generated content is not necessary;
for example, instructions to the user and acknowl-
edgements such as the leftmost subtree inFigure 3
are stored as ScriptedSequences.

PlannedSequence In contrast to a ScriptedSe-
quence, a PlannedSequence creates its children

dynamically depending on the dialogue context.
The principal type of PlannedSequence is a de-
scription of one or more tile designs, such as that
shown inFigure 2. To create the content of such
a description, the fission module uses information
from the system ontology, the dialogue history,
and the model of user preferences to select and
structure the facts about the selected design and
to create the sequence of sentences to realise that
content. This process is described in detail in (Fos-
ter and White, 2004; 2005).

4.2 BallisticSegment

A BallisticSegment is a single command for a sin-
gle output module, where the output module is al-
lowed to choose the duration at execution time.
In Figure 3, the orangeNod, Choose design, and
Look at screennodes are examples of BallisticSeg-
ments. In itsplan() method, a BallisticSegment
transforms its input specification into an appropri-
ate message for the target output module. When
execute() is called, the BallisticSegment sends
the transformed command to the output module
and waits for that module to report back that it is
done; it callsreportDone() when it receives that
acknowledgement.

4.3 Sentence

The Sentence class represents a single sentence,
combining synthesised speech, lip-synch com-
mands for the talking head, and possible coordi-
nated behaviours on the other multimodal chan-
nels. The timing of a sentence is based on the
timing of the synthesised speech; all multimodal
behaviours are scheduled to coincide with partic-
ular words in the text. Unlike a BallisticSegment,
which allows the output module to determine the
duration at execution time, a Sentence must pre-
pare its schedule in advance to ensure that output
is coordinated across all of the channels. InFig-
ure 3, all of the green leaf nodes containing text
are instances of Sentence.

There are two types of Sentences: ScriptedSen-
tences and PlannedSentences. A ScriptedSentence
is generally created as part of a ScriptedSequence,
and is based on pre-written text that is sent directly
to the speech synthesiser, along with any neces-
sary multimodal behaviours. A PlannedSentence

forms part of a PlannedSequence, and is based on
logical forms for the OpenCCG realiser (White,
2005a;b). The logical forms may contain multiple
possibilities for both the text and the multimodal
behaviours; the OpenCCG realiser uses statistical
language models to make a final choice of the ac-
tual content of the sentence.

The first step in preparing either type of Sen-
tence is to send the text to the speech synthe-
siser (Figure 8(a)). For a ScriptedSentence, the
canned text is sent directly to the speech synthe-
siser; for a PlannedSentence, the logical forms are
sent to the realiser, which then creates the text
and sends it to the synthesiser. In either case, the
speech-synthesiser input also includes marks at all
points where multimodal output is intended. The
speech synthesiser prepares and stores the wave-
form based on the input text, and returns timing in-
formation for the words and phonemes, along with
the timing of any multimodal coordination marks.

The fission module uses the returned timing
information to create the final schedule for all
modalities. It then sends the animation schedule
(lip-synch commands, along with any coordinated
expression or gaze behaviours) to the talking-head
module so that it can prepare its animation in ad-
vance (Figure 8(b)). Once the talking-head mod-
ule has prepared the animation for a turn, it returns
a “ready” message. The design application does
not need its schedule in advance, so once the re-
sponse is received from the talking head, the Sen-
tence has finished its preparation and is able to set
its ready flag.

When a Sentence is executed by its parent,
it selects a desired start time slightly in the fu-
ture and sends two messages, as shown inFig-
ure 8(c). First, it sends a “go” message with
the selected starting time to the speech-synthesis
and talking-head modules; these modules then
play the prepared output for that turn at the given
time. The Sentence also sends the concrete sched-
ule for any coordinated gesture commands to the
bathroom-design application at this point. Af-
ter sending its messages, the Sentence waits until
the scheduled duration has elapsed, and then calls
reportDone().

Fission

Realiser

Synthesiser

Talking head

Design application

Logical
forms

Generated text

Canned text

Timing

(a) Preparing the speech

Fission

Realiser

Synthesiser

Talking head

Design application

Phonemes, motions

“Ready”

(b) Preparing the animation

Fission

Realiser

Synthesiser

Talking head

Design application

Start time

Gesture
schedule

(c) Producing the output

Figure 8: Planning and executing a Sentence

5 Robustness and Configurability

In the preceding section, we gave a description of
the data structures and methods that are used when
preparing and executing and output plan. In this
section, we describe two other aspects of the mod-
ule that are important to its functioning as part of
the overall dialogue system: its ability to detect
and deal with errors in its processing, and the var-
ious configurations in which it can be run.

5.1 Error Detection and Recovery

Since barge-in is not implemented in COMIC, the
fission module plays an important role in turn-
taking for the whole COMIC system: it is the
module that informs the input components when
the system output is finished, so that they are able
to process the next user input. The fission mod-
ule therefore incorporates several measures to en-
sure that it is able to detect and recover from un-
expected events during its processing, so that the
dialogue is able to continue even if there are errors
in some parts of the output.

Most input from external modules is validated
against XML schemas to ensure that it is well-
formed, and any messages that fail to validate are
not processed further. As well, all queries to exter-
nal modules are sent with configurable time-outs,
and any Segment that is expecting a response to a
query is also prepared to deal with a time-out.

If a problem occurs while preparing any Seg-
ment for output—either due to an error in internal
processing, or because of an issue with some ex-
ternal module—that Segment immediately sets its
skip flag and stops the preparation process. As
described inSection 4, any Segments with this flag
set are then skipped at execution time. This en-
sures that processing is able to continue as much
as possible despite the errors, and that the fission
module is still able to produce output from the
parts of an output plan unaffected by the problems
and to perform its necessary turn-taking functions.

5.2 Configurability

The COMIC fission module can be run in sev-
eral different configurations, to meet a variety of
evaluation, demonstration, and development situa-
tions. The fission module can be configured not to

wait for “ready” and “done” responses from either
or both of the talking-head and design-application
modules; the fission module simply proceeds with
the rest of its processing as if the required response
had been received. This allows the whole COMIC
system to be run without those output modules en-
abled. This is useful during development of other
parts of the system, and for running demos and
evaluation experiments where not all of the output
channels are used. The module also has a num-
ber of other configuration options to control fac-
tors such as query time-outs and the method of se-
lecting multimodal coarticulations.

As well, the fission module has the ability to
generate multiple alternative versions of a single
turn, using different user models, dialogue-history
settings, or multimodal planning techniques; this
is useful both as a testing tool and as part of a sys-
tem demonstration. The module can also store all
of the generated output to a script, and to play back
the scripted output at a later time using a subset of
the full system. This allows alternative versions
of the system output to be directly compared in
user evaluation studies such as (Foster, 2004; Fos-
ter and White, 2005).

6 Output Speed

In the final version of the COMIC system, the av-
erage time2 that the speech synthesiser takes to
prepare the waveform for a sentence is 1.9 sec-
onds, while the average synthesised length of a
sentence is 2.7 seconds. This means that, on aver-
age, each sentence takes long enough to play that
the next sentence is ready as soon as it is needed;
and even when this is not the case, the delay be-
tween sentences is still greatly reduced by the par-
allel planning process.

The importance of beginning output as soon as
possible was demonstrated by a user evaluation of
an interim version of COMIC (White et al., 2005).
Subjects in that study used the full COMIC sys-
tem in one of two configurations: an “expressive”
condition, where the talking head used all of the
expressions it was capable of, or a “zombie” con-
dition where all of the behaviours of the head were
disabled except for lip-synch. One effect of this

2On a Pentium 4 1.6GHz computer.

difference was that the system gave a consistently
earlier response in the expressive condition—a fa-
cial response was produced an average of 1.4 sec-
onds after the dialogue-manager message, while
spoken input did not begin for nearly 4 seconds.
Although that version of the system was very slow,
the subjects in the expressive condition were sig-
nificantly less likely to mention the overall slow-
ness than the subjects in the zombie condition.

After this interim evaluation, effort was put into
further reducing the delay in the final system. For
example, we now store the waveforms for ac-
knowledgements and other frequently-used texts
pre-synthesised in the speech module instead of
sending them to Festival, and other internal pro-
cessing bottlenecks were eliminated. Using the
same computers as the interim evaluation, the fis-
sion delay for initial output is under 0.5 seconds in
the final system.

7 Conclusions

The COMIC fission module is able to prepare and
control the output of multimodal turns. It prepares
and executes its plans in parallel, which allows it
to begin producing output as soon as possible and
to continue with preparing later parts of the pre-
sentation while executing earlier parts. It is able
to produce output coordinated and synchronised
across multiple modalities, to detect and recover
from a variety of errors during its processing, and
to be run in a number of different configurations
to support testing, demonstrations, and evaluation
experiments. The parallel planning process is able
to make a significant reduction in the time taken to
produce output, which has a perceptible effect on
user satisfaction with the overall system.

Some aspects of the fission module are specific
to the design of the COMIC dialogue system; for
example, the module performs content-selection
and sentence-planning tasks that in other systems
might be addressed by a dialogue manager or text-
generation module. Also, aspects of the commu-
nication with the output modules are tailored to
the particular modules involved: the fission mod-
ule makes use of features of the OpenCCG realiser

to help choose the content of many of its turns, and
the implementation of the design application is ob-
viously COMIC-specific.

However, the general technique of interleaving
preparation and execution, using the time while
the system is playing earlier parts of a turn to
prepare the later parts, is easily applicable to any
system that produces temporal output, as long as
the same module is responsible for preparing and
executing the output. There is nothing COMIC-
specific about the design of the Segment class or
its immediate sub-classes.

As well, the method of coordinating distributed
multimodal behaviour with the speech timing
(Section 4.3) is a general one. Although the cur-
rent implementation relies on the output modules
to respect the schedules that they are given—with
no adaptation at run time—in practice the coordi-
nation in COMIC has been generally successful,
providing that three conditions are met. First, the
selected starting time must be far enough in the fu-
ture that it can be received and processed by each
module in time. Second, the clocks on all comput-
ers involved in running the system must be syn-
chronised precisely. Finally, the processing load
on each computer must be low enough that timer
events do not get delayed or pre-empted.

Since the COMIC system does not support
barge-in, the current fission module always pro-
duces the full presentation that is planned, bar-
ring processing errors. However, since the mod-
ule produces its output incrementally, it would be
straightforward to extend the processing to allow
execution to be interrupted after any Segment, and
to know how much of the planned output was ac-
tually produced.

Acknowledgements

Many thanks to Peter Poller, Tilman Becker, and
especially Michael White for helpful advice on
and discussions about the implementation of the
COMIC fission module, and to the anonymous re-
viewers for their comments on the initial version
of this paper. This work was supported by the
COMIC project (IST-2001-32311).

References

M. Breidt, C. Wallraven, D.W. Cunningham, and
H.H. Bülthoff. 2003. Facial animation based on
3d scans and motion capture. In Neill Campbell,
editor,SIGGRAPH 03 Sketches & Applications.
ACM Press.

R.A.J. Clark, K. Richmond, and S. King. 2004.
Festival 2 – build your own general purpose unit
selection speech synthesiser. InProceedings,
5th ISCA workshop on speech synthesis.

B. de Carolis, C. Pelachaud, I. Poggi, and
M. Steedman. 2004. APML, a mark-up lan-
guage for believable behaviour generation. In
H. Prendinger, editor,Life-like Characters,
Tools, Affective Functions and Applications,
pages 65–85. Springer.

F. de Rosis, C. Pelachaud, I. Poggi, V. Carofiglio,
and B. De Carolis. 2003. From Greta’s mind
to her face: modelling the dynamics of affective
states in a conversational embodied agent.In-
ternational Journal of Human-Computer Stud-
ies, 59(1–2):81–118.

D. DeCarlo, M. Stone, C. Revilla, and J.J. Ven-
ditti. 2004. Specifying and animating facial
signals for discourse in embodied conversa-
tional agents.Computer Animation and Virtual
Worlds, 15(1):27–38.

M.E. Foster. 2004. User evaluation of generated
deictic gestures in the T24 demonstrator. Public
deliverable 6.5, COMIC project.

M.E. Foster and M. White. 2004. Techniques
for text planning with XSLT. InProceedings,
NLPXML-2004.

M.E. Foster and M. White. 2005. Assessing the
impact of adaptive generation in the COMIC

multimodal dialogue system. InProceedings,
IJCAI 2005 Workshop on Knowledge and Rea-
soning in Practical Dialogue systems.

O. Lemon, A. Gruenstein, and S. Peters. 2002.
Collaborative activities and multi-tasking in di-
alogue systems.Traitement Automatique des
Langues (TAL), 43(2):131–154.

E Reiter and R Dale. 2000.Building Natural Lan-
guage Generation Systems. Cambridge Univer-
sity Press.

N. Str̈om and S. Seneff. 2000. Intelligent barge-
in in conversational systems. InProceedings,
ICSLP-2000, volume 2, pages 652–655.

W. Wahlster, editor. 2005. SmartKom: Foun-
dations of Multimodal Dialogue Systems.
Springer. In press.

M.A. Walker, S. Whittaker, A. Stent, P. Maloor,
J.D. Moore, M. Johnston, and G. Vasireddy.
2002. Speech-plans: Generating evaluative re-
sponses in spoken dialogue. InProceedings,
INLG 2002.

M. White. 2005a. Designing an extensible API
for integrating language modeling and realiza-
tion. In Proceedings, ACL 2005 Workshop on
Software.

M. White. 2005b. Efficient realization of co-
ordinate structures in Combinatory Categorial
Grammar.Research on Language and Compu-
tation. To appear.

M. White, M.E. Foster, J. Oberlander, and
A. Brown. 2005. Using facial feedback to
enhance turn-taking in a multimodal dialogue
system. InProceedings, HCI International
2005 Thematic Session on Universal Access in
Human-Computer Interaction.

	1 Introduction
	2 Output in Multimodal Dialogue Systems
	3 The COMIC Dialogue System
	4 Representing an Output Plan
	4.1 Sequence
	4.2 BallisticSegment
	4.3 Sentence

	5 Robustness and Configurability
	5.1 Error Detection and Recovery
	5.2 Configurability

	6 Output Speed
	7 Conclusions

