Interleaved Preparation and Output
in the COMIC Fission Module

Mary Ellen Foster
Institute for Communicating and Collaborative Systems
School of Informatics, University of Edinburgh
2 Buccleuch Place, Edinburgh EH8 9LW United Kingdom
M.E.Foster@ed.ac.uk

Abstract

We give a technical description of the
fission module of the COMIC mul-
timodal dialogue system, which both
plans the multimodal content of the sys-
tem turns and controls the execution of
those plans. We emphasise the parts of
the implementation that allow the sys-
tem to begin producing output as soon as
possible by preparing and outputting the
content in parallel. We also demonstrate
how the module was designed to ensure
robustness and configurability, and de-
scribe how the module has performed
successfully as part of the overall sys-
tem. Finally, we discuss how the tech-

being played. This means that the initial parts of
the output can be produced more quickly, and any
delay in preparing the later parts is partly or en-
tirely eliminated. The net effect is that the over-

all perceived delay in the output is much shorter
than if the whole turn had been prepared before
any output was produced.

In this paper, we give a technical description of
the output system of the COMIC multimodal dia-
logue system, which is designed to allow exactly
this interleaving of preparation and output. The
paper is arranged as follows. ®Bection 2 we
begin with a general overview of multimodal di-
alogue systems, concentrating on the design de-
cisions that affect how output is specified and
produced. InSection 3 we then describe the
COMIC multimodal dialogue system and show

nigues used in this module can be ap-

) oH _ how it addresses each of the relevant design de-
plied to other similar dialogue systems.

cisions. Next, inSection 4 we describe how
the segments of an output plan are represented in
COMIC, and how those segments are prepared and
executed in parallel. I®ection 5 we discuss two

In a multimodal dialogue system, even minor deaspects of the module implementation that are rel-
lays in processing at each stage can add up to prevant to its role within the overall COMIC system:
duce a system that produces an overall sluggighe technigues that were used to ensure the robust-
impression. It is therefore critical that the outpuiness of the fission module, and how it can be con-
system avoid as much as possible adding any dégured to support a variety of requirements. In
lays of its own to the sequence; there should be &ection 6 we then assess the practical impact of
little time as possible between the dialogue marthe parallel processing on the overall system re-
ager’s selection of the content of the next turn andponsiveness, and show that the output speed has
the start of that turn’s output. When the output ina perceptible effect on the overall user experiences
corporates temporal modalities such as speech,wifth the system. Finally, irsection 7 we outline

is possible to take advantage of this by plannin¢he aspects of the COMIC output system that are
later parts of the turn even as the earlier parts aggpplicable to similar systems.

1 Introduction

Input modules Output modules

| — 1 Dialogue and | —
| » ASR domain knowledge ‘ Speech|
| . Dialogue s . | L
| » Pen Fusion —» manager| ™| Fission | Animation |
| |
User
©
L — _— L
Figure 1: High-level architecture of a typical multimodal dialogue system
2 Output in Multimodal Dialogue per concentrates on the output components high-
Systems lighted inFigure 1, we will discuss the design de-

) _ cisions that have a particular impact on those parts
Most multimodal dialogue systems use the basigt yhe gialogue system: the domain of the applica-
high-level architecture shown iRigure 1 Input i the output modalities, the turn-taking proto-
from the user is analysed by one or more inputzg) anq the division of labour among the modules.
processing modules, each of which deals with a\e will use as examples the the WITABemon

individual input channel; depending on the ap; al, 20029, MATCH (Walker et al, 2009, and
plication, the input channels may include Speec%martKom Wahlster 2009 systems.

recognition, pen-gesture or handwriting recogni- _ _ _
tion, or information from visual sensors, for ex- 1ne domain of the system and the interactions

ample. The messages from the various sources 4h&t it is intended to support both have an influ-
then combined by a fusion module, which resolve§NCe ©n the type of output that is to be gener-
any cross-modal references and produces a cof€d- Many systems are designed primarily to sup-
bined representation of the user input. This corOrtinformation exploration and presentation, and
bined representation is sent to the dialogue maifoncentrate on effectively communicating the nec-
ager, which uses a set of domain and dialogu@SSaTy mformatlo_n to the user. SmartKom and
knowledge sources to process the user input, if/ATCH both fall into this category: Smartkom

teract with the underlying application if necessaryd€@ls with movie and television listings, while

and specify the content to be output by the Syé_/IATCH works in the domain of restaurant rec-
In a system such as WITAS,

tem in response. The output specification is sent nmendations. _
the fission module, which creates a presentation ¥§ich incorporates real-time control of a robot he-
meet the specification, using a combination of thiCOPter, very different output must be generated
available output channels. Again, depending olp communicate the current state and goals of the

the application, a variety of output channels may°Pot to the user.

be used; typical channels are synthesised speechThe choice of output modalities also affects the

on-screen displays, or behaviour specifications fautput system—different combinations of modali-

an animated agent or a robot. ties require different types of temporal and spatial
This general structure is typical across mulcoordination, and different methods of allocating

timodal dialogue systems; however, there are the content across the channels. Most multimodal

number of design decisions that must be maddialogue systems use synthesised speech as an out-

when implementing a specific system. As this paput modality, often in combination with lip-synch

and other behaviours of an animated agent (e.gther hand, the specific content is selected by the
MATCH, Smartkom). Various types of visual dialogue manager. The tasks of text planning and
output are also often employed, including intersentence planning may be addressed by various
active maps (MATCH, WITAS), textual informa- combinations of the fission module and any text-
tion presentations (SmartKom, MATCH), or im-generation modules involved—SmartKom creates
ages from visual sensors (WITAS). Some systentbe text in a separate generation module, while
also dynamically adapt the output channels based MATCH text and sentence planning is more
on changing constraints; for example, SmartKontightly integrated with content selection.
chooses a spoken presentation over a visual one inCoordination across multiple output channels is
an eyes-busy situation. also implemented in various ways. If the only pre-
Another factor that has an effect on the desigsentation modality is an animated agent, in many
of the output components is the turn-taking protoeases the generated text is sent directly to the
col selected by the system. Some systems—suelgent, which then communicates privately with
as WITAS—supporbarge-in (Sttom and Seneff the speech synthesiser to ensure synchronisation.
2000; that is, the user may interrupt the systenThis “visual text-to-speech” configuration is the
output at any time. Allowing the user to inter-default behaviour of the Gretal¢ Rosis et a).
rupt can permit a more intuitive interaction with2003 and RUTH DeCarlo et al.2004 animated
the system; however, supporting barge-in creatggesentation agents, for instance. However, if the
many technical complications. For example, it i9ehaviour of the agent must be coordinated with
crucial that the output system be prepared to stagther forms of output, it is necessary that the be-
at any point, and that any parts of the system tha&taviour of all synchronised modules be coordi-
track the dialogue history be made aware of howated centrally. How this is accomplished in prac-
much of the intended content was actually protice depends on the capabilities of selected speech
duced. For simplicity, many systems—includingsynthesiser that is used. In SmartKom, for exam-
SmartKom—instead use half-duplex turn-takingple, the presentation planner pre-synthesises the
when the system is producing output, the inpuspeech and uses the schedule returned by the syn-
modules are not active. This sort of system is techihesiser to create the full multimodal schedule; in
nically more straightforward to implement, but re-MATCH, on the other hand, the speech synthe-
quires that the user be given very clear signals asser sends progress messages as it plays its out-
to when the system is and is not paying attention tput, which are used to control the output in the
their input. MATCH uses a click-to-talk interface, other modalities at run time.
where the user presses a button on the interface
to indicate that they want to speak; it is not clead The COMIC Dialogue System

Whether.the_ system supports barge-in. COMIC! (COnversational Multimodal Interac-
The division of labour across the modules alsctmlon with Computers) is an EU IST 5th frame-

differs among implemented systems. First of a“WOrk project combining fundamental research on

not all systems actually incorpo ra}te a Seloaratt?uman—human dialogues with advanced technol-
component that could be labellédsion for ex-

. . . ogy development for multimodal conversational
ample, in WITAS, the dialogue manager itself alsos&stems. The COMIC multimodal dialogue sys-

o . B adds a dialogue interface to a CAD-like ap-
coordination. The components of the typical nat-

ral lan e generation “pipelineRéiter and plication used in sales situations to help clients
ural fanguage g . PP . redesign their bathrooms. The input to COMIC
Dale, 2000 may be split across the modules in a : .
consists of speech, pen gestures, and handwriting;

\{arlety OT ways. When It comes to pontent Selecturn—taklng is strictly half-duplex, with no barge-in
tion, for instance, in MATCH the dialogue man- . .
o) .., or click-to-talk. The output combines the follow-
ager specifies the content at a high level, while the L
|{1$g modalities:
text planner selects and structures the actual fac

to include in the presentation; in WITAS, on the Inttp://www.hcrc.ed.ac.uk/comic/

http://www.hcrc.ed.ac.uk/comic/

eeeeeeeeeeeeeeeeee

cccccc

“[Nod] Okay.[Choose design] [Look at screef]HIs design[circling gesture]is CLAS-
SIC. It uses tiles from VLLEROY AND BOCH's CENTURY ESPRIT series. There are
FLORAL MOTIFS andGEOMETRIC SHAPESON theDECORATIVE tiles.”

Figure 2: COMIC interface and sample output

e Synthesised speech, created using thihe OpenCCG realiser. The fission module also
OpenCCG surface realisetfite, 2005gb) controls the output of the planned presentation by
and synthesised by a custom Festival 2 voiceending appropriate messages to the output mod-
(Clark et al, 2004 with support for APML ules including the text realiser, speech synthesiser,
prosodic markupde Carolis et a).2004). talking head, and bathroom-design GUI. Coordi-

_ , _ _ nation across the modalities is implemented using

* Facial expressions and gaze shifts of a talking o chnique similar to that used in Smartom: the
head Breidt et al, 2003. synthesised speech is prepared in advance, and the

timing information from the synthesiser is used to

create the schedule for the other modalities.

e Deictic ge§tures z_alt objects on the application The plan for an output turn in COMIC is rep-
screen, using a simulated mouse pointer. esented in a tree structure; for exampiggure 3

Figure 2shows the COMIC interface and a typicalS"oWs part of the plan for the output fgure 2
output turn, including commands for all modali- Plan tree like this is created from the top down,
ties; the small capitals indicate pitch accents in th&ith the children created left-to-right at each level,
speech, with corresponding facial emphasis. and is exeguted in the same order. The planning
The specifications from the COMIC dialogueand execution processes for.a turn are.startepl to-
manager are high-level and modality—independen&emer_ and run in parallel, which makes it p933|ble
for example, the specification of the output showi° Pegin producing output as soon as possible and
in Figure 2would indicate that system should!© con_tlnue plz_;mnlng while o_utput is active. In the
show a particular set of tiles on the screen, anfpllowing section, we describe the set of classes
should give a detailed description of those tiles2d @lgorithms that make this interleaved prepara-
When the fission module receives input from thdiOn and execution possible.
dialogue manager, it selects and structures mul- The COMIC fission module is implemented in a
timodal content to create an output plan, useombination of Java and XSLT. The current mod-
ing a combination of scripted and dynamically-ule consists of 18 000 lines of Java code in 88
generated output segments. The fission modusmurce files, and just over 9000 lines of XSLT tem-
addresses the tasks of low-level content seleglates. In the diagrams and algorithm descriptions
tion, text planning, and sentence planning; surthat follow, some non-essential details are omitted
face realisation of the sentence plans is done Hgr simplicity.

e Direct commands to the design application.

Turn

Acknowledge| |Choose design| |Look at screen Describe design

Nod “Okay.” “This design “It uses tiles [...]
is classic.” from ...”

Figure 3: Output plan

4 Representing an Output Plan Segment

parent : Sequence
ready : boolean

skip : boolean

active : boolean

+ plan()

+ execute()

reportDone()

Each node in a output-plan tree such as that shown
in Figure 3is represented by an instance of the
Segment class. The structure of this abstract class
is shown inFigure 4 the fields and methods de-
fined in this class control the preparation and out-
put of the corresponding segment of the plan tree,
and allow preparation and output to proceed in
parallel. Figure 4: Structure of the Segment class

Each Segment instance stores a reference to its
parent in the tree, and defines the following three
methods:

e active This flag is set externally by the Seg-
ment's parent, and indicates that this Seg-
e plan () Begins preparing the output. ment should produce its output as soon as it

e execute () Produces the prepared output. is ready.

The activity diagram inFigure 5shows how
these flags and methods are used during the prepa-
ration and output of a Segment. Note that a
plan() andexecute () are abstract methods of Segment may send asynchronous queries to other
the Segment class; the concrete implementatiomsodules as part of its planning. When such a
of these methods on the subclasses of Segmeydery is sent, the Segment sets its internal state
are described later in this section. Each Segmeahd exits itsplan () method; when the response
also has the following Boolean flags that controls received, preparation continues from the last
its processing; all are initially false. state reached. Since planning and execution pro-

e ready This flagis set internally once the Seg—ceed in parallel across the tree, apd the planning

ment has finished all of its preparation and it;f)rocess may be interrupted to wait fgr responses
rom other modules, theecady andactive flags
ready to be output. A)
may be set in either order on a particular Seg-
e skip This flag is set internally if the Segmentment. Once both of these flags have been set, the
encounters a problem during its planning, andxecute () method is called automatically. If both
indicates that the Segment should be skippeskip andactive are set, the Segment instead au-
when the time comes to produce output. tomatically callsreportDone () without ever ex-

e reportDone () Indicates to the Segment’s
parent that its output has been completed.

Called by parent Communicates

with other modules

/

Y

Success Error

Called by parent

Set ready Set skip Set active

*4

execute() Calls
parent.childisDone()

\J
‘reportDone()

i

o

Figure 5: Segment preparation and output

(yueld +

bulis : jeadoud #
uea|ooq : pajIeIdp #

(Jueld +

sBbupjuey N : asuodsaywin # ()suogsipnyd +

<BulIS>1sI7 : s1e9{pajsanbal # Bulis : jeadoud # ()oBessapjooda|puey + (yueyd +

<buns>1si7 : sqllqo # Buinis : sweNdoud # (Jueid + (ueid + (yuinippe +
aquizsag 295)sy a@ouanbaspaidiids ung @suanbasuiny

]

()obessan|00da|puey +

()obessap0oda|puey +
()oIndexa +

()2BESSONI9SIRYPUDS - asuanbagpauueld puewuwo).ieljeayauojepuels
: AV
(ueid + ()auoasipiyd +
@juajuaspauueld ()@3Ind9xa +
()obessan|oodajpuey + uland # ()o3ndaxs + ()obessajoodajpuey +
I ()@3nd9xa + <JUBWBIS>)SIT 1 UAIP|IYD # (ued + |4 ()@3nd9xa +
asuajuas asuanbas juawbasoisijjeg puewuwo)iejeayauojepuels
()abessapydaadspuss -
(Jueid +
asuajuaspaiydLids v

()auoguiodals #
()21n39x3 +
(ueid +

ueajooq : dpys #
ue3|00(: dAIDE #
ues|o0q : Apeal #
9duanbag : jualded #

juawbas

Figure 6: Segment class hierarchy

ecuting; this allows Segments with errors to beublic void plan() {
skipped without affecting the output of the rest of ~ // Create child Segments
the turn. cur = 0;
The full class hierarchy under Segmentis shown ready =
in Figure 6 There are three main top-level sub- ; .
. . . . or (Segment seg: children) {
classes of Segment, which differ primarily based seg.plan ();

on how they implementxecute () : }
}

Sequence An ordered sequence of Segments. It

. . gy public void execute () {
is executed by activating each child in turn. children.get (0).activate ();

true ;

BallisticSegment A single command whose du- }
ration is determined by the module producing th@ublic void ~ childIsDone () {
output. It is executed by sending a message to the SU:**i

. .. if (cur >= children.size ()) {
appropriate module and waiting for that module to reportbone () ;
report back that it has finished. } else {
children.get (cur).activate();

Sentence A single sentence, incorporating coor- }
dinated output in all modalities. Its schedule is
computed in advance, as part of the planning pro-

cess; itis executed by sending a “go” command to Figure 7: Pseudocode for Sequence methods
the appropriate output modules.

In the remainder of this section, we discuss eac®rder. Once all of the Sequence’s children have re-

of these classes and its subclasses in more detaiPorted that they are done, the Sequence itself calls
reportDone ().

4.1 Sequence The main subclasses of Sequence, and their rel-
All internal nodes in a presentation-plan treeevant features, are as follows:
(coloured blue irFigure 3 are instances of some
type of Sequence. A Sequence stores a list of chi
Segments, which it plans and activates in orde
along with a pointer to the currently active Seg-
ment.Figure 7shows the pseudocode for the mainfurn ~ Corresponds to a single message from the
methods of a typical Sequence. dialogue manager; the root of the output plan in
Note that a Sequence calls setsritady flag as Figure 3is a Turn. Itsplan() implementation
soon as all of its necessary child Segments hawgeates a Segment corresponding to each dialogue
been created, and only then begins callingn () act from the dialogue manager; in some cases, the
on them. This allows the Sequenceisecute () Turn adds additional children not directly speci-
method to be called as soon as possible, whidied by the DAM, such as the verbal acknowledge-
is critical to allowing the fission module to beginment and the gaze shift Figure 3
producing output from the tree before the full tre
has been created.

arent of all Turns. It is always active, and new

EJrnSequence The singleton class that is the
hildren can be added to its list at any time.

eScrlptedSequence A sequence of canned output
. . segments stored as an XSLT template. A Scripted-
When execute () is called on a Sequence, it .))

, . I, Sequence is used anywhere in the dialogue where
callsactivate () on the first child in its list. All . : .

.) dynamically-generated content is not necessary;
subsequent children are activated by calls to th - .
or example, instructions to the user and acknowl-

Ch.ildISDone 0 _method, which is called by ef”‘Ch edgements such as the leftmost subtréggure 3
child as part of itsreportDone () method after its .
a{e stored as ScriptedSequences.

execution is completed. Note that this ensures tha
the children of a Sequence will always be executeRlannedSequence In contrast to a ScriptedSe-
in the proper order, even if they are prepared out afuence, a PlannedSequence creates its children

dynamically depending on the dialogue contextiorms part of a PlannedSequence, and is based on
The principal type of PlannedSequence is a ddegical forms for the OpenCCG realise/(ite,
scription of one or more tile designs, such as that005ab). The logical forms may contain multiple
shown inFigure 2 To create the content of suchpossibilities for both the text and the multimodal

a description, the fission module uses informatiobehaviours; the OpenCCG realiser uses statistical
from the system ontology, the dialogue historylanguage models to make a final choice of the ac-
and the model of user preferences to select anidal content of the sentence.

structure the facts about the selected design and]]]]

to create the sequence of sentences to realise thafl "€ first step in preparing either type of Sen-
content. This process is described in detaiFing- €NC€ IS to send the text to the speech synthe-

ter and White2004 2009. siser Figure 8(a). For a ScriptedSentence, the
canned text is sent directly to the speech synthe-
4.2 BallisticSegment siser; for a PlannedSentence, the logical forms are

A BallisticSegment is a single command for a sinSeNt to the realiser, which then creates the text
gle output module, where the output module is aland sends it to the synthesiser. In either case, the

lowed to choose the duration at execution timesP€ech-synthesiser input also includes marks at all
In Figure 3 the orangeNod, Choose desigrand points where mgltimodal output is intended. The
Look at screemodes are examples of BallisticSeg-SPeech synthesiser prepares and stores the wave-
ments. In itsplan () method, a BallisticSegment form bgsed on the input text, and returns timing |_n—
transforms its input specification into an appropriformation for the words and phonemes, along with

ate message for the target output module. WheIHe timing of any multimodal coordination marks.

execute () is called, the BallisticSegment sends 114 fission module uses the returned timing
the transformed command to the output modulgy¢ormation to create the final schedule for all

and waits for that module to report back that it sy, qajities. It then sends the animation schedule
done; it callsreportDone () when it receives that (lip-synch commands, along with any coordinated
acknowledgement. expression or gaze behaviours) to the talking-head
module so that it can prepare its animation in ad-

) vance Figure 8(b). Once the talking-head mod-
The Sentence class represents a single sentengg, paq prepared the animation for a turn, it returns

combining synthesised speech, lip-synch comy «eaqy» message. The design application does
mands for the talking head, and possible coordyot eed its schedule in advance, so once the re-
nated behaviours on the other multimodal CharEponse is received from the talking head, the Sen-

nels. The timing of a sentence is based on th@ e has finished its preparation and is able to set
timing of the synthesised speech; all multlmodallts ready flag.

behaviours are scheduled to coincide with partic-
ular words in the text. Unlike a BallisticSegment, When a Sentence is executed by its parent,
which allows the output module to determine thét selects a desired start time slightly in the fu-
duration at execution time, a Sentence must prédre and sends two messages, as showRiga
pare its schedule in advance to ensure that outpute 8(c) First, it sends a “go” message with
is coordinated across all of the channels.Fig- the selected starting time to the speech-synthesis
ure 3 all of the green leaf nodes containing textand talking-head modules; these modules then
are instances of Sentence. play the prepared output for that turn at the given
There are two types of Sentences: ScriptedSetime. The Sentence also sends the concrete sched-
tences and PlannedSentences. A ScriptedSentende for any coordinated gesture commands to the
is generally created as part of a ScriptedSequendsgthroom-design application at this point. Af-
and is based on pre-written text that is sent directlier sending its messages, the Sentence waits until
to the speech synthesiser, along with any necethe scheduled duration has elapsed, and then calls
sary multimodal behaviours. A PlannedSentencesportDone ().

4.3 Sentence

’—> Realiser Generated text —l

Logical
forms .
4% Synthesiser ‘
@‘El— Canned text
A
Timing ——
‘Talking head

Design application ‘

(a) Preparing the speech

Realiser

Synthesiser

Fission Phonemes, motions

!

y
- Ready" — Talking head

Design application ‘

(b) Preparing the animation

4% Synthesiser

Fission Start time ——

Gesture

schedule
—l 4" Talking head

‘ Design application ‘

(c) Producing the output

Figure 8: Planning and executing a Sentence

5 Robustness and Configurability wait for “ready” and “done” responses from either

)] .. orboth of the talking-head and design-application
In the preceding section, we gave a description gf,,j,jes: the fission module simply proceeds with

the data structures and methods that are used WhgR et of its processing as if the required response
preparing and executing and output plan. In thif,q peen received. This allows the whole COMIC
section, we describe two other aspects of the Mody stem to be run without those output modules en-
ule that are important to its functioning as part o eq This is useful during development of other
the overall_dlalogue_system: its :_:1b|||ty to detec’barts of the system, and for running demos and
and deal with errors in its processing, and the vals, 51 ation experiments where not all of the output
ious configurations in which it can be run. channels are used. The module also has a num-
ber of other configuration options to control fac-
tors such as query time-outs and the method of se-
Since barge-in is not implemented in COMIC, thqecting multimodal coarticulations.

fission module plays an important role in tum- s well, the fission module has the ability to
taking for the whole COMIC system: it is the generate multiple alternative versions of a single
module that informs the input components wheRyrm, using different user models, dialogue-history
the system output is finished, so that they are ablgsttings, or multimodal planning techniques; this
to process the next user input. The fission Mods yseful both as a testing tool and as part of a sys-
ule therefore incorporates several measures to &am demonstration. The module can also store all
sure that it is able to_ det_ect and recover from ungfthe generated output to a script, and to play back
expected events during its processing, so that thRe scripted output at a later time using a subset of
dialogue is able to continue even if there are errorge full system. This allows alternative versions
in some parts of the output. of the system output to be directly compared in

Most input from external modules is validatedyser evaluation studies such & ter 2004 Fos-
against XML schemas to ensure that it is wellter and White 2005.

formed, and any messages that fail to validate are
not processed further. As well, all queries to exter6 Output Speed

nal modules are sent with configurable time-outs,

and any Segment that is expecting a response td"atne fi_naléversion of the COMIC system, the av-
query is also prepared to deal with a time-out. erage timeé that the speech synthesiser takes to

If a problem occurs while preparing any SegPrePare the waveform for a sentence is 1.9 sec-
ment for output—either due to an error in internaPndS’ while the average synthesised length of a

processing, or because of an issue with some e§§:ntenceh|s 2.7 secondks. Tlh's means Lhat, oln avher-
ternal module—that Segment immediately sets it ge, each sentence takes long enough to play that

skip flag and stops the preparation process. A e next sentence 'is .ready as soon as it is needed;
described irBection 4 any Segments with this flag and even when tt_us IS not the case, the delay be-
set are then skipped at execution time. This erfyveen sen_tences is still greatly reduced by the par-

sures that processing is able to continue as mualllelhplgnnmg procesfst.) .

as possible despite the errors, and that the fissionT € Importance of beginning output as Soon as

module is still able to produce output from theP0SSible was demonstrated by a user evaluation of
parts of an output plan unaffected by the problem§n interim version of COMICWhite et al, 2009,

and to perform its necessary turn-taking functions>UPIECtS in that study used the full COMIC sys-
tem in one of two configurations: an “expressive”

5.2 Configurability condition, where the talking head used all of the

. . expressions it was capable of, or a “zombie” con-
The COMIC fission module can be run in sev- P P

eral different configurations. to meet a variet O]dition where all of the behaviours of the head were
9 : Y O4isabled except for lip-synch. One effect of this

evaluation, demonstration, and development situa-
tions. The fission module can be configured notto 20n a Pentium 4 1.6GHz computer.

5.1 Error Detection and Recovery

difference was that the system gave a consistentty help choose the content of many of its turns, and
earlier response in the expressive condition—a fahe implementation of the design application is ob-
cial response was produced an average of 1.4 sagously COMIC-specific.
onds after the dialogue-manager message, while However, the general technique of interleaving
spoken input did not begin for nearly 4 Secondspreparation and execution, using the time while
Although that version of the system was very slowthe system is playing earlier parts of a turn to
the subjects in the expressive condition were sigirepare the later parts, is easily applicable to any
nificantly less likely to mention the overall slow- System that produces temporal output, as long as
ness than the subjects in the zombie condition. the same module is responsible for preparing and
After this interim evaluation, effort was put into €xecuting the output. There is nothing COMIC-
further reducing the delay in the final system. FopPecific about the design of the Segment class or
example, we now store the waveforms for acits immediate sub-classes.
know|edgements and other frequenﬂy-used texts AS We”, the method of Coordinating distributed
pre-synthesised in the speech module instead Bfultimodal behaviour with the speech timing
sending them to Festival, and other internal protSection 4.3is a general one. Although the cur-
cessing bottlenecks were eliminated. Using théent implementation relies on the output modules
same computers as the interim evaluation, the fi$0 respect the schedules that they are given—with
sion delay for initial output is under 0.5 seconds if0 adaptation at run time—in practice the coordi-

the final system. nation in COMIC has been generally successful,
_ providing that three conditions are met. First, the
7 Conclusions selected starting time must be far enough in the fu-

The COMIC fission module is able to prepare and'® that it can be received and processed by each
control the output of multimodal turns. It preparedndule intime. Second, the clocks on all comput-
and executes its plans in parallel, which allows i€"S involved in running the system must be syn-
to begin producing output as soon as possible arfpronised precisely. Finally, the processing Ipad
to continue with preparing later parts of the pre®n €ach computer must be low enough that timer
sentation while executing earlier parts. It is abl@Vents do notget delayed or pre-empted.

to produce output coordinated and synchronised Since the COMIC system does not support
across multiple modalities, to detect and recovef@'9€-in, the current fission module always pro-
from a variety of errors during its processing, andluces the full presentation that is planned, bar-
to be run in a number of different configurationd N9 Processing errors. However, since the mod-
to support testing, demonstrations, and evaluatid€ Produces its output incrementally, it would be
experiments. The parallel planning process is abf@raightforward to extend the processing to allow
to make a significant reduction in the time taken t&*ecution to be interrupted after any Segment, and
produce output, which has a perceptible effect of know how much of the planned output was ac-

user satisfaction with the overall system. tually produced.

Some aspects of the fission module are specifj&
to the design of the COMIC dialogue system; for
example, the module performs content-selectioklany thanks to Peter Poller, Tilman Becker, and
and sentence-planning tasks that in other systeraspecially Michael White for helpful advice on
might be addressed by a dialogue manager or texand discussions about the implementation of the
generation module. Also, aspects of the commu=OMIC fission module, and to the anonymous re-
nication with the output modules are tailored toviewers for their comments on the initial version
the particular modules involved: the fission modeof this paper. This work was supported by the
ule makes use of features of the OpenCCG realis€OMIC project (IST-2001-32311).

cknowledgements

References multimodal dialogue system. IRroceedings,
IJCAI 2005 Workshop on Knowledge and Rea-

M. Breidt, C. Wallraven, D.W. Cunningham, and . . ;
soning in Practical Dialogue systems

H.H. Biilthoff. 2003. Facial animation based on _
3d scans and motion capture. In Neill CampbellO- Lemon, A. Gruenstein, and S. Peters. 2002.

ed|t0r,S|GGRAPH 03 Sketches & Applications Collaborative activities and mUIti-taSking in di-
ACM Press. alogue systems.Traitement Automatique des

R.A.J. Clark, K. Richmond, and S. King. 2004, -2ngues (TAL)43(2):131-154.

Festival 2 — build your own general purpose uniE Reiter and R Dale. 200@uilding Natural Lan-
selection speech synthesiser. Rroceedings, guage Generation SystemSambridge Univer-
5th ISCA workshop on speech synthesis sity Press.

B. de Carolis, C. Pelachaud, I. Poggi, and\- Stom and S. Seneff. 2000. Intelligent barge-
M. Steedman. 2004. APML, a mark-up lan- in in conversational systems. Rroceedings,
guage for believable behaviour generation. In 'CSLP-2000volume 2, pages 652-655.

H. Prendinger, editor,Life-like Characters, W. Wabhlster, editor. 2005. SmartKom: Foun-
Tools, Affective Functions and Applicatipns dations of Multimodal Dialogue Systems
pages 65-85. Springer. Springer. In press.

F. de Rosis, C. Pelachaud, I. Poggi, V. CarofiglioM.A. Walker, S. Whittaker, A. Stent, P. Maloor,
and B. De Carolis. 2003. From Greta’s mind J.D. Moore, M. Johnston, and G. Vasireddy.
to her face: modelling the dynamics of affective 2002. Speech-plans: Generating evaluative re-

states in a conversational embodied agdnt. sponses in spoken dialogue. Rroceedings,
ternational Journal of Human-Computer Stud- INLG 2002
ies 59(1-2):81-118. M. White. 2005a. Designing an extensible API

D. DeCarlo, M. Stone, C. Revilla, and J.J. Ven- for integrating language modeling and realiza-
ditti. 2004. Specifying and animating facial tion. In Proceedings, ACL 2005 Workshop on
signals for discourse in embodied conversa- Software
tional agentsComputer Animation and Virtual M. White. 2005b. Efficient realization of co-

Worlds 15(1):27-38. ordinate structures in Combinatory Categorial
M.E. Foster. 2004. User evaluation of generated Grammar.Research on Language and Compu-
deictic gestures in the T24 demonstrator. Public tation. To appear.

deliverable 6.5, COMIC project. M. White, M.E. Foster, J. Oberlander, and
M.E. Foster and M. White. 2004. Techniques A. Brown. 2005. Using facial feedback to

for text planning with XSLT. InProceedings, enhance turn-taking in a multimodal dialogue

NLPXML-2004 system. InProceedings, HCI International
M.E. Foster and M. White. 2005. Assessing the 2005 Thematic Session on Universal Access in

impact of adaptive generation in the COMIC Human-Computer Interaction

	1 Introduction
	2 Output in Multimodal Dialogue Systems
	3 The COMIC Dialogue System
	4 Representing an Output Plan
	4.1 Sequence
	4.2 BallisticSegment
	4.3 Sentence

	5 Robustness and Configurability
	5.1 Error Detection and Recovery
	5.2 Configurability

	6 Output Speed
	7 Conclusions

