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Abstract

It is not cleara priori how well parsers
trained on the Penn Treebank will parse
significantly different corpora without
retraining. We carried out a compet-
itive evaluation of three leading tree-
bank parsers on an annotated corpus
from the human molecular biology do-
main, and on an extract from the Penn
Treebank for comparison, performing a
detailed analysis of the kinds of errors
each parser made, along with a quan-
titative comparison of syntax usage be-
tween the two corpora. Our results sug-
gest that these tools are becoming some-
what over-specialised on their training
domain at the expense of portability, but
also indicate that some of the errors en-
countered are of doubtful importance for
information extraction tasks.

Furthermore, our inital experiments
with unsupervised parse combination
techniques showed that integrating the
output of several parsers can ameliorate
some of the performance problems they
encounter on unfamiliar text, providing
accuracy and coverage improvements,
and a novel measure of trustworthiness.

Supplementary materials are available
at http://textmining.cryst.bbk.
ac.uk/acl05/.

1 Introduction

The availability of large-scale syntactically-
annotated corpora in general, and the Penn Tree-
bank1 (PTB;Marcus et al., 1994) in particular, has
enabled the field of stochastic parsing to advance
rapidly over the course of the last 10-15 years.
However, the newspaper English which makes up
the bulk of the PTB is only one of many dis-
tinct genres of writing in the Anglophone world,
and certainly not the only domain where poten-
tial natural-language processing (NLP) applica-
tions exist that would benefit from robust and re-
liable syntactic analysis. Due to the massive glut
of published literature, the biomedical sciences in
general, and molecular biology in particular, con-
stitute one such domain, and indeed much atten-
tion has been focused recently on NLP in this area
(Shatkay and Feldman, 2003; Cohen and Hunter,
2004).

Unfortunately, annotated corpora of a large
enough size to retrain stochastic parsers on do not
exist in this domain, and are unlikely to for some
time. This is partially due to the same differences
of vocabulary and usage that set biomedical En-
glish apart from theWall Street Journalin the first
place; these differences necessitate the input of
both biological and linguistic knowledge on bio-
logical corpus annotation projects (Kulick et al.,
2004), and thus require a wider variety of annota-
tor skills than general-English projects. For exam-
ple,5′ (pronounced “five-prime”) is an adjective in
molecular biology, butp53 is a noun;amino acid

1http://www.cis.upenn.edu/~treebank/
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is an adjective-noun sequence2 butcadmium chlo-
ride is a pair of nouns. These tagging decisions
would be hard to make correctly without biologi-
cal background knowledge, as would the preposi-
tional phrase attachment decisions inFigure 1.

Although it is intuitively apparent that there
are differences between newspaper English and
biomedical English, and that these differences
are quantifiable enough for biomedical writing
to be characterised as a sublanguage of En-
glish (Friedman et al., 2002), the performance of
conventionally-trained parsers on data from this
domain is to a large extent an open question.
Nonetheless, papers have begun to appear which
employ treebank parsers on biomedical text, es-
sentially untested (Xiao et al., 2005). Recently,
however, the GENIA project (Kim et al., 2003)
and the Mining the Bibliome project (Kulick et al.,
2004) have begun producing small draft corpora of
biomedical journal paper abstracts with PTB-style
syntactic bracketing, as well as named-entity and
part-of-speech (POS) tags. These are not currently
on a scale appropriate for retraining parsers (com-
pare the∼50,000 words in the GENIA Treebank
to the∼1,000,000 in the PTB; but see alsoSec-
tion 7.2) but can provide a sound basis for empiri-
cal performance evaluation and analysis. A collec-
tion of methods for performing such an analysis,
along with several interesting results and an inves-
tigation into techniques for narrowing the perfor-
mance gap, is presented here.

1.1 Motivation

We undertook this project with the intention of
addressing several questions. Firstly, in order to
deploy existing parsing technologies in a bioin-
formatics setting, the biomedical NLP commu-
nity needs a comprehensive assessment of perfor-
mance – which parser(s) to choose, what accuracy
each should be expected to achieve etc., along with
information about the different situations in which
each parser can be expected to perform well or
poorly. Secondly, assuming there is a performance
deficit, can any simple steps be taken to mitigate
it? Thirdly, what engineering issues arise from the

2According to some annotators at least; others tagamino
as a noun, although one would not speak of*an amino, *some
amino or *several aminos.

idiosyncracies of biomedical text?
The differences discovered in the behaviour of

each parser, either between domains or between
different software versions on the same domain,
will also be of interest to those in the computa-
tional linguistics community who are involved in
parser design. These values will give a compara-
tive index of the flexibility of each parsing model
on being presented with out-of-domain data, and
may help parser developers to detect signs of over-
training or, analogously, ‘over-design’ for one nar-
row genre of English. It is hoped that our findings
can assist those better equipped than ourselves in
properly investigating these phenomena, and that
our analysis of the problems encountered can shed
new light on the thorny problem of parser evalua-
tion.

Finally, several questions arise from the use of
multiple parsers on the same corpus that are of
both theoretical and practical interest. Does agree-
ment between several parsers indicate that a sen-
tence has been parsed correctly, or do they tend to
make the same mistakes? How best can the output
of an ensemble of parsers be integrated, in order
to boost performance above that of the best sin-
gle member? And what additional information can
be gleaned from comparing the opinions of sev-
eral parsers that can help make sense of unfamiliar
text?

2 Evaluation methodologies

We initially chose to rate the parsers in our as-
sessment by several different means which can
be grouped into two broad classes: constituent-
and lineage-based. WhileSampson and Babarczy
(2003) showed that there is a limited degree of cor-
relation between the per-sentence scores assigned
by the two methods, they are independent enough
that a fuller picture of parser competence can be
built up by combining them and thus sidestep-
ping the drawbacks of either approach. However,
overall performance scores designed for competi-
tively evaluating parsers do not provide much in-
sight into the aetiology of errors and anomalies, so
we developed a third approach based on produc-
tion rules that enabled us to mine the megabytes
of syntactic data for enlightening results more ef-



a. [ This protein ] [ binds the DNA [ by the TATA box [ on its minor groove. ]2 ]1 ]

b. [ This protein ] [ binds the DNA [ by the TATA box ]1 [ at its C-terminal domain. ]2 ]

Figure 1: These two sentences are biologically clear but syntactically ambiguous. Only the knowledge
that the C-terminal domain is part of a protein, whereas the TATA box and minor groove are parts of
DNA, allows a human to interpret them correctly, by attaching the prepositional phrases 1 and 2 at the
right level.

fectively. All the Perl scoring routines we wrote
are available from ourwebsite.

2.1 Constituent-based assessment

Most evaluations of parser performance are based
upon three primary measures: labelled constituent
precision and recall, and number of crossing
brackets per sentence. Calculation of these scores
for each sentence is straightforward. Each con-
stituent in a candidate parse is treated as a tu-
ple 〈lbound,LABEL, rbound〉, wherelbound and
rbound are the indices of the first and last words
covered by the constituent. Precision is the pro-
portion of candidate constituents that are correct
and is calculated as follows:

P =
# true positives

# true positives + # false positives

Recall is the proportion of constituents from the
gold standard that are in the candidate parse:

R=
# true positives

# true positives + # false negatives

The crossing brackets score is reached by count-
ing the number of constituents in the candidate
parse that overlap with at least one constituent in
the gold standard, in such a way that one is not a
subsequence of the other.

Although this scoring system is in wide use, it
is not without its drawbacks. Most obviously, it
gives no credit for partial matches, for example
when a constituent in one parse covers most of
the same words as the other but is truncated or ex-
tended at one or both ends. Indeed, one can imag-
ine situations where a long constituent is truncated
at one end and extended at the other compared to
the gold standard; this would incur a penalty un-
der each of the above metrics even though some

or even most of the words in the constituent were
correctly categorised. One can of course suggest
modifications for these measures designed to ac-
count for particular situations like these, although
not without losing some of their elegance. The
same is true for label mismatches, where a con-
stituent’s boundaries are correct but its category is
wrong.

More fundamentally, it could be argued that by
taking as it were horizontal slices through the syn-
tax tree, these measures lose important informa-
tion about the ability of a parser to recreate the
gross grammatical structure of a sentence. The
height of a given constituent in the tree, and the
details of its ancestors and descendants, are not
directly taken into account, and it is surely the
case that these broader phenomena are at least as
important as the extents of individual constituents
in affecting meaning. However, constituent-based
measures are not without specific advantages too.
These include the ease with which they can be bro-
ken down into scores per label to give an impres-
sion of a parser’s performance on particular kinds
of constituent, and the straightforward message
they deliver about whether a badly-performing
parser is tending to over-generate (low precision),
under-generate (low recall) or mis-generate (high
crossing brackets).

2.2 Lineage-based assessment

In contrast to this horizontal-slice philosophy,
Sampson and Babarczy(2003) advocate a verti-
cal view of the syntax tree. By walking up the
tree structure from the immediate parent of a given
word until the top node is reached, and adding
each label encountered to the end of a list, a ‘lin-
eage’ representing the word’s ancestry can be re-
trieved. Boundary symbols are inserted into this

http://textmining.cryst.bbk.ac.uk/acl05/


lineage before the highest constituent that begins
on the word, and after the highest constituent that
ends on the word, if such conditions apply; this al-
lows potential ambiguities to be avoided, so that
the tree as a whole has one and only one corre-
sponding set of ‘lineage strings’ (seeFigure 2).

Using dynamic programming, a Levenshtein
edit distance can be calculated between each
word’s lineage strings in the candidate parse and
the gold standard, by determining the smallest
number of symbol insertions, deletions and substi-
tutions required to transform one of the strings into
the other. The leaf-ancestor (LA) metric, a simi-
larity score ranging between 0 (total parse failure)
and 1 (exact match), is then calculated by taking
into account the lengths of the two lineages:

LA = 1− dist(lineage1, lineage2)
len(lineage1)+ len(lineage2)

The per-word score can then be averaged over a
sentence or a whole corpus in order to arrive at an
overall performance indicator. Besides avoiding
some of the limitations of constituent-based eval-
uation discussed above, one major advantage of
this approach is that it can provide a word-by-word
measure of parser performance, and thus draw at-
tention easily to those regions of a sentence which
have proved problematic (seeSection 6.2for an
example). The algorithm can be made more sen-
sitive to near-matches between phrasal categories
by tuning the cost incurred for a substitution be-
tween similar labels, e.g. those for ‘singular noun’
and ‘proper noun’, rather than adhering to the uni-
form edit cost dictated by the standard Levenshtein
scheme. In order to avoid over-complicating this
study, however, we chose to keep the standard
penalty of 1 for each insertion, deletion or substi-
tution.

One drawback to leaf-ancestor evaluation is that
although it scores each word (sentence, corpus)
between 0 and 1, and these scores are presented
here as percentages for readability, it is mislead-
ing to think of them as percentages of correctness
in the same way that one would regard constituent
precision and recall. Indeed, the very fact that
it results in a single score means that it reveals
less at first glance about the broad classes of er-
rors that a parser is making than precision, recall

and crossing brackets do. Another possible objec-
tion is that since an error high in the tree will af-
fect many words, the system implicitly gives most
weight to the correct determination of those fea-
tures of a sentence which are furthest from be-
ing directly observable. One might argue, how-
ever, that since a high-level attachment error can
grossly perturb the structure of the tree and thus
the interpretation of the sentence, this is a perfectly
valid approach; it is certainly complementary to
the uniform scoring scheme described in the previ-
ous section, where every mistake is weighted iden-
tically.

2.3 Production-based assessment

In order to properly characterise the kinds of errors
that occurred in each parse, and to help elucidate
the differences between multiple corpora and be-
tween each parser’s behaviour on each corpus, we
developed an additional scoring process based on
production rules. A production rule is a syntactic
operation that maps from a parent constituent in a
syntax tree to a list of daughter constituents and/or
POS tags, of the general form:

LABELp → LABEL1 . . .LABELn

For example, the rule that maps from the top-
most constituent inFigure 2to its daughters would
be S → NP VP. A production is the application
of a production rule at a particular location in the
sentence, and can be expressed as:

LABELp(lbound, rbound)→ LABEL1 . . .LABELn

Production precision and recall can be calcu-
lated as in a normal labelled constituent-based as-
sessment, except that a proposed production is a
true positive if and only if there exists a production
in the gold standard with the same parent label and
boundaries, and the same daughter labels in the
same order. (The respective widths of the daughter
constituents, where applicable, are not taken into
account, only their labels and order; any errors of
width in the daughters are detected when they are
tested as parents themselves.)

Furthermore, as an aid to the detection and anal-
ysis of systematic errors, we developed a heuristic
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Figure 2: Skipping the POS tag, the lineage string foruniquely is: [ ADVP ] VP VP S . The left and
right boundary markers record the fact that theADVP constituent both starts and ends with this word.

for finding the closest-matching candidate produc-
tionsPRODc1 . . .PRODcm in a parse, in each case
where a productionPRODg in the gold standard is
not exactly matched in the parse.

1. First, the heuristic looks for productions with
correct boundaries and parent labels, but in-
correct daughters. The corresponding pro-
duction rules are returned.

2. Failing that, it looks for productions with
correct boundaries and daughters, preserving
the order of the daughters, but with incorrect
parent labels. The corresponding production
rules are returned.

3. Failing that, it looks for productions with cor-
rect boundaries but incorrect parent labels
and daughters. The corresponding produc-
tion rules are returned.

4. Failing that, it looks for all extensions and
truncations of the production (boundary mod-
ifications such that there is at least one word
from PRODg still covered) with correct par-
ent and daughter labels and daughter order,
keeping only those that are closest in width to
PRODg (minimum number of extensions and
truncations). The meta-rulesEXT ALLMATCH
and/orTRUNC ALLMATCH as appropriate are
returned.

5. Failing that, it looks for all extensions
and truncations of the production where
the parent label is correct but the daugh-
ters are incorrect, keeping only those
that are closest in width toPRODg. The
meta-rules EXT PARENTMATCH and/or
TRUNC PARENTMATCH are returned.

6. If no matches are found in any of these
classes, a null result is returned.

Note that in some cases,m production rules of
the same class may be returned, for example when
the closest matches in the parse are two produc-
tions with the correct parent label, one of which is
one word longer thanPRODg, and one of which
is one word shorter. It is also conceivable that
multiple productions with the same parent or same
daughters could occupy the same location in the
sentence without branching, although it seems un-
likely that this would occur apart from in patho-
logically bad parses. In any ambiguous cases, no
attempt is made to decided which is the ‘real’ clos-
est match; allmmatches are returned, but they are
downweighted so that each counts as 1/m of an
error when error frequencies are calculated. In no
circumstances are matches from different classes
returned.

The design of this procedure reflects our re-
quirements for a tool to facilitate the diagnosis and



summarisation of parse errors. We wanted to be
able to answer questions like “given that parser
A has a low recall forNP → NN NN productions,
what syntactic structures is it generating in their
place? Why might this be so? And what effect
might these errors have on the interpretation of the
sentence?” Accordingly, as the heuristic casts the
net further and further to find the closest match
for a productionPRODg, the classes to which it
assigns errors become broader and broader. Any
match at stages 1–3 is not simply recorded as a
substitution error, but a substitution for aparticu-
lar incorrect production rule. However, matches at
stages 4 and 5 do not make a distinction between
different magnitudes of truncation and extension,
and at stage 5 the information about the daugh-
ters of incorrect productions is discarded. This al-
lowed us to identify broad trends in the data even
where the correspondences between the gold stan-
dard and the parses were weak, yet nonetheless
recover detailed substitution information akin to
confusion matrices where possible.

Similar principles guided the decision not to
consider extensions and truncations with different
parent labels as potential loose matches, in order to
avoid uninformative matches to productions else-
where in the syntax tree. In practice, the matches
returned by the heuristic accounted for almost all
of the significant systematic errors suffered by the
parsers (seeSection 6) – null matches were in-
frequent enough in general that their presence in
larger numbers on certain production rules was it-
self useful from an explanatory point of view.

2.4 Alternative approaches

Several other proposed solutions to the evalua-
tion problem exist, and it is an ongoing and con-
tinually challenging field of research. Suggested
protocols based on grammatical or dependency
relations (Crouch et al., 2002), head projection
(Ringger et al., 2004), alternative edit distance
metrics (Roark, 2002) and various other schemes
have been suggested. Many of these alterna-
tive methodologies, however, suffer from one or
more disadvantages, such as specificity to one par-
ticular grammatical formalism (e.g. head-driven
phrase structure grammar) or one class of parser
(e.g. partial parsers), or a requirement for a spe-

cific manually-prepared evaluation corpus in a
non-treebank format. In addition, none of them
deliver the richness of information supplied by
production-based assessment, particularly in com-
bination with the other methods outlined above.

3 Comparing the corpora

The gold standard data for our experiments was
drawn from the GENIA Treebank3, a beta-stage
corpus of 200 abstracts drawn randomly from
the MEDLINE database4 with the search terms
“human”, “blood cell” and “transcription factor”.
These abstracts have been annotated with POS
tags, named entity classes and boundaries5, and
syntax trees which broadly follow the conventions
of the PTB. Some manual editing was required
to correct annotation errors and remove sentences
with uncorrectable errors, leaving 1757 sentences
(45406 tokens) in the gold standard. All errors
were reported to the GENIA group.

For comparison purposes, we used the standard
set-aside test set from the PTB, section 23. This
consists of 56684 words in 2416 sentences.

To gain insight into the differences between the
two corpora, we ran several tests of the grammati-
cal composition of each. For consistency with the
parser evaluation results, we stripped the follow-
ing punctuation tokens from the corpora before
gathering these statistics: period, comma, semi-
colon, colon, and double-quotes (whether they
were expressed as a single double-quotes charac-
ter, or pairs of opening or closing single-quotes).
We also removed any super-syntactic information
such as grammatical function suffixes, pruned any
tree branches that did not contain textual termi-
nals (e.g. traces), and deleted any duplicated
constituents – that is, constituents with only one
daughter that has the same label.

3.1 Sentence length and complexity

Having performed these pre-processing steps, we
counted the distributions of sentence lengths (in

3http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA/topics/Corpus/GTB.html

4http://www.pubmed.org/
5The named entity annotations are supplied in a separate

file which was discarded.

http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/topics/Corpus/GTB.html
http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/topics/Corpus/GTB.html
http://www.pubmed.org/


words) and sentence complexities, using the num-
ber of constituents, not counting POS tags, as
a simple measure of complexity – although of
course one can imagine various other ways to
gauge complexity (mean tree depth, maximum
tree depth, constituents per word etc.). The results
are shown inFigure 3, and reveal an unexpected
level of correlation. Apart from a few sparse in-
stances at the right-hand tails of the two GENIA
distributions, and a single-constituent spike on the
PTB complexity distribution (due to one-phrase
headings likeSTOCK REPORT.), the two corpora
have broadly similar distributions of word count
and constituent count. The PTB has slightly more
mass on the short end of the length scale, but
GENIA does not have a corresponding number of
longer sentences. This ran contrary to our initial
intuition that newspaper English would tend to be
composed predominantly of shorter and simpler
sentences than biological English.

3.2 Constituent and production rule usage

Next, we counted the frequency with which each
constituent label appears in each corpus. The re-
sults are shown inFigure 4. The distributions are
reasonably similar between the two corpora, with
the most obvious difference being that GENIA
uses noun phrases more often, by just over six per-
centage points. This may reflect the fact that much
of the text in GENIA describes interactions be-
tween multiple biological entities at the molecular
and cellular levels; conjunction phrases are three
times as frequent in GENIA too, although this is
not obvious from the chart as the numbers are so
low in each corpus.

One surprising result is revealed by looking
at Table 1 which shows production rule usage
across the corpora. Although GENIA uses slightly
more productions per sentence on average, it uses
marginally fewerdistinct production rulesper sen-
tence, and considerably fewer overall – 62% of the
number of rules used in the PTB, despite being
73% of the size in sentences. These figures, along
with the significantly different rankings and fre-
quencies of the actual rules themselves (Table 2),
demonstrate that there are important syntactic dif-
ferences between the corpora, despite the simi-
larities in length, complexity and constituent us-

age. Such differences are invisible to conventional
constituent-based analysis.

The comparative lack of syntactic diversity in
GENIA may seem counter-intuitive, since biolog-
ical language seems at first glance dense and dif-
ficult. However, it must be remembered that the
text in GENIA consists only of abstracts, which
are tailored to the purpose of communicating a
few salient points in a short passage, and tend
to be composed in a somewhat formulaic man-
ner. They are written in a very restricted regis-
ter, compared to the range of registers that may
be present in one issue of a newspaper – news ar-
ticles, lifestyle features, opinion pieces, financial
reports and letters will be delivered in very dif-
ferent voices. Also, some of the apparent com-
plexity of biomedical texts is illusory, stemming
from the unfamiliar vocabulary, and furthermore,
a distinction must be made between syntactic and
semantic complexity. Consider a phrase likeiron-
sulphur cluster assembly transcription factor, the
name of a family of DNA-binding proteins, which
is a semantically-complex concept expressed in a
syntactically-simple form – essentially just a se-
ries of nouns.

4 Evaluating the parsers

The parsers chosen for this evaluation were those
described originally inCollins (1999), Charniak
(1999) andBikel (2002). These were selected be-
cause they are up-to-date (having last been up-
dated in 2002, 2003 and 2004 respectively), highly
regarded by the computational linguistics com-
munity, and importantly, free to use and modify
for academic research. Since part of our moti-
vation was to detect signs of over-specialisation
on the PTB, we assessed the current (0.9.9) and
previous (0.9.8) versions of the Bikel parser in-
dividually. The current version was invoked
with the newbikel.properties settings file,
which enables parameter pruning (Bikel, 2004),
whereas the previous version used the original
collins.properties settings which were de-
signed to emulate the Collins parser model 2 (see
below). The same approach was attempted with
the Charniak parser, but the latest version (re-
leased February 2005) suffered from fatal errors
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Figure 3: Sentence length and complexity distributions, GENIA vs. PTB.
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Figure 4: Constituent usages, GENIA vs. PTB.

GENIA PTB
Num. productions used in corpus78831 (44.87/sent.) 96694 (40.02/sent.)
Num. distinct production rules 1364 (5.47/sentence) 2184 (5.55/sent.)

Table 1: Production and production rule usage in the two corpora.

on GENIA which could not be diagnosed in time
for publication. Earlier versions of the Collins
parser are not available; however, the distribution
comes with three language models of increasing
sophistication which were treated initially as dis-
tinct parsers.

Tweaking of parser options was kept to a min-
imum, aside from trivial changes to allow for
unexpectedly long words, long or complex sen-
tences (e.g. default memory/time limits), and dif-
fering standards of tokenisation and punctuation,
although a considerable degree of pre- and post-
processing by Perl scripts was also necessary to
bring these into line. More detailed tuning would
have massively increased the number of variables
under consideration, given the number of compile-

time constants and run-time parameters available
to the programs; furthermore, it is probably safe
to assume that each author distributes his software
with an optimal or near-optimal configuration, at
least for in-domain data.

4.1 Part-of-speech tagging

The Collins parser requires pre-tagged input, and
although the Bikel parser can take untagged in-
put, the author recommends the use of a dedicated
POS tagger. For this reason, we pre-processed
GENIA with MedPost (Smith et al., 2004), a spe-
cialised biomedical POS tagger that was devel-
oped and trained on MEDLINE abstracts. The
supplied gold-standard POS tags were discarded
as using them would not provide a realistic ap-



Top-25 production rules in GENIA (left) and PTB (right)
Freq. Rule Rank Freq. Rule
6.36 PP→ IN NP 1 4.80 PP→ IN NP
3.32 NP→ NN 2 2.95 S→ NP VP
3.13 NP→ NP PP 3 2.26 NP→ NP PP
2.17 S→ NP VP 4 2.15 TOP→ S
2.03 TOP→ S 5 1.86 NP→ DT NN
1.23 NP→ DT NN 6 1.43 S→ VP
0.89 NP→ NN NN 7 1.08 NP→ PRP
0.85 NP→ NP CC NP 8 0.92 ADVP→ RB
0.82 S→ VP 9 0.91 NP→ NNP
0.76 VP→ VBN PP 10 0.83 NP→ NNS
0.74 ADVP→ RB 11 0.81 VP→ TO VP
0.70 NP→ DT JJ NN 12 0.78 NP→ NN
0.66 NP→ NNS 13 0.74 NP→ NNP NNP
0.58 NP→ JJ NNS 14 0.63 SBAR→ IN S
0.53 NP→ JJ NN 15 0.62 NP→ DT JJ NN
0.51 SBAR→ IN S 16 0.60 NP→ NP NP
0.51 PP→ TO NP 17 0.57 SBAR→ S
0.49 NP→ DT NN NN 18 0.50 VP→ VB NP
0.48 NP→ NP PRN 19 0.48 NP→ NP SBAR
0.48 ADJP→ JJ 20 0.47 VP→ MD VP
0.47 NP→ NP PP PP 21 0.46 NP→ JJ NNS
0.47 PRN→ ( NP ) 22 0.41 SBAR→ WHNP S
0.45 NP→ NN NNS 23 0.40 PP→ TO NP
0.44 NP→ NP VP 24 0.33 VP→ VBD SBAR
0.40 VP→ VBD VP 25 0.32 NP→ NP CC NP

Table 2: The most common production rules in the two corpora, in order, with the frequency of occur-
rence of each. Notice that several rules are much more common in one corpus than the other, such asVP
→ TO VP, which is the 11th most common rule in the PTB but doesn’t make it into GENIA’s list.

proximation of the kinds of scenario where parsing
software would be deployed on unseen text. Med-
Post was found to tag GENIA with 93% accuracy.

Likewise, although the Charniak parser assigns
POS tags itself and was developed and trained
without exposure to a biological vocabulary, it was
allowed to compete on its own terms against the
other two parsers each in conjunction with Med-
Post. Although this may seem slightly unfair, to do
otherwise would not reflect real-life usage scenar-
ios. The parser tagged GENIA with an accuracy
of 85%.

The PTB extract used was included pre-
processed with the MXPOST tagger (Ratnaparkhi,
1996) as part of the Collins parser distribution; the

supplied tagging scored 97% accuracy. The Char-
niak parser re-tagged this corpus with 96% accu-
racy.

4.2 Initial performance comparison

Having parsed each corpus with each parser, the
output was post-processed into a standardised
XML format. The same pruning operations per-
formed on the original corpora (seeSection 3)
were repeated where necessary. TOP nodes (S1
nodes in the case of the Charniak parser) were
removed from all files as these remain constant
across every sentence.NAC and NX labels were
replaced byNP labels in the parses of GENIA as
the GENIA annotators useNP labels where these
would occur. We then performed lineage- and



Raw scores on GENIA (1757 sentences)
Parser LA score Precision Recall F-measure % perfect % failure
Bikel 0.9.8 91.12 81.33 77.43 79.33 14.29 0.06
Bikel 0.9.9 65.30 81.68 55.75 66.27 11.21 25.04
Charniak 89.91 77.12 76.05 76.58 12.81 0.00
Collins 1 88.74 79.06 73.87 76.38 13.15 0.68
Collins 2 87.85 81.30 74.49 77.75 14.00 1.42
Collins 3 86.33 81.57 73.28 77.20 14.00 2.28

Raw scores on PTB (2416 sentences)
Parser LA score Precision Recall F-measure % perfect % failure
Bikel 0.9.8 94.45 88.09 88.13 88.11 33.44 0.04
Bikel 0.9.9 80.11 88.03 74.61 80.76 29.80 12.75
Charniak 94.36 88.09 88.28 88.18 35.06 0.00
Collins 1 94.17 86.80 86.70 86.75 31.13 0.00
Collins 2 94.36 87.29 87.20 87.24 33.49 0.04
Collins 3 94.25 87.28 87.10 87.19 33.11 0.08

Table 3: Initial performance comparison.

constituent-based scoring runs using our own Perl
scripts.

The results of this experiment are summarised
in Table 3, showing both the scores on both
GENIA and the PTB. The LA score given is the
mean of the leaf-ancestor scores for all the words
in the corpus, and the precision and recall scores
are taken over the entire set of constituents in the
corpus. Initially, these measures were calculated
per sentence, and then averaged across each cor-
pus, but the presence of pathologically short sen-
tences such asEnergy. gives an unrepresenta-
tive boost to per-sentence averages. (Interestingly,
many published papers do not make clear whether
the results they present are per-sentence averages
or corpus-wide scores.)

‘Mean X’ is simply the average number of
crossing brackets per sentence. ‘F-measure’ (van
Rijsbergen, 1979) is the harmonic mean of preci-
sion and recall; it is a balanced score that penalises
algorithms which favour one to the detriment of
the other, and is calculated as follows:

F =
2×P×R

P+R

4.3 Parse failures

Since most of the parsers suffered from a consid-
erable number of parse failures in GENIA – sen-
tences where no parse could be obtained –Table 4

shows recalculated scores based on evaluation of
successfully-parsed sentences only. Conflating the
performance drops caused by poorly parsed sen-
tences with those caused by total failures gives an
inaccurate picture of parser behaviour. In order to
determine if there was any pattern to these fail-
ures, we plotted the number of parse failures for
each parser against sentence length and sentence
complexity (seeFigure 5). These charts revealed
some interesting trends.

There is a known problem with the Collins mod-
els 2 and 3 failing on two sentences in the PTB
section 23 due to complexity, but this problem
is exacerbated in GENIA, with even the simpler
model 1 failing on a number of sentences, one of
which was only 24 words long plus punctuation.

Overall, however, the failures do tend to cluster
around the right-hand tails of the sentence length
and constituent count distributions. Discounting
such sentences, the three models do show a con-
sistent monotonic increase in precision, recall and
LA score from the simplest to the most complex,
accompanied by a decrease in the number of cross-
ing brackets per sentence. Interestingly, these
intervals are much more pronounced on GENIA
than on the PTB, where the performance seems to
level off between models 2 and 3. Difficult sen-
tences aside, then, it appears that the advanced fea-



� � � � � � � � � � � � � � � � � 	 � � � � � � � � � � � � �
�

�

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

	 �

	 �

 �� 
 � ��

�
	
�
	 �� � �� � 
�


 �� 
 � ��
�
	
�
� �� � � � � 
�

�� � � �� � � �� � � � � 
 �
�� � � �� � � �� � � � � 
�
�� � � �� � � �� � � � � 
 �
� � � � 
� � 
� � 
�

� 
� � 
� � 
 � 
� � � ��  � � ! � "

#
$
%&
$
%
'
$
'
(
)
%&

� � � � � � � � � � � � � � � � � 	 �
�

�

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

� �

	 �

	 �

 �� 
 � ��

�
	
�
	 �� � �� � 
�


 �� 
 � ��
�
	
�
� �� � �� � 
�

�� � � �� � � �� � �� � 
�
�� � � �� � � � � � �� � 
�
�� � � �� � � �� � �� � 
�
� � � � 
� � 
� � 
�

�� � � � � �� 
� �� � 
 � � 
� � 
� � 


�
�
� 
�
�
!
�
!
"
#
� 

Figure 5: Parse failures on GENIA vs. sentence length and complexity for each parser.



Scores on GENIA, successfully-parsed sentences only
Parser LA score Precision Recall F-measure Mean X # parsed
Bikel 0.9.8 91.15 81.33 77.46 79.35 2.06 1756
Bikel 0.9.9 91.17 81.68 77.04 79.29 1.89 1317
Charniak 89.91 77.12 76.05 76.58 2.42 1757
Collins 1 90.53 79.06 75.35 77.16 2.29 1745
Collins 2 91.21 81.30 77.24 79.22 2.01 1732
Collins 3 91.32 81.57 77.42 79.44 1.95 1717

Scores on PTB, successfully-parsed sentences only
Parser LA score Precision Recall F-measure Mean X # parsed
Bikel 0.9.8 94.53 88.09 88.20 88.15 1.07 2415
Bikel 0.9.9 94.52 88.03 88.07 88.05 1.04 2108
Charniak 94.36 88.09 88.28 88.18 1.08 2416
Collins 1 94.17 86.80 86.70 86.75 1.23 2416
Collins 2 94.45 87.29 87.28 87.28 1.19 2415
Collins 3 94.44 87.28 87.27 87.28 1.18 2414

Table 4: Performance scores, discounting all parse failures. Scores for the Charniak parser, and Collins
model 1 on the PTB, are shown again for comparison, although they did not fail on any sentences.

tures of models 2 and 3 are actually more valuable
on this unfamiliar corpus than on the original de-
velopment domain – provided that they do not trip
the parser up completely.

While Bikel 0.9.8’s failures are relatively few
and tend to occur more often in longer and more
complex sentences, like those of the Collins mod-
els, the distributions inFigure 5for Bikel 0.9.9
follow the shapes of the distributions remarkably
accurately. In other words, the length or complex-
ity of a sentence does not seem to be a major in-
fluence on the ability of Bikel 0.9.9 to parse it.
Undoubtedly, there is something more subtle in
the composition of these sentences that confuses
Bikel’s updated algorithm, although we could not
discern any pattern by eye. Perhaps this problem
could be diagnosed by monitoring the parser in
a Java debugger or modifying it to produce more
verbose output, but such an examination is beyond
the scope of this work.

Although version 0.9.9 fails on far fewer sen-
tences in the PTB than in GENIA, it still suffers
from two orders of magnitude more failures than
any other parser on the same corpus. These re-
sults suggest that the author’s claim that parame-
ter pruning results in “no loss of accuracy” (Bikel,
2004) can only be taken seriously when the test set

has been cleaned of all unparseable sentences; this
impression is reinforced by the fact that the preci-
sion and recall scores reported by the author agree
quite closely with our results on the PTB once the
parse failures have been removed.

5 Combining the parsers

Given the poorer results of these parsers on
GENIA than on the PTB, and the comparative
lack of annotated data in this domain, it is im-
portant to consider ways in which performance
can be enhanced without recourse to supervised
training methods. Various experimental tech-
niques exist for reducing or eliminating the need
for labelled training data, particularly in the pres-
ence of several diverse parsers (or more generally,
classifiers). These include active learning (Os-
borne and Baldridge, 2004), bagging and boost-
ing (Henderson, 1999) and co-training (Steedman
et al., 2003). In addition to these ‘knowledge-
poor’ techniques, one can easily imagine domain-
specific ‘knowledge-rich’ techniques that employ
existing biological data sources and NLP meth-
ods in order to select, modify, or constrain parses
(seeSection 7.2). For this preliminary investi-
gation, however, we concentrated on knowledge-
poor methods originating in work on parsing the



PTB which could exploit the availability of multi-
ple parsers whilst requiring no time-consuming re-
training processes or integration with external re-
sources. Perl implementations of the algorithms
discussed below can be downloaded from our
website.

5.1 Fallback cascades

In the Collins parser instructions, the author sug-
gests stacking the three models in decreasing order
of sophistication (3→ 2 → 1), and for each sen-
tence, falling back to the next less sophisticated
model each time a more sophisticated one fails to
obtain a parse. The principle behind this is that the
more complex a model is, the more often it will
fail, but the better the results will be when it does
return a parse. We implemented this system for
the Collins models, and also for the Bikel parser,
starting with version 0.9.9 and falling back to 0.9.8
on failure. Since the Charniak parser did not suffer
any failures, we added it to each of these cascades
as a last-resort level, to fill any remaining gaps.

As expected, the results for each cascade
(Table 5) were comparable to their component
parsers’ scores on successfully-parsed sentences
(Table 4), except with 100% coverage of the cor-
pus. In each of the following parser integration
methods, we used these fallback cascades to rep-
resent the Bikel and Collins parsers, rather than
any of their individual parser models. The Bikel
cascade was used as a baseline against which to
test the results of each method for statistical sig-
nificance, using a two-tailed dependent t-test over
paired scores.

5.2 Constituent voting

Henderson(1999) reports good results when us-
ing a simple parse integration method called con-
stituent voting, where a hybrid parse is produced
by taking votes from all the parsers in an ensem-
ble. Essentially, all the constituents proposed by
the parsers are pooled, and each one is added to
the hybrid parse if more than half of the parsers
in the ensemble agree on it. The assumption be-
hind this concept is that the mistakes made by the
parsers are reasonably independently distributed –
if different kinds of errors beset the parsers, and
at different times, then a majority vote will tend to

converge on the correct set of constituents.
We implemented a three-way majority vote en-

semble between the Collins and Bikel cascades
and the Charniak parser; the results are shown in
Table 6. The most notable gain was in precision,
as one would hope from an algorithm designed
to screen out minority parsing decisions, but the
scores also illustrate an interesting phenomenon.
Although the ensemble took the lead on all the
constituent-based performance indicators, it per-
formed poorly on LA score. This demonstrates
an important point about parser scoring metrics –
that an algorithm designed to boost one measure of
quality can do so without necessarily raising per-
formance according to a different yardstick.

Part of the reason for this discrepancy may be
a quirk of the constituent voting algorithm that
constituent-based precision and recall scores gloss
over. The trees it produces are not guaranteed
to be well-formed under the grammars of any of
the members of the ensemble; if, for example,
the parsers cannot reach consensus about the exact
boundaries of a verb phrase, a sentence without a
VP constituent will be produced, leading to some
unusual attachments at a higher level. Unlike the
constituent-based approach, LA scoring tends to
favour parses that are accurate at the upper lev-
els of the tree, so an increase in precision and re-
call without a corresponding increase in LA score
would be consistent with this kind of oddity.

5.3 Parse selection

An alternative approach to integrating the out-
puts of a parser ensemble is whole parse selection
on a per-sentence basis, which has the potential
added advantage over hybridisation methods like
constituent voting that the gaps in trees described
above cannot occur. The most obvious way to
guess the best candidate parse for a sentence is to
assume that the true parse lies close to the centroid
of all the candidates in parse space, and then, using
some similarity or distance measure between the
candidates, pick the candidate that is most similar
to (or least distant from) all the other parses.

We implemented three parse switchers, two
based on constituent overlap, and one based on lin-
eage similarity between pairs of parses. Similarity
and distance switching (Henderson, 1999) take the

http://textmining.cryst.bbk.ac.uk/acl05/


Ensemble scores on GENIA, all sentences parsed successfully
Ensemble LA score Precision Recall F-measure Mean X % perfect
Collins-Charniak fallback 90.74 80.51 76.44 78.42 2.16 14.00
Bikel-Charniak fallback 91.08 81.31 76.96 79.08 2.05 14.11

Table 5: Ensemble scores on GENIA for Collins(3, 2, 1)→Charniak and Bikel(0.9.9, 0.9.8)→Charniak
fallback cascades.

Ensemble scores on GENIA, all sentences parsed successfully
Algorithm LA score Precision Recall F-measure Mean X % perfect
Majority vote ensemble 90.21 83.41 77.50 80.35 1.71 14.68

Table 6: Ensemble scores on GENIA for parse combination by majority constituent voting.

number of constituents that each parse has in com-
mon, and the number that are proposed by either
one but not both parsers, as measures of similar-
ity and distance respectively. Levenshtein switch-
ing, a novel method, uses the sentence-mean LA
scores between parses as the similarity measure.
In all methods, the parse with the maximum total
pairwise similarity (minimum total pairwise dis-
tance) to the set of rival parses for a sentence is
chosen. In no case were POS tags taken into ac-
count when calculating similarity, as they would
have made the Collins and Bikel parsers artificially
similar.

The results of these experiments are shown in
Table 7. All three methods achieved compara-
ble improvements overall, with the similarity and
distance switching routines favouring recall and
precision respectively (both differences significant
at p < 0.0001). Note however that the winning
LA score for Levenshtein switching is not a sta-
tistically significant improvement over the other
switching methods.

6 Error analysis

All of the parser integration methods discussed
above make the assumption that the parsers
in an ensemble will suffer from independently-
distributed errors, to a greater or lesser extent.
Simple fallback cascades rely on their individual
members failing on different sentences, but the
more sophisticated methods inSection 5.2and
Section 5.3are all ultimately based on the princi-
ple that agreement between parsers indicates con-
vergence on the true parse. Although the perfor-

mance gains we achieved with such methods are
statistically significant, they are nonetheless some-
what unimpressive compared to the 30% reduction
of recall errors and 6% reduction of precision er-
rors reported for the best ensemble techniques in
Henderson and Brill(1999) on the PTB.

This led us to suspect that the parsers in the en-
sembles were making similar kinds of errors on
GENIA, perhaps not across the board, but cer-
tainly often enough that consensus methods pick
incorrect constituents, and centroid methods con-
verge on incorrect parses, with a significant fre-
quency. To investigate this phenomenon, and
more generally to tease apart the reasons for each
parser’s performance drop on GENIA, we mea-
sured the precision and recall for each parser on
each production rule over GENIA and the PTB.
We then gathered the 25 most common production
rules in GENIA and compared the scores achieved
by each parser on each rule to the same rule in
PTB, thus drawing attention to parser-specific is-
sues and more widespread systematic errors. We
also collected closest-match data on each missed
production in GENIA, for each parser, and calcu-
lated substitution frequencies for each production
rule. This enabled us to identify both the sources
of performance problems, and to a certain extent
their causes and connotations. These data tables
have been omitted for space reasons, since the dis-
cussion below covers the important lessons learnt
from them, but they are available as supplemen-
tary materials on ourwebsite.

http://textmining.cryst.bbk.ac.uk/acl05/


Ensemble scores on GENIA, all sentences parsed successfully
Algorithm LA score Precision Recall F-measure Mean X % perfect
Similarity switching 91.34 81.73 78.01 79.83 1.97 14.85
Distance switching 91.35 82.10 77.72 79.85 1.92 15.08
Levenshtein switching 91.39 81.83 77.51 79.61 1.95 14.74

Table 7: Ensemble scores on GENIA for parse selection by three centroid-distance algorithms

6.1 Bikel parser errors

Despite the similar overall LA score and F-
measure for the two versions on parseable sen-
tences only, there are signs that the differences
between them run deeper than failure rates. The
newer version’s higher precision and lower cross-
ing brackets per sentences, along with lower re-
call, indicates that it is generating slightly more
conservatively than the older version, on GENIA
at least; these scores are much closer on the PTB.
Also, the production rule scores show one unex-
pected phenomenon – the older version is actu-
ally considerably better at labelling noun phrases
of the form( NP ) as parenthetical expressions
in GENIA (F = 81.07) than in PTB (F = 61.29),
as are the Collins and Charniak parsers, while the
newer version is much worse at this task in GENIA
(F = 42.36). On closer inspection, however, 84%
of the occurrences ofPRN → ( NP )mislabelled
by the newer version are instead marked asPRN
→ ( NN ) productions of the same width – in
other words, an intermediateNP constituent cov-
ering just a single noun has in these cases been
removed, and the noun ‘promoted’ to a direct
daughter of thePRN constituent. Although this
demonstrates a difference in the modelling of noun
phrases between the two versions, it is unlikely
that such a difference would alter the meaning of
a sentence. Furthermore, it must be noted thatPRN
→ ( NP ) is much more common in GENIA
than in PTB, so the improvements achieved by the
other parsers may be partially accidental; even if
they simply assumed that every phrase in paren-
theses is a noun phrase, they would do better on
this production in GENIA as a result.

6.2 Charniak parser errors

The Charniak parser goes from state-of-the-art on
PTB to comparatively poor on GENIA. It ranks

lowest in both LA score and F-measure when only
successfully parsed sentences are taken into ac-
count, and still only achieves mediocre perfor-
mance when the other parsers’ scores cover failed
sentences too, despite not failing on any sentences
itself. This discrepancy can be explained by a lack
of biomedical vocabulary available to its built-in
POS tagger. Although it tags GENIA with an ac-
curacy of 85% across all word classes, it achieves
only 63% on theNN (singular/mass noun) class.
This is the most numerous single class in GENIA,
and that which many domain-specific single-word
terms and components of multi-word phrases be-
long to.

The knock-on syntactic effects of this disability
can be traced in the leaf-ancestor metrics, where
the parser scores an impressive mean of 91.50 for
correctly-tagged words, compared to just 80.71
for incorrectly-tagged words. A similar effect can
be seen in the statistics for productions withNN
tags on the right hand side.NP → NN and NP
→ NN NN are identified with respective recalls
of only 33% and 19% in GENIA, for example,
as opposed to 90% and 82% in the PTB. More
than 40% of mislabelledNP → NN productions
in GENIA were identified instead asNP → NNP
(proper noun) orNP → NNS (plural noun) pro-
ductions by the parser, and the implications of
these mistakes for information extraction tasks do
not seem great, especially since the majority of
single-word noun phrases of particular interest in
this domain are likely to be genes, proteins etc.
that can be tagged independently by a dedicated
named-entity recognizer. The story is different
for mislabelledNP → NN NN productions, where
29% are mistaken forNP → JJ NN productions,
a substitution that one can imagine causing greater
semantic confusion. On the other hand, the Char-
niak parser goes from being the worst at identify-



ing ADVP → RB productions (single-word adverb
phrases) on the PTB (F = 87.68) to being the best
at this task on GENIA (F = 87.06).

Accuracy issues notwithstanding, Charniak’s is
still the most robust of all the parsers, failing
on none of the supplied sentences in either cor-
pus. This may reflect a strategy of ’making-do’
when an exact parse cannot be derived; it de-
ployed more general-purposesFRAG (fragment)
and X (unknown/unparseable) constituents com-
bined than any other parser, and even a handful
of INTJ (interjection) phrases that no other parser
used in GENIA. Of course, such productions are
not always correct – there are actually no inter-
jections in GENIA – but from an information ex-
traction point of view, a rough parse may be better
than no parse at all, especially if the inclusion of
such inexact labels can be reflected in a reduced
level of confidence or trustworthiness for the sen-
tence.

6.3 Collins parser errors

We noted inSection 4.2that the Collins mod-
els achieved successively better performance on
GENIA once parse failures were discounted. Con-
sidering individual production rules, however, the
trends are not so clear-cut. There are rules that do
follow this overall pattern, such asS → NP VP,
which model 3 actually assigns more effectively
on GENIA (F = 88.98) than it does on the PTB
(F = 88.79). However, there are several common
productions where model 3’s accuracy degrades
more than model 2’s, most of which begin withNP
→ .... Most of these are found in the PTB more
effectively by model 3 than model 2, which sug-
gests over-fitting; these specific increases in per-
formance have apparently come at the expense of
portability. Note, however, the caveat regarding
noun phrases below.

6.4 Common trends

In addition to these parser-specific observations,
there are various phenomena that are common to
all or most of the parsers. Due to slight differ-
ences in the annotation of co-ordinated structures
between the GENIA and PTB guidelines, the cor-
rect generation of noun-phrase conjunctions (NP
→ NP CC NP) proved much harder on GENIA,

with all parsers having problems with identifica-
tion of the boundaries of the conjunction in the
text, and often with correct labelling of the con-
stituents involved too. Cases where eachNP is
a single word were handled relatively well, with
the essentially equivalentNN CC NN construction
often being proposed instead, but more complex
cases caused widespread difficulty.

More surprisingly, the labelling of single-word
noun and adjective phrases (NP → NN andAJDP
→ JJ), both of which are significantly more fre-
quent in GENIA, seemed challenging across the
board. The most commonly-occurring error in-
volved subsumption by a wider constituent with
the same label, apart from the errors of vocabulary
for the Charniak parser as described above. How-
ever, for correctly-tagged adjectives and nouns,
there are many situations where this will not make
any difference to the sense of a sentence. For ex-
ample, in a production likeNP → DT JJ NN, the
adjective still has its modificatory effect on the
noun without needing to be placed within anADJP
phrase of its own, and the noun is entirely capable
of acting as the head of the phrase without being
nested within anNP sub-phrase.

Similar effects occurred frequently with longer
phrases containing nouns, such asNP → DT NN
or NP → NN NN, where the most common errors
were also subsumptions by wider noun phrases.
Although the GENIA annotators warn that ”when
noun phrase consists with sequence of nouns[sic] ,
the internal structure is not neccessarily shown,”6

which must account for some of the noun handling
problems, such subsumptions suggest that the op-
posite may be occurring too – that there are cases
where the parsers are failing to generate internal
structure within noun phrases.

Prepositions were involved in many of the prob-
lematic cases, both on the left-hand and right-hand
sides of productions, and understandably so. The
disambiguation of prepositional attachment is a
continuing problem in parser design, and meth-
ods that take into account lexical dependencies be-
tween head words will be less effective when the
words in question are out-of-domain and thus un-

6http://www-tsujii.is.s.u-tokyo.ac.jp/
~genia/topics/Corpus/manual-for-bracketing.
html

http://www-tsujii.is.s.u-tokyo.ac.jp/~genia/topics/Corpus/manual-for-bracketing.html
http://www-tsujii.is.s.u-tokyo.ac.jp/~genia/topics/Corpus/manual-for-bracketing.html
http://www-tsujii.is.s.u-tokyo.ac.jp/~genia/topics/Corpus/manual-for-bracketing.html


seen in training. The productionNP → NP PP
PP is a good example. The most common error
for all parsers was to produceNP → NP PP at the
same span of words in the sentence, indicating that
one of the prepositional phrases is frequently at-
tached at the wrong level. The second most com-
mon error was to substitute a shorterNP, suggest-
ing that one or both of thePPs were excluded.
Such errors are potentially of more serious seman-
tic importance than differences of opinion about
how to mark up the internal structure of noun-only
phrases.

7 Discussion

Although the performance gains achieved by our
parser integration methods are statistically signif-
icant, and illustrative of some important points
about parser behaviour and syntactic evaluation
methodologies, it is doubtful that the results are
good enough to justify deploying these techniques
on large amounts of text, at least in their current
form. The small increases in accuracy are prob-
ably outweighed by the additional computational
costs. The fallback cascades provided the same
protection from parse failure, with better perfor-
mance than the widest-coverage parser alone, and
in a production system most sentences would only
need to be parsed by the first parser in the cascade.

However, the parser integration idea as a whole
is not without its merits; we determined that an or-
acle picking the best sentences on GENIA would
achieve an LA score of 93.56, so there is still room
for improvement if the algorithms can be made
smarter. Although our analysis of the parsers’
mistakes on GENIA indicated that the ideal of
independently-distributed errors which underpins
these integration methods does not hold true, the
very fact that we can analyse their behaviour pat-
terns in such detail suggests that a sufficiently
well-designed ensemble could in principle learn
the circumstances under which each parser could
be trusted on a given corpus.

Furthermore, there are additional ways in which
an ensemble might assist with practical NLP is-
sues. While analysing the data from the parse se-
lection algorithms, we discovered that the centroid
distances for thewinning parses, scaled by sen-

tence size where necessary, correlate fairly well
(|r| ≈ 0.5) with those parses’ true LA scores and F-
measures (seeSection 7.2). We developed a sim-
ilar measurement for constituent voting based on
the level of consensus among the ensemble mem-
bers – the number of constituents winning a ma-
jority vote divided by the number of distinct can-
didate constituents – which showed a comparable
degree of correlation. This provides an answer
to our initial question about the extent to which
parser agreement signals parse correctness. Pre-
sumably the major limiting factor on these corre-
lations is the presence of widespread systematic
errors like those described inSection 6.4.

7.1 Engineering issues

As noted previously, the Charniak parser takes raw
text and performs tokenisation and POS tagging
internally. While this may seem like an advanta-
geous convenience, in practice it is the source of
considerable extra work, besides being the cause
of avoidable parse errors. The tokenisation stan-
dards encoded by Charniak did not match those as-
sumed by either the GENIA corpus, or indeed the
PTB extract, although problems were much more
widespread in the GENIA. Words containing em-
bedded punctuation were frequently split into mul-
tiple tokens, so these word-internal symbols had
to be converted into textual placeholders before
parsing and converted back afterwards. The some-
what idiosyncratic conventions of the GENIA cor-
pus did not help (differentiation/activation being
tagged as one token for example) but the fact that
similar issues occurred on the newspaper corpus
(e.g. withUS$ or 81-year-old ) suggests that mak-
ing assumptions about the ‘correct’ way to to-
kenise text is a bad policy in any domain.

Even when working on in-domain data, it seems
like a bad design decision to assume the parser will
be able to match the performance of a state-of-the-
art POS tagger on unseen text. The Bikel parser
can operate in either mode, which is a much more
flexible policy. In all fairness, however, it would
probably be fairly trivial for an interested C++ de-
veloper to bypass the Charniak parser’s tokeniser
and tagger and recompile it.

A different kind of engineering issue is that of
computation time. Parsing is a slow process in any



case, and ensemble methods compound this prob-
lem. However, parsing is a canonically easy task
to perform in parallel, since (at this level of under-
standing at least) each sentence has no dependen-
cies on the previous, so even the parse integration
step can be split across multiple pipelines. We in-
tend to run pilot studies on the scalability of paral-
lel distributed parsing techniques, both on an IBM
Blade Center cluster running Beowulf Linux, and
a heterogeneous network of Windows PCs in their
spare hours, in order to determine the feasibility
and comparative attractiveness of each approach.

7.2 Future work

We mentioned above that there is a significant cor-
relation between the distance of a winning parse
from the centroid and its accuracy compared to
the gold standard. In an IE or other text min-
ing scenario, one could use these values as esti-
mators of trustworthiness for each parse – empir-
ical measures indicating how reliable to consider
it. We would like to explore this idea further, as it
can provide an extra level of understanding which
is missing from many IE techniques, and could
be easily employed in the ranking of extracted
‘facts’ or the resolution of contradictions. Since
LA scores can be calculated per word or per any
arbitrary region of the sentence, the potential even
for rating the trustworthiness of different clauses
or relationships individually cannot be ignored.

We have been experimenting with training a
neural network to pick the best parse for a sentence
based only on the pairwise Levenshtein distances
between the candidate parses, in the hope that it
can learn what decision to make based on patterns
of agreement between the parsers, rather than just
picking the parse which is most similar to all the
others as the current methods do. So far, however,
it has been unable to exceed the performance of
the unsupervised methods, which suggests that ad-
ditional features may need to be considered.

A complementary approach to parse integra-
tion would be to merge the PTB with an anno-
tated biomedical corpus and retrain a parser from
scratch. This proposition appears more attractive
in the light of the production rule frequency differ-
ences between GENIA and the PTB, and will be-
come more effective as the GENIA treebank grows

and the Mining the Bibliome project begins post-
ing official releases. In the meantime, we have be-
gun investigating the potential for using biological
named-entity and ontological-class information to
help rule out unlikely parses, for example in cases
where an entity name is bisected by a constituent
boundary.
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