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Abstract 

TextTrees, introduced in (Newman, 
2005), are skeletal representations 
formed by systematically converting 
parser output trees into unlabeled 
indented strings with minimal 
bracketing.  Files of TextTrees can be 
read rapidly to evaluate the results of 
parsing long documents, and are easily 
edited to allow limited-cost treebank 
development. This paper reviews the 
TextTree concept, and then describes 
the implementation of the almost 
parser- and grammar-independent 
TextTree generator, as well as auxiliary 
methods for producing parser review 
files and inputs to bracket scoring tools. 
The results of some limited 
experiments in TextTree usage are also 
provided. 

1 Introduction  

The TextTree representation was developed to 
support a limited-resource effort to build a new 
hybrid English parser1. When the parser reached 
significant apparent coverage, in terms of 
numbers of sentences receiving some parse, the 
need arose to quickly assess the quality of the 
parses produced, for purposes of detecting 
coverage gaps, refining analyses, and 
measurement.   But this was hampered by the use 
of a detailed parser output representation.   

The two most common parser-output displays 
of constituent structure are: (a) multi-line labeled 
and bracketed strings, with indentation indicating 
dominance, and (b) 2-dimensional trees.  While 
these displays are indispensable in grammar 
development, they cannot be scanned quickly.  
Labels and brackets interfere with reading.  And, 

                                                 
1 The hybrid combines the chunker part of the fast, 
robust XIP parser (Aït-Mokhtar et al., 2002) with an 
ATN-style parser operating primarily on the chunks. 

 
although relatively flat 2D node + edge trees for 
short sentences can be grasped at a glance, for 
long sentences this property must be 
compromised. 

In contrast, for languages with a relatively 
fixed word order, and a tendency to post-
modification, TextTrees capture the 
dependencies found by a parser in a natural, 
almost self-explanatory way.   For example:  

    They 
    must have 
        a clear delineation 
            of 
                [roles, 
                 missions, 
                 and 
                 authority].         

Indented elements are usually right-hand post-
modifiers or subordinates of the lexical head of 
the nearest preceding less-indented line. Brackets 
are generally used only to delimit coordinations 
(by [...]), nested clauses (by {…}), and identified 
multi-words (by |…|). 

Reading a TextTree for a correct parse is 
similar to reading ordinary text, but reading a 
TextTree for an incorrect parse is jarring. For 
example, the following TextTree for a 33-word 
sentence exposes several errors made by the 
hybrid parser:  
 
  But 
      by |September 2001|, 
  the executive branch 
      of 
          [the U.S. government, 
           the Congress, 
               the news media, 
           and 
           the American public] 
  had received 
     clear warning 
         that 
            {Islamist terrorists 
             meant 
                to kill 
                    Americans 
                       in high numbers}.      



TextTrees can be embedded in bulk parser 
output files with arbitrary surrounding 
information.  Figure 1 shows an excerpt from 
such a file, containing the TextTree-form results 
of parsing the roughly 500-sentence "Executive 
Summary" of the 9/11 Commission Report 
(2004) by the hybrid parser, with more detailed 
results for each sentence accessible via links. 
(Note: the links in  Figure 1 are greyed to 
indicate that they are not operational in the 
illustration.)  

Such files can also be edited efficiently to 
produce limited-function treebanks, because the 
needed modifications are easy to identify, labels 
are unnecessary, and little attention to bracketing 
is required. Edited and unedited TextTree files 
can then be mapped into files containing fully 
bracketed strings (although bracketed differently 

than the original parse trees), and compared by 
bracket scoring methods derived from Black et al 
(1991). 

Section 2 below examines the problems 
presented by detailed parse trees for late-stage 
parser development activities in more detail.  
Section 3 describes the inputs to and outputs 
from the TextTree generator, and Section 4 the 
generator implementation. Section 5 discusses 
the use of the TextTree generator in producing 
TextTree files for parser output review and 
TextTreebank construction, and the use of 
TextTreebanks in parser measurement. The 
results of some limited experiments in TextTree 
file use are provided in Section 6.  Section 7 
discusses related work and Section 8 explores 
some directions for further exploitation of 
TextTrees. 

 
 
6 (3) We have come together with a unity of purpose because our nation demands it. best more 
chunks  

 
    We 
    have come together 
        with a unity 
            of purpose 
        because 
            {our nation 
             demands 
                 it}. 
 

7 (15) September 11 , 2001 , was a day of unprecedented shock and suffering in the history of the 
United States . best more chunks  
 
    |September 11 , 2001|, 
    was 
        a day 
            of 
                [unprecedented shock 
                 and 
                 suffering] 
                     in the history 
                         of the United States. 
 

8 (1) The nation was unprepared . best more chunks  
 
    The nation 
    was 
        unprepared. 
 

Figure 1. A TextTree file excerpt



               
Figure 2. An LFG c-structure 

 
2   Problems of Detailed Parse Trees 

This section examines the readability problems 
posed by conventional parse tree representations, 
and their implications for parser development 
activities.  

As noted above, parse trees are usually 
displayed using either 2-dimensional trees or 
fully bracketed strings.   Two dimensional trees 
are intended to provide a clear understanding of 
structure. Yet because of the level of detail 
involved in many grammars, and the problem of 
dealing with long sentences, they often fail in 
this regard.  Figure 2 illustrates an LFG c-
structure, reproduced from King et al. (2000), for 
the 7 word sentence "Mary sees the girl with the 
telescope."  Similar structures would be obtained 
from parsers using other popular grammatical 
paradigms. The amount of detail created by the 
deep category nesting makes it difficult to grasp 
the structure by casual inspection, and the tree in 
this case is actually wider than the sentence.  

Grammar-specific transformations have been 
used in the LKB system to simplify displays 
(Oepen et al., 2002).  But there are no truly 
satisfactory approaches for dealing with the 
problem of tree width, that is, for presenting 2D 

trees so as to provide an "at-a-glance" 
appreciation of structure for sentences longer 
than 25 words, which are very prevalent.2 The 
methods currently in use or suggested either 
obscure the structure or require additional actions 
by the reader.   Allowing trees to be as wide as 
the sentences requires horizontal scrolling.  
Collapsing some subtrees into single nodes 
(wrapping represented token sequences under 
those nodes) requires repeated expansions to 
view the entire parse.  Using more of the display 
space by overlapping subtrees vertically 
interferes with comprehension because it 
obscures dominance and sequence. In Figure 2, 
for example, the period at the end of the 
sequence is the second constituent at the top.  For 
a longer sentence, a coordinated constituent 
might be placed here as well.  Such 
unpredictable arrangements impede reading, 
because the reader does not know where to look

                                                 
2 Casual records of parser results for many English 

non-fiction documents suggest an average of about 20 
words per sentence, with a standard deviation of about 
11.   
 



S (NP-SBJ Stokely) 
    (VP says 
          (SBAR  0   
               (S (NP-SBJ stores) 
                    (VP revive 
                           (NP (NP specials) 
                                  (PP like 
                                        (NP (NP three cans) 
                                               (PP of 
                                                     (NP peas)) 
                                                (PP for 
                                                 (NP 99 cents ))))))))) 

Figure 3. A Penn Treebank Tree 
 

The other conventional parse tree 
representation is as a fully-bracketed string, 
usually including category labels and, for display 
purposes, using indentation to indicate 
dominance.  Figure 3 shows such a tree, drawn 
from a Penn Treebank annotation guide (Bies et 
al., 1995), shown with somewhat narrower 
indentation than the original.  Even though the 
tree is in the relatively flat form developed for 
use by annotators, the brackets, labels, and depth 
of nesting combine to prohibit rapid scanning.   

However, it should be noted that this format is 
the source of the TextTree concept. Because by 
eliminating labels, null elements, and most 
brackets, and further flattening, the more 
readable TextTree form emerges: 
 
Stokely 
says 
    {stores 
     revive 
         specials 
             like three cans 
                 of peas 
                 for 99 cents} 

2.1   Implications 

The conventional parse tree representations 
discussed above can be a bottleneck in parser 
development, most importantly in checking 
parser accuracy with respect to current focus 
areas and in extending coverage to new genres or 
domains.   For these purposes, one would like to 
review the results of analyzing collections of 
relatively long (100+ sentence) documents.  But 
unless this can be done quickly, a parser 
developer or grammar writer is tempted to rely 
on statistics with respect to the number of 

sentences given a parse, and declare victory if a 
high rate of parsing is reported.  

Another approach to assessing parser quality 
is to rely on treebank-based bracket scoring 
measures, if treebanks are available in the 
particular genre.  This can also can be a pitfall, as 
bracket scores tend to be unconsciously 
interpreted as measures of full-sentence parse 
correctness,  which they are not.   

On the other hand, treebank-based 
measurements can play a useful secondary role 
in evaluating parser development progress and in 
comparing parsers.  But if insufficient 
treebanked material is available for the relevant 
domains and/or genres, a custom treebank must 
be developed.  This process generally consists of 
two phases: (a) a bootstrapping phase in which 
an existing parser is applied to the corpus to 
produce either a single ''best'' tree, or multiple 
alternative trees, for each sentence, and then (b) a 
second phase in which annotators approve or edit 
a given parse tree, select among alternative trees, 
or manually create a full parse tree when no 
parse exists.  All of the second phase alternatives 
are difficult given conventional parse-tree 
representations.  For example, experiments by 
Marcus et al. (1993) associated with the Penn 
Treebank indicated that for the first annotation 
pass ''At an average rate of 750 words per hour, a 
team of five part-time annotators …'', i.e., a bit 
more than a page of this text per hour.  Aids to 
selecting among alternative 2D trees can be 
given in the form of differentiating features 
(Oepen et al., 2002), but their effectiveness in 
helping to select among large trees differing in 
attachment choices is not clear. 

Another activity impeded by conventional 
parse tree representations is regression testing. 
As a grammar increases in size, it is advisable to 
frequently re-apply the grammar to a large test 
corpus to determine whether recent changes have 
had negative effects on accuracy. While the 
existence of differences in output can be detected 
by automatic means, one would like to assess the 
differences by quickly comparing the divergent 
parses, which is difficult to do using detailed 
parse displays for long sentences. 

  Finally, an activity that is rarely discussed 
but is becoming increasingly important is 
providing comprehensible parser demonstrations. 
A syntactic parser is not an end-in-itself, but a 



building block in larger NLP research and 
development efforts.  The criteria for selecting a 
parser for a project include both the kind of 
information provided by the parser and parser 
accuracy.  However, current parser output 
representations are not geared to allowing 
potential users to quickly assess accuracy with 
respect to document types of interest. 

 
3   The TextTree Generator: Externals 

TextTrees are generated by an essentially 
grammar-independent processor from a 
combination of  

(a) parser output trees that have been put into a 
standard form that retains the grammar-specific 
category labels and constituents, but whose 
details conform to the requirements of a parser-
independent tool interface, and, 

 (b) a set of grammar-specific <category, 
directive> pairs, e.g., "<ROOT, Align>".  Each 
pair specifies a default formatting for 
constituents in the category, specifically whether 
their sub-constituents are to be aligned vertically, 
or concatenated relative to a marked point, with 
subsequent children indented.  These defaults are 
used in the absence of overriding factors such as 
coordination.   

The directives used are very simple ones, 
because the simpler the formatting rules, the 
more likely it is that outputs can be accurately 
checked for correctness, and edited conveniently 

It is assumed that the parser output either 
includes conventional parse trees, or that such 
trees can be derived from the output.  This 
assumption covers many grammatical 
approaches, such as CG, HPSG, LFG, and TAG.  

The logical configuration implied by these 
inputs is shown in Figure 4. It includes a parser-
specific adaptor to convert parser-output trees 
into a standard form.  The adaptor need not be 
very large; for the hybrid parser it consists of 
about 75 lines of Java code. 

The subsections below discuss the standard 
ParseTree form, the directives that have been 
identified to date and their formatting effects, 
and the treatment of coordination.   

3.1   Standard ParseTrees 

A standard ParseTree consists of recursively 

 
  Figure 4: Logical Configuration.   

 
nested subtrees, each representing a constituent 
C, and each indicating: 
� A grammar-specific category label for C.  
� Whether C should be considered the head of 

its immediately containing constituent P for 
formatting purposes. Generally, this is the 
case if C is, or dominates, the lexical head of 
P, but might differ from that to obtain some 
desired formatting effects. As heads are 
identified by most parsers, this marker can 
usually be set by parser-specific rules 
embedded in the adaptor. 

� Whether C is a coord_dom, that is, whether 
it immediately dominates the participants in 
a coordination. 

� If C is a leaf, the associated token,  and 
� (optionally) whether C is a multi-word. 

3.2    Formatting Directives 

To generate TextTrees for a particular grammar,   
a <category, directive> pair is provided for each 
category that will appear in a ParseTree for the 
grammar. The directive specifies how to format 
the children of constituents in the category in the 
absence of lengthy coordinations. 

The definitions of the directives make use of 
one additional locator for a constituent, its 
real_head.  While we generally want the 
directives to format constituents relative to their 
lexical heads, in some grammars, those heads are 
deeply nested.  For example, a tree for an NP 
might be generated by rules such as:  

NPz => DET NPy 
NPy => ADJ* NPx 
NPx => NOUN PP* 



where each of the underscored terms are heads, 
but the real_head of NPz is the head NOUN of 
NPx. More generally, the real_head of a 
constituent C is the first constituent found by 
following the head-marked descendants of C 
downward until either (a) a leaf or headless 
constituent is reached, or (b) a post-modified 
head-marked constituent is found.   

Using this definition, the current formatting 
directives are as follows: 

Align:  Align specifies that all children of the 
constituent are vertically aligned. Thus, for 
example, a directive <ROOT, Align>, would 
cause a constituent generated by a rule ''ROOT 
=> NP, VP'' to be formatted as: 

formatted NP 
formatted VP 

ConcatHead: ConcatHead concatenates the 
tokens of a constituent (with separating blanks) 
up to and including its real_head (as defined 
above), and indents and aligns the post-modifiers 
of the real_head.  For example, given the 
directive ''<NP, ConcatHead>'', a constituent 
produced by the rules: 

NPz => PreMod* NPx 
NPx => NOUN PostMods* 

would be formatted as: 
All-words-in-PreMod* NOUN 

Formatted PostMod1 
Formatted PostMod2 

ConcatCompHead: ConcatCompHead 
concatenates everything up to and including the 
real_head, and concatenates with that the results 
of a ConcatHead of the first post-modifier of the 
real_head (if any). 

This directive is motivated by rules such as 
''PP => P NP'', where the desired formatting 
groups the head with words up to and including 
the lexical head of the single complement, e.g., 
         of the man 
        in the moon  

ConcatSimpleComp: ConcatSimpleComp 
concatenates material up to and including the 
real_head and, if first post-modifying constituent 
is a simple token, concatenates that as well, and 
then aligns and indents any further post-
modifiers of the real_head.  It thus formats noun 
phrases for languages that routinely use simple 
adjective post-modifiers.   For example (Sp.): 

  La casa blanca 
       que ... 

ConcatPreHead: This directive concatenates 
material, if any, before the real_head, and then if 
such material exists, increases the indent level.  It 
then aligns the following component. The 
directive is intended for formatting clauses that 
begin with subordinating conjunctions, 
complementizers, or relative pronouns, where the 
grammar has identified the following sentential 
component as the head, but it is more readable to 
indent that head under the initial constituent. In 
practice, in such cases it is easier to just alter the 
head marker within the adaptor.  

3.3  Treatment of Coordination 

The directives listed in the previous subsection 
are defaults that specify the handling of 
categories in the absence of coordination. A set 
of coordinated constituents are always indicated 
by surrounding square brackets ([ ]). If the 
coordination occurs within a requested 
concatenation, then if the width of coordination 
is less than a predesignated size, the non-token 
constituents of the coordination are bracketed, as 
in: 

[{Old men} and women] 
    in the park. 

However, if the width of the coordination 
exceeds that size, the concatenation is converted 
to an alignment to avoid line wrap, for example,  
          He 
     gave 
         sizeable donations 
             to 
                 [the church, 
                  the school, 
                  and 
                  the new museum 
                      of art.]                                              

4   TextTree Generator:  Implementation  

TextTrees are produced in two steps. First, a 
ParseTree is processed to form one or more 
InternalTextTrees (ITTs), which are then mapped 
into an external TextTree. Most of the work is 
accomplished in the first step; the use of a 
second step allows the first to focus on logical 
structure, independent of many details of 
indentation, linebreaks, and punctuation.  

We begin by describing ITTs and their 
relationship to external TextTrees, to motivate 



the description of ITT formation.  We then 
describe the mapping from ParseTrees to ITTs. 

4.1   Transforming ITTs to Strings 

Figure 5 shows a simple ITT and its associated 
external TextTree.  The node labels of an ITT are 
called the "headparts" of their associated 
subtrees.  Headparts may be null, simple strings, 
or references to other ITTs.  

If the headpart of a subtree is null, like that of 
the outermost subtree of Figure 5, the external 
TextTrees for its children are aligned vertically 
at the current level of indentation. Also, if the 
subtree is not outermost, the aligned sequence is 
bracketed. 

However, if the headpart of a subtree is a 
simple string, as in the other subtrees of Figure 5 
ITT, that string is printed at the current level of 
indentation, and the external TextTrees for its 
children, if any, are aligned vertically at the next 
level of indentation.  

The headpart of a subtree may also reference 
another ITT, as illustrated in Figure 6.  Such a 
reference headpart  signals the bracketed 
inclusion of the referenced tree, which has a null 
headpart, at the current indentation level.  This 
permits the entire referenced tree to be post-
modified. The brackets used depend on a feature 
associated with  the referenced tree, and are 
either [ ], if the referenced tree represents a 
coordination, or { } otherwise. 

Pseudo-code for the ITT2String function that 
produces external TextTrees from ITTs is shown 
in Figure 7.  The code omits the treatment of 
non-bracketing punctuation; in general, care is 
taken to prefix or suffix punctuation to tokens 
appropriately.  
 
4.2    Transforming ParseTrees to ITTs 

To transform ParseTrees into ITTs, subtrees 
are processed recursively top-down using the 
function BuildITT of Figure 8.   Its arguments 

are an input subtree p, and a directive override, 
which may be null. It returns an ITT for p.  

BuildITT sets the operational directive d as 
either the override argument, if that is non-null, 
or to the default directive for the category of p. 

Then, if d is ''Align'', the result ITT has a null 
headpart and, if p is a coord_dom, the isCoord 
property of the ITT is set.  The children of the 
result ITT are the ITTs of p's children.  

However, if d specifies that an initial sequence 
of p is to be concatenated, BuildITT uses the 
recursive function Catenate (Figure 9) to obtain 
the initial sequence if possible.  
 

However, a simple transformation

to TextTrees of  parse trees

However,
a simple transformation

of  parse trees
to TextTrees

can expedite
these activities.

can expedite

these activities

 
       Figure 5: Simple InternalTextTree. 
 

However, a simple transformation ����T1

these activities

T1 (coord)

significantly 
simplifies

and generally 
expedites

However,
a simple transformation
[significantly simplifies
and
generally expedites]

these activities.

Figure 6: ITT with long coordination 



Figure 7. The ITT2String Function              Figure 9. The Catenate Function 
 

 

Figure 8. The BuildITT Function

Function ITT2String(ITT s, String indent) 
                               returns String    
// indent is a string of blanks, eol is end-of-line 
Set ls to null 
If s has a null headpart, set nextIndent to indent 
       + 1 blank  (adds space for [ or { bracket ) 
Otherwise  set nextIndent to indent + N blanks, 
      where N is the constant indent increment 
If s has a headpart reference 
        set nextIndent to nextIndent + 1 blank 

If s has children, set ls to the lines produced 
        by ITT2String (ci, nextIndent) 
                     for each child ci of s 

If s has a headpart string hs 
       Return the concatenation of  
                 indent, hs, eol, ls 
Else if s has a headpart reference to an ITT s2 
      Return the concatenation of  
                ITT2String(s2, indent), ls 
Else  (s has a null headpart ) 
       Remove initial & trailing whitespace from ls  
       If s is a coordination, set pfx to [ and sfx to ]  
       Else set pfx to {and sfx to } 
       Return the concatenation of  
               nextIndent – 1 blank, pfx, ls, sfx, eol 

Function Catenate (ParseTree p,  
       ParseTree r)  returns <Code, String> 
1. Set result = null, code = incomplete. 
     If p is a leaf, result = the token of p. 
2. for each child ci of p,   
    while code ≠ complete: 
     If ci = r, set code = complete. 
     Set <ccode, cstring> to result of 
            Catenate(ci, r) 
      If (ccode = failed) return <failed, null> 
      If p is a coord_dom & cstring not 1 word  
            // indicate coordinated within concat 
            Suffix ''{cstring}'' to result. 
     Otherwise suffix ''cstring'' to result 
     If ccode = complete, set code = complete 
3. Finally,  
     If p = r, set code = complete. 
     if p is a coord_dom and 
         the length of  result  > LONG_CONST, 
         return <failed, null>. 
    Else if p is a coord_dom  
           Return <code, ''[result]''> 
    Else if p is a multi-word, 
            return <code, ''|result|''> 
     Otherwise return <code, result> 

Function BuildITT(ParseTree p,  Directive override)  returns ITT 
Set  d to override if non-null, otherwise to the default category directive for p. 
1. If p is a leaf or a multiword: 

- return an ITT whose headline concatenates the tokens spanned by p, and which has no children.  
If p is a multiword, bracket the headline by |.  

2. Else if  d is Align  
return an ITT with a null headpart, and children built by invoking BuildITT(ci, null) for each 
child ci of p. If p is a coord_dom, indicate that the ITT isCoord. 

3. Otherwise concatenate:  
a) Find the nested subtree s that contains the rightmost element r to be concatenated according to d. 
b)  Set the pair <ccode, cstring> to the result of Catenate (p, r). 
c) If ccode ≠ ''failed'',   return ITT with headpart = cstring, and children formed by BuildITT(ci, null) 
     for each child ci of s after r.  . 
d) Otherwise return a directive-dependent tree aligning the contained coordination, for example:   
    For ConcatHead:  i. Let p’  be like p but without the right siblings of the real_head of  p 
                                 ii. Return an ITT with headpart referencing the  results of BuildITT (p’, Align)  
                                      and with children obtained from BuildITT(ci, null)  
                                                    for each right sibling ci of the  real_head of p  
    For ConcatCompHead:  Return an ITT obtained by invoking BuildITT(p, ConcatHead) 



Catenate takes two arguments: a ParseTree p 
whose initial sequence is to be concatenated, and a 
ParseTree r, beyond which the concatenation is to 
stop, based on the particular directive involved. It 
returns a pair <Code, String>.  The Code indicates 
if the concatenation succeeded, failed, or is 
incomplete. If the concatenation succeeded, 
BuildITT creates an ITT with a headpart string 
containing the concatenated sequence, and children 
consisting of ITTs of the right-hand siblings of r.  

Complex aspects of BuildITT and Catenate 
relate to coordinations within to-be-concatenated 
extents. The desired effect is to include short 
coordinations within the concatenation, while 
bracketing its boundaries and non-leaf 
components, e.g. '' [{Old men} and women]'', but 
aligning the elements of longer coordinations.  

So if Catenate (in step 3) determines that the 
string resulting from a coordination is very long, it 
directly or indirectly returns an indicator to 
BuildITT that the concatenation failed. BuildITT 
(step 3d) then returns an ITT structured so that the 
sub-constituents that were to be concatenated are 
eventually shown as aligned, using different 
methods dependent on the directive d.   

For example, if d is ConcatHead or 
ConcatSimpleComp, the result ITT contains:  

a) a headpart reference to an ITT built by 
BuildITT(p’,Align) , where p’ is like p but 
without the right-hand siblings of its 
real_head, and  

b) children consisting of the ITTs for those 
right-hand siblings, if any.  

5   TextTree Files and TextTreebanks 

Previous sections focused on the production of 
individual TextTrees by the TextTree generator.  
This section considers some uses of the generator 
and auxiliary methods within parser development. 

A particularly useful approach for producing 
parser output review material using the generator is 
sketched in Figure 10.  In that approach, the best 
parses for a document are converted to standard 
ParseTrees expressed as XML entities and written 
to a file of such entities, interspersed with arbitrary 
other information. A separate, parser-independent 
process that includes the TextTree generator then 
creates a TextTree file by substituting TextTrees 
for the ParseTree entities.  

 
Figure 10. TextTree file creation 

 
Such a process may be used to create the 

HTML TextTree file of Figure 1, which is a 
standard output form for the hybrid parser. The 
TextTrees are surrounded by HTML  <pre> and 
</pre> tags to maintain the spacing and linebreaks 
produced by the generator.  The interspersed 
information in this case consists of the sentence 
text and links to detailed displays of the best parse 
found, other parses with high preference scores, as 
well as the initial chunks. 

Reviewing parse results for a document then 
consists of reading the TextTree file and, 
depending on circumstances, either simply noting 
or classifying the errors found for later debugging, 
or investigating them further via the links to the 
detailed displays. 

5.1   TextTreebanks 

 Whatever the limitations (Carroll et al., 1998) of 
the various treebank-based bracket scoring 
measures derived from the Parseval approach of 
Black et al. (1991), they can be useful in 
monitoring parser development progress and in 
comparing the capabilities of different parsers, at 
least if there are large differences in scores.  

But, as noted earlier, obtaining a fully labeled 
treebank for a specific domain or genre is generally 
a very labor-intensive process. A potentially less 
costly alternative is to create informal treebanks 
consisting of TextTree files corrected by manual 
editing. 



Both corrected and uncorrected TextTree files 
can be converted to files consisting of fully-
bracketed strings by a simple script that considers 
only the contained TextTrees.  The script brackets 
the TextTrees so as to retain the explicit brackets, 
and to add brackets around each subtree, i.e., 
around each sequence of a line and the lines, if 
any, indented beneath it, directly or indirectly.  

For example, a full bracketing of the TextTree 
of Figure 5 would be: 

{However,}  
{a simple transformation  
 {of parse trees} 
 {to text trees}} 
{can expedite {these activities}} 

The actual bracketed strings produced by the 
script are ones acceptable as input to the EVALB 
bracket scoring program (Sekine and Collins, 
1997) with all brackets expressed as parentheses, 
and brackets added around words (apparently 
required but subsequently discarded by the 
program).  Also, most punctuation is removed,  to 
avoid spurious token differences. Then bracketed 
files deriving from noncorrected and corrected 
TextTree files can be submited to EVALB to 
obtain a bracket score.  

 Lest this approach be dismissed as overly 
sketchy, we note that the resulting brackets are 
similar to those resulting from a proposal by 
Ringger et al. (2004) for neutralizing differences 
between parser outputs and treebanks by 
bracketing maximal head projections, plus some 
additional mechanisms to further minimize 
brackets. 

5.2    Preventing Bracketing Errors 

To avoid bracketing errors resulting from 
imprecise spacing in manually edited trees, the 
TextTree indentations used are relatively wide. 
With indentations of five spaces, it is likely that an 
imprecisely positioned line will be placed closer to 
the desired level of indentation, so that an 
intelligent guess can be made as to the intent.   For 
example, in:  

Line a 
    Line b 
        Line c 
 Line e?? 

the misplaced Line e begins at a point closer to the 
beginning  of Line a than Line b.  It is then  
reasonable to guess that Line e is sibling to Line a. 

6    Experiments 

This section describes two limited experiments to 
assess the efficiency of reviewing parser outputs 
for accuracy using TextTrees.  One of the 
experiments also measures the efficiency of 
TextTreebank creation 

6.1  First Experiment 

The document used in the first experiment was the 
roughly 500-sentence "Executive Summary" of the 
9/11 Commission Report (2004). After parsing by 
the hybrid parser, the expected TextTree file, 
excerpted in Figure 1, was created, reproducing 
each sentence and, for parsed sentences, the 
TextTree string for the best parse obtained, and a 
links to the detailed two-dimensional tree 
representation.   

Of  the 503 sentences,  averaging 20 words in 
length, 93% received a parse. However, reviewing 
the TextTree file revealed that at least 191 of the 
470 parsed sentences were not parsed correctly, 
indicating an actual parser accuracy for the 
document of at most 55%. 

Reviewing the TextTrees required 92 minutes, 
giving a review rate of 6170 words per hour, 
including checking detailed parses for sentences 
where errors might have lain in the TextTree 
formatting.  

That review rate can be compared to the results 
of Marcus et al. (1993) for post-annotation 
proofreading of  relatively flat, indented, but fully 
labelled and bracketed trees. Those results 
indicated that:  

"... experienced annotators can proofread 
previously corrected material at very high 
speeds. A parsed subcorpus …was recently 
proofread at an average speed of approximately 
4,000 words per annotator per hour. At this 
rate…, annotators are able to find and correct 
gross errors in parsing, but do not have time to 
check, for example, whether they agree with all 
prepositional phrase attachments." 
While the two tasks are not exactly comparable, 

if we assume that little or no editing was required 



in proofreading, the ballpark improvement of 50% 
is encouraging. 

6.2  Second Experiment 

For the second experiment, we used the CB01 file3 
of the Brown Corpus (Francis and Kucera, 1964), 
and reviewed both the TextTree file and then, 
separately, the detailed 2D parse trees also 
produced.  

While the parser reported that 91 of the 103 
sentences, or 88%, received a parse, the review of 
the TextTree file determined that at most only 50 
sentences, or 48.5%, received a fully correct parse.  
The review of the detailed parse trees revealed 
three additional errors.  

 The comparison of review times was less 
decisive in this experiment, with the rate for the 
TextTree review being 5733 words per hour, and 
that for the detailed 2D representation 4410 words 
per hour.   

However, there were non-quantifiable 
differences in the reviews.  One difference was that 
the TextTree review was a fairly relaxed exercise, 
while the review of the 2D representations was 
done with a conscious attempt at speed, and was 
quite stressful—not something one would like to 
repeat.   Another difference was that scanning the 
TextTree file provided a far better cumulative 
sense of the kinds of problems presented by the 
document/genre, which might be further exploited 
by a more interactive format (e.g., using HTML 
forms) allowing users to classify erroneous parses 
by error type. 

The experiment was then extended to check the 
extent to which TextTree files could efficiently 
edited for purposes of limited-function treebank 
creation.  

For this purpose, to minimize typing when a 
sentence had no complete parse, the TextTree file 
included the list of chunks identified by the XIP 
parser.  A similar strategy could be used with 
parsers that, when no complete parse is found, 
return an unrelated sequence of adjacent 
constituent parses.  This is done by some statistical 
and finite-state-based parsers, as well as by parsers 
employing the "fitted parse" method of Jensen et 
al. (1983) or the "fragment parse" method 
described by Riezler et al. (2002). 

                                                 
3 With part-of-speech tags removed 

Editing the TextTrees for the 104 sentences, 
with an average sentence length of 21 words, 
required 83 minutes, giving a rate of 1518 words 
per hour.  This might be compared with the 
average of 750 words per hour for the initial 
annotation of parses in the Penn Treebank 
experiment (Marcus et al., 1993) mentioned 
earlier.  

After the TextTreebank was created, the 
bracketing script described in section 5.1 was 
applied both to the original TextTree file and to the 
TextTreebank, and the results were submitted to 
the EVALB program, which reported a bracketing 
recall of 71%, a bracketing precision of 84%, and 
an average crossing bracket count of 1.15.4  Two 
sentences were not processed because of token 
mismatches. As expected, these scores were much 
higher than the percentage of sentences correctly 
parsed. 

7   Related Work 

Most natural language parsers include some 
provision for displaying their outputs, including 
parse tree representations, and/or other material, 
such as head-dependent relationships, feature 
structures, etc. These displays are generally 
intended for deep review of  parse results, and thus 
attempt to maximize information content 

Work on reducing review effort usually takes 
place in the context of developing treebanks by 
selection among, and/or manual correction of, 
parser outputs.  In this area,  the most relevant 
work may be the experiments of Marcus et al. 
(1993) using bracketed, indented trees. They found 
that annotator efficiency required eliminating  
many detailed brackets and category labels from 
the parser outputs presented.   Other approaches 
rest, in whole or in part,  on selecting among 
alternative two dimensional parse trees,  such as 
the distinguishing-feature-augmented  approach of  
Oepen et al. (2002), discussed in Section 2.  As 
discussed in that section, however, two-
dimensional tree displays are problematical for 
large trees, and it is not clear to what extent 
distinguishing feature information can expedite 
selecting among attachment choices.   

                                                 
4 Sentences not receiving complete parses were 
submitted to EVALB without any brackets, contributing 
zero counts to the total # of correct constituents recalled. 



Other related work deals with reducing 
measured differences between parser outputs and 
treebanks due solely to grammar style. As 
discussed in section 5, the bracketed material used 
in treebank-based measurement by Ringger et al. 
(2004) is similar to the bracketed material that 
would result from systematically bracketing 
TextTrees.  

Finally, work by Walker (2001),  intended not 
for parser/grammar development, but to facilitate 
reading and improve retention, produces text 
formats that bear some similarity to TextTrees, but 
are more closely attuned to spoken phrasing than 
syntactic form. The method uses complex 
segmentation and indentation strategies generally 
based on a combination of punctuation and  closed-
class words. 
 
8   Directions for Further Development 

We have described an implemented method for 
presenting parser outputs permitting fast visual 
inspection of the results of parsing long 
documents, as well as  efficient editing to create 
informal treebanks.  Although, because of their 
flattened, skeletal nature, TextTrees can hide some 
parser errors, we strongly believe, based on 
extended usage,  that the convenience of reviewing 
TextTree files can contribute significantly to parser 
development efforts.  

However, TextTrees are best suited to languages 
tending to a fixed word order and post-
modification.  To improve results for languages 
and language aspects that do not fall into this 
category, TextTrees  might be augmented with  
highlighting and color to indicate syntactic 
functions.   One way this could be done in a parser- 
and grammar-independent way is by adding a 
string-valued representation feature to the standard 
ParseTrees, and an additional set of directives to 
map the feature values to representation 
alternatives.  For example, a subtree might be 
annotated with the feature Rep = "subject", and the 
additional  directives might include <"subject", 
"blue">.   Experimentation is needed to determine 
the usability of this approach.  

Another topic to explore is the use of TextTrees 
in the creation of corpora annotated by deeper 
syntactic or semantic information. Because such 
information is generally expressed in forms that 
are even less readable than parse trees, a useful 

bootstrapping practice is to allow annotators to 
approve, or select among, parser output trees 
connected with the deeper information (King et al., 
2003).   TextTrees might be used to facilitate this 
process, with annotators either (a) interactively 
selecting among alternative TextTrees or, because 
there may be many alternatives, (b) editing a 
TextTree file containing at most one parse for each 
sentence (possibly chosen arbitrarily) and using the 
result for offline selection.   Also, a parser used in 
the bootstrapping might refer to bracketed 
TextTreebanks to avoid pruning away elements of 
correct parses at intermediate points in parsing.  

A third direction for further work is in extending 
the TextTree approach to deal with outputs of 
dependency-based parsers that do not produce 
constituent trees. While this should be a natural 
extension, an alternative system of features and 
directives would seem to be needed. 
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