1

TextTree Construction for Parser and Treebank Development

Paula S. Newman
newmanp@acm.org

Abstract
TextTrees, introduced in (Newman,
2005), are skeletal representations

formed by systematically converting
parser output trees into unlabeled
indented strings with minimal
bracketing. Files of TextTrees can be
read rapidly to evaluate the results of
parsing long documents, and are easily
edited to allow limited-cost treebank
development. This paper reviews the
TextTree concept, and then describes
the implementation of the almost
parser- and grammar-independent
TextTree generator, as well as auxiliary
methods for producing parser review
files and inputs to bracket scoring tools.
The results of some limited
experiments in TextTree usage are also
provided.

I ntroduction

although relatively flat 2D node + edge trees for
short sentences can be grasped at a glance, for
long sentences this property must be
compromised.

In contrast, for languages with a relatively
fixed word order, and a tendency to post-
modification, TextTrees capture the
dependencies found by a parser in a natural,
almost self-explanatory way. For example:

They
must have
a clear delineation
of
[roles,
m ssi ons,
and
aut hority].

Indented elements are usually right-hand post-
modifiers or subordinates of the lexical head of
the nearest preceding less-indented line. Brackets
are generally used only to delimit coordinations
(by [...]), nested clauses (by {...}), and identified
multi-words (by |...|).

Reading a TextTree for a correct parse is

The TextTree representation was developed &milar to reading ordinary text, but reading a
support a limited-resource effort to build a new extTree for an lnc_orrect parse is jarring. For
hybrid English parsér When the parser reachegex@mple, the following TextTree for a 33-word
significant apparent coverage, in terms ofentence exposes several errors made by the

numbers of sentences receiving some parse, th¥orid parser:

need arose to quickly assess the quality of theg

parses produced, for purposes of detecting by | Sept ember 2001],
coverage gaps, refining analyses, and the executive branch
measurement. But this was hampered by the use ©f

of a detailed parser output representation.

The two most common parser-output displays
of constituent structure are: (a) multi-line lalekle
and bracketed strings, with indentation indicating
dominance, and (b) 2-dimensional trees. While
these displays are indispensable in grammar
development, they cannot be scanned quickly.
Labels and brackets interfere with reading. And,

[the U.S. governnent,
t he Congress,
the news nedi a,
and
the Anerican public]
had received
cl ear warning
t hat
{Islam st terrorists
nmeant
to kill
Aneri cans
i n hi gh nunbers}.

! The hybrid combines the chunker part of the fast,
robust XIP parserXit-Mokhtar et al., 2002) with an
ATN-style parser operating primarily on the chunks.

TextTrees can be embedded in bulk parsénan the original parse trees), and compared by
output files with arbitrary surrounding bracket scoring methods derived from Black et al
information. Figure 1 shows an excerpt fron{1991).
such a file, containing the TextTree-form results Section 2 below examines the problems
of parsing the roughly 500-sentence "Executivpresented by detailed parse trees for late-stage
Summary" of the 9/11 Commission Reporparser development activities in more detail.
(2004) by the hybrid parser, with more detaile@ection 3 describes the inputs to and outputs
results for each sentence accessible via linkkom the TextTree generator, and Section 4 the
(Note: the links in Figure 1 are greyed tayenerator implementation. Section 5 discusses
indicate that they are not operational in th¢he use of the TextTree generator in producing
illustration.) TextTree files for parser output review and

Such files can also be edited efficiently torextTreebank construction, and the use of
produce limited-function treebanks, because thHEextTreebanks in parser measurement. The
needed modifications are easy to identify, labelgsults of some limited experiments in TextTree
are unnecessary, and little attention to bracketirfje use are provided in Section 6. Section 7
is required. Edited and unedited TextTree filediscusses related work and Section 8 explores
can then be mapped into files containing fullsome directions for further exploitation of
bracketed strings (although bracketed differentlyextTrees.

6 (3) We have come together with a unity of purgeseause our nation demand$istmore
chunks

We
have come together
with a unity
of purpose
because
{our nation
demands

it}.

7 (15) September 11, 2001 , was a day of unpre¢edeshock and suffering in the history of the
United Stateshestmorechunks

| Sept ember 11 , 2001

was
a day
of
[unprecedent ed shock
and
suffering]

in the history
of the United States.

8 (1) The nation was unprepareackstmorechunks

The nation
was
unpr epar ed.

Figure 1. A TextTree file excerpt

cCS 23z FOOT : 1034

/\

Sad jCfinl:29e PERIOD:117

SCFinl 1994 .2118

HP 2427 VPallfind:992
NF'adL 1358 VP [F‘.Lln]“a?d-
NF'ZETICl +1353 MVLFi r‘n] :462 - NP:965

/\‘*\
NI’-'lHEI:BSO seesi2l D524 NF'adg:.i‘BS?
Ma rL 3 t.hel 38 HF’zer-;}:--S-;Eu - F'F'-SOE
N:|543 P:568 HP 771

| | T~

girl 50 withisb D120 NHPad j : 763

the:73 HNPzero:i6d2

Mi1e39

telescope 92

Figure 2. An LFG c-structure

2 Problemsof Detailed Parse Trees trees so as to provide an "at-a-glance"
appreciation of structure for sentences longer
This section examines the readability problemgan 25 words, which are very prevalérithe
posed by conventional parse tree representatiomsethods currently in use or suggested either
and their implications for parser developmengbscure the structure or require additional actions
activities. by the reader. Allowing trees to be as wide as
As noted above, parse trees are usualiie sentences requires horizontal scrolling.
displayed using either 2-dimensional trees aCollapsing some subtrees into single nodes
fully bracketed strings. Two dimensional treegwrapping represented token sequences under
are intended to provide a clear understanding @fose nodes) requires repeated expansions to
structure. Yet because of the level of detailiew the entire parse. Using more of the display
involved in many grammars, and the problem ofpace by overlapping subtrees vertically
dealing with long sentences, they often fail innterferes with comprehension because it
this regard. Figure 2 illustrates an LFG cobscures dominance and sequence. In Figure 2,
structure, reproduced from King et al. (2000), fofor example, the period at the end of the
the 7 word sentence "Mary sees the girl with theequence is the second constituent at the top. For
telescope.” Similar structures would be obtaineg longer sentence, a coordinated constituent
from parsers using other popular grammaticahight be placed here as well. Such
paradigms. The amount of detail created by theénpredictable arrangements impede reading,

deep category nesting makes it difficult to graspecause the reader does not know where to look
the structure by casual inspection, and the tree in

this case is actually wider than the sentence.
Grammar-specific transformations have been

used in the LKB system to simplify displays 2 casual records of parser results for many English
(Oepen et al., 2002). But there are no trulgon-fiction documents suggest an average of about 20
satisfactory approaches for dealing with thevords per sentence, with a standard deviation of about
problem of tree width, that is, for presenting 2011

S (NP-SBJ Stokely) sentences given a parse, and declare victory if a

(VP says high rate of parsing is reported.
(SBAR 0 Another approach to assessing parser quality
(S (NP-SBJ stores) is to rely on treebank-based bracket scoring
(vP rﬁl‘l’a'veNP a measures, if treebanks are available in the
(((PP I?lfeema) particular genre. This can also can be a pit@all,
(NP (NPdbrcans) bracket scores tend to be unconsciously
(BP interpreted as measures of full-sentence parse
(NP peas)) correctness, which they are not.
(RIP On the other hand, treebank-based
(NP 99 cents)))))))) measurements can play a useful secondary role
Figure 3. A Penn Treebank Tree in evaluating parser development progress and in

comparing parsers. But if insufficient

The other conventional parse tredreebanked material is available for the relevant
representation is as a fully-bracketed stringjomains and/or genres, a custom treebank must
usually including category labels and, for displaype developed. This process generally consists of
purposes, using indentation to indicatéwo phases: (a) a bootstrapping phase in which
dominance. Figure 3 shows such a tree, dravam existing parser is applied to the corpus to
from a Penn Treebank annotation guide (Bies etoduce either a single "best" tree, or multiple
al.,, 1995), shown with somewhat narrowealternative trees, for each sentence, and thea (b)
indentation than the original. Even though theecond phase in which annotators approve or edit
tree is in the relatively flat form developed fora given parse tree, select among alternative trees,
use by annotators, the brackets, labels, and deth manually create a full parse tree when no
of nesting combine to prohibit rapid scanning. parse exists. All of the second phase alternatives

However, it should be noted that this format isre difficult given conventional parse-tree
the source of the TextTree concept. Because bgpresentations. For example, experiments by
eliminating labels, null elements, and mosMarcus et al. (1993) associated with the Penn
brackets, and further flattening, the mordreebank indicated that for the first annotation

readable TextTree form emerges: pass "At an average rate of 750 words per hour, a
team of five part-time annotators ...", i.e., a bit
St okel y more than a page of this text per hour. Aids to
Says{stores selecting among alternative 2D trees can be
revi ve given in the form of differentiating features
speci al s (Oepen et al., 2002), but their effectiveness in
like three cans helping to select among large trees differing in
of peas attachment choices is not clear.

for 99 cent ANl -
or 99 cents} Another activity impeded by conventional

2.1 Implications parse tree representations is regression testing.
As a grammar increases in size, it is advisable to
The conventional parse tree representatiorieequently re-apply the grammar to a large test
discussed above can be a bottleneck in parsmrpus to determine whether recent changes have
development, most importantly in checkinghad negative effects on accuracy. While the
parser accuracy with respect to current focusxistence of differences in output can be detected
areas and in extending coverage to new genreslyr automatic means, one would like to assess the
domains. For these purposes, one would like thfferences by quickly comparing the divergent
review the results of analyzing collections oparses, which is difficult to do using detailed
relatively long (100+ sentence) documents. Buarse displays for long sentences.
unless this can be done quickly, a parser Finally, an activity that is rarely discussed
developer or grammar writer is tempted to relyput is becoming increasingly important is
on statistics with respect to the number oproviding comprehensible parser demonstrations.
A syntactic parser is not an end-in-itself, but a

building block in larger NLP research ang
development efforts. The criteria for selecting
parser for a project include both the kind o
information provided by the parser and parsq
accuracy. However, current parser outp
representations are not geared to allowin
potential users to quickly assess accuracy wi
respect to document types of interest.

Parser/grammar specific | Parser independent
................ :

'-.-w "..'.

Parser + grammar |

< Parse Tree

| ADAPTOR |

TextTree

Generator
3 TheTextTree Generator: Externals : 2
: HHXXX
TextTrees are generated by an essential Category |
. ’ Directives : XXXXX

grammar-independent from
combination of

(a) parser output trees that have been put into a
standard form that retains the grammar-specific

category labels and constituents, but WhosneSted subtr_ees_, e_ach representing a constituent
, and each indicating:

details conform to the requirements of a parser- A grammar-specific category label for C.

independent tool interface, and, . = Whether C should be considered the head of

(b) a set of grammar-specific <category, ., _ . diatel e : P
directive> pairs, e.g., "<ROOT, Align>". Each its immediately containing constituent P for
' ' ’ formatting purposes. Generally, this is the

pair specifies a default formatting for e . .
constituents in the category, specifically whether case if C.'S’ or_domlnates, the IeX|ca_I head of
' P, but might differ from that to obtain some

their sub-constituents are to be aligned vertically : .
. . . desired formatting effects. As heads are
or concatenated relative to a marked point, with . o .
identified by most parsers, this marker can

subsequent children indented. These defaults are e
. - usually be set by parser-specific rules
used in the absence of overriding factors such as .
embedded in the adaptor.

coordination. Whether C is aoord_dom that is, whether

processor

Figure 4: Logical Configuration.

The directives used are very simple ones',
because the simpler the formatting rules, the
more likely it is that outputs can be accurately
checked for correctness, and edited conveniently

it immediately dominates the participants in
a coordination.

If C is a leaf, the associated token, and
(optionally) whether C is a multi-word.

It is assumed that the parser output either
includes conventional parse trees, or that sugb Formatting Directives
trees can be derived from the output. This
assumption covers many grammaticalo generate TextTrees for a particular grammar,
approaches, such as CG, HPSG, LFG, and TAGa <category, directive> pair is provided for each
The logical configuration implied by thesecategory that will appear in a ParseTree for the
inputs is shown in Figure 4. It includes a parsegrammar. The directive specifies how to format
specific adaptor to convert parser-output tree®e children of constituents in the category in the
into a standard form. The adaptor need not kfhsence of lengthy coordinations.
very large; for the hybrid parser it consists of The definitions of the directives make use of
about 75 lines of Java code. one additional locator for a constituent, its
The subsections below discuss the standardal_head While we generally want the
ParseTree form, the directives that have beefirectives to format constituents relative to their
identified to date and their formatting effectsjexical heads, in some grammars, those heads are
and the treatment of coordination. deeply nested. For example, a tree for an NP
might be generated by rules such as:
NPz => DET_NPy
NPy => ADJ* NPx
NPx => NOUNPP*

3.1 Standard ParseTrees

A standard ParseTree consists of recursively

where each of the underscored terms ragads, ConcatPreHead: This directive concatenates
but thereal_headof NPz is the head NOUN of material, if any, before theeal_head and then if
NPx. More generally, thereal head of a such material exists, increases the indent lelel.
constituent C is the first constituent found byhen aligns the following component. The
following the headmarked descendants of Cdirective is intended for formatting clauses that
downward until either (a) a leaf or headlesbegin with subordinating conjunctions,
constituent is reached, or (b) a post-modifiedomplementizers, or relative pronouns, where the

headmarked constituent is found. grammar has identified the following sentential
Using this definition, the current formattingcomponent as the head, but it is more readable to
directives are as follows: indent that head under the initial constituent. In

Align: Align specifies that all children of the practice, in such cases it is easier to just dfier
constituent are vertically aligned. Thus, fotheadmarker within the adaptor.
example, a directive <ROOT, Align>, would
cause a constituent generated by a rule "ROGS Treatment of Coordination

=> NP, VP to be formatted as:
formatted NP The directives listed in the previous subsection

formatted VP are defaults that specify the handling of

ConcatHead: ConcatHead concatenates th&atedories in the absence of coordination. A set
tokens of a constituent (with separating blank f coordinated constituents are always indicated
up to and including itseal_head (as defined DY Surrounding square brackets ([]). If the

above), and indents and aligns the ost-modifieF@ordinaﬁo.n occurs within a reqyes'ged
) 9 P concatenation, then if the width of coordination

of the real_head For example, given the . . .
directive "<NP, ConcatHead>", a constituerit Ies_s than a prede5|gn_ate(_j size, the non-token
produced by the rules: pqnstltuents of the coordination are bracketed, as
NPz => PreMod* NPx n:
NPx => NOUNPostMods*
would be formatted as:
All-words-in-PreMod* NOUN
Formatted PostMod1
Formatted PostMod?2

[{Od men} and woren]
in the park.
However, if the width of the coordination
exceeds that size, the concatenation is converted
to an alignment to avoid line wrap, for example,

ConcatCompHead: ConcatCompHead gave
concatenates everything up to and including the si zeabl e donati ons
real_head and concatenates with that the results to
of a ConcatHead of the first post-modifier of the [the church,
real_head(if any). the school,
This directive is motivated by rules such as ?Eg ew museum
"PP => PNP", where the desired formatting of art.]

groups the head with words up to and including

the lexical head of the single complement, €.9., 4 TextTree Generator: Implementation
of the man '

in the moon _ TextTrees are produced in two steps. First, a
ConcatSimpleComp: ConcatSimpleComp parseTree is processed to form one or more
concatenates material up to and including th@ternalTextTrees (ITTs), which are then mapped
real_headand if first post-modifying constituent jno an external TextTree. Most of the work is
is a simple token, concatenates that as well, a'&@complished in the first step; the use of a

then aligns and indents any further posiecond step allows the first to focus on logical
modifiers of thereal_head It thus formats noun g ,cture independent of many details of

phrases for languages that routinely use simplgqentation, linebreaks, and punctuation.
adjective post-modifiers. For example (Sp.): We begin by describing ITTs and their

La Casgugl anca relationship to external TextTrees, to motivate

the description of ITT formation.

We thenare an input subtreg, and a directiveoverride

describe the mapping from ParseTrees to ITTs. which may be null. It returns an ITT for

4.1 Transforming ITTsto Strings

. 0
Figure 5 shows a simple ITT and its assomatecr
external TextTree. The node labels of an ITT ai

called the "headparts" of their associate
subtrees. Headparts may be null, simple strin
or references to other ITTs.

If the headpart of a subtree is null, like that 06

the outermost subtree of Figure 5, the extern

TextTrees for its children are aligned verticall;&he initial sequence if possible

BuildITT sets the operational directiwk as

either theoverride argument, if that is non-null,

to the default directive for the categorypof
Then, ifd is "Align", the result ITT has a null
eadpart and, ip is acoord_dom the isCoord
roperty of the ITT is set. The children of the
sult ITT are the ITTs gf's children.

However, ifd specifies that an initial sequence
p is to be concatenated, BuildITUises the
cursive function Catenai&igure 9) to obtain

at the current level of indentation. Also, if the

[Tal

subtree is not outermost, the aligned sequence
bracketed.

However, if the headpart of a subtree is
simple string, as in the other subtrees of Figure
ITT, that string is printed at the current level o
indentation, and the external TextTrees for if
children, if any, are aligned vertically at the hex
level of indentation.

The headpart of a subtree may also referen
another ITT, as illustrated in Figure 6. Such
reference headpart signals the brackete

—

| Howéver, | | a simple transformation | | can expedite |
| of parse trees | | to TextTrees | |these activities |
However,

a sinple transformation
of parse trees
to TextTrees

can expedite
these activities.

inclusion of the referenced tree, which has a nul
headpart, at the current indentation level.

This

I Figure 5: Simple InternalTextTree.

permits the entire referenced tree to be pog*

modified. The brackets used depend on a featy
associated with the referenced tree, and 4§
either [], if the referenced tree represents
coordination, or { } otherwise.

[]
¥

|H0wever, ”asimpletransformation | |-)T1 |

Pseudo-code for the ITT2Strifgnction that
produces external TextTrees from ITTs is show
in Figure 7. The code omits the treatment d

non-bracketing punctuation; in general, care

these activities

However,
a sinple transformation
[significantly sinplifies

and
general |y expedites]
these activities.

| | T1 (coord)

taken to prefix or suffix punctuation to tokeng
appropriately.

4.2 Transforming ParseTreestoITTs

|

significantly
simplifies

l

generally
expedites

and

To transform ParseTrees into ITTs, subtrees

Figure 6: ITT with long coordination

are processed recursively top-down using the

function BuildITT of Figure 8. Its arguments

Function ITT2String(ITT s, String indent)
returns String

/[indent is a string of blanks, eol is end-of-ling
Setls to null
If shas a null headpart, sgxtindento indent

+ 1 blank (adds space for [or { bracket)
Otherwise semnextindentoindent+ N blanks,

where N is the constant indent increment
If s has a headpart reference

senhextindento nextindent+ 1 blank

Function Catenate (ParseTreep,
ParseTreer) returns<Code, String>
1. Setresult= null, code= incomplete.
If pis a leafresult=the token op.
2. for each chilati of p,
whilecode# complete:
If ci =r, setcode= complete.
Set <code, cstring to result of
Catenate(ci, 1)
If (ccode= failed) return <failed, null>

If shas children, sés to the lines produced If pis a coord_dom &stringnot 1 word
byl TT2String (ci, nextinden) /I indicate coordinated within concgt
for each child of s Suffix "gstring” to result

Otherwise suffix¢string' to result
If ccode= complete, setode= complete
3. Finally,
If p=r, setcode= complete.
if pis a coord_dom and
the length ofesult > LONG_CONST,
return <failed, null>.

If shas a headpart stririg
Return the concatenation of
indent, hseol,lIs
Else ifs has a headpart reference to an §ET
Return the concatenation of
ITT2String(s2 indent), Is
Else €has a null headpart o
Rimove initial & trgiling)J whitespace fram Else if p is a coord_dom
If sis a coordination, setfxto [andsfxto] Retu_rn sode_ [resulg™>
Else sapfx to {andsfxto } Elseifpisa multlll-word,"
Return the concatenation of retgrn sode “yesull”>
nextindent -1 blank pfx, Is, sfxeol Otherwise returncode, resuft

Figure 7. The ITT2String Function Figure 9. The Catenate Function

Function BuildI TT(ParseTreep, Directiveoverride returnsITT
Set d to overrideif non-null, otherwise to the default categoryediive forp.
1. If pisaleaf or a multiword:
- return an ITT whose headline concatenates the sogpanned bp, and which has no childre
If p is a multiword, bracket the headline by |.
2. Elseif disAlign
return an ITT with a null headpart, and childrerlthay invoking Buildl TT(ci, null) for each
child ci of p. If p is acoord_domijndicate that the ITT isCoord.
3. Otherwise concatenate:
a) Find the nested subtreé¢hat contains the rightmost elemerid be concatenated accordingito
b) Set the pairetode, cstring to the result oCatenate (p, 1).
c) If ccode# "failed”, return ITT with headpartcstring, and children formed bBuildI TT(ci, null)
for each childi of safterr. .
d) Otherwise return a directive-dependent treenalig the contained coordination, for example:
For ConcatHead: i. Let be likep but without the right siblings of theal_headof p
ii. Return an IWith headpart referencing the resultBoildI TT (p’, Align)
and with children obtained froBuildI TT(ci, null)
for each right siblingi of the real_headof p
For ConcatCompHead: Return an ITT obtainethiagking Buildl TT(p, ConcatHead)

Figure 8. The BuildITT Function

Catenatetakes two arguments: a ParseTiee
whose initial sequence is to be concatenated, an
ParseTree, beyond which the concatenation is td
stop, based on the particular directive involved.
returns a pair €ode, String. TheCodeindicates
if the concatenation succeeded, failed, or
incomplete. If the concatenation succeede
BuildITT creates an ITT with a headpart string

[bocument]

FARSER
uParse ‘% Cther
Trec

ADAPTOR |

'

¥ML Form
ParseTres

Category
Directi

[ParseTﬂee File]

FARSETREE FILE
PROCESSOR

TEXTTREE
GENERATOR

containing the concatenated sequence, and childj #Z_ - .. ™ ¥
consisting of ITTs of the right-hand siblingsrof any ¥MLAHTML IexdTree File
; il any ¥MLAHTML
Complex aspects of BuildlITTand _Catenate ar==lras “pre=
i . . =5Subtres Tag="Roat "= P
relate to coordinations within to-be-concatenate| | TewdTrae
. . . =fpre=
extents. The desired effect is to include sho| | =/FarsaTres= Pr
. . cy . X any ¥MLHTHL any KMLIHTRL
coordinations within the concatenation, whild | ZrgeeTrees Spre=
bracketing its boundaries and non-leg _/

components, e.g. " [{Old men} and women]", bu
aligning the elements of longer coordinations.
So if Catenate(in step 3) determines that the
string resulting from a coordination is very lorig, Such a process may be used to create the
directly or indirectly returns an indicator toHTML TextTree file of Figure 1, which is a
BuildITT that the concatenation failed. BuildITTstandard output form for the hybrid parser. The
(step 3d) then returns an ITT structured so that tiTextTrees are surrounded by HTML <pre> and
sub-constituents that were to be concatenated ampre> tags to maintain the spacing and linebreaks
eventually shown as aligned, using differenproduced by the generator. The interspersed
methods dependent on the directive information in this case consists of the sentence
For example, if d is ConcatHead or text and links to detailed displays of the besspar
ConcatSimpleComp, the result ITT contains: found, other parses with high preference scores, as
a) a headpart reference to an ITT built bywell as the initial chunks.
BuildITT(p’,Align), where p’ is likep but Reviewing parse results for a document then
without the right-hand siblings of its consists of reading the TextTree file and,
real_headand depending on circumstances, either simply noting
children consisting of the ITTs for thoseor classifying the errors found for later debugging
right-hand siblings, if any or investigating them further via the links to the
detailed displays.

Figure 10. TextTree file creation

b)

5 TextTreeFilesand TextTreebanks
5.1 TextTreebanks
Previous sections focused on the production of

individual TextTrees by the TextTree generatorWhatever the limitations (Carroll et al., 1998) of
This section considers some uses of the generatbe various treebank-based bracket scoring
and auxiliary methods within parser development.measures derived from the Parseval approach of

A particularly useful approach for producingBlack et al. (1991), they can be useful in
parser output review material using the generator finonitoring parser development progress and in
sketched in Figure 10. In that approach, the besdmparing the capabilities of different parsers, at
parses for a document are converted to standdedst if there are large differences in scores.
ParseTrees expressed as XML entities and writtenBut, as noted earlier, obtaining a fully labeled
to a file of such entities, interspersed with adrg treebank for a specific domain or genre is generall
other information. A separate, parser-independeatvery labor-intensive process. A potentially less
process that includes the TextTree generator theastly alternative is to create informal treebanks
creates a TextTree file by substituting TextTreesonsisting of TextTree files corrected by manual
for the ParseTree entities. editing.

Both corrected and uncorrected TextTree filethe misplaced Line e begins at a point closer ¢o th
can be converted to files consisting of fully-beginning of Line a than Line b. It is then
bracketed strings by a simple script that considersasonable to guess that Line e is sibling to kine
only the contained TextTrees. The script brackets _
the TextTrees so as to retain the explicit brackete EXxperiments
and to add brackets around each subtree, i.e.,.]] o)
around each sequence of a line and the Iines,TiF'S section dgs_crlbes two Il_mlt_ed experiments to
any, indented beneath it, directly or indirectly. assess the efficiency of reviewing parser outputs

For example, a full bracketing of the TextTredOr accuracy using TextTrees. ~One of the
of Figure 5 would be: experiments also measures the efficiency of

TextTreebank creation

{However,}
{a simple transformation 6.1 First Experiment

{of parse trees}

{to text trees}} The document used in the first experiment was the
{can expedite {these activities}} roughly 500-sentence "Executive Summary" of the

, 9/11 Commission Report (2004). After parsing by
The actual bracketed strings produced by the hyprid parser, the expected TextTree file,

script are ones acceptable as input to the EVAL@xcerpted in Figure 1, was created, reproducing
bracket scoring program (Sekine and Collingach sentence and, for parsed sentences, the
1997) with all brackets expressed as parenthes§gyiTree string for the best parse obtained, and a
and brackets added around words (apparenflyks to the detailed two-dimensional tree
required but subsequently discarded by threepresentation.

program). Also, most punctuation is removed, t0 of the 503 sentences, averaging 20 words in
avoid spurious token differences. Then bracketqgngih, 939 received a parse. However, reviewing
files deriving from noncorrected and correcteghe TexiTree file revealed that at least 191 of the
TextTree files can be submited to EVALB 10470 parsed sentences were not parsed correctly,

obtain a bracket score. o indicating an actual parser accuracy for the
Lest this approach be dismissed as overlyycument of at most 55%.

sketchy, we note that the resulting brackets are geyiewing the TextTrees required 92 minutes,
similar to those resulting from a proposal bX:]iving a review rate of 6170 words per hour,
Ringger et al. (2004) for neutralizing differencesciuding checking detailed parses for sentences
between parser outputs and treebanks ere errors might have lain in the TextTree
bracketing maximal head projections, plus SOMQrmatting.

additional mechanisms to further minimize Tpat review rate can be compared to the results
brackets. of Marcus et al. (1993) for post-annotation
proofreading of relatively flat, indented, butljul
labelled and bracketed trees. Those results

To avoid bracketing errors resulting fromindicated that:

imprecise spacing in manually edited trees, the -~ €Xperienced annotators can proofread
TextTree indentations used are relatively wide. Previously corrected material at very high

With indentations of five spaces, it is likely that speeds. A parsed subcorpus ...was recently
imprecisely positioned line will be placed closert Proofread at an average speed of approximately
the desired level of indentation, so that an 4000 words per annotator per hour. At this

intelligent guess can be made as to the interdr F rate..., annotators are able to find and correct

5.2 Preventing Bracketing Errors

example, in: gross errors in parsing, but do not have time to
Line a check, for example, whether they agree with all

Line b prepositional phrase attachments."
Line c While the two tasks are not exactly comparable,

Line e?? if we assume that little or no editing was required

in proofreading, the ballpark improvement of 50% Editing the TextTrees for the 104 sentences,

is encouraging. with an average sentence length of 21 words,
_ required 83 minutes, giving a rate of 1518 words
6.2 Second Experiment per hour. This might be compared with the

average of 750 words per hour for the initial

For the second experiment, we used the CBO1 fil nnotation of parses in the Penn Treebank

of the Brown Corpus (Francis and Kucera, 1964 - ;

and reviewed both the TextTree file and the ;[r)lsergnent (Marcus et al., 1993) mentioned
separately, the detailed 2D parse trees also After
produced.

While the parser reported that 91 of the 10
sentences, or 88%, received a parse, the review
the TextTree file determined that at most only 5
sentences, or 48.5%, received a fully correct parg
The review of the detailed parse trees revealea

thr?r(?]addnmnal _errors.f . i | sentences were not processed because of token
€ comparison Of Teview lMEes Was [€Spigmatches. As expected, these scores were much

decisive in th's experiment, with the rate for th igher than the percentage of sentences correctly
TextTree review being 5733 words per hour, an rsed

that for the detailed 2D representation 4410 words
per hour. .. 7 Related Work
However, there were non-quantifiable
differences in the reviews. One difference was thlost natural language parsers include some
the TextTree review was a fairly relaxed exercis@rovision for displaying their outputs, including
while the review of the 2D representations wagarse tree representations, and/or other material,
done with a conscious attempt at speed, and wasch as head-dependent relationships, feature
quite stressful—not something one would like tatructures, etc. These displays are generally
repeat. Another difference was that scanning thetended for deep review of parse results, and thu
TextTree file provided a far better cumulativeattempt to maximize information content
sense of the kinds of problems presented by thework on reducing review effort usually takes
document/genre, which might be further exploite@lace in the context of developing treebanks by
by a more interactive format (e.g., using HTMLselection among, and/or manual correction of,
forms) allowing users to classify erroneous parsggrser outputs. In this area, the most relevant
by error type. work may be the experiments of Marcus et al.
The experiment was then extended to check ti€993) using bracketed, indented trees. They found
extent to which TextTree files could efficientlythat annotator efficiency required eliminating
edited for purposes of limited-function treebanknany detailed brackets and category labels from
creation. the parser outputs presented. Other approaches
For this purpose, to minimize typing when &est, in whole or in part, on selecting among
sentence had no complete parse, the TextTree fikernative two dimensional parse trees, such as
included the list of chunks identified by the XIPthe distinguishing-feature-augmented approach of
parser. A similar strategy could be used witlDepen et al. (2002), discussed in Section 2. As
parsers that, when no complete parse is foundiscussed in that section, however, two-
return an unrelated sequence of adjacedimensional tree displays are problematical for
constituent parses. This is done by some statistidarge trees, and it is not clear to what extent
and finite-state-based parsers, as well as by fgarsdistinguishing feature information can expedite
employing the "fitted parse” method of Jensen e&klecting among attachment choices.
al. (1983) or the "fragment parse" method
described by Riezler et al. (2002).

the TextTreebank was created, the
racketing script described in section 5.1 was
lied both to the original TextTree file andlte t
xtTreebank, and the results were submitted to
e EVALB program, which reported a bracketing
call of 71%, a bracketing precision of 84%, and
average crossing bracket count of £.1%wo

* Sentences not receiving complete parses were
submitted to EVALB without any brackets, contributing
® With part-of-speech tags removed zero counts to the total # of correct constituents recalled.

Other related work deals with reducingbootstrapping practice is to allow annotators to
measured differences between parser outputs amgprove, or select among, parser output trees
treebanks due solely to grammar style. Asonnected with the deeper information (King et al.,
discussed in section 5, the bracketed material us2@d03). TextTrees might be used to facilitate this
in treebank-based measurement by Ringger et ptocess, with annotators either (a) interactively
(2004) is similar to the bracketed material thagelecting among alternative TextTrees or, because
would result from systematically bracketingthere may be many alternatives, (b) editing a
TextTrees. TextTree file containing at most one parse for each

Finally, work by Walker (2001), intended notsentence (possibly chosen arbitrarily) and usieg th
for parser/grammar development, but to facilitateesult for offline selection. Also, a parser used
reading and improve retention, produces texhe bootstrapping might refer to bracketed
formats that bear some similarity to TextTrees, buitextTreebanks to avoid pruning away elements of
are more closely attuned to spoken phrasing thaorrect parses at intermediate points in parsing.
syntactic form. The method uses complex A third direction for further work is in extending
segmentation and indentation strategies generatlye TextTree approach to deal with outputs of
based on a combination of punctuation and closedependency-based parsers that do not produce

class words. constituent trees. While this should be a natural
extension, an alternative system of features and
8 Directionsfor Further Development directives would seem to be needed.

We have described an implemented method f@éxcknowledgements

presenting parser outputs permitting fast visu . .
inspection of the results of parsing Iongallhe author is indebted to Tracy Holloway King,

%ohn Sowa, and the anonymous reviewers for their

documents, as well as efficient editing to creatf . .
informal treebanks. Although, because of theife"y. helpful c_omments and suggestions on earlier
! i grsions of this paper.

flattened, skeletal nature, TextTrees can hide sonf
parser errors, we strongly believe, based
extended usage, that the convenience of reviewi
TextTree files can contribute significantly to pars
development efforts.

However, TextTrees are best suited to languages
tending to a fixed word order and post-
modification. To improve results for languages
and language aspects that do not fall into this

category, TextTrees might be augmented with .
highlighting and color to indicate syntacticAnn Bies, Mark Ferguson, Karen Katz, and Robert

; : ; Maclintyre. 1995. Bracketing Guidelines for the
functions. One way this could be done in a parser :
and grammar-independent way is by adding a Treebank Il Style Penn Treebank Project.

string-valued representation feature to the stahd _ :
ParseTrees, and an additional set of directivesalrgo Bl_ack, S. Abney, D Fllcklng_er, C. Gdanlgc, R.
Grishman, P. Harrison, D. Hindle, R. Ingria, F.

map the feature values to representation 7 .

alternatives. For example, a subtree might be ‘gze"nlfk’ JI.BKSIaV?n_s,_M. L&bTerrgfm,ll\lil. Mir'ClBgSl'

annotated with the feature Rep = "subject”, and theAOu os,d ar; orini, ar;'t t'. Irza OWSKI. i ’

additional directives might include <"subject", procedure Tor quantitatively comparing the
syntactic coverage of english grammarsPioc

"blue">. E [tation i ded to determi
theuﬁsabilityxc?fetrrll?;e;pgrggclhs needed lo determine 1991 DARPA Speech and Natural Language
' Workshop 306-311.

Another topic to explore is the use of TextTrees
in the creation of corpora annotated by deeper
syntactic or semantic information. Because su
information is generally expressed in forms that
are even less readable than parse trees, a usef

erences

Salah Ait-Mokhtar, Jean-Pierre Chanod, and
Claude Roux. 2002. Robustness beyond
shallowness: incremental deep parsiNgtural
Language Engineeringd:121-144 Cambridge
University Press.

hn Carroll, Ted Briscoe, and Antonio SanFillipo.
1998. Parser Evaluation: a Survey and a New
Lﬁ’roposal. In Rubio et al., editorBroc First

International Conference on Language Conference on Linguistics (SCLAvailable at
Resources and EvaluatioBranada, Spaj47- http://www.hf.ntnu.no/scl/grammar_engineering

454. 9/11 Commission. 2004. Final Report of the

: National Commission on Terrorist Attacks upon

W'lgl%songrFor\?\,?]ClSczrr]gul;er&érﬁﬁeri\,ﬁgﬁielggtl’ the United States, Executive Summary.
http://helmer.aksis.uib.no/icame/brown/bcm.htm Avallable athttp:/www.qpoaccess.gov/o1 1

| Corpus available dtttp://nltk.sourceforge.net

Stephan Oepen, Dan Flickinger, Kristina

, . Toutanova, and Christopher Manning. 2002.
Karen Jensen, George Heidorn, Lance A. Miller, LinGO Redwoods: A Rich and Dynamic

Yael Ravin. 1983. Parse fitting and prose fixing: Treebank for HPSG,Proc Workshop on

Egttingtg hglg ;)rTig—;‘oirg(;ednesélomputational Treebanks and Linguistic Theories (TLTO02),
Inguistics9(3-4):147-160. Sozopol, Bulgaria

Tracy H. King, Stefanie Dipper, Anette Frank’Stephan Riezler, Tracy H. King, Ronald M.
Jonas Kuhn, and John Maxwell. 2000. \a01an Richard Crouch, John T. Maxwell, and
Ambiguity management in grammar writing. In 1o 3ohnson. 2002. Parsing the Wall Street
Erhard Hinrichs, Detmar Meurers, and Shuly j,na using a Lexical-Functional Grammar
Wintner, editors,Proc ESSLLI Workshop on 5 piscriminative Estimation Techniquésoc

Lingluistic . Theory_ .aﬂd Grammar 4oth Annual Meeting of the Assoc. for
Implementation-19, Birmingham, UK. Computational Linguistic$ACL), Philadelphia,

. . . 271-278.
Tracy H. King, Richard Crouch, Stefan Riezler,

Mary Dalrymple, and Ronald M. Kaplan. 2003 gric K. Ringger, Robert C. Moore, Lucy
The PARC 700 Dependency BanRroc. 4th yanderwende, Hisam Suzuki and Eugene
International ~ Workshop on Linguistically chamiak. 2004. Using the Penn Treebank to
Interpreted Corpora, at the 10th Conf of the Eygjuate Non-Treebank ParserBroc 2004
European Chapter of the ACBudapest. Language Resources and Evaluation

) o Conference (LREC)Lisbon, Portugal.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and
Beatrice Santorini. 1993. Building a Largesatoshi Sekine and Michael Collins. 1997. EvalB.
Annotated Corpus of English: The Penn ayailable athttp:/nip.cs.nyu.edu/evalb
TreebankComputational Linguistic49(2):313-
330. Randall C. Walker. 2001. Method and Apparatus

~ for Displaying Text Based Upon Attributes
Paula S. Newman. 2005. Abstract: TextTrees in Found Within the Text, U.S. Patent 6279017.

Grammar Developmentorkshop on Grammar
Engineering of the 2005 Scandinavian

