
TextTree Construction for Parser and Treebank Development

Paula S. Newman
newmanp@acm.org

Abstract

TextTrees, introduced in (Newman,
2005), are skeletal representations
formed by systematically converting
parser output trees into unlabeled
indented strings with minimal
bracketing. Files of TextTrees can be
read rapidly to evaluate the results of
parsing long documents, and are easily
edited to allow limited-cost treebank
development. This paper reviews the
TextTree concept, and then describes
the implementation of the almost
parser- and grammar-independent
TextTree generator, as well as auxiliary
methods for producing parser review
files and inputs to bracket scoring tools.
The results of some limited
experiments in TextTree usage are also
provided.

1 Introduction

The TextTree representation was developed to
support a limited-resource effort to build a new
hybrid English parser1. When the parser reached
significant apparent coverage, in terms of
numbers of sentences receiving some parse, the
need arose to quickly assess the quality of the
parses produced, for purposes of detecting
coverage gaps, refining analyses, and
measurement. But this was hampered by the use
of a detailed parser output representation.

The two most common parser-output displays
of constituent structure are: (a) multi-line labeled
and bracketed strings, with indentation indicating
dominance, and (b) 2-dimensional trees. While
these displays are indispensable in grammar
development, they cannot be scanned quickly.
Labels and brackets interfere with reading. And,

1 The hybrid combines the chunker part of the fast,
robust XIP parser (Aït-Mokhtar et al., 2002) with an
ATN-style parser operating primarily on the chunks.

although relatively flat 2D node + edge trees for
short sentences can be grasped at a glance, for
long sentences this property must be
compromised.

In contrast, for languages with a relatively
fixed word order, and a tendency to post-
modification, TextTrees capture the
dependencies found by a parser in a natural,
almost self-explanatory way. For example:

 They
 must have
 a clear delineation
 of
 [roles,
 missions,
 and
 authority].

Indented elements are usually right-hand post-
modifiers or subordinates of the lexical head of
the nearest preceding less-indented line. Brackets
are generally used only to delimit coordinations
(by [...]), nested clauses (by {…}), and identified
multi-words (by |…|).

Reading a TextTree for a correct parse is
similar to reading ordinary text, but reading a
TextTree for an incorrect parse is jarring. For
example, the following TextTree for a 33-word
sentence exposes several errors made by the
hybrid parser:

 But
 by |September 2001|,
 the executive branch
 of
 [the U.S. government,
 the Congress,
 the news media,
 and
 the American public]
 had received
 clear warning
 that
 {Islamist terrorists
 meant
 to kill
 Americans
 in high numbers}.

TextTrees can be embedded in bulk parser
output files with arbitrary surrounding
information. Figure 1 shows an excerpt from
such a file, containing the TextTree-form results
of parsing the roughly 500-sentence "Executive
Summary" of the 9/11 Commission Report
(2004) by the hybrid parser, with more detailed
results for each sentence accessible via links.
(Note: the links in Figure 1 are greyed to
indicate that they are not operational in the
illustration.)

Such files can also be edited efficiently to
produce limited-function treebanks, because the
needed modifications are easy to identify, labels
are unnecessary, and little attention to bracketing
is required. Edited and unedited TextTree files
can then be mapped into files containing fully
bracketed strings (although bracketed differently

than the original parse trees), and compared by
bracket scoring methods derived from Black et al
(1991).

Section 2 below examines the problems
presented by detailed parse trees for late-stage
parser development activities in more detail.
Section 3 describes the inputs to and outputs
from the TextTree generator, and Section 4 the
generator implementation. Section 5 discusses
the use of the TextTree generator in producing
TextTree files for parser output review and
TextTreebank construction, and the use of
TextTreebanks in parser measurement. The
results of some limited experiments in TextTree
file use are provided in Section 6. Section 7
discusses related work and Section 8 explores
some directions for further exploitation of
TextTrees.

6 (3) We have come together with a unity of purpose because our nation demands it. best more
chunks

 We
 have come together
 with a unity
 of purpose
 because
 {our nation
 demands
 it}.

7 (15) September 11 , 2001 , was a day of unprecedented shock and suffering in the history of the
United States . best more chunks

 |September 11 , 2001|,
 was
 a day
 of
 [unprecedented shock
 and
 suffering]
 in the history
 of the United States.

8 (1) The nation was unprepared . best more chunks

 The nation
 was
 unprepared.

Figure 1. A TextTree file excerpt

Figure 2. An LFG c-structure

2 Problems of Detailed Parse Trees

This section examines the readability problems
posed by conventional parse tree representations,
and their implications for parser development
activities.

As noted above, parse trees are usually
displayed using either 2-dimensional trees or
fully bracketed strings. Two dimensional trees
are intended to provide a clear understanding of
structure. Yet because of the level of detail
involved in many grammars, and the problem of
dealing with long sentences, they often fail in
this regard. Figure 2 illustrates an LFG c-
structure, reproduced from King et al. (2000), for
the 7 word sentence "Mary sees the girl with the
telescope." Similar structures would be obtained
from parsers using other popular grammatical
paradigms. The amount of detail created by the
deep category nesting makes it difficult to grasp
the structure by casual inspection, and the tree in
this case is actually wider than the sentence.

Grammar-specific transformations have been
used in the LKB system to simplify displays
(Oepen et al., 2002). But there are no truly
satisfactory approaches for dealing with the
problem of tree width, that is, for presenting 2D

trees so as to provide an "at-a-glance"
appreciation of structure for sentences longer
than 25 words, which are very prevalent.2 The
methods currently in use or suggested either
obscure the structure or require additional actions
by the reader. Allowing trees to be as wide as
the sentences requires horizontal scrolling.
Collapsing some subtrees into single nodes
(wrapping represented token sequences under
those nodes) requires repeated expansions to
view the entire parse. Using more of the display
space by overlapping subtrees vertically
interferes with comprehension because it
obscures dominance and sequence. In Figure 2,
for example, the period at the end of the
sequence is the second constituent at the top. For
a longer sentence, a coordinated constituent
might be placed here as well. Such
unpredictable arrangements impede reading,
because the reader does not know where to look

2 Casual records of parser results for many English

non-fiction documents suggest an average of about 20
words per sentence, with a standard deviation of about
11.

S (NP-SBJ Stokely)
 (VP says
 (SBAR 0
 (S (NP-SBJ stores)
 (VP revive
 (NP (NP specials)
 (PP like
 (NP (NP three cans)
 (PP of
 (NP peas))
 (PP for
 (NP 99 cents)))))))))

Figure 3. A Penn Treebank Tree

The other conventional parse tree
representation is as a fully-bracketed string,
usually including category labels and, for display
purposes, using indentation to indicate
dominance. Figure 3 shows such a tree, drawn
from a Penn Treebank annotation guide (Bies et
al., 1995), shown with somewhat narrower
indentation than the original. Even though the
tree is in the relatively flat form developed for
use by annotators, the brackets, labels, and depth
of nesting combine to prohibit rapid scanning.

However, it should be noted that this format is
the source of the TextTree concept. Because by
eliminating labels, null elements, and most
brackets, and further flattening, the more
readable TextTree form emerges:

Stokely
says
 {stores
 revive
 specials
 like three cans
 of peas
 for 99 cents}

2.1 Implications

The conventional parse tree representations
discussed above can be a bottleneck in parser
development, most importantly in checking
parser accuracy with respect to current focus
areas and in extending coverage to new genres or
domains. For these purposes, one would like to
review the results of analyzing collections of
relatively long (100+ sentence) documents. But
unless this can be done quickly, a parser
developer or grammar writer is tempted to rely
on statistics with respect to the number of

sentences given a parse, and declare victory if a
high rate of parsing is reported.

Another approach to assessing parser quality
is to rely on treebank-based bracket scoring
measures, if treebanks are available in the
particular genre. This can also can be a pitfall, as
bracket scores tend to be unconsciously
interpreted as measures of full-sentence parse
correctness, which they are not.

On the other hand, treebank-based
measurements can play a useful secondary role
in evaluating parser development progress and in
comparing parsers. But if insufficient
treebanked material is available for the relevant
domains and/or genres, a custom treebank must
be developed. This process generally consists of
two phases: (a) a bootstrapping phase in which
an existing parser is applied to the corpus to
produce either a single ''best'' tree, or multiple
alternative trees, for each sentence, and then (b) a
second phase in which annotators approve or edit
a given parse tree, select among alternative trees,
or manually create a full parse tree when no
parse exists. All of the second phase alternatives
are difficult given conventional parse-tree
representations. For example, experiments by
Marcus et al. (1993) associated with the Penn
Treebank indicated that for the first annotation
pass ''At an average rate of 750 words per hour, a
team of five part-time annotators …'', i.e., a bit
more than a page of this text per hour. Aids to
selecting among alternative 2D trees can be
given in the form of differentiating features
(Oepen et al., 2002), but their effectiveness in
helping to select among large trees differing in
attachment choices is not clear.

Another activity impeded by conventional
parse tree representations is regression testing.
As a grammar increases in size, it is advisable to
frequently re-apply the grammar to a large test
corpus to determine whether recent changes have
had negative effects on accuracy. While the
existence of differences in output can be detected
by automatic means, one would like to assess the
differences by quickly comparing the divergent
parses, which is difficult to do using detailed
parse displays for long sentences.

 Finally, an activity that is rarely discussed
but is becoming increasingly important is
providing comprehensible parser demonstrations.
A syntactic parser is not an end-in-itself, but a

building block in larger NLP research and
development efforts. The criteria for selecting a
parser for a project include both the kind of
information provided by the parser and parser
accuracy. However, current parser output
representations are not geared to allowing
potential users to quickly assess accuracy with
respect to document types of interest.

3 The TextTree Generator: Externals

TextTrees are generated by an essentially
grammar-independent processor from a
combination of

(a) parser output trees that have been put into a
standard form that retains the grammar-specific
category labels and constituents, but whose
details conform to the requirements of a parser-
independent tool interface, and,

 (b) a set of grammar-specific <category,
directive> pairs, e.g., "<ROOT, Align>". Each
pair specifies a default formatting for
constituents in the category, specifically whether
their sub-constituents are to be aligned vertically,
or concatenated relative to a marked point, with
subsequent children indented. These defaults are
used in the absence of overriding factors such as
coordination.

The directives used are very simple ones,
because the simpler the formatting rules, the
more likely it is that outputs can be accurately
checked for correctness, and edited conveniently

It is assumed that the parser output either
includes conventional parse trees, or that such
trees can be derived from the output. This
assumption covers many grammatical
approaches, such as CG, HPSG, LFG, and TAG.

The logical configuration implied by these
inputs is shown in Figure 4. It includes a parser-
specific adaptor to convert parser-output trees
into a standard form. The adaptor need not be
very large; for the hybrid parser it consists of
about 75 lines of Java code.

The subsections below discuss the standard
ParseTree form, the directives that have been
identified to date and their formatting effects,
and the treatment of coordination.

3.1 Standard ParseTrees

A standard ParseTree consists of recursively

 Figure 4: Logical Configuration.

nested subtrees, each representing a constituent
C, and each indicating:
� A grammar-specific category label for C.
� Whether C should be considered the head of

its immediately containing constituent P for
formatting purposes. Generally, this is the
case if C is, or dominates, the lexical head of
P, but might differ from that to obtain some
desired formatting effects. As heads are
identified by most parsers, this marker can
usually be set by parser-specific rules
embedded in the adaptor.

� Whether C is a coord_dom, that is, whether
it immediately dominates the participants in
a coordination.

� If C is a leaf, the associated token, and
� (optionally) whether C is a multi-word.

3.2 Formatting Directives

To generate TextTrees for a particular grammar,
a <category, directive> pair is provided for each
category that will appear in a ParseTree for the
grammar. The directive specifies how to format
the children of constituents in the category in the
absence of lengthy coordinations.

The definitions of the directives make use of
one additional locator for a constituent, its
real_head. While we generally want the
directives to format constituents relative to their
lexical heads, in some grammars, those heads are
deeply nested. For example, a tree for an NP
might be generated by rules such as:

NPz => DET NPy
NPy => ADJ* NPx
NPx => NOUN PP*

where each of the underscored terms are heads,
but the real_head of NPz is the head NOUN of
NPx. More generally, the real_head of a
constituent C is the first constituent found by
following the head-marked descendants of C
downward until either (a) a leaf or headless
constituent is reached, or (b) a post-modified
head-marked constituent is found.

Using this definition, the current formatting
directives are as follows:

Align: Align specifies that all children of the
constituent are vertically aligned. Thus, for
example, a directive <ROOT, Align>, would
cause a constituent generated by a rule ''ROOT
=> NP, VP'' to be formatted as:

formatted NP
formatted VP

ConcatHead: ConcatHead concatenates the
tokens of a constituent (with separating blanks)
up to and including its real_head (as defined
above), and indents and aligns the post-modifiers
of the real_head. For example, given the
directive ''<NP, ConcatHead>'', a constituent
produced by the rules:

NPz => PreMod* NPx
NPx => NOUN PostMods*

would be formatted as:
All-words-in-PreMod* NOUN

Formatted PostMod1
Formatted PostMod2

ConcatCompHead: ConcatCompHead
concatenates everything up to and including the
real_head, and concatenates with that the results
of a ConcatHead of the first post-modifier of the
real_head (if any).

This directive is motivated by rules such as
''PP => P NP'', where the desired formatting
groups the head with words up to and including
the lexical head of the single complement, e.g.,
 of the man
 in the moon

ConcatSimpleComp: ConcatSimpleComp
concatenates material up to and including the
real_head and, if first post-modifying constituent
is a simple token, concatenates that as well, and
then aligns and indents any further post-
modifiers of the real_head. It thus formats noun
phrases for languages that routinely use simple
adjective post-modifiers. For example (Sp.):

 La casa blanca
 que ...

ConcatPreHead: This directive concatenates
material, if any, before the real_head, and then if
such material exists, increases the indent level. It
then aligns the following component. The
directive is intended for formatting clauses that
begin with subordinating conjunctions,
complementizers, or relative pronouns, where the
grammar has identified the following sentential
component as the head, but it is more readable to
indent that head under the initial constituent. In
practice, in such cases it is easier to just alter the
head marker within the adaptor.

3.3 Treatment of Coordination

The directives listed in the previous subsection
are defaults that specify the handling of
categories in the absence of coordination. A set
of coordinated constituents are always indicated
by surrounding square brackets ([]). If the
coordination occurs within a requested
concatenation, then if the width of coordination
is less than a predesignated size, the non-token
constituents of the coordination are bracketed, as
in:

[{Old men} and women]
 in the park.

However, if the width of the coordination
exceeds that size, the concatenation is converted
to an alignment to avoid line wrap, for example,
 He
 gave
 sizeable donations
 to
 [the church,
 the school,
 and
 the new museum
 of art.]

4 TextTree Generator: Implementation

TextTrees are produced in two steps. First, a
ParseTree is processed to form one or more
InternalTextTrees (ITTs), which are then mapped
into an external TextTree. Most of the work is
accomplished in the first step; the use of a
second step allows the first to focus on logical
structure, independent of many details of
indentation, linebreaks, and punctuation.

We begin by describing ITTs and their
relationship to external TextTrees, to motivate

the description of ITT formation. We then
describe the mapping from ParseTrees to ITTs.

4.1 Transforming ITTs to Strings

Figure 5 shows a simple ITT and its associated
external TextTree. The node labels of an ITT are
called the "headparts" of their associated
subtrees. Headparts may be null, simple strings,
or references to other ITTs.

If the headpart of a subtree is null, like that of
the outermost subtree of Figure 5, the external
TextTrees for its children are aligned vertically
at the current level of indentation. Also, if the
subtree is not outermost, the aligned sequence is
bracketed.

However, if the headpart of a subtree is a
simple string, as in the other subtrees of Figure 5
ITT, that string is printed at the current level of
indentation, and the external TextTrees for its
children, if any, are aligned vertically at the next
level of indentation.

The headpart of a subtree may also reference
another ITT, as illustrated in Figure 6. Such a
reference headpart signals the bracketed
inclusion of the referenced tree, which has a null
headpart, at the current indentation level. This
permits the entire referenced tree to be post-
modified. The brackets used depend on a feature
associated with the referenced tree, and are
either [], if the referenced tree represents a
coordination, or { } otherwise.

Pseudo-code for the ITT2String function that
produces external TextTrees from ITTs is shown
in Figure 7. The code omits the treatment of
non-bracketing punctuation; in general, care is
taken to prefix or suffix punctuation to tokens
appropriately.

4.2 Transforming ParseTrees to ITTs

To transform ParseTrees into ITTs, subtrees
are processed recursively top-down using the
function BuildITT of Figure 8. Its arguments

are an input subtree p, and a directive override,
which may be null. It returns an ITT for p.

BuildITT sets the operational directive d as
either the override argument, if that is non-null,
or to the default directive for the category of p.

Then, if d is ''Align'', the result ITT has a null
headpart and, if p is a coord_dom, the isCoord
property of the ITT is set. The children of the
result ITT are the ITTs of p's children.

However, if d specifies that an initial sequence
of p is to be concatenated, BuildITT uses the
recursive function Catenate (Figure 9) to obtain
the initial sequence if possible.

However, a simple transformation

to TextTrees of parse trees

However,
a simple transformation

of parse trees
to TextTrees

can expedite
these activities.

can expedite

these activities

 Figure 5: Simple InternalTextTree.

However, a simple transformation ����T1

these activities

T1 (coord)

significantly
simplifies

and generally
expedites

However,
a simple transformation
[significantly simplifies
and
generally expedites]

these activities.

Figure 6: ITT with long coordination

Figure 7. The ITT2String Function Figure 9. The Catenate Function

Figure 8. The BuildITT Function

Function ITT2String(ITT s, String indent)
 returns String
// indent is a string of blanks, eol is end-of-line
Set ls to null
If s has a null headpart, set nextIndent to indent
 + 1 blank (adds space for [or { bracket)
Otherwise set nextIndent to indent + N blanks,
 where N is the constant indent increment
If s has a headpart reference
 set nextIndent to nextIndent + 1 blank

If s has children, set ls to the lines produced
 by ITT2String (ci, nextIndent)
 for each child ci of s

If s has a headpart string hs
 Return the concatenation of
 indent, hs, eol, ls
Else if s has a headpart reference to an ITT s2
 Return the concatenation of
 ITT2String(s2, indent), ls
Else (s has a null headpart)
 Remove initial & trailing whitespace from ls
 If s is a coordination, set pfx to [and sfx to]
 Else set pfx to {and sfx to }
 Return the concatenation of
 nextIndent – 1 blank, pfx, ls, sfx, eol

Function Catenate (ParseTree p,
 ParseTree r) returns <Code, String>
1. Set result = null, code = incomplete.
 If p is a leaf, result = the token of p.
2. for each child ci of p,
 while code ≠ complete:
 If ci = r, set code = complete.
 Set <ccode, cstring> to result of
 Catenate(ci, r)
 If (ccode = failed) return <failed, null>
 If p is a coord_dom & cstring not 1 word
 // indicate coordinated within concat
 Suffix ''{cstring}'' to result.
 Otherwise suffix ''cstring'' to result
 If ccode = complete, set code = complete
3. Finally,
 If p = r, set code = complete.
 if p is a coord_dom and
 the length of result > LONG_CONST,
 return <failed, null>.
 Else if p is a coord_dom
 Return <code, ''[result]''>
 Else if p is a multi-word,
 return <code, ''|result|''>
 Otherwise return <code, result>

Function BuildITT(ParseTree p, Directive override) returns ITT
Set d to override if non-null, otherwise to the default category directive for p.
1. If p is a leaf or a multiword:

- return an ITT whose headline concatenates the tokens spanned by p, and which has no children.
If p is a multiword, bracket the headline by |.

2. Else if d is Align
return an ITT with a null headpart, and children built by invoking BuildITT(ci, null) for each
child ci of p. If p is a coord_dom, indicate that the ITT isCoord.

3. Otherwise concatenate:
a) Find the nested subtree s that contains the rightmost element r to be concatenated according to d.
b) Set the pair <ccode, cstring> to the result of Catenate (p, r).
c) If ccode ≠ ''failed'', return ITT with headpart = cstring, and children formed by BuildITT(ci, null)
 for each child ci of s after r. .
d) Otherwise return a directive-dependent tree aligning the contained coordination, for example:
 For ConcatHead: i. Let p’ be like p but without the right siblings of the real_head of p
 ii. Return an ITT with headpart referencing the results of BuildITT (p’, Align)
 and with children obtained from BuildITT(ci, null)
 for each right sibling ci of the real_head of p
 For ConcatCompHead: Return an ITT obtained by invoking BuildITT(p, ConcatHead)

Catenate takes two arguments: a ParseTree p
whose initial sequence is to be concatenated, and a
ParseTree r, beyond which the concatenation is to
stop, based on the particular directive involved. It
returns a pair <Code, String>. The Code indicates
if the concatenation succeeded, failed, or is
incomplete. If the concatenation succeeded,
BuildITT creates an ITT with a headpart string
containing the concatenated sequence, and children
consisting of ITTs of the right-hand siblings of r.

Complex aspects of BuildITT and Catenate
relate to coordinations within to-be-concatenated
extents. The desired effect is to include short
coordinations within the concatenation, while
bracketing its boundaries and non-leaf
components, e.g. '' [{Old men} and women]'', but
aligning the elements of longer coordinations.

So if Catenate (in step 3) determines that the
string resulting from a coordination is very long, it
directly or indirectly returns an indicator to
BuildITT that the concatenation failed. BuildITT
(step 3d) then returns an ITT structured so that the
sub-constituents that were to be concatenated are
eventually shown as aligned, using different
methods dependent on the directive d.

For example, if d is ConcatHead or
ConcatSimpleComp, the result ITT contains:

a) a headpart reference to an ITT built by
BuildITT(p’,Align) , where p’ is like p but
without the right-hand siblings of its
real_head, and

b) children consisting of the ITTs for those
right-hand siblings, if any.

5 TextTree Files and TextTreebanks

Previous sections focused on the production of
individual TextTrees by the TextTree generator.
This section considers some uses of the generator
and auxiliary methods within parser development.

A particularly useful approach for producing
parser output review material using the generator is
sketched in Figure 10. In that approach, the best
parses for a document are converted to standard
ParseTrees expressed as XML entities and written
to a file of such entities, interspersed with arbitrary
other information. A separate, parser-independent
process that includes the TextTree generator then
creates a TextTree file by substituting TextTrees
for the ParseTree entities.

Figure 10. TextTree file creation

Such a process may be used to create the

HTML TextTree file of Figure 1, which is a
standard output form for the hybrid parser. The
TextTrees are surrounded by HTML <pre> and
</pre> tags to maintain the spacing and linebreaks
produced by the generator. The interspersed
information in this case consists of the sentence
text and links to detailed displays of the best parse
found, other parses with high preference scores, as
well as the initial chunks.

Reviewing parse results for a document then
consists of reading the TextTree file and,
depending on circumstances, either simply noting
or classifying the errors found for later debugging,
or investigating them further via the links to the
detailed displays.

5.1 TextTreebanks

 Whatever the limitations (Carroll et al., 1998) of
the various treebank-based bracket scoring
measures derived from the Parseval approach of
Black et al. (1991), they can be useful in
monitoring parser development progress and in
comparing the capabilities of different parsers, at
least if there are large differences in scores.

But, as noted earlier, obtaining a fully labeled
treebank for a specific domain or genre is generally
a very labor-intensive process. A potentially less
costly alternative is to create informal treebanks
consisting of TextTree files corrected by manual
editing.

Both corrected and uncorrected TextTree files
can be converted to files consisting of fully-
bracketed strings by a simple script that considers
only the contained TextTrees. The script brackets
the TextTrees so as to retain the explicit brackets,
and to add brackets around each subtree, i.e.,
around each sequence of a line and the lines, if
any, indented beneath it, directly or indirectly.

For example, a full bracketing of the TextTree
of Figure 5 would be:

{However,}
{a simple transformation
 {of parse trees}
 {to text trees}}
{can expedite {these activities}}

The actual bracketed strings produced by the
script are ones acceptable as input to the EVALB
bracket scoring program (Sekine and Collins,
1997) with all brackets expressed as parentheses,
and brackets added around words (apparently
required but subsequently discarded by the
program). Also, most punctuation is removed, to
avoid spurious token differences. Then bracketed
files deriving from noncorrected and corrected
TextTree files can be submited to EVALB to
obtain a bracket score.

 Lest this approach be dismissed as overly
sketchy, we note that the resulting brackets are
similar to those resulting from a proposal by
Ringger et al. (2004) for neutralizing differences
between parser outputs and treebanks by
bracketing maximal head projections, plus some
additional mechanisms to further minimize
brackets.

5.2 Preventing Bracketing Errors

To avoid bracketing errors resulting from
imprecise spacing in manually edited trees, the
TextTree indentations used are relatively wide.
With indentations of five spaces, it is likely that an
imprecisely positioned line will be placed closer to
the desired level of indentation, so that an
intelligent guess can be made as to the intent. For
example, in:

Line a
 Line b
 Line c
 Line e??

the misplaced Line e begins at a point closer to the
beginning of Line a than Line b. It is then
reasonable to guess that Line e is sibling to Line a.

6 Experiments

This section describes two limited experiments to
assess the efficiency of reviewing parser outputs
for accuracy using TextTrees. One of the
experiments also measures the efficiency of
TextTreebank creation

6.1 First Experiment

The document used in the first experiment was the
roughly 500-sentence "Executive Summary" of the
9/11 Commission Report (2004). After parsing by
the hybrid parser, the expected TextTree file,
excerpted in Figure 1, was created, reproducing
each sentence and, for parsed sentences, the
TextTree string for the best parse obtained, and a
links to the detailed two-dimensional tree
representation.

Of the 503 sentences, averaging 20 words in
length, 93% received a parse. However, reviewing
the TextTree file revealed that at least 191 of the
470 parsed sentences were not parsed correctly,
indicating an actual parser accuracy for the
document of at most 55%.

Reviewing the TextTrees required 92 minutes,
giving a review rate of 6170 words per hour,
including checking detailed parses for sentences
where errors might have lain in the TextTree
formatting.

That review rate can be compared to the results
of Marcus et al. (1993) for post-annotation
proofreading of relatively flat, indented, but fully
labelled and bracketed trees. Those results
indicated that:

"... experienced annotators can proofread
previously corrected material at very high
speeds. A parsed subcorpus …was recently
proofread at an average speed of approximately
4,000 words per annotator per hour. At this
rate…, annotators are able to find and correct
gross errors in parsing, but do not have time to
check, for example, whether they agree with all
prepositional phrase attachments."
While the two tasks are not exactly comparable,

if we assume that little or no editing was required

in proofreading, the ballpark improvement of 50%
is encouraging.

6.2 Second Experiment

For the second experiment, we used the CB01 file3
of the Brown Corpus (Francis and Kucera, 1964),
and reviewed both the TextTree file and then,
separately, the detailed 2D parse trees also
produced.

While the parser reported that 91 of the 103
sentences, or 88%, received a parse, the review of
the TextTree file determined that at most only 50
sentences, or 48.5%, received a fully correct parse.
The review of the detailed parse trees revealed
three additional errors.

 The comparison of review times was less
decisive in this experiment, with the rate for the
TextTree review being 5733 words per hour, and
that for the detailed 2D representation 4410 words
per hour.

However, there were non-quantifiable
differences in the reviews. One difference was that
the TextTree review was a fairly relaxed exercise,
while the review of the 2D representations was
done with a conscious attempt at speed, and was
quite stressful—not something one would like to
repeat. Another difference was that scanning the
TextTree file provided a far better cumulative
sense of the kinds of problems presented by the
document/genre, which might be further exploited
by a more interactive format (e.g., using HTML
forms) allowing users to classify erroneous parses
by error type.

The experiment was then extended to check the
extent to which TextTree files could efficiently
edited for purposes of limited-function treebank
creation.

For this purpose, to minimize typing when a
sentence had no complete parse, the TextTree file
included the list of chunks identified by the XIP
parser. A similar strategy could be used with
parsers that, when no complete parse is found,
return an unrelated sequence of adjacent
constituent parses. This is done by some statistical
and finite-state-based parsers, as well as by parsers
employing the "fitted parse" method of Jensen et
al. (1983) or the "fragment parse" method
described by Riezler et al. (2002).

3 With part-of-speech tags removed

Editing the TextTrees for the 104 sentences,
with an average sentence length of 21 words,
required 83 minutes, giving a rate of 1518 words
per hour. This might be compared with the
average of 750 words per hour for the initial
annotation of parses in the Penn Treebank
experiment (Marcus et al., 1993) mentioned
earlier.

After the TextTreebank was created, the
bracketing script described in section 5.1 was
applied both to the original TextTree file and to the
TextTreebank, and the results were submitted to
the EVALB program, which reported a bracketing
recall of 71%, a bracketing precision of 84%, and
an average crossing bracket count of 1.15.4 Two
sentences were not processed because of token
mismatches. As expected, these scores were much
higher than the percentage of sentences correctly
parsed.

7 Related Work

Most natural language parsers include some
provision for displaying their outputs, including
parse tree representations, and/or other material,
such as head-dependent relationships, feature
structures, etc. These displays are generally
intended for deep review of parse results, and thus
attempt to maximize information content

Work on reducing review effort usually takes
place in the context of developing treebanks by
selection among, and/or manual correction of,
parser outputs. In this area, the most relevant
work may be the experiments of Marcus et al.
(1993) using bracketed, indented trees. They found
that annotator efficiency required eliminating
many detailed brackets and category labels from
the parser outputs presented. Other approaches
rest, in whole or in part, on selecting among
alternative two dimensional parse trees, such as
the distinguishing-feature-augmented approach of
Oepen et al. (2002), discussed in Section 2. As
discussed in that section, however, two-
dimensional tree displays are problematical for
large trees, and it is not clear to what extent
distinguishing feature information can expedite
selecting among attachment choices.

4 Sentences not receiving complete parses were
submitted to EVALB without any brackets, contributing
zero counts to the total # of correct constituents recalled.

Other related work deals with reducing
measured differences between parser outputs and
treebanks due solely to grammar style. As
discussed in section 5, the bracketed material used
in treebank-based measurement by Ringger et al.
(2004) is similar to the bracketed material that
would result from systematically bracketing
TextTrees.

Finally, work by Walker (2001), intended not
for parser/grammar development, but to facilitate
reading and improve retention, produces text
formats that bear some similarity to TextTrees, but
are more closely attuned to spoken phrasing than
syntactic form. The method uses complex
segmentation and indentation strategies generally
based on a combination of punctuation and closed-
class words.

8 Directions for Further Development

We have described an implemented method for
presenting parser outputs permitting fast visual
inspection of the results of parsing long
documents, as well as efficient editing to create
informal treebanks. Although, because of their
flattened, skeletal nature, TextTrees can hide some
parser errors, we strongly believe, based on
extended usage, that the convenience of reviewing
TextTree files can contribute significantly to parser
development efforts.

However, TextTrees are best suited to languages
tending to a fixed word order and post-
modification. To improve results for languages
and language aspects that do not fall into this
category, TextTrees might be augmented with
highlighting and color to indicate syntactic
functions. One way this could be done in a parser-
and grammar-independent way is by adding a
string-valued representation feature to the standard
ParseTrees, and an additional set of directives to
map the feature values to representation
alternatives. For example, a subtree might be
annotated with the feature Rep = "subject", and the
additional directives might include <"subject",
"blue">. Experimentation is needed to determine
the usability of this approach.

Another topic to explore is the use of TextTrees
in the creation of corpora annotated by deeper
syntactic or semantic information. Because such
information is generally expressed in forms that
are even less readable than parse trees, a useful

bootstrapping practice is to allow annotators to
approve, or select among, parser output trees
connected with the deeper information (King et al.,
2003). TextTrees might be used to facilitate this
process, with annotators either (a) interactively
selecting among alternative TextTrees or, because
there may be many alternatives, (b) editing a
TextTree file containing at most one parse for each
sentence (possibly chosen arbitrarily) and using the
result for offline selection. Also, a parser used in
the bootstrapping might refer to bracketed
TextTreebanks to avoid pruning away elements of
correct parses at intermediate points in parsing.

A third direction for further work is in extending
the TextTree approach to deal with outputs of
dependency-based parsers that do not produce
constituent trees. While this should be a natural
extension, an alternative system of features and
directives would seem to be needed.

Acknowledgements

The author is indebted to Tracy Holloway King,
John Sowa, and the anonymous reviewers for their
very helpful comments and suggestions on earlier
versions of this paper.

References

Salah Aït-Mokhtar, Jean-Pierre Chanod, and

Claude Roux. 2002. Robustness beyond
shallowness: incremental deep parsing, Natural
Language Engineering 8:121-144 Cambridge
University Press.

Ann Bies, Mark Ferguson, Karen Katz, and Robert

MacIntyre. 1995. Bracketing Guidelines for the
Treebank II Style Penn Treebank Project.

E. Black, S. Abney, D. Flickinger, C. Gdaniec, R.

Grishman, P. Harrison, D. Hindle, R. Ingria, F.
Jelinek, J. Klavans, M. Liberman, M. Marcus, S.
Roukos, B Santorini, and T. Strzalkowski. 1991.
A procedure for quantitatively comparing the
syntactic coverage of english grammars. In Proc
1991 DARPA Speech and Natural Language
Workshop. 306-311.

John Carroll, Ted Briscoe, and Antonio SanFillipo.

1998. Parser Evaluation: a Survey and a New
Proposal. In Rubio et al., editors, Proc First

International Conference on Language
Resources and Evaluation, Granada, Spain, 447-
454.

W. Nelson Francis and Henry Kucera. 1964, 1971,

1979. Brown Corpus Manual. Available at
http://helmer.aksis.uib.no/icame/brown/bcm.htm
l Corpus available at http://nltk.sourceforge.net

Karen Jensen, George Heidorn, Lance A. Miller,

Yael Ravin. 1983. Parse fitting and prose fixing:
getting a hold on ill-formedness. Computational
Linguistics 9(3-4):147-160.

Tracy H. King, Stefanie Dipper, Anette Frank,

Jonas Kuhn, and John Maxwell. 2000.
Ambiguity management in grammar writing. In
Erhard Hinrichs, Detmar Meurers, and Shuly
Wintner, editors, Proc ESSLLI Workshop on
Linguistic Theory and Grammar
Implementation, 5-19, Birmingham, UK.

Tracy H. King, Richard Crouch, Stefan Riezler,

Mary Dalrymple, and Ronald M. Kaplan. 2003.
The PARC 700 Dependency Bank, Proc. 4th
International Workshop on Linguistically
Interpreted Corpora, at the 10th Conf of the
European Chapter of the ACL, Budapest.

Mitchell P. Marcus, Mary Ann Marcinkiewicz, and

Beatrice Santorini. 1993. Building a Large
Annotated Corpus of English: The Penn
Treebank, Computational Linguistics 19(2):313-
330.

Paula S. Newman. 2005. Abstract: TextTrees in

Grammar Development. Workshop on Grammar
Engineering of the 2005 Scandinavian

Conference on Linguistics (SCL). Available at
http://www.hf.ntnu.no/scl/grammar_engineering

9/11 Commission. 2004. Final Report of the
National Commission on Terrorist Attacks upon
the United States, Executive Summary.
Available at http://www.gpoaccess.gov/911

Stephan Oepen, Dan Flickinger, Kristina
Toutanova, and Christopher Manning. 2002.
LinGO Redwoods: A Rich and Dynamic
Treebank for HPSG, Proc Workshop on
Treebanks and Linguistic Theories (TLT02),
Sozopol, Bulgaria

Stephan Riezler, Tracy H. King, Ronald M.
Kaplan, Richard Crouch, John T. Maxwell, and
Mark Johnson. 2002. Parsing the Wall Street
Journal using a Lexical-Functional Grammar
and Discriminative Estimation Techniques. Proc
40th Annual Meeting of the Assoc. for
Computational Linguistics (ACL), Philadelphia,
271-278.

Eric K. Ringger, Robert C. Moore, Lucy
Vanderwende, Hisam Suzuki and Eugene
Charniak. 2004. Using the Penn Treebank to
Evaluate Non-Treebank Parsers, Proc 2004
Language Resources and Evaluation
Conference (LREC), Lisbon, Portugal.

Satoshi Sekine and Michael Collins. 1997. EvalB.
Available at http://nlp.cs.nyu.edu/evalb

Randall C. Walker. 2001. Method and Apparatus
for Displaying Text Based Upon Attributes
Found Within the Text, U.S. Patent 6279017.

