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Introduction

Welcome to the ACL Workshop on Software, the first of its kind. It is intended as a venue for discussing
and comparing the implementation of software and algorithms used in Natural Language and Speech
Processing. The goal is to bring together researchers, software developers, teachers, and students with
a common interest in the implementation of NLP applications, and to allow useful implementation
techniques and “tricks of the trade” to be discussed in detail and disseminated widely.

We received 13 submissions, of which 8 were selected for presentation and inclusion in the proceedings,
after a careful review process. Because the number of reviewers exceeded the number of submissions,
each submission received more than four reviews on average, while the workload per reviewer was
less than three papers on average. This being the workshop on software, the initial assignment of
reviews was performed algorithmically using the Ford–Fulkerson max-flow algorithm, while taking
into account individual reviewer preferences. The reviewers did an admirable job dealing with a diverse
set of submissions, for which they deserve the thanks of the community.

The papers presented in this workshop deal with many different aspects of NLP software: Carpenter
describes a scalable implementation of high-order character language models; Clegg & Shepherd take
three existing parsers that were trained on business news text and perform a comparative evaluation on
a corpus of biomedical journal papers; Cohen-Sygal & Wintner have implemented a compiler which
translates between the description languages of two different finite state toolboxes; Foster has designed
a generation module for a dialogue system which can ship out text without having to wait for the
planning phase to finish; Koller & Thater describe the intelligent design of increasingly powerful
constraint solvers; Newman proposes a uniform formalism for representing the output of parsers for
easy inspection and comparison; Trón, Gyepesi, Halácsy, Kornai, Ńemeth & Varga have implemented
a generic library for analyzing orthographic words; and White discusses the design of a generation
component which flexibly incorporates language models in a syntactic surface realizer.

The workshop proceedings are being made available in electronic form only. Not only does this save
costs, but it also allows the distribution of additional software and resources that could not be included in
printed proceedings. A number of authors have included the software described in their papers directly
on the proceedings CD. As always, the latest versions of the included software can be found on the
Internet or by contacting the individual authors.

I would like to thank the reviewers and authors once again for their hard work and look forward to an
exciting workshop.

Martin Jansche
Columbia University, New York
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Abstract 

TextTrees, introduced in (Newman, 
2005), are skeletal representations 
formed by systematically converting 
parser output trees into unlabeled 
indented strings with minimal 
bracketing.  Files of TextTrees can be 
read rapidly to evaluate the results of 
parsing long documents, and are easily 
edited to allow limited-cost treebank 
development. This paper reviews the 
TextTree concept, and then describes 
the implementation of the almost 
parser- and grammar-independent 
TextTree generator, as well as auxiliary 
methods for producing parser review 
files and inputs to bracket scoring tools. 
The results of some limited 
experiments in TextTree usage are also 
provided. 

1 Introduction  

The TextTree representation was developed to 
support a limited-resource effort to build a new 
hybrid English parser1. When the parser reached 
significant apparent coverage, in terms of 
numbers of sentences receiving some parse, the 
need arose to quickly assess the quality of the 
parses produced, for purposes of detecting 
coverage gaps, refining analyses, and 
measurement.   But this was hampered by the use 
of a detailed parser output representation.   

The two most common parser-output displays 
of constituent structure are: (a) multi-line labeled 
and bracketed strings, with indentation indicating 
dominance, and (b) 2-dimensional trees.  While 
these displays are indispensable in grammar 
development, they cannot be scanned quickly.  
Labels and brackets interfere with reading.  And, 

                                                 
1 The hybrid combines the chunker part of the fast, 
robust XIP parser (Aït-Mokhtar et al., 2002) with an 
ATN-style parser operating primarily on the chunks. 

 
although relatively flat 2D node + edge trees for 
short sentences can be grasped at a glance, for 
long sentences this property must be 
compromised. 

In contrast, for languages with a relatively 
fixed word order, and a tendency to post-
modification, TextTrees capture the 
dependencies found by a parser in a natural, 
almost self-explanatory way.   For example:  

    They 
    must have 
        a clear delineation 
            of 
                [roles, 
                 missions, 
                 and 
                 authority].         

Indented elements are usually right-hand post-
modifiers or subordinates of the lexical head of 
the nearest preceding less-indented line. Brackets 
are generally used only to delimit coordinations 
(by [...]), nested clauses (by {…}), and identified 
multi-words (by |…|). 

Reading a TextTree for a correct parse is 
similar to reading ordinary text, but reading a 
TextTree for an incorrect parse is jarring. For 
example, the following TextTree for a 33-word 
sentence exposes several errors made by the 
hybrid parser:  
 
  But 
      by |September 2001|, 
  the executive branch 
      of 
          [the U.S. government, 
           the Congress, 
               the news media, 
           and 
           the American public] 
  had received 
     clear warning 
         that 
            {Islamist terrorists 
             meant 
                to kill 
                    Americans 
                       in high numbers}.      
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TextTrees can be embedded in bulk parser 
output files with arbitrary surrounding 
information.  Figure 1 shows an excerpt from 
such a file, containing the TextTree-form results 
of parsing the roughly 500-sentence "Executive 
Summary" of the 9/11 Commission Report 
(2004) by the hybrid parser, with more detailed 
results for each sentence accessible via links. 
(Note: the links in  Figure 1 are greyed to 
indicate that they are not operational in the 
illustration.)  

Such files can also be edited efficiently to 
produce limited-function treebanks, because the 
needed modifications are easy to identify, labels 
are unnecessary, and little attention to bracketing 
is required. Edited and unedited TextTree files 
can then be mapped into files containing fully 
bracketed strings (although bracketed differently 

than the original parse trees), and compared by 
bracket scoring methods derived from Black et al 
(1991). 

Section 2 below examines the problems 
presented by detailed parse trees for late-stage 
parser development activities in more detail.  
Section 3 describes the inputs to and outputs 
from the TextTree generator, and Section 4 the 
generator implementation. Section 5 discusses 
the use of the TextTree generator in producing 
TextTree files for parser output review and 
TextTreebank construction, and the use of 
TextTreebanks in parser measurement. The 
results of some limited experiments in TextTree 
file use are provided in Section 6.  Section 7 
discusses related work and Section 8 explores 
some directions for further exploitation of 
TextTrees. 

 
 
6 (3) We have come together with a unity of purpose because our nation demands it. best more 
chunks  

 
    We 
    have come together 
        with a unity 
            of purpose 
        because 
            {our nation 
             demands 
                 it}. 
 

7 (15) September 11 , 2001 , was a day of unprecedented shock and suffering in the history of the 
United States . best more chunks  
 
    |September 11 , 2001|, 
    was 
        a day 
            of 
                [unprecedented shock 
                 and 
                 suffering] 
                     in the history 
                         of the United States. 
 

8 (1) The nation was unprepared . best more chunks  
 
    The nation 
    was 
        unprepared. 
 

Figure 1. A TextTree file excerpt
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Figure 2. An LFG c-structure 

 
2   Problems of Detailed Parse Trees 

This section examines the readability problems 
posed by conventional parse tree representations, 
and their implications for parser development 
activities.  

As noted above, parse trees are usually 
displayed using either 2-dimensional trees or 
fully bracketed strings.   Two dimensional trees 
are intended to provide a clear understanding of 
structure. Yet because of the level of detail 
involved in many grammars, and the problem of 
dealing with long sentences, they often fail in 
this regard.  Figure 2 illustrates an LFG c-
structure, reproduced from King et al. (2000), for 
the 7 word sentence "Mary sees the girl with the 
telescope."  Similar structures would be obtained 
from parsers using other popular grammatical 
paradigms. The amount of detail created by the 
deep category nesting makes it difficult to grasp 
the structure by casual inspection, and the tree in 
this case is actually wider than the sentence.  

Grammar-specific transformations have been 
used in the LKB system to simplify displays 
(Oepen et al., 2002).  But there are no truly 
satisfactory approaches for dealing with the 
problem of tree width, that is, for presenting 2D 

trees so as to provide an "at-a-glance" 
appreciation of structure for sentences longer 
than 25 words, which are very prevalent.2 The 
methods currently in use or suggested either 
obscure the structure or require additional actions 
by the reader.   Allowing trees to be as wide as 
the sentences requires horizontal scrolling.  
Collapsing some subtrees into single nodes 
(wrapping represented token sequences under 
those nodes) requires repeated expansions to 
view the entire parse.  Using more of the display 
space by overlapping subtrees vertically 
interferes with comprehension because it 
obscures dominance and sequence. In Figure 2, 
for example, the period at the end of the 
sequence is the second constituent at the top.  For 
a longer sentence, a coordinated constituent 
might be placed here as well.  Such 
unpredictable arrangements impede reading, 
because the reader does not know where to look

                                                 
2 Casual records of parser results for many English 

non-fiction documents suggest an average of about 20 
words per sentence, with a standard deviation of about 
11.   
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S (NP-SBJ Stokely) 
    (VP says 
          (SBAR  0   
               (S (NP-SBJ stores) 
                    (VP revive 
                           (NP (NP specials) 
                                  (PP like 
                                        (NP (NP three cans) 
                                               (PP of 
                                                     (NP peas)) 
                                                (PP for 
                                                 (NP 99 cents ))))))))) 

Figure 3. A Penn Treebank Tree 
 

The other conventional parse tree 
representation is as a fully-bracketed string, 
usually including category labels and, for display 
purposes, using indentation to indicate 
dominance.  Figure 3 shows such a tree, drawn 
from a Penn Treebank annotation guide (Bies et 
al., 1995), shown with somewhat narrower 
indentation than the original.  Even though the 
tree is in the relatively flat form developed for 
use by annotators, the brackets, labels, and depth 
of nesting combine to prohibit rapid scanning.   

However, it should be noted that this format is 
the source of the TextTree concept. Because by 
eliminating labels, null elements, and most 
brackets, and further flattening, the more 
readable TextTree form emerges: 
 
Stokely 
says 
    {stores 
     revive 
         specials 
             like three cans 
                 of peas 
                 for 99 cents} 

2.1   Implications 

The conventional parse tree representations 
discussed above can be a bottleneck in parser 
development, most importantly in checking 
parser accuracy with respect to current focus 
areas and in extending coverage to new genres or 
domains.   For these purposes, one would like to 
review the results of analyzing collections of 
relatively long (100+ sentence) documents.  But 
unless this can be done quickly, a parser 
developer or grammar writer is tempted to rely 
on statistics with respect to the number of 

sentences given a parse, and declare victory if a 
high rate of parsing is reported.  

Another approach to assessing parser quality 
is to rely on treebank-based bracket scoring 
measures, if treebanks are available in the 
particular genre.  This can also can be a pitfall, as 
bracket scores tend to be unconsciously 
interpreted as measures of full-sentence parse 
correctness,  which they are not.   

On the other hand, treebank-based 
measurements can play a useful secondary role 
in evaluating parser development progress and in 
comparing parsers.  But if insufficient 
treebanked material is available for the relevant 
domains and/or genres, a custom treebank must 
be developed.  This process generally consists of 
two phases: (a) a bootstrapping phase in which 
an existing parser is applied to the corpus to 
produce either a single ''best'' tree, or multiple 
alternative trees, for each sentence, and then (b) a 
second phase in which annotators approve or edit 
a given parse tree, select among alternative trees, 
or manually create a full parse tree when no 
parse exists.  All of the second phase alternatives 
are difficult given conventional parse-tree 
representations.  For example, experiments by 
Marcus et al. (1993) associated with the Penn 
Treebank indicated that for the first annotation 
pass ''At an average rate of 750 words per hour, a 
team of five part-time annotators …'', i.e., a bit 
more than a page of this text per hour.  Aids to 
selecting among alternative 2D trees can be 
given in the form of differentiating features 
(Oepen et al., 2002), but their effectiveness in 
helping to select among large trees differing in 
attachment choices is not clear. 

Another activity impeded by conventional 
parse tree representations is regression testing. 
As a grammar increases in size, it is advisable to 
frequently re-apply the grammar to a large test 
corpus to determine whether recent changes have 
had negative effects on accuracy. While the 
existence of differences in output can be detected 
by automatic means, one would like to assess the 
differences by quickly comparing the divergent 
parses, which is difficult to do using detailed 
parse displays for long sentences. 

  Finally, an activity that is rarely discussed 
but is becoming increasingly important is 
providing comprehensible parser demonstrations. 
A syntactic parser is not an end-in-itself, but a 

4



building block in larger NLP research and 
development efforts.  The criteria for selecting a 
parser for a project include both the kind of 
information provided by the parser and parser 
accuracy.  However, current parser output 
representations are not geared to allowing 
potential users to quickly assess accuracy with 
respect to document types of interest. 

 
3   The TextTree Generator: Externals 

TextTrees are generated by an essentially 
grammar-independent processor from a 
combination of  

(a) parser output trees that have been put into a 
standard form that retains the grammar-specific 
category labels and constituents, but whose 
details conform to the requirements of a parser-
independent tool interface, and, 

 (b) a set of grammar-specific <category, 
directive> pairs, e.g., "<ROOT, Align>".  Each 
pair specifies a default formatting for 
constituents in the category, specifically whether 
their sub-constituents are to be aligned vertically, 
or concatenated relative to a marked point, with 
subsequent children indented.  These defaults are 
used in the absence of overriding factors such as 
coordination.   

The directives used are very simple ones, 
because the simpler the formatting rules, the 
more likely it is that outputs can be accurately 
checked for correctness, and edited conveniently 

It is assumed that the parser output either 
includes conventional parse trees, or that such 
trees can be derived from the output.  This 
assumption covers many grammatical 
approaches, such as CG, HPSG, LFG, and TAG.  

The logical configuration implied by these 
inputs is shown in Figure 4. It includes a parser-
specific adaptor to convert parser-output trees 
into a standard form.  The adaptor need not be 
very large; for the hybrid parser it consists of 
about 75 lines of Java code. 

The subsections below discuss the standard 
ParseTree form, the directives that have been 
identified to date and their formatting effects, 
and the treatment of coordination.   

3.1   Standard ParseTrees 

A standard ParseTree consists of recursively 

 
  Figure 4: Logical Configuration.   

 
nested subtrees, each representing a constituent 
C, and each indicating: 
� A grammar-specific category label for C.  
� Whether C should be considered the head of 

its immediately containing constituent P for 
formatting purposes. Generally, this is the 
case if C is, or dominates, the lexical head of 
P, but might differ from that to obtain some 
desired formatting effects. As heads are 
identified by most parsers, this marker can 
usually be set by parser-specific rules 
embedded in the adaptor. 

� Whether C is a coord_dom, that is, whether 
it immediately dominates the participants in 
a coordination. 

� If C is a leaf, the associated token,  and 
� (optionally) whether C is a multi-word. 

3.2    Formatting Directives 

To generate TextTrees for a particular grammar,   
a <category, directive> pair is provided for each 
category that will appear in a ParseTree for the 
grammar. The directive specifies how to format 
the children of constituents in the category in the 
absence of lengthy coordinations. 

The definitions of the directives make use of 
one additional locator for a constituent, its 
real_head.  While we generally want the 
directives to format constituents relative to their 
lexical heads, in some grammars, those heads are 
deeply nested.  For example, a tree for an NP 
might be generated by rules such as:  

NPz => DET NPy 
NPy => ADJ* NPx 
NPx => NOUN PP* 
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where each of the underscored terms are heads, 
but the real_head of NPz is the head NOUN of 
NPx. More generally, the real_head of a 
constituent C is the first constituent found by 
following the head-marked descendants of C 
downward until either (a) a leaf or headless 
constituent is reached, or (b) a post-modified 
head-marked constituent is found.   

Using this definition, the current formatting 
directives are as follows: 

Align:  Align specifies that all children of the 
constituent are vertically aligned. Thus, for 
example, a directive <ROOT, Align>, would 
cause a constituent generated by a rule ''ROOT 
=> NP, VP'' to be formatted as: 

formatted NP 
formatted VP 

ConcatHead: ConcatHead concatenates the 
tokens of a constituent (with separating blanks) 
up to and including its real_head (as defined 
above), and indents and aligns the post-modifiers 
of the real_head.  For example, given the 
directive ''<NP, ConcatHead>'', a constituent 
produced by the rules: 

NPz => PreMod* NPx 
NPx => NOUN PostMods* 

would be formatted as: 
All-words-in-PreMod* NOUN 

Formatted PostMod1 
Formatted PostMod2 

ConcatCompHead: ConcatCompHead 
concatenates everything up to and including the 
real_head, and concatenates with that the results 
of a ConcatHead of the first post-modifier of the 
real_head (if any). 

This directive is motivated by rules such as 
''PP => P NP'', where the desired formatting 
groups the head with words up to and including 
the lexical head of the single complement, e.g., 
         of the man 
        in the moon  

ConcatSimpleComp: ConcatSimpleComp 
concatenates material up to and including the 
real_head and, if first post-modifying constituent 
is a simple token, concatenates that as well, and 
then aligns and indents any further post-
modifiers of the real_head.  It thus formats noun 
phrases for languages that routinely use simple 
adjective post-modifiers.   For example (Sp.): 

  La casa blanca 
       que ... 

ConcatPreHead: This directive concatenates 
material, if any, before the real_head, and then if 
such material exists, increases the indent level.  It 
then aligns the following component. The 
directive is intended for formatting clauses that 
begin with subordinating conjunctions, 
complementizers, or relative pronouns, where the 
grammar has identified the following sentential 
component as the head, but it is more readable to 
indent that head under the initial constituent. In 
practice, in such cases it is easier to just alter the 
head marker within the adaptor.  

3.3  Treatment of Coordination 

The directives listed in the previous subsection 
are defaults that specify the handling of 
categories in the absence of coordination. A set 
of coordinated constituents are always indicated 
by surrounding square brackets ([ ]). If the 
coordination occurs within a requested 
concatenation, then if the width of coordination 
is less than a predesignated size, the non-token 
constituents of the coordination are bracketed, as 
in: 

[{Old men} and women] 
    in the park. 

However, if the width of the coordination 
exceeds that size, the concatenation is converted 
to an alignment to avoid line wrap, for example,  
          He 
     gave 
         sizeable donations 
             to 
                 [the church, 
                  the school, 
                  and 
                  the new museum 
                      of art.]                                              

4   TextTree Generator:  Implementation  

TextTrees are produced in two steps. First, a 
ParseTree is processed to form one or more 
InternalTextTrees (ITTs), which are then mapped 
into an external TextTree. Most of the work is 
accomplished in the first step; the use of a 
second step allows the first to focus on logical 
structure, independent of many details of 
indentation, linebreaks, and punctuation.  

We begin by describing ITTs and their 
relationship to external TextTrees, to motivate 
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the description of ITT formation.  We then 
describe the mapping from ParseTrees to ITTs. 

4.1   Transforming ITTs to Strings 

Figure 5 shows a simple ITT and its associated 
external TextTree.  The node labels of an ITT are 
called the "headparts" of their associated 
subtrees.  Headparts may be null, simple strings, 
or references to other ITTs.  

If the headpart of a subtree is null, like that of 
the outermost subtree of Figure 5, the external 
TextTrees for its children are aligned vertically 
at the current level of indentation. Also, if the 
subtree is not outermost, the aligned sequence is 
bracketed. 

However, if the headpart of a subtree is a 
simple string, as in the other subtrees of Figure 5 
ITT, that string is printed at the current level of 
indentation, and the external TextTrees for its 
children, if any, are aligned vertically at the next 
level of indentation.  

The headpart of a subtree may also reference 
another ITT, as illustrated in Figure 6.  Such a 
reference headpart  signals the bracketed 
inclusion of the referenced tree, which has a null 
headpart, at the current indentation level.  This 
permits the entire referenced tree to be post-
modified. The brackets used depend on a feature 
associated with  the referenced tree, and are 
either [ ], if the referenced tree represents a 
coordination, or { } otherwise. 

Pseudo-code for the ITT2String function that 
produces external TextTrees from ITTs is shown 
in Figure 7.  The code omits the treatment of 
non-bracketing punctuation; in general, care is 
taken to prefix or suffix punctuation to tokens 
appropriately.  
 
4.2    Transforming ParseTrees to ITTs 

To transform ParseTrees into ITTs, subtrees 
are processed recursively top-down using the 
function BuildITT of Figure 8.   Its arguments 

are an input subtree p, and a directive override, 
which may be null. It returns an ITT for p.  

BuildITT sets the operational directive d as 
either the override argument, if that is non-null, 
or to the default directive for the category of p. 

Then, if d is ''Align'', the result ITT has a null 
headpart and, if p is a coord_dom, the isCoord 
property of the ITT is set.  The children of the 
result ITT are the ITTs of p's children.  

However, if d specifies that an initial sequence 
of p is to be concatenated, BuildITT uses the 
recursive function Catenate (Figure 9) to obtain 
the initial sequence if possible.  
 

However, a simple transformation

to TextTrees of  parse trees

However,
a simple transformation

of  parse trees
to TextTrees

can expedite
these activities.

can expedite

these activities

 
       Figure 5: Simple InternalTextTree. 
 

However, a simple transformation ����T1

these activities

T1 (coord)

significantly 
simplifies

and generally 
expedites

However,
a simple transformation
[significantly simplifies
and
generally expedites]

these activities.

Figure 6: ITT with long coordination 
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Figure 7. The ITT2String Function              Figure 9. The Catenate Function 
 

 

Figure 8. The BuildITT Function

Function ITT2String(ITT s, String indent) 
                               returns String    
// indent is a string of blanks, eol is end-of-line 
Set ls to null 
If s has a null headpart, set nextIndent to indent 
       + 1 blank  (adds space for [ or { bracket ) 
Otherwise  set nextIndent to indent + N blanks, 
      where N is the constant indent increment 
If s has a headpart reference 
        set nextIndent to nextIndent + 1 blank 

If s has children, set ls to the lines produced 
        by ITT2String (ci, nextIndent) 
                     for each child ci of s 

If s has a headpart string hs 
       Return the concatenation of  
                 indent, hs, eol, ls 
Else if s has a headpart reference to an ITT s2 
      Return the concatenation of  
                ITT2String(s2, indent), ls 
Else  (s has a null headpart ) 
       Remove initial & trailing whitespace from ls  
       If s is a coordination, set pfx to [ and sfx to ]  
       Else set pfx to {and sfx to } 
       Return the concatenation of  
               nextIndent – 1 blank, pfx, ls, sfx, eol 

Function Catenate (ParseTree p,  
       ParseTree r)  returns <Code, String> 
1. Set result = null, code = incomplete. 
     If p is a leaf, result = the token of p. 
2. for each child ci of p,   
    while code ≠ complete: 
     If ci = r, set code = complete. 
     Set <ccode, cstring> to result of 
            Catenate(ci, r) 
      If (ccode = failed) return <failed, null> 
      If p is a coord_dom & cstring not 1 word  
            // indicate coordinated within concat 
            Suffix ''{cstring}'' to result. 
     Otherwise suffix ''cstring'' to result 
     If ccode = complete, set code = complete 
3. Finally,  
     If p = r, set code = complete. 
     if p is a coord_dom and 
         the length of  result  > LONG_CONST, 
         return <failed, null>. 
    Else if p is a coord_dom  
           Return <code, ''[result]''> 
    Else if p is a multi-word, 
            return <code, ''|result|''> 
     Otherwise return <code, result> 

Function BuildITT(ParseTree p,  Directive override)  returns ITT 
Set  d to override if non-null, otherwise to the default category directive for p. 
1. If p is a leaf or a multiword: 

- return an ITT whose headline concatenates the tokens spanned by p, and which has no children.  
If p is a multiword, bracket the headline by |.  

2. Else if  d is Align  
return an ITT with a null headpart, and children built by invoking BuildITT(ci, null) for each 
child ci of p. If p is a coord_dom, indicate that the ITT isCoord. 

3. Otherwise concatenate:  
a) Find the nested subtree s that contains the rightmost element r to be concatenated according to d. 
b)  Set the pair <ccode, cstring> to the result of Catenate (p, r). 
c) If ccode ≠ ''failed'',   return ITT with headpart = cstring, and children formed by BuildITT(ci, null) 
     for each child ci of s after r.  . 
d) Otherwise return a directive-dependent tree aligning the contained coordination, for example:   
    For ConcatHead:  i. Let p’  be like p but without the right siblings of the real_head of  p 
                                 ii. Return an ITT with headpart referencing the  results of BuildITT (p’, Align)  
                                      and with children obtained from BuildITT(ci, null)  
                                                    for each right sibling ci of the  real_head of p  
    For ConcatCompHead:  Return an ITT obtained by invoking BuildITT(p, ConcatHead) 
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Catenate takes two arguments: a ParseTree p 
whose initial sequence is to be concatenated, and a 
ParseTree r, beyond which the concatenation is to 
stop, based on the particular directive involved. It 
returns a pair <Code, String>.  The Code indicates 
if the concatenation succeeded, failed, or is 
incomplete. If the concatenation succeeded, 
BuildITT creates an ITT with a headpart string 
containing the concatenated sequence, and children 
consisting of ITTs of the right-hand siblings of r.  

Complex aspects of BuildITT and Catenate 
relate to coordinations within to-be-concatenated 
extents. The desired effect is to include short 
coordinations within the concatenation, while 
bracketing its boundaries and non-leaf 
components, e.g. '' [{Old men} and women]'', but 
aligning the elements of longer coordinations.  

So if Catenate (in step 3) determines that the 
string resulting from a coordination is very long, it 
directly or indirectly returns an indicator to 
BuildITT that the concatenation failed. BuildITT 
(step 3d) then returns an ITT structured so that the 
sub-constituents that were to be concatenated are 
eventually shown as aligned, using different 
methods dependent on the directive d.   

For example, if d is ConcatHead or 
ConcatSimpleComp, the result ITT contains:  

a) a headpart reference to an ITT built by 
BuildITT(p’,Align) , where p’ is like p but 
without the right-hand siblings of its 
real_head, and  

b) children consisting of the ITTs for those 
right-hand siblings, if any.  

5   TextTree Files and TextTreebanks 

Previous sections focused on the production of 
individual TextTrees by the TextTree generator.  
This section considers some uses of the generator 
and auxiliary methods within parser development. 

A particularly useful approach for producing 
parser output review material using the generator is 
sketched in Figure 10.  In that approach, the best 
parses for a document are converted to standard 
ParseTrees expressed as XML entities and written 
to a file of such entities, interspersed with arbitrary 
other information. A separate, parser-independent 
process that includes the TextTree generator then 
creates a TextTree file by substituting TextTrees 
for the ParseTree entities.  

 
Figure 10. TextTree file creation 

 
Such a process may be used to create the 

HTML TextTree file of Figure 1, which is a 
standard output form for the hybrid parser. The 
TextTrees are surrounded by HTML  <pre> and 
</pre> tags to maintain the spacing and linebreaks 
produced by the generator.  The interspersed 
information in this case consists of the sentence 
text and links to detailed displays of the best parse 
found, other parses with high preference scores, as 
well as the initial chunks. 

Reviewing parse results for a document then 
consists of reading the TextTree file and, 
depending on circumstances, either simply noting 
or classifying the errors found for later debugging, 
or investigating them further via the links to the 
detailed displays. 

5.1   TextTreebanks 

 Whatever the limitations (Carroll et al., 1998) of 
the various treebank-based bracket scoring 
measures derived from the Parseval approach of 
Black et al. (1991), they can be useful in 
monitoring parser development progress and in 
comparing the capabilities of different parsers, at 
least if there are large differences in scores.  

But, as noted earlier, obtaining a fully labeled 
treebank for a specific domain or genre is generally 
a very labor-intensive process. A potentially less 
costly alternative is to create informal treebanks 
consisting of TextTree files corrected by manual 
editing. 
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Both corrected and uncorrected TextTree files 
can be converted to files consisting of fully-
bracketed strings by a simple script that considers 
only the contained TextTrees.  The script brackets 
the TextTrees so as to retain the explicit brackets, 
and to add brackets around each subtree, i.e., 
around each sequence of a line and the lines, if 
any, indented beneath it, directly or indirectly.  

For example, a full bracketing of the TextTree 
of Figure 5 would be: 

{However,}  
{a simple transformation  
 {of parse trees} 
 {to text trees}} 
{can expedite {these activities}} 

The actual bracketed strings produced by the 
script are ones acceptable as input to the EVALB 
bracket scoring program (Sekine and Collins, 
1997) with all brackets expressed as parentheses, 
and brackets added around words (apparently 
required but subsequently discarded by the 
program).  Also, most punctuation is removed,  to 
avoid spurious token differences. Then bracketed 
files deriving from noncorrected and corrected 
TextTree files can be submited to EVALB to 
obtain a bracket score.  

 Lest this approach be dismissed as overly 
sketchy, we note that the resulting brackets are 
similar to those resulting from a proposal by 
Ringger et al. (2004) for neutralizing differences 
between parser outputs and treebanks by 
bracketing maximal head projections, plus some 
additional mechanisms to further minimize 
brackets. 

5.2    Preventing Bracketing Errors 

To avoid bracketing errors resulting from 
imprecise spacing in manually edited trees, the 
TextTree indentations used are relatively wide. 
With indentations of five spaces, it is likely that an 
imprecisely positioned line will be placed closer to 
the desired level of indentation, so that an 
intelligent guess can be made as to the intent.   For 
example, in:  

Line a 
    Line b 
        Line c 
 Line e?? 

the misplaced Line e begins at a point closer to the 
beginning  of Line a than Line b.  It is then  
reasonable to guess that Line e is sibling to Line a. 

6    Experiments 

This section describes two limited experiments to 
assess the efficiency of reviewing parser outputs 
for accuracy using TextTrees.  One of the 
experiments also measures the efficiency of 
TextTreebank creation 

6.1  First Experiment 

The document used in the first experiment was the 
roughly 500-sentence "Executive Summary" of the 
9/11 Commission Report (2004). After parsing by 
the hybrid parser, the expected TextTree file, 
excerpted in Figure 1, was created, reproducing 
each sentence and, for parsed sentences, the 
TextTree string for the best parse obtained, and a 
links to the detailed two-dimensional tree 
representation.   

Of  the 503 sentences,  averaging 20 words in 
length, 93% received a parse. However, reviewing 
the TextTree file revealed that at least 191 of the 
470 parsed sentences were not parsed correctly, 
indicating an actual parser accuracy for the 
document of at most 55%. 

Reviewing the TextTrees required 92 minutes, 
giving a review rate of 6170 words per hour, 
including checking detailed parses for sentences 
where errors might have lain in the TextTree 
formatting.  

That review rate can be compared to the results 
of Marcus et al. (1993) for post-annotation 
proofreading of  relatively flat, indented, but fully 
labelled and bracketed trees. Those results 
indicated that:  

"... experienced annotators can proofread 
previously corrected material at very high 
speeds. A parsed subcorpus …was recently 
proofread at an average speed of approximately 
4,000 words per annotator per hour. At this 
rate…, annotators are able to find and correct 
gross errors in parsing, but do not have time to 
check, for example, whether they agree with all 
prepositional phrase attachments." 
While the two tasks are not exactly comparable, 

if we assume that little or no editing was required 
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in proofreading, the ballpark improvement of 50% 
is encouraging. 

6.2  Second Experiment 

For the second experiment, we used the CB01 file3 
of the Brown Corpus (Francis and Kucera, 1964), 
and reviewed both the TextTree file and then, 
separately, the detailed 2D parse trees also 
produced.  

While the parser reported that 91 of the 103 
sentences, or 88%, received a parse, the review of 
the TextTree file determined that at most only 50 
sentences, or 48.5%, received a fully correct parse.  
The review of the detailed parse trees revealed 
three additional errors.  

 The comparison of review times was less 
decisive in this experiment, with the rate for the 
TextTree review being 5733 words per hour, and 
that for the detailed 2D representation 4410 words 
per hour.   

However, there were non-quantifiable 
differences in the reviews.  One difference was that 
the TextTree review was a fairly relaxed exercise, 
while the review of the 2D representations was 
done with a conscious attempt at speed, and was 
quite stressful—not something one would like to 
repeat.   Another difference was that scanning the 
TextTree file provided a far better cumulative 
sense of the kinds of problems presented by the 
document/genre, which might be further exploited 
by a more interactive format (e.g., using HTML 
forms) allowing users to classify erroneous parses 
by error type. 

The experiment was then extended to check the 
extent to which TextTree files could efficiently 
edited for purposes of limited-function treebank 
creation.  

For this purpose, to minimize typing when a 
sentence had no complete parse, the TextTree file 
included the list of chunks identified by the XIP 
parser.  A similar strategy could be used with 
parsers that, when no complete parse is found, 
return an unrelated sequence of adjacent 
constituent parses.  This is done by some statistical 
and finite-state-based parsers, as well as by parsers 
employing the "fitted parse" method of Jensen et 
al. (1983) or the "fragment parse" method 
described by Riezler et al. (2002). 

                                                 
3 With part-of-speech tags removed 

Editing the TextTrees for the 104 sentences, 
with an average sentence length of 21 words, 
required 83 minutes, giving a rate of 1518 words 
per hour.  This might be compared with the 
average of 750 words per hour for the initial 
annotation of parses in the Penn Treebank 
experiment (Marcus et al., 1993) mentioned 
earlier.  

After the TextTreebank was created, the 
bracketing script described in section 5.1 was 
applied both to the original TextTree file and to the 
TextTreebank, and the results were submitted to 
the EVALB program, which reported a bracketing 
recall of 71%, a bracketing precision of 84%, and 
an average crossing bracket count of 1.15.4  Two 
sentences were not processed because of token 
mismatches. As expected, these scores were much 
higher than the percentage of sentences correctly 
parsed. 

7   Related Work 

Most natural language parsers include some 
provision for displaying their outputs, including 
parse tree representations, and/or other material, 
such as head-dependent relationships, feature 
structures, etc. These displays are generally 
intended for deep review of  parse results, and thus 
attempt to maximize information content 

Work on reducing review effort usually takes 
place in the context of developing treebanks by 
selection among, and/or manual correction of, 
parser outputs.  In this area,  the most relevant 
work may be the experiments of Marcus et al. 
(1993) using bracketed, indented trees. They found 
that annotator efficiency required eliminating  
many detailed brackets and category labels from 
the parser outputs presented.   Other approaches 
rest, in whole or in part,  on selecting among 
alternative two dimensional parse trees,  such as 
the distinguishing-feature-augmented  approach of  
Oepen et al. (2002), discussed in Section 2.  As 
discussed in that section, however, two-
dimensional tree displays are problematical for 
large trees, and it is not clear to what extent 
distinguishing feature information can expedite 
selecting among attachment choices.   

                                                 
4 Sentences not receiving complete parses were 
submitted to EVALB without any brackets, contributing 
zero counts to the total # of correct constituents recalled. 
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Other related work deals with reducing 
measured differences between parser outputs and 
treebanks due solely to grammar style. As 
discussed in section 5, the bracketed material used 
in treebank-based measurement by Ringger et al. 
(2004) is similar to the bracketed material that 
would result from systematically bracketing 
TextTrees.  

Finally, work by Walker (2001),  intended not 
for parser/grammar development, but to facilitate 
reading and improve retention, produces text 
formats that bear some similarity to TextTrees, but 
are more closely attuned to spoken phrasing than 
syntactic form. The method uses complex 
segmentation and indentation strategies generally 
based on a combination of punctuation and  closed-
class words. 
 
8   Directions for Further Development 

We have described an implemented method for 
presenting parser outputs permitting fast visual 
inspection of the results of parsing long 
documents, as well as  efficient editing to create 
informal treebanks.  Although, because of their 
flattened, skeletal nature, TextTrees can hide some 
parser errors, we strongly believe, based on 
extended usage,  that the convenience of reviewing 
TextTree files can contribute significantly to parser 
development efforts.  

However, TextTrees are best suited to languages 
tending to a fixed word order and post-
modification.  To improve results for languages 
and language aspects that do not fall into this 
category, TextTrees  might be augmented with  
highlighting and color to indicate syntactic 
functions.   One way this could be done in a parser- 
and grammar-independent way is by adding a 
string-valued representation feature to the standard 
ParseTrees, and an additional set of directives to 
map the feature values to representation 
alternatives.  For example, a subtree might be 
annotated with the feature Rep = "subject", and the 
additional  directives might include <"subject", 
"blue">.   Experimentation is needed to determine 
the usability of this approach.  

Another topic to explore is the use of TextTrees 
in the creation of corpora annotated by deeper 
syntactic or semantic information. Because such 
information is generally expressed in forms that 
are even less readable than parse trees, a useful 

bootstrapping practice is to allow annotators to 
approve, or select among, parser output trees 
connected with the deeper information (King et al., 
2003).   TextTrees might be used to facilitate this 
process, with annotators either (a) interactively 
selecting among alternative TextTrees or, because 
there may be many alternatives, (b) editing a 
TextTree file containing at most one parse for each 
sentence (possibly chosen arbitrarily) and using the 
result for offline selection.   Also, a parser used in 
the bootstrapping might refer to bracketed 
TextTreebanks to avoid pruning away elements of 
correct parses at intermediate points in parsing.  

A third direction for further work is in extending 
the TextTree approach to deal with outputs of 
dependency-based parsers that do not produce 
constituent trees. While this should be a natural 
extension, an alternative system of features and 
directives would seem to be needed. 
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Abstract

It is not cleara priori how well parsers
trained on the Penn Treebank will parse
significantly different corpora without
retraining. We carried out a compet-
itive evaluation of three leading tree-
bank parsers on an annotated corpus
from the human molecular biology do-
main, and on an extract from the Penn
Treebank for comparison, performing a
detailed analysis of the kinds of errors
each parser made, along with a quan-
titative comparison of syntax usage be-
tween the two corpora. Our results sug-
gest that these tools are becoming some-
what over-specialised on their training
domain at the expense of portability, but
also indicate that some of the errors en-
countered are of doubtful importance for
information extraction tasks.

Furthermore, our inital experiments
with unsupervised parse combination
techniques showed that integrating the
output of several parsers can ameliorate
some of the performance problems they
encounter on unfamiliar text, providing
accuracy and coverage improvements,
and a novel measure of trustworthiness.

Supplementary materials are available
at http://textmining.cryst.bbk.
ac.uk/acl05/.

1 Introduction

The availability of large-scale syntactically-
annotated corpora in general, and the Penn Tree-
bank1 (PTB;Marcus et al., 1994) in particular, has
enabled the field of stochastic parsing to advance
rapidly over the course of the last 10-15 years.
However, the newspaper English which makes up
the bulk of the PTB is only one of many dis-
tinct genres of writing in the Anglophone world,
and certainly not the only domain where poten-
tial natural-language processing (NLP) applica-
tions exist that would benefit from robust and re-
liable syntactic analysis. Due to the massive glut
of published literature, the biomedical sciences in
general, and molecular biology in particular, con-
stitute one such domain, and indeed much atten-
tion has been focused recently on NLP in this area
(Shatkay and Feldman, 2003; Cohen and Hunter,
2004).

Unfortunately, annotated corpora of a large
enough size to retrain stochastic parsers on do not
exist in this domain, and are unlikely to for some
time. This is partially due to the same differences
of vocabulary and usage that set biomedical En-
glish apart from theWall Street Journalin the first
place; these differences necessitate the input of
both biological and linguistic knowledge on bio-
logical corpus annotation projects (Kulick et al.,
2004), and thus require a wider variety of annota-
tor skills than general-English projects. For exam-
ple,5′ (pronounced “five-prime”) is an adjective in
molecular biology, butp53 is a noun;amino acid

1http://www.cis.upenn.edu/~treebank/
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is an adjective-noun sequence2 butcadmium chlo-
ride is a pair of nouns. These tagging decisions
would be hard to make correctly without biologi-
cal background knowledge, as would the preposi-
tional phrase attachment decisions inFigure 1.

Although it is intuitively apparent that there
are differences between newspaper English and
biomedical English, and that these differences
are quantifiable enough for biomedical writing
to be characterised as a sublanguage of En-
glish (Friedman et al., 2002), the performance of
conventionally-trained parsers on data from this
domain is to a large extent an open question.
Nonetheless, papers have begun to appear which
employ treebank parsers on biomedical text, es-
sentially untested (Xiao et al., 2005). Recently,
however, the GENIA project (Kim et al., 2003)
and the Mining the Bibliome project (Kulick et al.,
2004) have begun producing small draft corpora of
biomedical journal paper abstracts with PTB-style
syntactic bracketing, as well as named-entity and
part-of-speech (POS) tags. These are not currently
on a scale appropriate for retraining parsers (com-
pare the∼50,000 words in the GENIA Treebank
to the∼1,000,000 in the PTB; but see alsoSec-
tion 7.2) but can provide a sound basis for empiri-
cal performance evaluation and analysis. A collec-
tion of methods for performing such an analysis,
along with several interesting results and an inves-
tigation into techniques for narrowing the perfor-
mance gap, is presented here.

1.1 Motivation

We undertook this project with the intention of
addressing several questions. Firstly, in order to
deploy existing parsing technologies in a bioin-
formatics setting, the biomedical NLP commu-
nity needs a comprehensive assessment of perfor-
mance – which parser(s) to choose, what accuracy
each should be expected to achieve etc., along with
information about the different situations in which
each parser can be expected to perform well or
poorly. Secondly, assuming there is a performance
deficit, can any simple steps be taken to mitigate
it? Thirdly, what engineering issues arise from the

2According to some annotators at least; others tagamino
as a noun, although one would not speak of*an amino, *some
amino or *several aminos.

idiosyncracies of biomedical text?
The differences discovered in the behaviour of

each parser, either between domains or between
different software versions on the same domain,
will also be of interest to those in the computa-
tional linguistics community who are involved in
parser design. These values will give a compara-
tive index of the flexibility of each parsing model
on being presented with out-of-domain data, and
may help parser developers to detect signs of over-
training or, analogously, ‘over-design’ for one nar-
row genre of English. It is hoped that our findings
can assist those better equipped than ourselves in
properly investigating these phenomena, and that
our analysis of the problems encountered can shed
new light on the thorny problem of parser evalua-
tion.

Finally, several questions arise from the use of
multiple parsers on the same corpus that are of
both theoretical and practical interest. Does agree-
ment between several parsers indicate that a sen-
tence has been parsed correctly, or do they tend to
make the same mistakes? How best can the output
of an ensemble of parsers be integrated, in order
to boost performance above that of the best sin-
gle member? And what additional information can
be gleaned from comparing the opinions of sev-
eral parsers that can help make sense of unfamiliar
text?

2 Evaluation methodologies

We initially chose to rate the parsers in our as-
sessment by several different means which can
be grouped into two broad classes: constituent-
and lineage-based. WhileSampson and Babarczy
(2003) showed that there is a limited degree of cor-
relation between the per-sentence scores assigned
by the two methods, they are independent enough
that a fuller picture of parser competence can be
built up by combining them and thus sidestep-
ping the drawbacks of either approach. However,
overall performance scores designed for competi-
tively evaluating parsers do not provide much in-
sight into the aetiology of errors and anomalies, so
we developed a third approach based on produc-
tion rules that enabled us to mine the megabytes
of syntactic data for enlightening results more ef-
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a. [ This protein ] [ binds the DNA [ by the TATA box [ on its minor groove. ]2 ]1 ]

b. [ This protein ] [ binds the DNA [ by the TATA box ]1 [ at its C-terminal domain. ]2 ]

Figure 1: These two sentences are biologically clear but syntactically ambiguous. Only the knowledge
that the C-terminal domain is part of a protein, whereas the TATA box and minor groove are parts of
DNA, allows a human to interpret them correctly, by attaching the prepositional phrases 1 and 2 at the
right level.

fectively. All the Perl scoring routines we wrote
are available from ourwebsite.

2.1 Constituent-based assessment

Most evaluations of parser performance are based
upon three primary measures: labelled constituent
precision and recall, and number of crossing
brackets per sentence. Calculation of these scores
for each sentence is straightforward. Each con-
stituent in a candidate parse is treated as a tu-
ple 〈lbound,LABEL, rbound〉, wherelbound and
rbound are the indices of the first and last words
covered by the constituent. Precision is the pro-
portion of candidate constituents that are correct
and is calculated as follows:

P =
# true positives

# true positives + # false positives

Recall is the proportion of constituents from the
gold standard that are in the candidate parse:

R=
# true positives

# true positives + # false negatives

The crossing brackets score is reached by count-
ing the number of constituents in the candidate
parse that overlap with at least one constituent in
the gold standard, in such a way that one is not a
subsequence of the other.

Although this scoring system is in wide use, it
is not without its drawbacks. Most obviously, it
gives no credit for partial matches, for example
when a constituent in one parse covers most of
the same words as the other but is truncated or ex-
tended at one or both ends. Indeed, one can imag-
ine situations where a long constituent is truncated
at one end and extended at the other compared to
the gold standard; this would incur a penalty un-
der each of the above metrics even though some

or even most of the words in the constituent were
correctly categorised. One can of course suggest
modifications for these measures designed to ac-
count for particular situations like these, although
not without losing some of their elegance. The
same is true for label mismatches, where a con-
stituent’s boundaries are correct but its category is
wrong.

More fundamentally, it could be argued that by
taking as it were horizontal slices through the syn-
tax tree, these measures lose important informa-
tion about the ability of a parser to recreate the
gross grammatical structure of a sentence. The
height of a given constituent in the tree, and the
details of its ancestors and descendants, are not
directly taken into account, and it is surely the
case that these broader phenomena are at least as
important as the extents of individual constituents
in affecting meaning. However, constituent-based
measures are not without specific advantages too.
These include the ease with which they can be bro-
ken down into scores per label to give an impres-
sion of a parser’s performance on particular kinds
of constituent, and the straightforward message
they deliver about whether a badly-performing
parser is tending to over-generate (low precision),
under-generate (low recall) or mis-generate (high
crossing brackets).

2.2 Lineage-based assessment

In contrast to this horizontal-slice philosophy,
Sampson and Babarczy(2003) advocate a verti-
cal view of the syntax tree. By walking up the
tree structure from the immediate parent of a given
word until the top node is reached, and adding
each label encountered to the end of a list, a ‘lin-
eage’ representing the word’s ancestry can be re-
trieved. Boundary symbols are inserted into this
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lineage before the highest constituent that begins
on the word, and after the highest constituent that
ends on the word, if such conditions apply; this al-
lows potential ambiguities to be avoided, so that
the tree as a whole has one and only one corre-
sponding set of ‘lineage strings’ (seeFigure 2).

Using dynamic programming, a Levenshtein
edit distance can be calculated between each
word’s lineage strings in the candidate parse and
the gold standard, by determining the smallest
number of symbol insertions, deletions and substi-
tutions required to transform one of the strings into
the other. The leaf-ancestor (LA) metric, a simi-
larity score ranging between 0 (total parse failure)
and 1 (exact match), is then calculated by taking
into account the lengths of the two lineages:

LA = 1− dist(lineage1, lineage2)
len(lineage1)+ len(lineage2)

The per-word score can then be averaged over a
sentence or a whole corpus in order to arrive at an
overall performance indicator. Besides avoiding
some of the limitations of constituent-based eval-
uation discussed above, one major advantage of
this approach is that it can provide a word-by-word
measure of parser performance, and thus draw at-
tention easily to those regions of a sentence which
have proved problematic (seeSection 6.2for an
example). The algorithm can be made more sen-
sitive to near-matches between phrasal categories
by tuning the cost incurred for a substitution be-
tween similar labels, e.g. those for ‘singular noun’
and ‘proper noun’, rather than adhering to the uni-
form edit cost dictated by the standard Levenshtein
scheme. In order to avoid over-complicating this
study, however, we chose to keep the standard
penalty of 1 for each insertion, deletion or substi-
tution.

One drawback to leaf-ancestor evaluation is that
although it scores each word (sentence, corpus)
between 0 and 1, and these scores are presented
here as percentages for readability, it is mislead-
ing to think of them as percentages of correctness
in the same way that one would regard constituent
precision and recall. Indeed, the very fact that
it results in a single score means that it reveals
less at first glance about the broad classes of er-
rors that a parser is making than precision, recall

and crossing brackets do. Another possible objec-
tion is that since an error high in the tree will af-
fect many words, the system implicitly gives most
weight to the correct determination of those fea-
tures of a sentence which are furthest from be-
ing directly observable. One might argue, how-
ever, that since a high-level attachment error can
grossly perturb the structure of the tree and thus
the interpretation of the sentence, this is a perfectly
valid approach; it is certainly complementary to
the uniform scoring scheme described in the previ-
ous section, where every mistake is weighted iden-
tically.

2.3 Production-based assessment

In order to properly characterise the kinds of errors
that occurred in each parse, and to help elucidate
the differences between multiple corpora and be-
tween each parser’s behaviour on each corpus, we
developed an additional scoring process based on
production rules. A production rule is a syntactic
operation that maps from a parent constituent in a
syntax tree to a list of daughter constituents and/or
POS tags, of the general form:

LABELp→ LABEL1 . . .LABELn

For example, the rule that maps from the top-
most constituent inFigure 2to its daughters would
be S → NP VP. A production is the application
of a production rule at a particular location in the
sentence, and can be expressed as:

LABELp(lbound, rbound)→ LABEL1 . . .LABELn

Production precision and recall can be calcu-
lated as in a normal labelled constituent-based as-
sessment, except that a proposed production is a
true positive if and only if there exists a production
in the gold standard with the same parent label and
boundaries, and the same daughter labels in the
same order. (The respective widths of the daughter
constituents, where applicable, are not taken into
account, only their labels and order; any errors of
width in the daughters are detected when they are
tested as parents themselves.)

Furthermore, as an aid to the detection and anal-
ysis of systematic errors, we developed a heuristic
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S

NP

NN

TCF-1

NN

mRNA

VP

VBD

was

VP

VBN

expressed

ADVP

RB

uniquely

PP

IN

in

NP

NN

T

NNS

lymphocytes

Figure 2: Skipping the POS tag, the lineage string foruniquely is: [ ADVP ] VP VP S . The left and
right boundary markers record the fact that theADVP constituent both starts and ends with this word.

for finding the closest-matching candidate produc-
tionsPRODc1 . . .PRODcm in a parse, in each case
where a productionPRODg in the gold standard is
not exactly matched in the parse.

1. First, the heuristic looks for productions with
correct boundaries and parent labels, but in-
correct daughters. The corresponding pro-
duction rules are returned.

2. Failing that, it looks for productions with
correct boundaries and daughters, preserving
the order of the daughters, but with incorrect
parent labels. The corresponding production
rules are returned.

3. Failing that, it looks for productions with cor-
rect boundaries but incorrect parent labels
and daughters. The corresponding produc-
tion rules are returned.

4. Failing that, it looks for all extensions and
truncations of the production (boundary mod-
ifications such that there is at least one word
from PRODg still covered) with correct par-
ent and daughter labels and daughter order,
keeping only those that are closest in width to
PRODg (minimum number of extensions and
truncations). The meta-rulesEXT ALLMATCH
and/orTRUNC ALLMATCH as appropriate are
returned.

5. Failing that, it looks for all extensions
and truncations of the production where
the parent label is correct but the daugh-
ters are incorrect, keeping only those
that are closest in width toPRODg. The
meta-rules EXT PARENTMATCH and/or
TRUNC PARENTMATCH are returned.

6. If no matches are found in any of these
classes, a null result is returned.

Note that in some cases,m production rules of
the same class may be returned, for example when
the closest matches in the parse are two produc-
tions with the correct parent label, one of which is
one word longer thanPRODg, and one of which
is one word shorter. It is also conceivable that
multiple productions with the same parent or same
daughters could occupy the same location in the
sentence without branching, although it seems un-
likely that this would occur apart from in patho-
logically bad parses. In any ambiguous cases, no
attempt is made to decided which is the ‘real’ clos-
est match; allmmatches are returned, but they are
downweighted so that each counts as 1/m of an
error when error frequencies are calculated. In no
circumstances are matches from different classes
returned.

The design of this procedure reflects our re-
quirements for a tool to facilitate the diagnosis and
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summarisation of parse errors. We wanted to be
able to answer questions like “given that parser
A has a low recall forNP → NN NN productions,
what syntactic structures is it generating in their
place? Why might this be so? And what effect
might these errors have on the interpretation of the
sentence?” Accordingly, as the heuristic casts the
net further and further to find the closest match
for a productionPRODg, the classes to which it
assigns errors become broader and broader. Any
match at stages 1–3 is not simply recorded as a
substitution error, but a substitution for aparticu-
lar incorrect production rule. However, matches at
stages 4 and 5 do not make a distinction between
different magnitudes of truncation and extension,
and at stage 5 the information about the daugh-
ters of incorrect productions is discarded. This al-
lowed us to identify broad trends in the data even
where the correspondences between the gold stan-
dard and the parses were weak, yet nonetheless
recover detailed substitution information akin to
confusion matrices where possible.

Similar principles guided the decision not to
consider extensions and truncations with different
parent labels as potential loose matches, in order to
avoid uninformative matches to productions else-
where in the syntax tree. In practice, the matches
returned by the heuristic accounted for almost all
of the significant systematic errors suffered by the
parsers (seeSection 6) – null matches were in-
frequent enough in general that their presence in
larger numbers on certain production rules was it-
self useful from an explanatory point of view.

2.4 Alternative approaches

Several other proposed solutions to the evalua-
tion problem exist, and it is an ongoing and con-
tinually challenging field of research. Suggested
protocols based on grammatical or dependency
relations (Crouch et al., 2002), head projection
(Ringger et al., 2004), alternative edit distance
metrics (Roark, 2002) and various other schemes
have been suggested. Many of these alterna-
tive methodologies, however, suffer from one or
more disadvantages, such as specificity to one par-
ticular grammatical formalism (e.g. head-driven
phrase structure grammar) or one class of parser
(e.g. partial parsers), or a requirement for a spe-

cific manually-prepared evaluation corpus in a
non-treebank format. In addition, none of them
deliver the richness of information supplied by
production-based assessment, particularly in com-
bination with the other methods outlined above.

3 Comparing the corpora

The gold standard data for our experiments was
drawn from the GENIA Treebank3, a beta-stage
corpus of 200 abstracts drawn randomly from
the MEDLINE database4 with the search terms
“human”, “blood cell” and “transcription factor”.
These abstracts have been annotated with POS
tags, named entity classes and boundaries5, and
syntax trees which broadly follow the conventions
of the PTB. Some manual editing was required
to correct annotation errors and remove sentences
with uncorrectable errors, leaving 1757 sentences
(45406 tokens) in the gold standard. All errors
were reported to the GENIA group.

For comparison purposes, we used the standard
set-aside test set from the PTB, section 23. This
consists of 56684 words in 2416 sentences.

To gain insight into the differences between the
two corpora, we ran several tests of the grammati-
cal composition of each. For consistency with the
parser evaluation results, we stripped the follow-
ing punctuation tokens from the corpora before
gathering these statistics: period, comma, semi-
colon, colon, and double-quotes (whether they
were expressed as a single double-quotes charac-
ter, or pairs of opening or closing single-quotes).
We also removed any super-syntactic information
such as grammatical function suffixes, pruned any
tree branches that did not contain textual termi-
nals (e.g. traces), and deleted any duplicated
constituents – that is, constituents with only one
daughter that has the same label.

3.1 Sentence length and complexity

Having performed these pre-processing steps, we
counted the distributions of sentence lengths (in

3http://www-tsujii.is.s.u-tokyo.ac.jp/
GENIA/topics/Corpus/GTB.html

4http://www.pubmed.org/
5The named entity annotations are supplied in a separate

file which was discarded.
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words) and sentence complexities, using the num-
ber of constituents, not counting POS tags, as
a simple measure of complexity – although of
course one can imagine various other ways to
gauge complexity (mean tree depth, maximum
tree depth, constituents per word etc.). The results
are shown inFigure 3, and reveal an unexpected
level of correlation. Apart from a few sparse in-
stances at the right-hand tails of the two GENIA
distributions, and a single-constituent spike on the
PTB complexity distribution (due to one-phrase
headings likeSTOCK REPORT.), the two corpora
have broadly similar distributions of word count
and constituent count. The PTB has slightly more
mass on the short end of the length scale, but
GENIA does not have a corresponding number of
longer sentences. This ran contrary to our initial
intuition that newspaper English would tend to be
composed predominantly of shorter and simpler
sentences than biological English.

3.2 Constituent and production rule usage

Next, we counted the frequency with which each
constituent label appears in each corpus. The re-
sults are shown inFigure 4. The distributions are
reasonably similar between the two corpora, with
the most obvious difference being that GENIA
uses noun phrases more often, by just over six per-
centage points. This may reflect the fact that much
of the text in GENIA describes interactions be-
tween multiple biological entities at the molecular
and cellular levels; conjunction phrases are three
times as frequent in GENIA too, although this is
not obvious from the chart as the numbers are so
low in each corpus.

One surprising result is revealed by looking
at Table 1 which shows production rule usage
across the corpora. Although GENIA uses slightly
more productions per sentence on average, it uses
marginally fewerdistinct production rulesper sen-
tence, and considerably fewer overall – 62% of the
number of rules used in the PTB, despite being
73% of the size in sentences. These figures, along
with the significantly different rankings and fre-
quencies of the actual rules themselves (Table 2),
demonstrate that there are important syntactic dif-
ferences between the corpora, despite the simi-
larities in length, complexity and constituent us-

age. Such differences are invisible to conventional
constituent-based analysis.

The comparative lack of syntactic diversity in
GENIA may seem counter-intuitive, since biolog-
ical language seems at first glance dense and dif-
ficult. However, it must be remembered that the
text in GENIA consists only of abstracts, which
are tailored to the purpose of communicating a
few salient points in a short passage, and tend
to be composed in a somewhat formulaic man-
ner. They are written in a very restricted regis-
ter, compared to the range of registers that may
be present in one issue of a newspaper – news ar-
ticles, lifestyle features, opinion pieces, financial
reports and letters will be delivered in very dif-
ferent voices. Also, some of the apparent com-
plexity of biomedical texts is illusory, stemming
from the unfamiliar vocabulary, and furthermore,
a distinction must be made between syntactic and
semantic complexity. Consider a phrase likeiron-
sulphur cluster assembly transcription factor, the
name of a family of DNA-binding proteins, which
is a semantically-complex concept expressed in a
syntactically-simple form – essentially just a se-
ries of nouns.

4 Evaluating the parsers

The parsers chosen for this evaluation were those
described originally inCollins (1999), Charniak
(1999) andBikel (2002). These were selected be-
cause they are up-to-date (having last been up-
dated in 2002, 2003 and 2004 respectively), highly
regarded by the computational linguistics com-
munity, and importantly, free to use and modify
for academic research. Since part of our moti-
vation was to detect signs of over-specialisation
on the PTB, we assessed the current (0.9.9) and
previous (0.9.8) versions of the Bikel parser in-
dividually. The current version was invoked
with the newbikel.properties settings file,
which enables parameter pruning (Bikel, 2004),
whereas the previous version used the original
collins.properties settings which were de-
signed to emulate the Collins parser model 2 (see
below). The same approach was attempted with
the Charniak parser, but the latest version (re-
leased February 2005) suffered from fatal errors
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Figure 3: Sentence length and complexity distributions, GENIA vs. PTB.
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Figure 4: Constituent usages, GENIA vs. PTB.

GENIA PTB
Num. productions used in corpus78831 (44.87/sent.) 96694 (40.02/sent.)
Num. distinct production rules 1364 (5.47/sentence) 2184 (5.55/sent.)

Table 1: Production and production rule usage in the two corpora.

on GENIA which could not be diagnosed in time
for publication. Earlier versions of the Collins
parser are not available; however, the distribution
comes with three language models of increasing
sophistication which were treated initially as dis-
tinct parsers.

Tweaking of parser options was kept to a min-
imum, aside from trivial changes to allow for
unexpectedly long words, long or complex sen-
tences (e.g. default memory/time limits), and dif-
fering standards of tokenisation and punctuation,
although a considerable degree of pre- and post-
processing by Perl scripts was also necessary to
bring these into line. More detailed tuning would
have massively increased the number of variables
under consideration, given the number of compile-

time constants and run-time parameters available
to the programs; furthermore, it is probably safe
to assume that each author distributes his software
with an optimal or near-optimal configuration, at
least for in-domain data.

4.1 Part-of-speech tagging

The Collins parser requires pre-tagged input, and
although the Bikel parser can take untagged in-
put, the author recommends the use of a dedicated
POS tagger. For this reason, we pre-processed
GENIA with MedPost (Smith et al., 2004), a spe-
cialised biomedical POS tagger that was devel-
oped and trained on MEDLINE abstracts. The
supplied gold-standard POS tags were discarded
as using them would not provide a realistic ap-
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Top-25 production rules in GENIA (left) and PTB (right)
Freq. Rule Rank Freq. Rule
6.36 PP→ IN NP 1 4.80 PP→ IN NP
3.32 NP→ NN 2 2.95 S→ NP VP
3.13 NP→ NP PP 3 2.26 NP→ NP PP
2.17 S→ NP VP 4 2.15 TOP→ S
2.03 TOP→ S 5 1.86 NP→ DT NN
1.23 NP→ DT NN 6 1.43 S→ VP
0.89 NP→ NN NN 7 1.08 NP→ PRP
0.85 NP→ NP CC NP 8 0.92 ADVP→ RB
0.82 S→ VP 9 0.91 NP→ NNP
0.76 VP→ VBN PP 10 0.83 NP→ NNS
0.74 ADVP→ RB 11 0.81 VP→ TO VP
0.70 NP→ DT JJ NN 12 0.78 NP→ NN
0.66 NP→ NNS 13 0.74 NP→ NNP NNP
0.58 NP→ JJ NNS 14 0.63 SBAR→ IN S
0.53 NP→ JJ NN 15 0.62 NP→ DT JJ NN
0.51 SBAR→ IN S 16 0.60 NP→ NP NP
0.51 PP→ TO NP 17 0.57 SBAR→ S
0.49 NP→ DT NN NN 18 0.50 VP→ VB NP
0.48 NP→ NP PRN 19 0.48 NP→ NP SBAR
0.48 ADJP→ JJ 20 0.47 VP→ MD VP
0.47 NP→ NP PP PP 21 0.46 NP→ JJ NNS
0.47 PRN→ ( NP ) 22 0.41 SBAR→ WHNP S
0.45 NP→ NN NNS 23 0.40 PP→ TO NP
0.44 NP→ NP VP 24 0.33 VP→ VBD SBAR
0.40 VP→ VBD VP 25 0.32 NP→ NP CC NP

Table 2: The most common production rules in the two corpora, in order, with the frequency of occur-
rence of each. Notice that several rules are much more common in one corpus than the other, such asVP
→ TO VP, which is the 11th most common rule in the PTB but doesn’t make it into GENIA’s list.

proximation of the kinds of scenario where parsing
software would be deployed on unseen text. Med-
Post was found to tag GENIA with 93% accuracy.

Likewise, although the Charniak parser assigns
POS tags itself and was developed and trained
without exposure to a biological vocabulary, it was
allowed to compete on its own terms against the
other two parsers each in conjunction with Med-
Post. Although this may seem slightly unfair, to do
otherwise would not reflect real-life usage scenar-
ios. The parser tagged GENIA with an accuracy
of 85%.

The PTB extract used was included pre-
processed with the MXPOST tagger (Ratnaparkhi,
1996) as part of the Collins parser distribution; the

supplied tagging scored 97% accuracy. The Char-
niak parser re-tagged this corpus with 96% accu-
racy.

4.2 Initial performance comparison

Having parsed each corpus with each parser, the
output was post-processed into a standardised
XML format. The same pruning operations per-
formed on the original corpora (seeSection 3)
were repeated where necessary. TOP nodes (S1
nodes in the case of the Charniak parser) were
removed from all files as these remain constant
across every sentence.NAC and NX labels were
replaced byNP labels in the parses of GENIA as
the GENIA annotators useNP labels where these
would occur. We then performed lineage- and
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Raw scores on GENIA (1757 sentences)
Parser LA score Precision Recall F-measure % perfect % failure
Bikel 0.9.8 91.12 81.33 77.43 79.33 14.29 0.06
Bikel 0.9.9 65.30 81.68 55.75 66.27 11.21 25.04
Charniak 89.91 77.12 76.05 76.58 12.81 0.00
Collins 1 88.74 79.06 73.87 76.38 13.15 0.68
Collins 2 87.85 81.30 74.49 77.75 14.00 1.42
Collins 3 86.33 81.57 73.28 77.20 14.00 2.28

Raw scores on PTB (2416 sentences)
Parser LA score Precision Recall F-measure % perfect % failure
Bikel 0.9.8 94.45 88.09 88.13 88.11 33.44 0.04
Bikel 0.9.9 80.11 88.03 74.61 80.76 29.80 12.75
Charniak 94.36 88.09 88.28 88.18 35.06 0.00
Collins 1 94.17 86.80 86.70 86.75 31.13 0.00
Collins 2 94.36 87.29 87.20 87.24 33.49 0.04
Collins 3 94.25 87.28 87.10 87.19 33.11 0.08

Table 3: Initial performance comparison.

constituent-based scoring runs using our own Perl
scripts.

The results of this experiment are summarised
in Table 3, showing both the scores on both
GENIA and the PTB. The LA score given is the
mean of the leaf-ancestor scores for all the words
in the corpus, and the precision and recall scores
are taken over the entire set of constituents in the
corpus. Initially, these measures were calculated
per sentence, and then averaged across each cor-
pus, but the presence of pathologically short sen-
tences such asEnergy. gives an unrepresenta-
tive boost to per-sentence averages. (Interestingly,
many published papers do not make clear whether
the results they present are per-sentence averages
or corpus-wide scores.)

‘Mean X’ is simply the average number of
crossing brackets per sentence. ‘F-measure’ (van
Rijsbergen, 1979) is the harmonic mean of preci-
sion and recall; it is a balanced score that penalises
algorithms which favour one to the detriment of
the other, and is calculated as follows:

F =
2×P×R

P+R

4.3 Parse failures

Since most of the parsers suffered from a consid-
erable number of parse failures in GENIA – sen-
tences where no parse could be obtained –Table 4

shows recalculated scores based on evaluation of
successfully-parsed sentences only. Conflating the
performance drops caused by poorly parsed sen-
tences with those caused by total failures gives an
inaccurate picture of parser behaviour. In order to
determine if there was any pattern to these fail-
ures, we plotted the number of parse failures for
each parser against sentence length and sentence
complexity (seeFigure 5). These charts revealed
some interesting trends.

There is a known problem with the Collins mod-
els 2 and 3 failing on two sentences in the PTB
section 23 due to complexity, but this problem
is exacerbated in GENIA, with even the simpler
model 1 failing on a number of sentences, one of
which was only 24 words long plus punctuation.

Overall, however, the failures do tend to cluster
around the right-hand tails of the sentence length
and constituent count distributions. Discounting
such sentences, the three models do show a con-
sistent monotonic increase in precision, recall and
LA score from the simplest to the most complex,
accompanied by a decrease in the number of cross-
ing brackets per sentence. Interestingly, these
intervals are much more pronounced on GENIA
than on the PTB, where the performance seems to
level off between models 2 and 3. Difficult sen-
tences aside, then, it appears that the advanced fea-
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Figure 5: Parse failures on GENIA vs. sentence length and complexity for each parser.25



Scores on GENIA, successfully-parsed sentences only
Parser LA score Precision Recall F-measure Mean X # parsed
Bikel 0.9.8 91.15 81.33 77.46 79.35 2.06 1756
Bikel 0.9.9 91.17 81.68 77.04 79.29 1.89 1317
Charniak 89.91 77.12 76.05 76.58 2.42 1757
Collins 1 90.53 79.06 75.35 77.16 2.29 1745
Collins 2 91.21 81.30 77.24 79.22 2.01 1732
Collins 3 91.32 81.57 77.42 79.44 1.95 1717

Scores on PTB, successfully-parsed sentences only
Parser LA score Precision Recall F-measure Mean X # parsed
Bikel 0.9.8 94.53 88.09 88.20 88.15 1.07 2415
Bikel 0.9.9 94.52 88.03 88.07 88.05 1.04 2108
Charniak 94.36 88.09 88.28 88.18 1.08 2416
Collins 1 94.17 86.80 86.70 86.75 1.23 2416
Collins 2 94.45 87.29 87.28 87.28 1.19 2415
Collins 3 94.44 87.28 87.27 87.28 1.18 2414

Table 4: Performance scores, discounting all parse failures. Scores for the Charniak parser, and Collins
model 1 on the PTB, are shown again for comparison, although they did not fail on any sentences.

tures of models 2 and 3 are actually more valuable
on this unfamiliar corpus than on the original de-
velopment domain – provided that they do not trip
the parser up completely.

While Bikel 0.9.8’s failures are relatively few
and tend to occur more often in longer and more
complex sentences, like those of the Collins mod-
els, the distributions inFigure 5for Bikel 0.9.9
follow the shapes of the distributions remarkably
accurately. In other words, the length or complex-
ity of a sentence does not seem to be a major in-
fluence on the ability of Bikel 0.9.9 to parse it.
Undoubtedly, there is something more subtle in
the composition of these sentences that confuses
Bikel’s updated algorithm, although we could not
discern any pattern by eye. Perhaps this problem
could be diagnosed by monitoring the parser in
a Java debugger or modifying it to produce more
verbose output, but such an examination is beyond
the scope of this work.

Although version 0.9.9 fails on far fewer sen-
tences in the PTB than in GENIA, it still suffers
from two orders of magnitude more failures than
any other parser on the same corpus. These re-
sults suggest that the author’s claim that parame-
ter pruning results in “no loss of accuracy” (Bikel,
2004) can only be taken seriously when the test set

has been cleaned of all unparseable sentences; this
impression is reinforced by the fact that the preci-
sion and recall scores reported by the author agree
quite closely with our results on the PTB once the
parse failures have been removed.

5 Combining the parsers

Given the poorer results of these parsers on
GENIA than on the PTB, and the comparative
lack of annotated data in this domain, it is im-
portant to consider ways in which performance
can be enhanced without recourse to supervised
training methods. Various experimental tech-
niques exist for reducing or eliminating the need
for labelled training data, particularly in the pres-
ence of several diverse parsers (or more generally,
classifiers). These include active learning (Os-
borne and Baldridge, 2004), bagging and boost-
ing (Henderson, 1999) and co-training (Steedman
et al., 2003). In addition to these ‘knowledge-
poor’ techniques, one can easily imagine domain-
specific ‘knowledge-rich’ techniques that employ
existing biological data sources and NLP meth-
ods in order to select, modify, or constrain parses
(seeSection 7.2). For this preliminary investi-
gation, however, we concentrated on knowledge-
poor methods originating in work on parsing the
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PTB which could exploit the availability of multi-
ple parsers whilst requiring no time-consuming re-
training processes or integration with external re-
sources. Perl implementations of the algorithms
discussed below can be downloaded from our
website.

5.1 Fallback cascades

In the Collins parser instructions, the author sug-
gests stacking the three models in decreasing order
of sophistication (3→ 2→ 1), and for each sen-
tence, falling back to the next less sophisticated
model each time a more sophisticated one fails to
obtain a parse. The principle behind this is that the
more complex a model is, the more often it will
fail, but the better the results will be when it does
return a parse. We implemented this system for
the Collins models, and also for the Bikel parser,
starting with version 0.9.9 and falling back to 0.9.8
on failure. Since the Charniak parser did not suffer
any failures, we added it to each of these cascades
as a last-resort level, to fill any remaining gaps.

As expected, the results for each cascade
(Table 5) were comparable to their component
parsers’ scores on successfully-parsed sentences
(Table 4), except with 100% coverage of the cor-
pus. In each of the following parser integration
methods, we used these fallback cascades to rep-
resent the Bikel and Collins parsers, rather than
any of their individual parser models. The Bikel
cascade was used as a baseline against which to
test the results of each method for statistical sig-
nificance, using a two-tailed dependent t-test over
paired scores.

5.2 Constituent voting

Henderson(1999) reports good results when us-
ing a simple parse integration method called con-
stituent voting, where a hybrid parse is produced
by taking votes from all the parsers in an ensem-
ble. Essentially, all the constituents proposed by
the parsers are pooled, and each one is added to
the hybrid parse if more than half of the parsers
in the ensemble agree on it. The assumption be-
hind this concept is that the mistakes made by the
parsers are reasonably independently distributed –
if different kinds of errors beset the parsers, and
at different times, then a majority vote will tend to

converge on the correct set of constituents.
We implemented a three-way majority vote en-

semble between the Collins and Bikel cascades
and the Charniak parser; the results are shown in
Table 6. The most notable gain was in precision,
as one would hope from an algorithm designed
to screen out minority parsing decisions, but the
scores also illustrate an interesting phenomenon.
Although the ensemble took the lead on all the
constituent-based performance indicators, it per-
formed poorly on LA score. This demonstrates
an important point about parser scoring metrics –
that an algorithm designed to boost one measure of
quality can do so without necessarily raising per-
formance according to a different yardstick.

Part of the reason for this discrepancy may be
a quirk of the constituent voting algorithm that
constituent-based precision and recall scores gloss
over. The trees it produces are not guaranteed
to be well-formed under the grammars of any of
the members of the ensemble; if, for example,
the parsers cannot reach consensus about the exact
boundaries of a verb phrase, a sentence without a
VP constituent will be produced, leading to some
unusual attachments at a higher level. Unlike the
constituent-based approach, LA scoring tends to
favour parses that are accurate at the upper lev-
els of the tree, so an increase in precision and re-
call without a corresponding increase in LA score
would be consistent with this kind of oddity.

5.3 Parse selection

An alternative approach to integrating the out-
puts of a parser ensemble is whole parse selection
on a per-sentence basis, which has the potential
added advantage over hybridisation methods like
constituent voting that the gaps in trees described
above cannot occur. The most obvious way to
guess the best candidate parse for a sentence is to
assume that the true parse lies close to the centroid
of all the candidates in parse space, and then, using
some similarity or distance measure between the
candidates, pick the candidate that is most similar
to (or least distant from) all the other parses.

We implemented three parse switchers, two
based on constituent overlap, and one based on lin-
eage similarity between pairs of parses. Similarity
and distance switching (Henderson, 1999) take the
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Ensemble scores on GENIA, all sentences parsed successfully
Ensemble LA score Precision Recall F-measure Mean X % perfect
Collins-Charniak fallback 90.74 80.51 76.44 78.42 2.16 14.00
Bikel-Charniak fallback 91.08 81.31 76.96 79.08 2.05 14.11

Table 5: Ensemble scores on GENIA for Collins(3, 2, 1)→Charniak and Bikel(0.9.9, 0.9.8)→Charniak
fallback cascades.

Ensemble scores on GENIA, all sentences parsed successfully
Algorithm LA score Precision Recall F-measure Mean X % perfect
Majority vote ensemble 90.21 83.41 77.50 80.35 1.71 14.68

Table 6: Ensemble scores on GENIA for parse combination by majority constituent voting.

number of constituents that each parse has in com-
mon, and the number that are proposed by either
one but not both parsers, as measures of similar-
ity and distance respectively. Levenshtein switch-
ing, a novel method, uses the sentence-mean LA
scores between parses as the similarity measure.
In all methods, the parse with the maximum total
pairwise similarity (minimum total pairwise dis-
tance) to the set of rival parses for a sentence is
chosen. In no case were POS tags taken into ac-
count when calculating similarity, as they would
have made the Collins and Bikel parsers artificially
similar.

The results of these experiments are shown in
Table 7. All three methods achieved compara-
ble improvements overall, with the similarity and
distance switching routines favouring recall and
precision respectively (both differences significant
at p < 0.0001). Note however that the winning
LA score for Levenshtein switching is not a sta-
tistically significant improvement over the other
switching methods.

6 Error analysis

All of the parser integration methods discussed
above make the assumption that the parsers
in an ensemble will suffer from independently-
distributed errors, to a greater or lesser extent.
Simple fallback cascades rely on their individual
members failing on different sentences, but the
more sophisticated methods inSection 5.2and
Section 5.3are all ultimately based on the princi-
ple that agreement between parsers indicates con-
vergence on the true parse. Although the perfor-

mance gains we achieved with such methods are
statistically significant, they are nonetheless some-
what unimpressive compared to the 30% reduction
of recall errors and 6% reduction of precision er-
rors reported for the best ensemble techniques in
Henderson and Brill(1999) on the PTB.

This led us to suspect that the parsers in the en-
sembles were making similar kinds of errors on
GENIA, perhaps not across the board, but cer-
tainly often enough that consensus methods pick
incorrect constituents, and centroid methods con-
verge on incorrect parses, with a significant fre-
quency. To investigate this phenomenon, and
more generally to tease apart the reasons for each
parser’s performance drop on GENIA, we mea-
sured the precision and recall for each parser on
each production rule over GENIA and the PTB.
We then gathered the 25 most common production
rules in GENIA and compared the scores achieved
by each parser on each rule to the same rule in
PTB, thus drawing attention to parser-specific is-
sues and more widespread systematic errors. We
also collected closest-match data on each missed
production in GENIA, for each parser, and calcu-
lated substitution frequencies for each production
rule. This enabled us to identify both the sources
of performance problems, and to a certain extent
their causes and connotations. These data tables
have been omitted for space reasons, since the dis-
cussion below covers the important lessons learnt
from them, but they are available as supplemen-
tary materials on ourwebsite.
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Ensemble scores on GENIA, all sentences parsed successfully
Algorithm LA score Precision Recall F-measure Mean X % perfect
Similarity switching 91.34 81.73 78.01 79.83 1.97 14.85
Distance switching 91.35 82.10 77.72 79.85 1.92 15.08
Levenshtein switching 91.39 81.83 77.51 79.61 1.95 14.74

Table 7: Ensemble scores on GENIA for parse selection by three centroid-distance algorithms

6.1 Bikel parser errors

Despite the similar overall LA score and F-
measure for the two versions on parseable sen-
tences only, there are signs that the differences
between them run deeper than failure rates. The
newer version’s higher precision and lower cross-
ing brackets per sentences, along with lower re-
call, indicates that it is generating slightly more
conservatively than the older version, on GENIA
at least; these scores are much closer on the PTB.
Also, the production rule scores show one unex-
pected phenomenon – the older version is actu-
ally considerably better at labelling noun phrases
of the form( NP ) as parenthetical expressions
in GENIA (F = 81.07) than in PTB (F = 61.29),
as are the Collins and Charniak parsers, while the
newer version is much worse at this task in GENIA
(F = 42.36). On closer inspection, however, 84%
of the occurrences ofPRN → ( NP )mislabelled
by the newer version are instead marked asPRN
→ ( NN ) productions of the same width – in
other words, an intermediateNP constituent cov-
ering just a single noun has in these cases been
removed, and the noun ‘promoted’ to a direct
daughter of thePRN constituent. Although this
demonstrates a difference in the modelling of noun
phrases between the two versions, it is unlikely
that such a difference would alter the meaning of
a sentence. Furthermore, it must be noted thatPRN
→ ( NP ) is much more common in GENIA
than in PTB, so the improvements achieved by the
other parsers may be partially accidental; even if
they simply assumed that every phrase in paren-
theses is a noun phrase, they would do better on
this production in GENIA as a result.

6.2 Charniak parser errors

The Charniak parser goes from state-of-the-art on
PTB to comparatively poor on GENIA. It ranks

lowest in both LA score and F-measure when only
successfully parsed sentences are taken into ac-
count, and still only achieves mediocre perfor-
mance when the other parsers’ scores cover failed
sentences too, despite not failing on any sentences
itself. This discrepancy can be explained by a lack
of biomedical vocabulary available to its built-in
POS tagger. Although it tags GENIA with an ac-
curacy of 85% across all word classes, it achieves
only 63% on theNN (singular/mass noun) class.
This is the most numerous single class in GENIA,
and that which many domain-specific single-word
terms and components of multi-word phrases be-
long to.

The knock-on syntactic effects of this disability
can be traced in the leaf-ancestor metrics, where
the parser scores an impressive mean of 91.50 for
correctly-tagged words, compared to just 80.71
for incorrectly-tagged words. A similar effect can
be seen in the statistics for productions withNN
tags on the right hand side.NP → NN and NP
→ NN NN are identified with respective recalls
of only 33% and 19% in GENIA, for example,
as opposed to 90% and 82% in the PTB. More
than 40% of mislabelledNP → NN productions
in GENIA were identified instead asNP → NNP
(proper noun) orNP → NNS (plural noun) pro-
ductions by the parser, and the implications of
these mistakes for information extraction tasks do
not seem great, especially since the majority of
single-word noun phrases of particular interest in
this domain are likely to be genes, proteins etc.
that can be tagged independently by a dedicated
named-entity recognizer. The story is different
for mislabelledNP → NN NN productions, where
29% are mistaken forNP → JJ NN productions,
a substitution that one can imagine causing greater
semantic confusion. On the other hand, the Char-
niak parser goes from being the worst at identify-
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ing ADVP → RB productions (single-word adverb
phrases) on the PTB (F = 87.68) to being the best
at this task on GENIA (F = 87.06).

Accuracy issues notwithstanding, Charniak’s is
still the most robust of all the parsers, failing
on none of the supplied sentences in either cor-
pus. This may reflect a strategy of ’making-do’
when an exact parse cannot be derived; it de-
ployed more general-purposesFRAG (fragment)
and X (unknown/unparseable) constituents com-
bined than any other parser, and even a handful
of INTJ (interjection) phrases that no other parser
used in GENIA. Of course, such productions are
not always correct – there are actually no inter-
jections in GENIA – but from an information ex-
traction point of view, a rough parse may be better
than no parse at all, especially if the inclusion of
such inexact labels can be reflected in a reduced
level of confidence or trustworthiness for the sen-
tence.

6.3 Collins parser errors

We noted inSection 4.2that the Collins mod-
els achieved successively better performance on
GENIA once parse failures were discounted. Con-
sidering individual production rules, however, the
trends are not so clear-cut. There are rules that do
follow this overall pattern, such asS → NP VP,
which model 3 actually assigns more effectively
on GENIA (F = 88.98) than it does on the PTB
(F = 88.79). However, there are several common
productions where model 3’s accuracy degrades
more than model 2’s, most of which begin withNP
→ .... Most of these are found in the PTB more
effectively by model 3 than model 2, which sug-
gests over-fitting; these specific increases in per-
formance have apparently come at the expense of
portability. Note, however, the caveat regarding
noun phrases below.

6.4 Common trends

In addition to these parser-specific observations,
there are various phenomena that are common to
all or most of the parsers. Due to slight differ-
ences in the annotation of co-ordinated structures
between the GENIA and PTB guidelines, the cor-
rect generation of noun-phrase conjunctions (NP
→ NP CC NP) proved much harder on GENIA,

with all parsers having problems with identifica-
tion of the boundaries of the conjunction in the
text, and often with correct labelling of the con-
stituents involved too. Cases where eachNP is
a single word were handled relatively well, with
the essentially equivalentNN CC NN construction
often being proposed instead, but more complex
cases caused widespread difficulty.

More surprisingly, the labelling of single-word
noun and adjective phrases (NP → NN andAJDP
→ JJ), both of which are significantly more fre-
quent in GENIA, seemed challenging across the
board. The most commonly-occurring error in-
volved subsumption by a wider constituent with
the same label, apart from the errors of vocabulary
for the Charniak parser as described above. How-
ever, for correctly-tagged adjectives and nouns,
there are many situations where this will not make
any difference to the sense of a sentence. For ex-
ample, in a production likeNP → DT JJ NN, the
adjective still has its modificatory effect on the
noun without needing to be placed within anADJP
phrase of its own, and the noun is entirely capable
of acting as the head of the phrase without being
nested within anNP sub-phrase.

Similar effects occurred frequently with longer
phrases containing nouns, such asNP → DT NN
or NP → NN NN, where the most common errors
were also subsumptions by wider noun phrases.
Although the GENIA annotators warn that ”when
noun phrase consists with sequence of nouns[sic] ,
the internal structure is not neccessarily shown,”6

which must account for some of the noun handling
problems, such subsumptions suggest that the op-
posite may be occurring too – that there are cases
where the parsers are failing to generate internal
structure within noun phrases.

Prepositions were involved in many of the prob-
lematic cases, both on the left-hand and right-hand
sides of productions, and understandably so. The
disambiguation of prepositional attachment is a
continuing problem in parser design, and meth-
ods that take into account lexical dependencies be-
tween head words will be less effective when the
words in question are out-of-domain and thus un-

6http://www-tsujii.is.s.u-tokyo.ac.jp/
~genia/topics/Corpus/manual-for-bracketing.
html
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seen in training. The productionNP → NP PP
PP is a good example. The most common error
for all parsers was to produceNP → NP PP at the
same span of words in the sentence, indicating that
one of the prepositional phrases is frequently at-
tached at the wrong level. The second most com-
mon error was to substitute a shorterNP, suggest-
ing that one or both of thePPs were excluded.
Such errors are potentially of more serious seman-
tic importance than differences of opinion about
how to mark up the internal structure of noun-only
phrases.

7 Discussion

Although the performance gains achieved by our
parser integration methods are statistically signif-
icant, and illustrative of some important points
about parser behaviour and syntactic evaluation
methodologies, it is doubtful that the results are
good enough to justify deploying these techniques
on large amounts of text, at least in their current
form. The small increases in accuracy are prob-
ably outweighed by the additional computational
costs. The fallback cascades provided the same
protection from parse failure, with better perfor-
mance than the widest-coverage parser alone, and
in a production system most sentences would only
need to be parsed by the first parser in the cascade.

However, the parser integration idea as a whole
is not without its merits; we determined that an or-
acle picking the best sentences on GENIA would
achieve an LA score of 93.56, so there is still room
for improvement if the algorithms can be made
smarter. Although our analysis of the parsers’
mistakes on GENIA indicated that the ideal of
independently-distributed errors which underpins
these integration methods does not hold true, the
very fact that we can analyse their behaviour pat-
terns in such detail suggests that a sufficiently
well-designed ensemble could in principle learn
the circumstances under which each parser could
be trusted on a given corpus.

Furthermore, there are additional ways in which
an ensemble might assist with practical NLP is-
sues. While analysing the data from the parse se-
lection algorithms, we discovered that the centroid
distances for thewinning parses, scaled by sen-

tence size where necessary, correlate fairly well
(|r| ≈ 0.5) with those parses’ true LA scores and F-
measures (seeSection 7.2). We developed a sim-
ilar measurement for constituent voting based on
the level of consensus among the ensemble mem-
bers – the number of constituents winning a ma-
jority vote divided by the number of distinct can-
didate constituents – which showed a comparable
degree of correlation. This provides an answer
to our initial question about the extent to which
parser agreement signals parse correctness. Pre-
sumably the major limiting factor on these corre-
lations is the presence of widespread systematic
errors like those described inSection 6.4.

7.1 Engineering issues

As noted previously, the Charniak parser takes raw
text and performs tokenisation and POS tagging
internally. While this may seem like an advanta-
geous convenience, in practice it is the source of
considerable extra work, besides being the cause
of avoidable parse errors. The tokenisation stan-
dards encoded by Charniak did not match those as-
sumed by either the GENIA corpus, or indeed the
PTB extract, although problems were much more
widespread in the GENIA. Words containing em-
bedded punctuation were frequently split into mul-
tiple tokens, so these word-internal symbols had
to be converted into textual placeholders before
parsing and converted back afterwards. The some-
what idiosyncratic conventions of the GENIA cor-
pus did not help (differentiation/activation being
tagged as one token for example) but the fact that
similar issues occurred on the newspaper corpus
(e.g. withUS$ or 81-year-old ) suggests that mak-
ing assumptions about the ‘correct’ way to to-
kenise text is a bad policy in any domain.

Even when working on in-domain data, it seems
like a bad design decision to assume the parser will
be able to match the performance of a state-of-the-
art POS tagger on unseen text. The Bikel parser
can operate in either mode, which is a much more
flexible policy. In all fairness, however, it would
probably be fairly trivial for an interested C++ de-
veloper to bypass the Charniak parser’s tokeniser
and tagger and recompile it.

A different kind of engineering issue is that of
computation time. Parsing is a slow process in any
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case, and ensemble methods compound this prob-
lem. However, parsing is a canonically easy task
to perform in parallel, since (at this level of under-
standing at least) each sentence has no dependen-
cies on the previous, so even the parse integration
step can be split across multiple pipelines. We in-
tend to run pilot studies on the scalability of paral-
lel distributed parsing techniques, both on an IBM
Blade Center cluster running Beowulf Linux, and
a heterogeneous network of Windows PCs in their
spare hours, in order to determine the feasibility
and comparative attractiveness of each approach.

7.2 Future work

We mentioned above that there is a significant cor-
relation between the distance of a winning parse
from the centroid and its accuracy compared to
the gold standard. In an IE or other text min-
ing scenario, one could use these values as esti-
mators of trustworthiness for each parse – empir-
ical measures indicating how reliable to consider
it. We would like to explore this idea further, as it
can provide an extra level of understanding which
is missing from many IE techniques, and could
be easily employed in the ranking of extracted
‘facts’ or the resolution of contradictions. Since
LA scores can be calculated per word or per any
arbitrary region of the sentence, the potential even
for rating the trustworthiness of different clauses
or relationships individually cannot be ignored.

We have been experimenting with training a
neural network to pick the best parse for a sentence
based only on the pairwise Levenshtein distances
between the candidate parses, in the hope that it
can learn what decision to make based on patterns
of agreement between the parsers, rather than just
picking the parse which is most similar to all the
others as the current methods do. So far, however,
it has been unable to exceed the performance of
the unsupervised methods, which suggests that ad-
ditional features may need to be considered.

A complementary approach to parse integra-
tion would be to merge the PTB with an anno-
tated biomedical corpus and retrain a parser from
scratch. This proposition appears more attractive
in the light of the production rule frequency differ-
ences between GENIA and the PTB, and will be-
come more effective as the GENIA treebank grows

and the Mining the Bibliome project begins post-
ing official releases. In the meantime, we have be-
gun investigating the potential for using biological
named-entity and ontological-class information to
help rule out unlikely parses, for example in cases
where an entity name is bisected by a constituent
boundary.
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Abstract

We give a technical description of the
fission module of the COMIC mul-
timodal dialogue system, which both
plans the multimodal content of the sys-
tem turns and controls the execution of
those plans. We emphasise the parts of
the implementation that allow the sys-
tem to begin producing output as soon as
possible by preparing and outputting the
content in parallel. We also demonstrate
how the module was designed to ensure
robustness and configurability, and de-
scribe how the module has performed
successfully as part of the overall sys-
tem. Finally, we discuss how the tech-
niques used in this module can be ap-
plied to other similar dialogue systems.

1 Introduction

In a multimodal dialogue system, even minor de-
lays in processing at each stage can add up to pro-
duce a system that produces an overall sluggish
impression. It is therefore critical that the output
system avoid as much as possible adding any de-
lays of its own to the sequence; there should be as
little time as possible between the dialogue man-
ager’s selection of the content of the next turn and
the start of that turn’s output. When the output in-
corporates temporal modalities such as speech, it
is possible to take advantage of this by planning
later parts of the turn even as the earlier parts are

being played. This means that the initial parts of
the output can be produced more quickly, and any
delay in preparing the later parts is partly or en-
tirely eliminated. The net effect is that the over-
all perceived delay in the output is much shorter
than if the whole turn had been prepared before
any output was produced.

In this paper, we give a technical description of
the output system of the COMIC multimodal dia-
logue system, which is designed to allow exactly
this interleaving of preparation and output. The
paper is arranged as follows. InSection 2, we
begin with a general overview of multimodal di-
alogue systems, concentrating on the design de-
cisions that affect how output is specified and
produced. InSection 3, we then describe the
COMIC multimodal dialogue system and show
how it addresses each of the relevant design de-
cisions. Next, inSection 4, we describe how
the segments of an output plan are represented in
COMIC, and how those segments are prepared and
executed in parallel. InSection 5, we discuss two
aspects of the module implementation that are rel-
evant to its role within the overall COMIC system:
the techniques that were used to ensure the robust-
ness of the fission module, and how it can be con-
figured to support a variety of requirements. In
Section 6, we then assess the practical impact of
the parallel processing on the overall system re-
sponsiveness, and show that the output speed has
a perceptible effect on the overall user experiences
with the system. Finally, inSection 7, we outline
the aspects of the COMIC output system that are
applicable to similar systems.
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Figure 1: High-level architecture of a typical multimodal dialogue system

2 Output in Multimodal Dialogue
Systems

Most multimodal dialogue systems use the basic
high-level architecture shown inFigure 1. Input
from the user is analysed by one or more input-
processing modules, each of which deals with an
individual input channel; depending on the ap-
plication, the input channels may include speech
recognition, pen-gesture or handwriting recogni-
tion, or information from visual sensors, for ex-
ample. The messages from the various sources are
then combined by a fusion module, which resolves
any cross-modal references and produces a com-
bined representation of the user input. This com-
bined representation is sent to the dialogue man-
ager, which uses a set of domain and dialogue
knowledge sources to process the user input, in-
teract with the underlying application if necessary,
and specify the content to be output by the sys-
tem in response. The output specification is sent to
the fission module, which creates a presentation to
meet the specification, using a combination of the
available output channels. Again, depending on
the application, a variety of output channels may
be used; typical channels are synthesised speech,
on-screen displays, or behaviour specifications for
an animated agent or a robot.

This general structure is typical across mul-
timodal dialogue systems; however, there are a
number of design decisions that must be made
when implementing a specific system. As this pa-

per concentrates on the output components high-
lighted inFigure 1, we will discuss the design de-
cisions that have a particular impact on those parts
of the dialogue system: the domain of the applica-
tion, the output modalities, the turn-taking proto-
col, and the division of labour among the modules.
We will use as examples the the WITAS (Lemon
et al., 2002), MATCH (Walker et al., 2002), and
SmartKom (Wahlster, 2005) systems.

The domain of the system and the interactions
that it is intended to support both have an influ-
ence on the type of output that is to be gener-
ated. Many systems are designed primarily to sup-
port information exploration and presentation, and
concentrate on effectively communicating the nec-
essary information to the user. SmartKom and
MATCH both fall into this category: SmartKom
deals with movie and television listings, while
MATCH works in the domain of restaurant rec-
ommendations. In a system such as WITAS,
which incorporates real-time control of a robot he-
licopter, very different output must be generated
to communicate the current state and goals of the
robot to the user.

The choice of output modalities also affects the
output system—different combinations of modali-
ties require different types of temporal and spatial
coordination, and different methods of allocating
the content across the channels. Most multimodal
dialogue systems use synthesised speech as an out-
put modality, often in combination with lip-synch
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and other behaviours of an animated agent (e.g.,
MATCH, SmartKom). Various types of visual
output are also often employed, including inter-
active maps (MATCH, WITAS), textual informa-
tion presentations (SmartKom, MATCH), or im-
ages from visual sensors (WITAS). Some systems
also dynamically adapt the output channels based
on changing constraints; for example, SmartKom
chooses a spoken presentation over a visual one in
an eyes-busy situation.

Another factor that has an effect on the design
of the output components is the turn-taking proto-
col selected by the system. Some systems—such
as WITAS—supportbarge-in (Ström and Seneff,
2000); that is, the user may interrupt the system
output at any time. Allowing the user to inter-
rupt can permit a more intuitive interaction with
the system; however, supporting barge-in creates
many technical complications. For example, it is
crucial that the output system be prepared to stop
at any point, and that any parts of the system that
track the dialogue history be made aware of how
much of the intended content was actually pro-
duced. For simplicity, many systems—including
SmartKom—instead use half-duplex turn-taking:
when the system is producing output, the input
modules are not active. This sort of system is tech-
nically more straightforward to implement, but re-
quires that the user be given very clear signals as
to when the system is and is not paying attention to
their input. MATCH uses a click-to-talk interface,
where the user presses a button on the interface
to indicate that they want to speak; it is not clear
whether the system supports barge-in.

The division of labour across the modules also
differs among implemented systems. First of all,
not all systems actually incorporate a separate
component that could be labelledfission: for ex-
ample, in WITAS, the dialogue manager itself also
addresses the tasks of presentation planning and
coordination. The components of the typical nat-
ural language generation “pipeline” (Reiter and
Dale, 2000) may be split across the modules in a
variety of ways. When it comes to content selec-
tion, for instance, in MATCH the dialogue man-
ager specifies the content at a high level, while the
text planner selects and structures the actual facts
to include in the presentation; in WITAS, on the

other hand, the specific content is selected by the
dialogue manager. The tasks of text planning and
sentence planning may be addressed by various
combinations of the fission module and any text-
generation modules involved—SmartKom creates
the text in a separate generation module, while
in MATCH text and sentence planning is more
tightly integrated with content selection.

Coordination across multiple output channels is
also implemented in various ways. If the only pre-
sentation modality is an animated agent, in many
cases the generated text is sent directly to the
agent, which then communicates privately with
the speech synthesiser to ensure synchronisation.
This “visual text-to-speech” configuration is the
default behaviour of the Greta (de Rosis et al.,
2003) and RUTH (DeCarlo et al., 2004) animated
presentation agents, for instance. However, if the
behaviour of the agent must be coordinated with
other forms of output, it is necessary that the be-
haviour of all synchronised modules be coordi-
nated centrally. How this is accomplished in prac-
tice depends on the capabilities of selected speech
synthesiser that is used. In SmartKom, for exam-
ple, the presentation planner pre-synthesises the
speech and uses the schedule returned by the syn-
thesiser to create the full multimodal schedule; in
MATCH, on the other hand, the speech synthe-
siser sends progress messages as it plays its out-
put, which are used to control the output in the
other modalities at run time.

3 The COMIC Dialogue System

COMIC1 (COnversational Multimodal Interac-
tion with Computers) is an EU IST 5th frame-
work project combining fundamental research on
human-human dialogues with advanced technol-
ogy development for multimodal conversational
systems. The COMIC multimodal dialogue sys-
tem adds a dialogue interface to a CAD-like ap-
plication used in sales situations to help clients
redesign their bathrooms. The input to COMIC
consists of speech, pen gestures, and handwriting;
turn-taking is strictly half-duplex, with no barge-in
or click-to-talk. The output combines the follow-
ing modalities:

1http://www.hcrc.ed.ac.uk/comic/
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“ [Nod] Okay. [Choose design] [Look at screen]THIS design[circling gesture]is CLAS-
SIC. It uses tiles from VILLEROY AND BOCH’s CENTURY ESPRIT series. There are
FLORAL MOTIFS andGEOMETRIC SHAPESon theDECORATIVE tiles.”

Figure 2: COMIC interface and sample output

• Synthesised speech, created using the
OpenCCG surface realiser (White, 2005a;b)
and synthesised by a custom Festival 2 voice
(Clark et al., 2004) with support for APML
prosodic markup (de Carolis et al., 2004).

• Facial expressions and gaze shifts of a talking
head (Breidt et al., 2003).

• Direct commands to the design application.

• Deictic gestures at objects on the application
screen, using a simulated mouse pointer.

Figure 2shows the COMIC interface and a typical
output turn, including commands for all modali-
ties; the small capitals indicate pitch accents in the
speech, with corresponding facial emphasis.

The specifications from the COMIC dialogue
manager are high-level and modality-independent;
for example, the specification of the output shown
in Figure 2 would indicate that system should
show a particular set of tiles on the screen, and
should give a detailed description of those tiles.
When the fission module receives input from the
dialogue manager, it selects and structures mul-
timodal content to create an output plan, us-
ing a combination of scripted and dynamically-
generated output segments. The fission module
addresses the tasks of low-level content selec-
tion, text planning, and sentence planning; sur-
face realisation of the sentence plans is done by

the OpenCCG realiser. The fission module also
controls the output of the planned presentation by
sending appropriate messages to the output mod-
ules including the text realiser, speech synthesiser,
talking head, and bathroom-design GUI. Coordi-
nation across the modalities is implemented using
a technique similar to that used in SmartKom: the
synthesised speech is prepared in advance, and the
timing information from the synthesiser is used to
create the schedule for the other modalities.

The plan for an output turn in COMIC is rep-
resented in a tree structure; for example,Figure 3
shows part of the plan for the output inFigure 2.
A plan tree like this is created from the top down,
with the children created left-to-right at each level,
and is executed in the same order. The planning
and execution processes for a turn are started to-
gether and run in parallel, which makes it possible
to begin producing output as soon as possible and
to continue planning while output is active. In the
following section, we describe the set of classes
and algorithms that make this interleaved prepara-
tion and execution possible.

The COMIC fission module is implemented in a
combination of Java and XSLT. The current mod-
ule consists of 18 000 lines of Java code in 88
source files, and just over 9000 lines of XSLT tem-
plates. In the diagrams and algorithm descriptions
that follow, some non-essential details are omitted
for simplicity.
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Figure 3: Output plan

4 Representing an Output Plan

Each node in a output-plan tree such as that shown
in Figure 3 is represented by an instance of the
Segment class. The structure of this abstract class
is shown inFigure 4; the fields and methods de-
fined in this class control the preparation and out-
put of the corresponding segment of the plan tree,
and allow preparation and output to proceed in
parallel.

Each Segment instance stores a reference to its
parent in the tree, and defines the following three
methods:

• plan() Begins preparing the output.

• execute() Produces the prepared output.

• reportDone() Indicates to the Segment’s
parent that its output has been completed.

plan() and execute() are abstract methods of
the Segment class; the concrete implementations
of these methods on the subclasses of Segment
are described later in this section. Each Segment
also has the following Boolean flags that control
its processing; all are initially false.

• ready This flag is set internally once the Seg-
ment has finished all of its preparation and is
ready to be output.

• skip This flag is set internally if the Segment
encounters a problem during its planning, and
indicates that the Segment should be skipped
when the time comes to produce output.

Segment
# parent : Sequence
# ready : boolean
# skip : boolean
# active : boolean
+ plan()
+ execute()
# reportDone()

Figure 4: Structure of the Segment class

• active This flag is set externally by the Seg-
ment’s parent, and indicates that this Seg-
ment should produce its output as soon as it
is ready.

The activity diagram inFigure 5 shows how
these flags and methods are used during the prepa-
ration and output of a Segment. Note that a
Segment may send asynchronous queries to other
modules as part of its planning. When such a
query is sent, the Segment sets its internal state
and exits itsplan() method; when the response
is received, preparation continues from the last
state reached. Since planning and execution pro-
ceed in parallel across the tree, and the planning
process may be interrupted to wait for responses
from other modules, theready andactive flags
may be set in either order on a particular Seg-
ment. Once both of these flags have been set, the
execute() method is called automatically. If both
skip andactive are set, the Segment instead au-
tomatically callsreportDone() without ever ex-
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plan()

Set activeSet ready Set skip

execute()

reportDone()

Called by parent
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Success Error

Communicates
with other modules

Figure 5: Segment preparation and output
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Figure 6: Segment class hierarchy
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ecuting; this allows Segments with errors to be
skipped without affecting the output of the rest of
the turn.

The full class hierarchy under Segment is shown
in Figure 6. There are three main top-level sub-
classes of Segment, which differ primarily based
on how they implementexecute():

Sequence An ordered sequence of Segments. It
is executed by activating each child in turn.

BallisticSegment A single command whose du-
ration is determined by the module producing the
output. It is executed by sending a message to the
appropriate module and waiting for that module to
report back that it has finished.

Sentence A single sentence, incorporating coor-
dinated output in all modalities. Its schedule is
computed in advance, as part of the planning pro-
cess; it is executed by sending a “go” command to
the appropriate output modules.

In the remainder of this section, we discuss each
of these classes and its subclasses in more detail.

4.1 Sequence

All internal nodes in a presentation-plan tree
(coloured blue inFigure 3) are instances of some
type of Sequence. A Sequence stores a list of child
Segments, which it plans and activates in order,
along with a pointer to the currently active Seg-
ment.Figure 7shows the pseudocode for the main
methods of a typical Sequence.

Note that a Sequence calls sets itsready flag as
soon as all of its necessary child Segments have
been created, and only then begins callingplan()
on them. This allows the Sequence’sexecute()
method to be called as soon as possible, which
is critical to allowing the fission module to begin
producing output from the tree before the full tree
has been created.

When execute() is called on a Sequence, it
callsactivate() on the first child in its list. All
subsequent children are activated by calls to the
childIsDone() method, which is called by each
child as part of itsreportDone() method after its
execution is completed. Note that this ensures that
the children of a Sequence will always be executed
in the proper order, even if they are prepared out of

public void plan() {
// Create child Segments

cur = 0;
ready = true ;

for ( Segment seg: children ) {
seg.plan();

}
}

public void execute() {
children.get( 0 ).activate();

}

public void childIsDone() {
cur++;
if ( cur >= children.size() ) {

reportDone();
} else {

children.get( cur ).activate();
}

}

Figure 7: Pseudocode for Sequence methods

order. Once all of the Sequence’s children have re-
ported that they are done, the Sequence itself calls
reportDone().

The main subclasses of Sequence, and their rel-
evant features, are as follows:

TurnSequence The singleton class that is the
parent of all Turns. It is always active, and new
children can be added to its list at any time.

Turn Corresponds to a single message from the
dialogue manager; the root of the output plan in
Figure 3 is a Turn. Itsplan() implementation
creates a Segment corresponding to each dialogue
act from the dialogue manager; in some cases, the
Turn adds additional children not directly speci-
fied by the DAM, such as the verbal acknowledge-
ment and the gaze shift inFigure 3.

ScriptedSequence A sequence of canned output
segments stored as an XSLT template. A Scripted-
Sequence is used anywhere in the dialogue where
dynamically-generated content is not necessary;
for example, instructions to the user and acknowl-
edgements such as the leftmost subtree inFigure 3
are stored as ScriptedSequences.

PlannedSequence In contrast to a ScriptedSe-
quence, a PlannedSequence creates its children
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dynamically depending on the dialogue context.
The principal type of PlannedSequence is a de-
scription of one or more tile designs, such as that
shown inFigure 2. To create the content of such
a description, the fission module uses information
from the system ontology, the dialogue history,
and the model of user preferences to select and
structure the facts about the selected design and
to create the sequence of sentences to realise that
content. This process is described in detail in (Fos-
ter and White, 2004; 2005).

4.2 BallisticSegment

A BallisticSegment is a single command for a sin-
gle output module, where the output module is al-
lowed to choose the duration at execution time.
In Figure 3, the orangeNod, Choose design, and
Look at screennodes are examples of BallisticSeg-
ments. In itsplan() method, a BallisticSegment
transforms its input specification into an appropri-
ate message for the target output module. When
execute() is called, the BallisticSegment sends
the transformed command to the output module
and waits for that module to report back that it is
done; it callsreportDone() when it receives that
acknowledgement.

4.3 Sentence

The Sentence class represents a single sentence,
combining synthesised speech, lip-synch com-
mands for the talking head, and possible coordi-
nated behaviours on the other multimodal chan-
nels. The timing of a sentence is based on the
timing of the synthesised speech; all multimodal
behaviours are scheduled to coincide with partic-
ular words in the text. Unlike a BallisticSegment,
which allows the output module to determine the
duration at execution time, a Sentence must pre-
pare its schedule in advance to ensure that output
is coordinated across all of the channels. InFig-
ure 3, all of the green leaf nodes containing text
are instances of Sentence.

There are two types of Sentences: ScriptedSen-
tences and PlannedSentences. A ScriptedSentence
is generally created as part of a ScriptedSequence,
and is based on pre-written text that is sent directly
to the speech synthesiser, along with any neces-
sary multimodal behaviours. A PlannedSentence

forms part of a PlannedSequence, and is based on
logical forms for the OpenCCG realiser (White,
2005a;b). The logical forms may contain multiple
possibilities for both the text and the multimodal
behaviours; the OpenCCG realiser uses statistical
language models to make a final choice of the ac-
tual content of the sentence.

The first step in preparing either type of Sen-
tence is to send the text to the speech synthe-
siser (Figure 8(a)). For a ScriptedSentence, the
canned text is sent directly to the speech synthe-
siser; for a PlannedSentence, the logical forms are
sent to the realiser, which then creates the text
and sends it to the synthesiser. In either case, the
speech-synthesiser input also includes marks at all
points where multimodal output is intended. The
speech synthesiser prepares and stores the wave-
form based on the input text, and returns timing in-
formation for the words and phonemes, along with
the timing of any multimodal coordination marks.

The fission module uses the returned timing
information to create the final schedule for all
modalities. It then sends the animation schedule
(lip-synch commands, along with any coordinated
expression or gaze behaviours) to the talking-head
module so that it can prepare its animation in ad-
vance (Figure 8(b)). Once the talking-head mod-
ule has prepared the animation for a turn, it returns
a “ready” message. The design application does
not need its schedule in advance, so once the re-
sponse is received from the talking head, the Sen-
tence has finished its preparation and is able to set
its ready flag.

When a Sentence is executed by its parent,
it selects a desired start time slightly in the fu-
ture and sends two messages, as shown inFig-
ure 8(c). First, it sends a “go” message with
the selected starting time to the speech-synthesis
and talking-head modules; these modules then
play the prepared output for that turn at the given
time. The Sentence also sends the concrete sched-
ule for any coordinated gesture commands to the
bathroom-design application at this point. Af-
ter sending its messages, the Sentence waits until
the scheduled duration has elapsed, and then calls
reportDone().
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Figure 8: Planning and executing a Sentence
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5 Robustness and Configurability

In the preceding section, we gave a description of
the data structures and methods that are used when
preparing and executing and output plan. In this
section, we describe two other aspects of the mod-
ule that are important to its functioning as part of
the overall dialogue system: its ability to detect
and deal with errors in its processing, and the var-
ious configurations in which it can be run.

5.1 Error Detection and Recovery

Since barge-in is not implemented in COMIC, the
fission module plays an important role in turn-
taking for the whole COMIC system: it is the
module that informs the input components when
the system output is finished, so that they are able
to process the next user input. The fission mod-
ule therefore incorporates several measures to en-
sure that it is able to detect and recover from un-
expected events during its processing, so that the
dialogue is able to continue even if there are errors
in some parts of the output.

Most input from external modules is validated
against XML schemas to ensure that it is well-
formed, and any messages that fail to validate are
not processed further. As well, all queries to exter-
nal modules are sent with configurable time-outs,
and any Segment that is expecting a response to a
query is also prepared to deal with a time-out.

If a problem occurs while preparing any Seg-
ment for output—either due to an error in internal
processing, or because of an issue with some ex-
ternal module—that Segment immediately sets its
skip flag and stops the preparation process. As
described inSection 4, any Segments with this flag
set are then skipped at execution time. This en-
sures that processing is able to continue as much
as possible despite the errors, and that the fission
module is still able to produce output from the
parts of an output plan unaffected by the problems
and to perform its necessary turn-taking functions.

5.2 Configurability

The COMIC fission module can be run in sev-
eral different configurations, to meet a variety of
evaluation, demonstration, and development situa-
tions. The fission module can be configured not to

wait for “ready” and “done” responses from either
or both of the talking-head and design-application
modules; the fission module simply proceeds with
the rest of its processing as if the required response
had been received. This allows the whole COMIC
system to be run without those output modules en-
abled. This is useful during development of other
parts of the system, and for running demos and
evaluation experiments where not all of the output
channels are used. The module also has a num-
ber of other configuration options to control fac-
tors such as query time-outs and the method of se-
lecting multimodal coarticulations.

As well, the fission module has the ability to
generate multiple alternative versions of a single
turn, using different user models, dialogue-history
settings, or multimodal planning techniques; this
is useful both as a testing tool and as part of a sys-
tem demonstration. The module can also store all
of the generated output to a script, and to play back
the scripted output at a later time using a subset of
the full system. This allows alternative versions
of the system output to be directly compared in
user evaluation studies such as (Foster, 2004; Fos-
ter and White, 2005).

6 Output Speed

In the final version of the COMIC system, the av-
erage time2 that the speech synthesiser takes to
prepare the waveform for a sentence is 1.9 sec-
onds, while the average synthesised length of a
sentence is 2.7 seconds. This means that, on aver-
age, each sentence takes long enough to play that
the next sentence is ready as soon as it is needed;
and even when this is not the case, the delay be-
tween sentences is still greatly reduced by the par-
allel planning process.

The importance of beginning output as soon as
possible was demonstrated by a user evaluation of
an interim version of COMIC (White et al., 2005).
Subjects in that study used the full COMIC sys-
tem in one of two configurations: an “expressive”
condition, where the talking head used all of the
expressions it was capable of, or a “zombie” con-
dition where all of the behaviours of the head were
disabled except for lip-synch. One effect of this

2On a Pentium 4 1.6GHz computer.
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difference was that the system gave a consistently
earlier response in the expressive condition—a fa-
cial response was produced an average of 1.4 sec-
onds after the dialogue-manager message, while
spoken input did not begin for nearly 4 seconds.
Although that version of the system was very slow,
the subjects in the expressive condition were sig-
nificantly less likely to mention the overall slow-
ness than the subjects in the zombie condition.

After this interim evaluation, effort was put into
further reducing the delay in the final system. For
example, we now store the waveforms for ac-
knowledgements and other frequently-used texts
pre-synthesised in the speech module instead of
sending them to Festival, and other internal pro-
cessing bottlenecks were eliminated. Using the
same computers as the interim evaluation, the fis-
sion delay for initial output is under 0.5 seconds in
the final system.

7 Conclusions

The COMIC fission module is able to prepare and
control the output of multimodal turns. It prepares
and executes its plans in parallel, which allows it
to begin producing output as soon as possible and
to continue with preparing later parts of the pre-
sentation while executing earlier parts. It is able
to produce output coordinated and synchronised
across multiple modalities, to detect and recover
from a variety of errors during its processing, and
to be run in a number of different configurations
to support testing, demonstrations, and evaluation
experiments. The parallel planning process is able
to make a significant reduction in the time taken to
produce output, which has a perceptible effect on
user satisfaction with the overall system.

Some aspects of the fission module are specific
to the design of the COMIC dialogue system; for
example, the module performs content-selection
and sentence-planning tasks that in other systems
might be addressed by a dialogue manager or text-
generation module. Also, aspects of the commu-
nication with the output modules are tailored to
the particular modules involved: the fission mod-
ule makes use of features of the OpenCCG realiser

to help choose the content of many of its turns, and
the implementation of the design application is ob-
viously COMIC-specific.

However, the general technique of interleaving
preparation and execution, using the time while
the system is playing earlier parts of a turn to
prepare the later parts, is easily applicable to any
system that produces temporal output, as long as
the same module is responsible for preparing and
executing the output. There is nothing COMIC-
specific about the design of the Segment class or
its immediate sub-classes.

As well, the method of coordinating distributed
multimodal behaviour with the speech timing
(Section 4.3) is a general one. Although the cur-
rent implementation relies on the output modules
to respect the schedules that they are given—with
no adaptation at run time—in practice the coordi-
nation in COMIC has been generally successful,
providing that three conditions are met. First, the
selected starting time must be far enough in the fu-
ture that it can be received and processed by each
module in time. Second, the clocks on all comput-
ers involved in running the system must be syn-
chronised precisely. Finally, the processing load
on each computer must be low enough that timer
events do not get delayed or pre-empted.

Since the COMIC system does not support
barge-in, the current fission module always pro-
duces the full presentation that is planned, bar-
ring processing errors. However, since the mod-
ule produces its output incrementally, it would be
straightforward to extend the processing to allow
execution to be interrupted after any Segment, and
to know how much of the planned output was ac-
tually produced.
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Abstract

We present an extensible API for inte-
grating language modeling and realiza-
tion, describing its design and efficient
implementation in the OpenCCG sur-
face realizer. With OpenCCG, language
models may be used to select realiza-
tions with preferred word orders, pro-
mote alignment with a conversational
partner, avoid repetitive language use,
and increase the speed of the best-first
anytime search. The API enables a vari-
ety of n-gram models to be easily com-
bined and used in conjunction with ap-
propriate edge pruning strategies. The
n-gram models may be of any order,
operate in reverse (“right-to-left”), and
selectively replace certain words with
their semantic classes. Factored lan-
guage models with generalized backoff
may also be employed, over words rep-
resented as bundles of factors such as
form, pitch accent, stem, part of speech,
supertag, and semantic class.

1 Introduction

The OpenCCG1 realizer (White and Baldridge,
2003; White, 2004a; White, 2004c) is an open
source surface realizer for Steedman’s (2000a;
2000b) Combinatory Categorial Grammar (CCG).
It is designed to be the first practical, reusable re-
alizer for CCG, and includes implementations of

1http://openccg.sourceforge.net

CCG’s unique accounts of coordination and infor-
mation structure–based prosody.

Like other surface realizers, the OpenCCG re-
alizer takes as input a logical form specifying the
propositional meaning of a sentence, and returns
one or more surface strings that express this mean-
ing according to the lexicon and grammar. A dis-
tinguishing feature of OpenCCG is that it imple-
ments a hybrid symbolic-statistical chart realiza-
tion algorithm that combines (1) a theoretically
grounded approach to syntax and semantic com-
position, with (2) the use of integrated language
models for making choices among the options
left open by the grammar (thereby reducing the
need for hand-crafted rules). In contrast, previous
chart realizers (Kay, 1996; Shemtov, 1997; Car-
roll et al., 1999; Moore, 2002) have not included
a statistical component, while previous statisti-
cal realizers (Knight and Hatzivassiloglou, 1995;
Langkilde, 2000; Bangalore and Rambow, 2000;
Langkilde-Geary, 2002; Oh and Rudnicky, 2002;
Ratnaparkhi, 2002) have employed less general
approaches to semantic representation and com-
position, and have not typically made use of fine-
grained logical forms that include specifications
of such information structural notions as theme,
rheme and focus.

In this paper, we present OpenCCG’s extensi-
ble API (application programming interface) for
integrating language modeling and realization, de-
scribing its design and efficient implementation in
Java. With OpenCCG, language models may be
used to select realizations with preferred word or-
ders (White, 2004c), promote alignment with a
conversational partner (Brockmann et al., 2005),
and avoid repetitive language use. In addition,
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by integrating language model scoring into the
search, it also becomes possible to use more accu-
rate models to improve realization times, when the
realizer is run in anytime mode (White, 2004b).

To allow language models to be combined
in flexible ways—as well as to enable research
on how to best combine language modeling and
realization—OpenCCG’s design includes inter-
faces that allow user-defined functions to be used
for scoring partial realizations and for pruning
low-scoring ones during the search. The design
also includes classes for supporting a range of
language models and typical ways of combining
them. As we shall see, experience to date indi-
cates that the benefits of employing a highly gen-
eralized approach to scoring and pruning can be
enjoyed with little or no loss of performance.

The rest of this paper is organized as follows.
Section 2 gives an overview of the realizer archi-
tecture, highlighting the role of the interfaces for
plugging in custom scoring and pruning functions,
and illustrating how n-gram scoring affects accu-
racy and speed. Sections 3 and 4 present Open-
CCG’s classes for defining scoring and pruning
functions, respectively, giving examples of their
usage. Finally, Section 5 summarizes the design
and concludes with a discussion of future work.

2 Realizer Overview

The UML class diagram in Figure 1 shows the
high-level architecture of the OpenCCG realizer;
sample Java code for using the realizer appears in
Figure 2. A realizer instance is constructed with
a reference to a CCG grammar (which supports
both parsing and realization). The grammar’s lex-
icon has methods for looking up lexical items via
their surface forms (for parsing), or via the prin-
cipal predicates or relations in their semantics (for
realization). A grammar also has a set of hierar-
chically organized atomic types, which can serve
as the values of features in the syntactic categories,
or as ontological sorts for the discourse referents
in the logical forms (LFs).

Lexical lookup yields lexical signs. A sign pairs
a list of words with a category, which itself pairs
a syntactic category with a logical form. Lexical
signs are combined into derived signs using the

rules in the grammar’s rule group. Derived signs
maintain a derivation history, and their word lists
share structure with the word lists of their input
signs.

As mentioned in the introduction, for general-
ity, the realizer makes use of a configurable sign
scorer and pruning strategy. A sign scorer imple-
ments a function that returns a number between
0 and 1 for an input sign. For example, a stan-
dard trigram language model can be used to im-
plement a sign scorer, by returning the probability
of a sign’s words as its score. A pruning strat-
egy implements a method for determining which
edges to prune during the realizer’s search. The
input to the method is a ranked list of edges for
signs that have equivalent categories (but different
words); grouping edges in this way ensures that
pruning cannot “break” the realizer, i.e. prevent it
from finding some grammatical derivation when
one exists. By default, an N-best pruning strategy
is employed, which keeps the N highest scoring in-
put edges, pruning the rest (where N is determined
by the current preference settings).

The realization algorithm is implemented by the
realize method. As in the chart realizers cited
earlier, the algorithm makes use of a chart and
an agenda to perform a bottom-up dynamic pro-
gramming search for signs whose LFs completely
cover the elementary predications in the input log-
ical form. See Figure 9 (Section 3.1) for a real-
ization trace; the algorithm’s details and a worked
example appear in (White, 2004a; White, 2004c).
Therealize method returns the edge for the best
realization of the input LF, as determined by the
sign scorer. After a realization request, the N-best
complete edges—or more generally, all the edges
for complete realizations that survived pruning—
are also available from the chart.

The search for complete realizations proceeds
in one of two modes, anytime and two-stage
(packing/unpacking). In the anytime mode, a best-
first search is performed with a configurable time
limit (which may be a limit on how long to look
for a better realization, after the first complete one
is found). With this mode, the scores assigned by
the sign scorer determine the order of the edges
on the agenda, and thus have an impact on realiza-
tion speed. In the two-stage mode, a packed forest
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 Realizer 
 +timeLimitMS: int 

 +Realizer(grammar: Grammar)  
 +realize(lf: LF): Edge  
 +getChart( ): Chart 

 Grammar 

 Chart 

 +bestEdge: Edge 

 +bestEdges( ): List<Edge> 

 «interface»  

 SignScorer 

 +score(sign: Sign, complete: boolean): double 

 «interface»  

 PruningStrategy 

 +pruneEdges(edges: List<Edge>): List<Edge> 

 Lexicon 

 +getSignsFromWord(...): Set<Sign>  
 +getSignsFromPred(...): Set<Sign>  
 +getSignsFromRel(...): Set<Sign> 

 RuleGroup 

 +applyRules(...): List<Sign> 

 Types 

 Edge 

 +score: double  
 +completeness: double 

 Sign 

 «interface»  

 Category 

 +getLF( ): LF 

 Word  DerivationHistory 

 A realizer for a CCG grammar makes use of   
 a configurable sign scorer and pruning strategy.  
 The realize method takes a logical form (LF)   
 as input and returns the edge for the best   
 realization of that LF. 

 After a realization request, the N−best edges  
 are also available from the chart. 

 The lexico−grammar and signs   
 are the same for parsing and   
 realization. 

*

1..n 0..2

Figure 1: High-level architecture of the OpenCCG realizer
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// load grammar , instantiate realizer
URL grammarURL = ...;
Grammar grammar = new Grammar(grammarURL );
Realizer realizer = new Realizer(grammar );

// configure realizer with trigram backoff model
// and 10-best pruning strategy
realizer.signScorer = new StandardNgramModel (3, "lm.3bo");
realizer.pruningStrategy = new NBestPruningStrategy (10);

// ... then , for each request:

// get LF from input XML
Document inputDoc = ...;
LF lf = realizer.getLfFromDoc(inputDoc );

// realize LF and get output words in XML
Edge bestEdge = realizer.realize(lf);
Document outputDoc = bestEdge.sign.getWordsInXml ();

// return output
... outputDoc ...;

Figure 2: Example realizer usage

of all possible realizations is created in the first
stage; then in the second stage, the packed repre-
sentation is unpacked in bottom-up fashion, with
scores assigned to the edge for each sign as it is
unpacked, much as in (Langkilde, 2000). In both
modes, the pruning strategy is invoked to deter-
mine whether to keep or prune newly constructed
edges. For single-best output, the anytime mode
can provide signficant time savings by cutting off
the search early; see (White, 2004c) for discus-
sion. For N-best output—especially when a com-
plete search (up to the edges that survive the prun-
ing strategy) is desirable—the two-stage mode can
be more efficient.

To illustrate how n-gram scoring can guide the
best-first anytime search towards preferred real-
izations and reduce realization times, we repro-
duce in Table 1 and Figures 3 through 5 the cross-
validation tests reported in (White, 2004b). In
these tests, we measured the realizer’s accuracy
and speed, under a variety of configurations, on
the regression test suites for two small but linguis-
tically rich grammars: the English grammar for
the COMIC2 dialogue system—the core of which
is shared with the FLIGHTS system (Moore et al.,
2004)—and the Worldcup grammar discussed in

2http://www.hcrc.ed.ac.uk/comic/

(Baldridge, 2002). Table 1 gives the sizes of the
test suites. Using these two test suites, we timed
how long it took on a 2.2 GHz Linux PC to realize
each logical form under each realizer configura-
tion. To measure accuracy, we counted the num-
ber of times the best scoring realization exactly
matched the target, and also computed a modified
version of the Bleu n-gram precision metric (Pap-
ineni et al., 2001) employed in machine translation
evaluation, using 1- to 4-grams, with the longer
n-grams given more weight (cf. Section 3.4). To
rank candidate realizations, we used standard n-
gram backoff models of orders 2 through 6, with
semantic class replacement, as described in Sec-
tion 3.1. For smoothing, we used Ristad’s nat-
ural discounting (Ristad, 1995), a parameter-free
method that seems to work well with relatively
small amounts of data.

To gauge how the amount of training data af-
fects performance, we ran cross-validation tests
with increasing numbers of folds, with 25 as the
maximum number of folds. We also compared the
realization results using the n-gram scorers with
two baselines and one topline (oracle method).
The first baseline assigns all strings a uniform
score of zero, and adds new edges to the end of the
agenda, corresponding to breadth-first search. The
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LF/target Unique up
pairs to SC Mean Min Max Mean Min Max

COMIC 549 219 13.1 6 34 8.4 2 20
Worldcup 276 138 9.2 4 18 6.8 3 13

Input nodesLength

Table 1: Test suite sizes.

Folds Baseline 1 Baseline 2 N2 N3 N4 N5 N6 Topline
1.04 459.464 370.889 460.454 450.548 450.843 458.592 460.228 147.818
1.1 459.464 370.889 406.743 365.058 360.705 370.678 372.869 147.818
1.2 459.464 370.889 366.007 305.226 306.098 314.825 308.131 147.818

1.33 459.464 370.889 349.035 279.426 266.956 274.539 275.559 147.818
1.5 459.464 370.889 342.078 272.148 256.851 260.654 262.124 147.818

2 459.464 370.889 320.536 238.563 217.597 222.8 221.709 147.818
3 459.464 370.889 311.634 234.106 210.492 211.816 212.674 147.818
5 459.464 370.889 307.725 225.306 202.372 203.661 201.568 147.818

10 459.464 370.889 302.233 223.579 199.632 200.148 198.929 147.818
25 459.464 370.889 302.286 220.612 197.918 199.415 196.361 147.818
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Folds Baseline 1 Baseline 2 N2 N3 N4 N5 N6 Topline
1.04 151.819 115.243 159.754 156.134 158.022 160.493 160.38 49.127
1.1 151.819 115.243 158.638 152.946 154.062 155.007 154.71 49.127
1.2 151.819 115.243 145.496 130.123 131.138 130.167 131.674 49.127

1.33 151.819 115.243 138.312 119.837 119.029 119.754 119.815 49.127
1.5 151.819 115.243 136.243 121.29 120.185 120.757 121.083 49.127

2 151.819 115.243 128.822 102.221 98.844 97.772 97.54 49.127
3 151.819 115.243 124.475 97.652 92.931 92.373 93.493 49.127
5 151.819 115.243 122.656 94.051 90.649 89.957 90.627 49.127

10 151.819 115.243 125.087 92.471 88.446 87.96 88.928 49.127
25 151.819 115.243 121.076 92.623 88.043 86.149 87.293 49.127

Worldcup: First

0

40

80

120

160

200

1.04 1.1 1.2 1.33 1.5 2 3 5 10 25

Num Folds

Ti
m

e 
(m

s)

Baseline 1
Baseline 2
N2
N3
N4
N5
N6
Topline

Figure 3: Mean time (in ms.) until first realization is found using n-grams of different orders and Ristad’s
natural discounting (N), for cross-validation tests with increasing numbers of folds.

Folds Baseline 1 Baseline 2 N2 N3 N4 N5 N6 Topline
1.04 241 41 524 512 513 513 513 549
1.1 241 41 493 477 469 469 469 549
1.2 241 41 542 542 542 542 542 549

1.33 241 41 538 541 541 541 541 549
1.5 241 41 548 542 542 542 542 549

2 241 41 549 547 547 547 547 549
3 241 41 549 548 548 548 548 549
5 241 41 549 548 548 548 548 549

10 241 41 549 548 548 548 548 549
25 241 41 549 548 548 548 548 549
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Folds Baseline 1 Baseline 2 N2 N3 N4 N5 N6 Topline
1.04 86 70 112 114 114 114 114 276
1.1 86 70 148 156 154 157 157 276
1.2 86 70 177 173 174 180 177 276

1.33 86 70 187 198 199 203 201 276
1.5 86 70 200 210 211 211 213 276

2 86 70 210 227 225 231 232 276
3 86 70 221 239 238 242 245 276
5 86 70 222 245 241 244 247 276

10 86 70 224 242 235 246 246 276
25 86 70 228 248 238 250 252 276
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Figure 4: Number of realizations exactly matching target using n-grams of different orders.

Folds Baseline 1 Baseline 2 N2 N3 N4 N5 N6 Topline
1.04 0.754 0.379 0.974 0.963 0.963 0.963 0.963 1
1.1 0.754 0.379 0.967 0.953 0.942 0.942 0.942 1
1.2 0.754 0.379 0.996 0.996 0.996 0.996 0.996 1

1.33 0.754 0.379 0.992 0.995 0.995 0.995 0.995 1
1.5 0.754 0.379 1 0.996 0.996 0.996 0.996 1

2 0.754 0.379 1 0.999 0.999 0.999 0.999 1
3 0.754 0.379 1 0.999 0.999 0.999 0.999 1
5 0.754 0.379 1 0.999 0.999 0.999 0.999 1

10 0.754 0.379 1 0.999 0.999 0.999 0.999 1
25 0.754 0.379 1 0.999 0.999 0.999 0.999 1
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Folds Baseline 1 Baseline 2 N2 N3 N4 N5 N6 Topline
1.04 0.6 0.538 0.646 0.658 0.656 0.656 0.656 1
1.1 0.6 0.538 0.766 0.767 0.764 0.768 0.768 1
1.2 0.6 0.538 0.806 0.794 0.8 0.804 0.803 1

1.33 0.6 0.538 0.833 0.849 0.852 0.859 0.856 1
1.5 0.6 0.538 0.87 0.877 0.873 0.873 0.877 1

2 0.6 0.538 0.875 0.888 0.886 0.894 0.895 1
3 0.6 0.538 0.901 0.923 0.92 0.924 0.924 1
5 0.6 0.538 0.9 0.93 0.925 0.927 0.931 1

10 0.6 0.538 0.905 0.93 0.915 0.928 0.922 1
25 0.6 0.538 0.915 0.938 0.917 0.932 0.935 1
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Figure 5: Modified BLEU scores using n-grams of different orders.
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second baseline uses the same scorer, but adds new
edges at the front of the agenda, corresponding to
depth-first search. The topline uses the modified
Bleu score, computing n-gram precision against
just the target string. With this setup, Figures 3-
5 show how initial realization times decrease and
accuracy increases when longer n-grams are em-
ployed. Figure 3 shows that trigrams offer a sub-
stantial speedup over bigrams, while n-grams of
orders 4-6 offer a small further improvement. Fig-
ures 4 and 5 show that with the COMIC test suite,
all n-gram orders work well, while with the World-
cup test suite, n-grams of orders 3-6 offer some
improvement over bigrams.

To conclude this section, we note that together
with OpenCCG’s other efficiency methods, n-
gram scoring has helped to achieve realization
times adequate for interactive use in both the
COMIC and FLIGHTS dialogue systems, along
with very high quality. Estimates indicate that
n-gram scoring typically accounts for only 2-5%
of the time until the best realization is found,
while it can more than double realization speed by
accurately guiding the best-first anytime search.
This experience suggests that more complex scor-
ing models can more than pay for themselves,
efficiency-wise, if they yield significantly more ac-
curate preference orders on edges.

3 Classes for Scoring Signs

The classes for implementing sign scorers appear
in Figure 6. In the diagram, classes for n-gram
scoring appear towards the bottom, while classes
for combining scorers appear on the left, and the
class for avoiding repetition appears on the right.

3.1 Standard N-gram Models

The StandardNgramModel class can load stan-
dard n-gram backoff models for scoring, as shown
earlier in Figure 2. Such models can be con-
structed with the SRILM toolkit (Stolcke, 2002),
which we have found to be very useful; in princi-
ple, other toolkits could be used instead, as long as
their output could be converted into the same file
formats. Since the SRILM toolkit has more re-
strictive licensing conditions than those of Open-
CCG’s LGPL license, OpenCCG includes its own

classes for scoring with n-gram models, in order to
avoid any necessary runtime dependencies on the
SRILM toolkit.

The n-gram tables are efficiently stored in a trie
data structure (as in the SRILM toolkit), thereby
avoiding any arbitrary limit on the n-gram order.
To save memory and speed up equality tests, each
string is interned (replaced with a canonical in-
stance) at load time, which accomplishes the same
purpose as replacing the strings with integers, but
without the need to maintain a separate mapping
from integers back to strings. For better gener-
alization, certain words may be dynamically re-
placed with the names of their semantic classes
when looking up n-gram probabilities. Words are
assigned to semantic classes in the lexicon, and the
semantic classes to use in this way may be config-
ured at the grammar level. Note that (Oh and Rud-
nicky, 2002) and (Ratnaparkhi, 2002) make simi-
lar use of semantic classes in n-gram scoring, by
deferring the instantiation of classes (such asde-
parture city) until the end of the generation pro-
cess; our approach accomplishes the same goal in
a slightly more flexible way, in that it also allows
the specific word to be examined by other scoring
models, if desired.

As discussed in (White, 2004c), with dialogue
systems like COMIC n-gram models can do an
excellent job of placing underconstrained adjec-
tival and adverbial modifiers—as well as bound-
ary tones—without resorting to the more com-
plex methods investigated for adjective ordering in
(Shaw and Hatzivassiloglou, 1999; Malouf, 2000).
For instance, in examples like those in (1), they
correctly select the preferred positions forhereand
also (as well as for the boundary tones), with re-
spect to the verbal head and sister dependents:

(1) a. HereL+H∗ LH% we have a design in
the classicH∗ style LL% .

b. ThisL+H∗ design LH% hereL+H∗ LH%
is alsoH∗ classic LL% .

We have also found that it can be useful to
use reverse (or “right-to-left”) models, as they can
help to place adverbs likethough, as in (2):

(2) The tiles are alsoH∗ from the JazzH∗ series
though LL% .
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 «interface»  

 SignScorer 

 +score(sign: Sign, complete: boolean): double  
 +nullScorer: SignScorer 

 SignScorerInterpolation 

 #weights: double[ ] 

 SignScorerProduct 
 RepetitionScorer 

 +penalty: double 
 +updateContext(sign: Sign)  
 +resetContext( )  
 +ageContext( ) 

 Returns zero for all signs, thereby   
 providing no distinguishing information. 

 NgramScorer 
 #order: int  
 #reverse: boolean  
 #useSemClasses: boolean  
 #wordsToScore: List<Word> 
 #prepareToScoreWords( )  
 #score( ): double  
 #logProbFromNgram(i: int, order: int): float 

 «interface»  

 NgramFilter 

 +filterOut(words: List<Word>): boolean 

 AAnFilter 

 +addException(w1: String, w2: String) 

 LinearNgramScorerCombo 

 #weights: double[ ] 

 #logProbFromNgram(i: int, order: int): float 

 Returns a score that is linear in   
 log space with the number of   
 repeated items times the penalty. 

 StandardNgramModel 

 +StandardNgramModel(order: int, filename:String)  
 #prepareToScoreWords( )  
 #logProbFromNgram(i: int, order: int): float 

 NgramPrecisionModel 

 +NgramPrecisionModel(targets: String[ ], order: int)  
 #prepareToScoreWords( )  
 #score( ): double 

 FactoredNgramModel 

 +FactoredNgramModel(child: String, parents: String[ ], filename: String)  
 #prepareToScoreWords( )  
 #logProbFromNgram(i: int, order: int): float 

 FactoredNgramModelFamily 

 +FactoredNgramModelFamily(filename: String)  
 #prepareToScoreWords( )  
 #logProbFromNgram(i: int, order: int): float 

 Utility classes for combining   
 scorers multiplicatively or   
 via linear interpolation. 

 Utility class for interpolating  
 n−gram models at the word level. 

 N−gram models can be of any order,   
 can reverse the words, and   
 can replace certain words with   
 their semantic classes. 

 Returns a modified version of the   
 BLEU score used in MT evaluation. 

 Filters bigrams with the wrong   
 choice of a or an given   
 the initial letter of the following   
 word, with configurable exceptions. 

 Factored n−gram models return the probability of the   
 child factor of the current word given a sequence of   
 parent factors. Multiple models can be organized   
 into families. 

2..n

*2..n

1..n

Figure 6: Classes for scoring signs
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In principle, the forward and reverse probabilities
should be the same—as they are both derived via
the chain rule from the same joint probability of
the words in the sequence—but we have found that
with sparse data the estimates can differ substan-
tially. In particular, sincethoughtypically appears
at the end of a variety of clauses, its right context
is much more predictable than its left context, and
thus reverse models yield more accurate estimates
of its likelihood of appearing clause-finally. To il-
lustrate, Figures 7 and 8 show the forward and re-
verse trigram probabilities for two competing real-
izations of (2) in a 2-fold cross-validation test (i.e.
with models trained on the half of the test suite
not including this example). With the forward tri-
gram model, sincethoughhas not been observed
following series, and sinceseriesis a frequently
occurring word, the penalty for backing off to the
unigram probability forthough is high, and thus
the probability is quite low. The medial placement
(following alsoH∗) also yields a low probability,
but not as low as the clause-final one, and thus
the forward model ends up preferring the medial
placement, which is quite awkward. By contrast,
the reverse model yields a very clear preference
for the clause-final position ofthough, and for this
reason interpolating the forward and reverse mod-
els (see Section 3.3) also yields the desired prefer-
ence order.

Figure 9 shows a trace of realizing (2) with such
an interpolated model. In the trace, the interpo-
lated model is loaded by the classMyEvenScorer.
The input LF appears at the top. It is flattened
into a list of elementary predications, so that cov-
erage of these predications can be tracked using bit
vectors. The LF chunks ensure that the subtrees
underh1 ands1 are realized as independent sub-
problems; cf. (White, 2004a) for discussion. The
edges produced by lexical lookup and instantiation
appear next, under the headingInitial Edges,
with only the edges foralsoH∗ andthoughshown
in the figure. For each edge, the coverage percent-
age and score (here a probability) appear first, fol-
lowed by the word(s) and the coverage vector, then
the syntactic category (with features suppressed),
and finally any active LF chunks. The edges added
to the chart appear (unsorted) under the heading
All Edges. As this trace shows, in the best-first

search, high probability phrases such asthe tiles
are alsoH∗ can be added to the chart before low-
frequency words such asthough have even left
the agenda. The first complete realization, cor-
responding to (2), also turns out to be the best
one here. As noted in the figure, complete realiza-
tions are scored with sentence delimiters, which—
by changing the contexts of the initial and final
words—can result in a complete realization hav-
ing a higher probability than its input partial real-
izations (see next section for discussion). One way
to achieve more monotonic scores—and thus more
efficient search, in principle—could be to include
sentence delimiters in the grammar; we leave this
question for future work.

3.2 N-gram Scorers

TheStandardNgramModel class is implemented
as a subclass of the base classNgramScorer.
All NgramScorer instances may have any num-
ber of NgramFilter instances, whosefilter-
Out methods are invoked prior to n-gram scoring;
if any of these methods return true, a score of zero
is immediately returned. TheAAnFilter provides
one concrete implementation of theNgramFilter
interface, and returns true if it finds a bigram con-
sisting ofa followed by a vowel-inital word, oran
followed by a consonant-initial word, subject to a
configurable set of exceptions that can be culled
from bigram counts. We have found that such n-
gram filters can be more efficient, and more reli-
able, than relying on n-gram scores alone; in par-
ticular, with a/an, since the unigram probability
for a tends to be much higher than that ofan, with
unseen words beginning with a vowel, there may
not be a clear preference for the bigram beginning
with an.

The base classNgramScorer implements the
bulk of thescore method, using an abstractlog-
ProbFromNgrammethod for subclass-specific cal-
culation of the log probabilities (with backoff) for
individual n-grams. Thescore method also in-
vokes theprepareToScoreWords method, in or-
der to allow for subclass-specific pre-processing
of the words in the given sign. WithStandard-
NgramModel, this method is used to extract the
word forms or semantic classes into a list of strings
to score. It also appends any pitch accents to the
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the tiles are also_H* from the SERIES_H* series though LL% .
p( the | <s> ) = [2gram] 0.0999418 [ -1.00025 ]
p( tiles | the ...) = [3gram] 0.781102 [ -0.107292 ]
p( are | tiles ...) = [3gram] 0.484184 [ -0.31499 ]
p( also_H* | are ...) = [3gram] 0.255259 [ -0.593018 ]
p( from | also_H* ...) = [3gram] 0.0649038 [ -1.18773 ]
p( the | from ...) = [3gram] 0.5 [ -0.30103 ]
p( SERIES_H* | the ...) = [3gram] 0.713421 [ -0.146654 ]
p( series | SERIES_H* ...) = [3gram] 0.486827 [ -0.312626 ]
p( though | series ...) = [1gram] 1.58885e-06 [ -5.79892 ]
p( LL% | though ...) = [2gram] 0.416667 [ -0.380211 ]
p( . | LL% ...) = [3gram] 0.75 [ -0.124939 ]
p( </s> | . ...) = [3gram] 0.999977 [ -1.00831e-05 ]

1 sentences, 11 words, 0 OOVs
0 zeroprobs, logprob= -10.2677 ppl= 7.17198 ppl1= 8.57876

the tiles are also_H* though from the SERIES_H* series LL% .
p( the | <s> ) = [2gram] 0.0999418 [ -1.00025 ]
p( tiles | the ...) = [3gram] 0.781102 [ -0.107292 ]
p( are | tiles ...) = [3gram] 0.484184 [ -0.31499 ]
p( also_H* | are ...) = [3gram] 0.255259 [ -0.593018 ]
p( though | also_H* ...) = [1gram] 1.11549e-05 [ -4.95254 ]
p( from | though ...) = [1gram] 0.00805451 [ -2.09396 ]
p( the | from ...) = [2gram] 0.509864 [ -0.292545 ]
p( SERIES_H* | the ...) = [3gram] 0.713421 [ -0.146654 ]
p( series | SERIES_H* ...) = [3gram] 0.486827 [ -0.312626 ]
p( LL% | series ...) = [3gram] 0.997543 [ -0.00106838 ]
p( . | LL% ...) = [3gram] 0.733867 [ -0.134383 ]
p( </s> | . ...) = [3gram] 0.999977 [ -1.00831e-05 ]

1 sentences, 11 words, 0 OOVs
0 zeroprobs, logprob= -9.94934 ppl= 6.74701 ppl1= 8.02574

Figure 7: Forward probabilities for two placements ofthough(COMIC test suite, 2-fold cross validation)
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the tiles are also_H* from the SERIES_H* series though LL% .
p( . | <s> ) = [2gram] 0.842366 [ -0.0744994 ]
p( LL% | . ...) = [3gram] 0.99653 [ -0.00150975 ]
p( though | LL% ...) = [3gram] 0.00677446 [ -2.16913 ]
p( series | though ...) = [1gram] 0.00410806 [ -2.38636 ]
p( SERIES_H* | series ...) = [2gram] 0.733867 [ -0.134383 ]
p( the | SERIES_H* ...) = [3gram] 0.744485 [ -0.128144 ]
p( from | the ...) = [3gram] 0.765013 [ -0.116331 ]
p( also_H* | from ...) = [3gram] 0.0216188 [ -1.66517 ]
p( are | also_H* ...) = [3gram] 0.5 [ -0.30103 ]
p( tiles | are ...) = [3gram] 0.432079 [ -0.364437 ]
p( the | tiles ...) = [3gram] 0.9462 [ -0.0240173 ]
p( </s> | the ...) = [3gram] 0.618626 [ -0.208572 ]

1 sentences, 11 words, 0 OOVs
0 zeroprobs, logprob= -7.57358 ppl= 4.27692 ppl1= 4.88098

the tiles are also_H* though from the SERIES_H* series LL% .
p( . | <s> ) = [2gram] 0.842366 [ -0.0744994 ]
p( LL% | . ...) = [3gram] 0.99653 [ -0.00150975 ]
p( series | LL% ...) = [3gram] 0.0948425 [ -1.023 ]
p( SERIES_H* | series ...) = [3gram] 0.733867 [ -0.134383 ]
p( the | SERIES_H* ...) = [3gram] 0.744485 [ -0.128144 ]
p( from | the ...) = [3gram] 0.765013 [ -0.116331 ]
p( though | from ...) = [1gram] 3.50735e-08 [ -7.45502 ]
p( also_H* | though ...) = [1gram] 0.00784775 [ -2.10525 ]
p( are | also_H* ...) = [2gram] 0.2291 [ -0.639975 ]
p( tiles | are ...) = [3gram] 0.432079 [ -0.364437 ]
p( the | tiles ...) = [3gram] 0.9462 [ -0.0240173 ]
p( </s> | the ...) = [3gram] 0.618626 [ -0.208572 ]

1 sentences, 11 words, 0 OOVs
0 zeroprobs, logprob= -12.2751 ppl= 10.5421 ppl1= 13.0594

Figure 8: Reverse probabilities for two placements ofthough(COMIC test suite, 2-fold cross validation)
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Input LF:

@b1:state(be ^ <info>rh ^ <mood>dcl ^ <tense>pres ^ <owner>s ^ <kon>- ^

<Arg>(t1:phys-obj ^ tile ^ <det>the ^ <num>pl ^ <info>rh ^ <owner>s ^ <kon>-) ^

<Prop>(h1:proposition ^ has-rel ^ <info>rh ^ <owner>s ^ <kon>- ^

<Of>t1:phys-obj ^

<Source>(s1:abstraction ^ series ^ <det>the ^ <num>sg ^ <info>rh ^ <owner>s ^ <kon>- ^

<HasProp>(j1:series ^ Jazz ^ <kon>+ ^ <info>rh ^ <owner>s))) ^

<HasProp>(a1:proposition ^ also ^ <kon>+ ^ <info>rh ^ <owner>s) ^

<HasProp>(t2:proposition ^ though ^ <info>rh ^ <owner>s ^ <kon>-))

Instantiating scorer from class: MyEvenScorer

Preds:

ep[0]: @a1:proposition(also)

ep[1]: @a1:proposition(<info>rh)

ep[2]: @a1:proposition(<kon>+)

ep[3]: @a1:proposition(<owner>s)

ep[4]: @b1:state(be)

ep[5]: @b1:state(<info>rh)

...

LF chunks:

chunk[0]: {14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

chunk[1]: {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

Initial Edges:

{0.12} [0.011] also_H* {0, 1, 2, 3, 12} :- s\.s

{0.12} [0.011] also_H* {0, 1, 2, 3, 12} :- s\np/^(s\np)

{0.12} [0.011] also_H* {0, 1, 2, 3, 12} :- s/^s

...

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\np/^(s\np)

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\.s

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s/^s

...

Uninstantiated Semantically Null Edges:

{0.00} [0.073] LL% {} :- s$1\*(s$1)

{0.00} [0.011] L {} :- s$1\*(s$1)

All Edges:

{0.02} [0.059] . {7} :- sent\*s

{0.02} [0.059] . {7} :- sent\*(s\np)

{0.02} [0.052] the {25} :- np/^n < 0 1 >

{0.02} [0.052] the {32} :- np/^n

{0.12} [0.032] tiles {31, 33, 34, 35, 36} :- n

{0.02} [0.018] from {19} :- n\n/<np < 0 >

{0.15} [0.018] from {14, 15, 16, 17, 18, 19} :- s\!np/<np < 0 >

{0.17} [0.017] is {4, 5, 6, 8, 9, 10, 11} :- s\np/(s\!np)

...

{0.15} [0.009] the tiles {31, 32, 33, 34, 35, 36} :- np

{0.15} [0.009] the tiles {31, 32, 33, 34, 35, 36} :- s/@i(s\@inp)

{0.15} [0.009] the tiles {31, 32, 33, 34, 35, 36} :- s$1\@i(s$1/@inp)

...

{0.44} [0.001] the tiles are also_H* {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 31, 32, 33, 34, 35, 36} :- s/(s\!np)

...

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\np/^(s\np)

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\.s

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s/^s

...

{0.85} [1.32E-5] the tiles are also_H* from the Jazz_H* series {...} :- s

{0.85} [1.32E-5] the tiles are also_H* from the Jazz_H* series LL% {...} :- s

...

{0.24} [2.64E-6] also_H* though {0, 1, 2, 3, 12, 13, 37, 38, 39, 40} :- s\np/^(s\np)

{0.24} [2.64E-6] also_H* though {0, 1, 2, 3, 12, 13, 37, 38, 39, 40} :- s\.s

...

{0.88} [5.44E-8] the tiles are from the Jazz_H* series though LL% . {...} :- sent

...

{0.85} [4.85E-8] the tiles are from the Jazz_H* series also_H* {...} :- s

...

{0.88} [3.14E-9] the tiles also_H* are from the Jazz_H* series LL% . {...} :- sent

...

{0.98} [2.96E-9] the tiles are also_H* from the Jazz_H* series though {...} :- s

...

{0.98} [1.51E-9] the tiles are also_H* from the Jazz_H* series though LL% {...} :- s

{1.00} [1.34E-8] the tiles are also_H* from the Jazz_H* series though LL% . {...} :- sent

****** first complete realization; scored with <s> and </s> tags ******

...

{0.24} [1.44E-9] also_H* though L {...} :- s\np/^(s\np)

...

{0.56} [2E-10] though the tiles are also_H* LL% {...} :- s/(s\!np)

...

Complete Edges (sorted):

{1.00} [1.34E-8] the tiles are also_H* from the Jazz_H* series though LL% . {...} :- sent

{1.00} [1.33E-8] the tiles are also_H* from the Jazz_H* series LL% though LL% . {...} :- sent

...

Figure 9: Realizer trace for example (2) with interpolated model
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word forms or semantic classes, effectively treat-
ing them as integral parts of the words.

Since the realizer builds up partial realizations
bottom-up rather than left-to-right, it only adds
start of sentence (and end of sentence) tags with
complete realizations. As a consequence, the
words with less than a fulln−1 words of history
are scored with appropriate sub-models. For ex-
ample, the first word of a phrase is scored with
a unigram sub-model, without imposing backoff
penalties.

Another consequence of bottom-up realization
is that both the left- and right-contexts may change
when forming new signs from a given input sign.
Consequently, it is often not possible (even in prin-
ciple) to use the score of an input sign directly in
computing the score of a new result sign. If one
could make assumptions about how the score of an
input sign has been computed—e.g., by a bigram
model—one could determine the score of the re-
sult sign from the scores of the input signs together
with an adjustment for the word(s) whose context
has changed. However, our general approach to
sign scoring precludes making such assumptions.
Nevertheless, it is still possible to improve the effi-
ciency of n-gram scoring by caching the log prob-
ability of a sign’s words, and then looking up that
log probability when the sign is used as the first
input sign in creating a new combined sign—thus
retaining the same left context—and only recom-
puting the log probabilities for the words of any in-
put signs past the first one. (With reverse models,
the sign must be the last sign in the combination.)
In principle, the derivation history could be con-
sulted further to narrow down the words whose n-
gram probabilities must be recomputed to the min-
imum possible, thoughNgramScorer only imple-
ments a single-step lookup at present.3 Finally,
note that a JavaWeakHashMap is used to imple-
ment the cache, in order to avoid an undesirable
buildup of entries across realization requests.

3.3 Interpolation

Scoring models may be linearly interpolated in
two ways. Sign scorers of any variety may be

3Informal experiments indicate that caching log probabil-
ities in this way can yield an overall reduction in best-first
realization times of 2-3% on average.

combined using theSignScorerInterpolation
class. For example, Figure 10 shows how forward
and reverse n-gram models may be interpolated.

With n-gram models of the same direction, it is
also possible to linearly interpolate models at the
word level, using theLinearNgramScorerCombo
class. Word-level interpolation makes it easier to
use cache models created with maximum likeli-
hood estimation, as word-level interpolation with
a base model avoids problems with zero probabil-
ities in the cache model. As discussed in (Brock-
mann et al., 2005), cache models can be used to
promote alignment with a conversational partner,
by constructing a cache model from the bigrams
in the partner’s previous turn, and interpolating it
with a base model.4 Figure 11 shows one way to
create such an interpolated model.

3.4 N-gram Precision Models

TheNgramPrecisionModel subclass ofNgram-
Scorer computes a modified version of the Bleu
score used in MT evaluation (Papineni et al.,
2001). Its constructor takes as input an array of
target strings—from which it extracts the n-gram
sequences to use in computing the n-gram preci-
sion score—and the desired order. Unlike with
the Bleu score, rank order centroid weights (rather
than the geometric mean) are used to combine
scores of different orders, which avoids problems
with scoring partial realizations which have no n-
gram matches of the target order. For simplicity,
the score also does not include the Bleu score’s
bells and whistles to make cheating on length dif-
ficult.

We have found n-gram precision models to be
very useful for regression testing the grammar, as
an n-gram precision model created just from the
target string nearly always leads the realizer to
choose that exact string as its preferred realiza-
tion. Such models can also be useful for evaluating
the success of different scoring models in a cross-
validation setup, though with high quality output,
manual inspection is usually necessary to deter-
mine the importance of any differences between

4At present, such cache models must be constructed with
a call to the SRILM toolkit; it would not be difficult to add
OpenCCG support for constructing them though, since these
models do not require smoothing.
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// configure realizer with 4-gram forward and reverse backoff models ,
// interpolated with equal weight
NgramScorer forwardModel = new StandardNgramModel (4, "lm.4bo");
NgramScorer reverseModel = new StandardNgramModel (4, "lm -r.4bo");
reverseModel.setReverse(true);
realizer.signScorer = new SignScorerInterpolation(

new SignScorer [] { forwardModel , reverseModel }
);

Figure 10: Example interpolated n-gram model

// configure realizer with 4-gram backoff base model ,
// interpolated at the word level with a bigram maximum -likelihood
// cache model , with more weight given to the base model
NgramScorer baseModel = new StandardNgramModel (4, "lm.4bo");
NgramScorer cacheModel = new StandardNgramModel (2, "lm -cache.mle");
realizer.signScorer = new LinearNgramScorerCombo(

new SignScorer [] { baseModel , cacheModel },
new double [] { 0.6, 0.4 }

);

Figure 11: Example word-level interpolation of a cache model

the preferred realization and the target string.

3.5 Factored Language Models

A factored language model (Bilmes and Kirch-
hoff, 2003) is a new kind of language model that
treats words as bundles of factors. To support
scoring with such models, OpenCCG represents
words as objects with a surface form, pitch accent,
stem, part of speech, supertag, and semantic class.
Words may also have any number of further at-
tributes, such as associated gesture classes, in or-
der to handle in a general way elements like pitch
accents that are “coarticulated” with words.

To represent words efficiently, and to speed up
equality tests, all attribute values are interned, and
theWord objects themselves are interned via a fac-
tory method. Note that in Java, it is straightfor-
ward to intern objects other than strings by em-
ploying a WeakHashMap to map from an object
key to a weak reference to itself as the canonical
instance. (Using a weak reference avoids accu-
mulating interned objects that would otherwise be
garbage collected.)

With the SRILM toolkit, factored language
models can be constructed that supportgeneral-
ized parallel backoff: that is, backoff order is
not restricted to just dropping the most temporally

distant word first, but rather may be specified as
a path through the set of contextual parent vari-
ables; additionally, parallel backoff paths may be
specified, with the possibility of combining these
paths dynamically in various ways. In OpenCCG,
theFactoredNgramModel class supports scoring
with factored language models that employ gen-
eralized backoff, though parallel backoff is not
yet supported, as it remains somewhat unclear
whether the added complexity of parallel backoff
is worth the implementation effort. Typically, sev-
eral related factored language models are specified
in a single file and loaded by aFactoredNgram-
ModelFamily, which can multiplicatively score
models for different child variables, and include
different sub-models for the same child variable.

To illustrate, let us consider a simplified version
of the factored language model family used in the
COMIC realizer. This model computes the proba-
bility of the current word given the preceding ones
according to the formula shown in (3), where a
word consists of the factors word (W), pitch accent
(A), gesture class (GC), and gesture instance (GI),
plus the other standard factors which the model ig-
nores:
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(3)
P(〈W,A,GC,GI〉 | 〈W,A,GC,GI〉−1 . . .)≈

P(W |W−1W−2A−1A−2)×
P(GC|W)×
P(GI |GC)

In (3), the probability of the current word is ap-
proximated by the probability of the current word
form given the preceding two word forms and pre-
ceding two pitch accents, multiplied by the proba-
bility of the current gesture class given the current
word form, and by the probability of the current
gesture instance given the current gesture class.
Note that in the COMIC grammar, the choice of
pitch accent is entirely rule governed, so the cur-
rent pitch accent is not scored separately in the
model. However, the preceding pitch accents are
taken into account in predicting the current word
form, as perplexity experiments have suggested
that they do provide additional information be-
yond that provided by the previous word forms.

The specification file for this model appears in
Figure 12. The format of the file is a restricted
form of the files used by the SRILM toolkit to
build factored language models. The file specifies
four models, where the first, third and fourth mod-
els correspond to those in (3). With the first model,
since the previous words are typically more infor-
mative than the previous pitch accents, the backoff
order specifies that the most distant accent,A(-2),
should be dropped first, followed by the previous
accent,A(-1), then the most distant word,W(-2),
and finally the previous word,W(-1). The sec-
ond model is considered a sub-model of the first—
since it likewise predicts the current word—to be
used when there is only one word of context avail-
able (i.e. with bigrams). Note that when scoring
a bigram, the second model will take the previous
pitch accent into account, whereas the first model
would not. For documentation of the file format as
it is used in the SRILM toolkit, see (Kirchhoff et
al., 2002).

Like StandardNgramModel, the Factored-
NgramModel class stores its n-gram tables in a trie
data structure, except that it stores an interned fac-
tor key (i.e. a factor name and value pair, or just a
string, in the case of the word form) at each node,
rather than a simple string. During scoring, the
logProbFromNgram method determines the log
probability (with backoff) of a given n-gram by

extracting the appropriate sequence of factor keys,
and using them to compute the log probability as
with standard n-gram models. TheFactored-
NgramModelFamily class computes log probabil-
ities by delegating to its component factored n-
gram models (choosing appropriate sub-models,
when appropriate) and summing the results.

3.6 Avoiding Repetition

While cache models appear to be a promising av-
enue to promote lexical and syntactic alignment
with a conversational partner, a different mech-
anism appears to be called for to avoid “self-
alignment”—that is, to avoid the repetitive use of
words and phrases. As a means to experiment
with avoiding repetition, OpenCCG includes the
RepetitionScorer class. This class makes use
of a configurable penalty plus a set of methods for
dynamically managing the context. It returns a
score of 10−cr×p, wherecr is the count of repeated
items, andp is the penalty. Note that this formula
returns 1 if there are no repeated items, and returns
a score that is linear in log space with the number
of repeated items otherwise.

A repetition scorer can be combined multiplica-
tively with an n-gram model, in order to discount
realizations that repeat items from the recent con-
text. Figure 13 shows such a combination, to-
gether with the operations for updating the con-
text. By default, open class stems are the consid-
ered the relevant items over which to count rep-
etitions, though this behavior can be specialized
by subclassingRepetitionScorer and overrid-
ing theupdateItems method. Note that in count-
ing repetitions, full counts are given to items in the
previous words or recent context, while fractional
counts are given to older items; the exact details
may likewise be changed in a subclass, by over-
riding therepeatedItems method.

4 Pruning Strategies

The classes for defining edge pruning strategies
appear in Figure 14. As mentioned in Section 2,
an N-best pruning strategy is employed by default,
where N is determined by the current preference
settings. It is also possible to define custom strate-
gies. To support the definition of a certain kind
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## Simplified COMIC realizer FLM spec file

## Trigram Word model based on previous words and accents, dropping accents first,
## with bigram sub-model;
## Unigram Gesture Class model based on current word; and
## Unigram Gesture Instance model based on current gesture class

4

## 3gram with A
W : 4 W(-1) W(-2) A(-1) A(-2) w_w1w2a1a2.count w_w1w2a1a2.lm 5

W1,W2,A1,A2 A2 ndiscount gtmin 1
W1,W2,A1 A1 ndiscount gtmin 1
W1,W2 W2 ndiscount gtmin 1
W1 W1 ndiscount gtmin 1
0 0 ndiscount gtmin 1

## bigram with A
W : 2 W(-1) A(-1) w_w1a1.count w_w1a1.lm 3

W1,A1 A1 ndiscount gtmin 1
W1 W1 ndiscount gtmin 1
0 0 ndiscount gtmin 1

## Gesture class depends on current word
GC : 1 W(0) gc_w0.count gc_w0.lm 2

W0 W0 ndiscount gtmin 1
0 0 ndiscount gtmin 1

## Gesture instance depends only on class
GI : 1 GC(0) gi_gc0.count gi_gc0.lm 2

GC0 GC0 ndiscount gtmin 1
0 0

Figure 12: Example factored language model family specification

// set up n-gram scorer and repetition scorer
String lmfile = "ngrams/combined.flm";
boolean semClasses = true;
NgramScorer ngramScorer = new FactoredNgramModelFamily(lmfile , semClasses );
ngramScorer.addFilter(new AAnFilter ());
RepetitionScorer repetitionScorer = new RepetitionScorer ();

// combine n-gram scorer with repetition scorer
realizer.signScorer = new SignScorerProduct(

new SignScorer [] { ngramScorer , repetitionScorer }
);

// ... then , after each realization request ,
Edge bestEdge = realizer.realize(lf);

// ... update repetition context for next realization:
repetitionScorer.ageContext ();
repetitionScorer.updateContext(bestEdge.getSign ());

Figure 13: Example combination of an n-gram scorer and a repetition scorer
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of custom strategy, the abstract classDiversity-
PruningStrategy provides an N-best pruning
strategy that promotes diversity in the edges that
are kept, according to the equivalence relation
established by the abstractnotCompellingly-
Different method. In particular, in order to de-
termine which edges to keep, a diversity pruning
strategy clusters the edges into a ranked list of
equivalence classes, which are sequentially sam-
pled until the limit N is reached. If thesingle-
BestPerGroup flag is set, then a maximum of one
edge per equivalence class is retained.

As an example, the COMIC realizer’s diversity
pruning strategy appears in Figure 15. The idea
behind this strategy is to avoid having the N-best
lists become full of signs whose words differ only
in the exact gesture instance associated with one
or more of the words. With this strategy, if two
signs differ in just this way, the edge for the lower-
scoring sign will be considered “not compellingly
different” and pruned from the N-best list, mak-
ing way for other edges whose signs exhibit more
interesting differences.

OpenCCG also provides a concrete subclass
of DiversityPruningStrategy namedNgram-
DiversityPruningStrategy, which general-
izes the approach to pruning described in (Langk-
ilde, 2000). With this class, two signs are consid-
ered not compellingly different if they share the
samen−1 initial and final words, wheren is the
n-gram order. When one is interested in single-
best output, an n-gram diversity pruning strategy
can increase efficiency while guaranteeing no loss
in quality—as long as the reduction in the search
space outweighs the extra time necessary to check
for the same initial and final words—since any
words in between an input sign’sn−1 initial and
final ones cannot affect the n-gram score of a
new sign formed from the input sign. However,
when N-best outputs are desired, or when repeti-
tion scoring is employed, it is less clear whether
it makes sense to use an n-gram diversity pruning
strategy; for this reason, a simple N-best strategy
remains the default option.

5 Conclusions and Future Work

In this paper, we have presented OpenCCG’s ex-
tensible API for efficiently integrating language
modeling and realization, in order to select realiza-
tions with preferred word orders, promote align-
ment with a conversational partner, avoid repeti-
tive language use, and increase the speed of the
best-first anytime search. As we have shown,
the design enables a variety of n-gram models
to be easily combined and used in conjunction
with appropriate edge pruning strategies. The n-
gram models may be of any order, operate in re-
verse (“right-to-left”), and selectively replace cer-
tain words with their semantic classes. Factored
language models with generalized backoff may
also be employed, over words represented as bun-
dles of factors such as form, pitch accent, stem,
part of speech, supertag, and semantic class.

In future work, we plan to further explore
how to best employ factored language models; in
particular, inspired by (Bangalore and Rambow,
2000), we plan to examine whether factored lan-
guage models using supertags can provide an ef-
fective way to combine syntactic and lexical prob-
abilities. We also plan to implement the capabil-
ity to useone-of alternations in the input logical
forms (Foster and White, 2004), in order to more
efficiently defer lexical choice decisions to the lan-
guage models.
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    «interface»  

 PruningStrategy 

 +pruneEdges(edges: List<Edge>): List<Edge> 

 NBestPruningStrategy 

 #CAT_PRUNE_VAL: int 

 DiversityPruningStrategy 

 +singleBestPerGroup: boolean 

 +notCompellinglyDifferent(sign1: Sign, sign2: Sign): boolean 

 NgramDiversityPruningStrategy 

 #order: int 

 +notCompellinglyDifferent(sign1: Sign, sign2: Sign): boolean 

 Returns the edges pruned from   
 the given ones, which always have   
 equivalent categories and are   
 sorted by score. 

 Keeps only the n−best edges. 

 Prunes edges that are not  
 compellingly different. 

 Defines edges to be not compellingly different   
 when the n−1 initial and final words are the same   
 (where n is the order). 

Figure 14: Classes for defining pruning strategies

// configure realizer with gesture diversity pruner
realizer.pruningStrategy = new DiversityPruningStrategy () {

/**
* Returns true iff the given signs are not compellingly different;
* in particular , returns true iff the words differ only in their
* gesture instances. */

public boolean notCompellinglyDifferent(Sign sign1 , Sign sign2) {

List words1 = sign1.getWords (); List words2 = sign2.getWords ();
if (words1.size() != words2.size ()) return false;
for (int i = 0; i < words1.size (); i++) {

Word w1 = (Word) words1.get(i); Word w2 = (Word) words2.get(i);
if (w1 == w2) continue;
if (w1.getForm () != w2.getForm ()) return false;
if (w1.getPitchAccent () != w2.getPitchAccent ()) return false;
if (w1.getVal("GC") != w2.getVal("GC")) return false;
// nb: assuming that they differ in the val of GI at this point

}
return true;

}
};

Figure 15: Example diversity pruning strategy
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Abstract

We describe the evolution of solvers
for dominance constraints, a formalism
used in underspecified semantics, and
present a new graph-based solver using
charts. An evaluation on real-world data
shows that each solver (including the
new one) is significantly faster than its
predecessors. We believe that our strat-
egy of successively tailoring a powerful
formalism to the actual inputs is more
generally applicable.

1 Introduction

In many areas of computational linguistics, there is
a tension between a need for powerful formalisms
and the desire for efficient processing. Expressive
formalisms are useful because they allow us to
specify linguistic facts at the right level of abstrac-
tion, and in a way that supports the creation and
maintenance of large language resources. On the
other hand, by choosing a more powerful formal-
ism, we typically run the risk that our processing
tasks (say, parsing or inference) can no longer be
performed efficiently.

One way to address this tension is to switch to
simpler formalisms. This makes processing more
efficient, but sacrifices the benefits of expressive
formalisms in terms of modelling. Another com-
mon strategy is to simply use the powerful for-
malisms anyway. This sometimes works pretty
well in practice, but a system built in this way can-
not give any runtime guarantees, and may become
slow for certain inputs unpredictably.

In this paper, we advocate a third option: Use a
general, powerful formalism, analyse what makes
it complex and what inputs actually occur in prac-
tice, and then find a restricted fragment of the for-
malism that supports all practical inputs and can
be processed efficiently. We demonstrate this ap-
proach by describing the evolution of solvers for
dominance constraints(Egg et al., 2001), a certain
formalism used for the underspecified descrip-
tion of scope ambiguities in computational seman-
tics. General dominance constraints have an NP-
complete satisfiability problem, butnormal dom-
inance constraints, which subsume all constraints
that are used in practice, have linear-time satisfia-
bility and can be solved extremely efficiently.

We describe a sequence of four solvers, rang-
ing from a purely logic-based saturation algorithm
(Koller et al., 1998) over a solver based on con-
straint programming (Duchier and Niehren, 2000)
to efficient solvers based on graph algorithms
(Bodirsky et al., 2004). The first three solvers have
been described in the literature before, but we also
present a new variant of the graph solver that uses
caching to obtain a considerable speedup. Finally
we present a new evaluation that compares all four
solvers with each other and with a different under-
specification solver from the LKB grammar devel-
opment system (Copestake and Flickinger, 2000).

The paper is structured as follows. We will first
sketch the problem that our algorithms solve (Sec-
tion 2). Then we present the solvers (Section 3)
and conclude with the evaluation (Section 4).

2 The Problem

The problem we use to illustrate the progress to-
wards efficient solvers is that of enumerating all
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readings of anunderspecified description. Under-
specification is a technique for dealing with the
combinatorial problems associated with quantifier
scope ambiguities, certain semantic ambiguities
that occur in sentences such as the following:

(1) Every student reads a book.

This sentence has two different readings. Read-
ing (2) expresses that each student reads a possibly
different book, while reading (3) claims that there
is a single book which is read by every student.

(2) ∀x.student(x)→ (∃y.book(y)∧ read(x,y))

(3) ∃y.book(y)∧ (∀x.student(x)→ read(x,y))

The number of readings can grow exponen-
tially in the number of quantifiers and other
scope-bearing operators occuring in the sentence.
A particularly extreme example is the follow-
ing sentence from the Rondane Treebank, which
the English Resource Grammar (Copestake and
Flickinger, 2000) claims to have about 2.4 trillion
readings.

(4) Myrdal is the mountain terminus of the Flåm
rail line (or Flåmsbana) which makes its way
down the lovely Flåm Valley (Flåmsdalen) to
its sea-level terminus at Flåm.
(Rondane 650)

Of course, this huge number of readings results
not only from genuine meaning differences, but
from the (quite reasonable) decision of the ERG
developers to uniformly treat all noun phrases, in-
cluding proper names and definites, as quantifiers.
But a system that builds upon such a grammar still
has to deal with these readings in some way.

The key idea of underspecification is now to not
enumerate all these semantic readings from a syn-
tactic analysis during or after parsing, but to derive
from the syntactic analysis a single, compactun-
derspecified description. The individual readings
can beenumeratedfrom the description if they are
needed, and this enumeration process should be
efficient; but it is also possible to eliminate read-
ings that are infelicitous given knowledge about
the world or the context on the level of underspec-
ified descriptions.

∀x
→

stud
x

∃y
∧

book
y yx

read

∀x

∃y

→

stud
x

∧

book
y

yx
read

Figure 1: Trees for the readings (2) and (3).

∀x ∃y
→

stud
x

∧

book
y

yx
read

X1 : ∀x(X2) ∧
X2 :→(X3,X4) ∧
X5 : stud(X6) ∧
X6 : x∧
. . .
X4 /∗ X7 ∧
X7 : read(X8,X9) ∧
X8 : x ∧X9 : y

Figure 2: A dominance constraint (right) and its
graphical representation (left); the solutions of the
constraint are the two trees in Fig. 1.

Dominance constraints. The particular under-
specification formalism whose enumeration prob-
lem we consider in this paper is the formalism
of dominance constraints(Egg et al., 2001). The
basic idea behind using dominance constraints in
underspecification is that the semantic representa-
tions (2) and (3) can be considered astrees(see
Fig. 1). Then a set of semantic representations can
be characterised as the set of models of a formula
in the following language:

ϕ ::= X: f (X1, . . . ,Xn) | X /∗ Y | X 6= Y | ϕ∧ϕ

The labelling atom X: f (X1, . . . ,Xn) expresses
that the node in the tree which is denoted by the
variableX has the labelf , and its children are de-
noted by the variablesX1 to Xn. Dominance atoms
X /∗Y say that there is a path (of length 0 or more)
from the node denoted byX to the node denoted
by Y; and inequality atoms X6= Y require thatX
andY denote different nodes.

Dominance constraintsϕ can be drawn infor-
mally as graphs, as shown in Fig. 2. Each node
of the graph stands for a variable; node labels and
solid edges stand for labelling atoms; and the dot-
ted edges represent dominance atoms. The con-
straint represented by the drawing in Fig. 2 issat-
isfiedby both trees shown in Fig. 1. Thus we can
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use it as an underspecified description represent-
ing these two readings.

The two obvious processing problems con-
nected to dominance constraints aresatisfiability
(is there a model that satisfies the constraint?)
and enumeration(compute all models of a con-
straint). Because every satisfiable dominance con-
straint technically has an infinite number of mod-
els, the algorithms below solve the enumeration
problem by computingsolved formsof the con-
straint, which are finite characterisations of infinite
model sets.

3 The Solvers

We present four different solvers for dominance
constraints. As we go along, we analyse what
makes dominance constraint solving hard, and
what characterises the constraints that occur in
practice.

3.1 A saturation algorithm

The first dominance constraint solver (Koller et al.,
1998; Duchier and Niehren, 2000) is an algorithm
that operates directly on the constraint as a logical
formula. It is asaturation algorithm, which suc-
cessively enriches the constraint usingsaturation
rules. The algorithm terminates if it either derives
a contradiction (marked by the special atomfalse),
or if no rule can contribute any new atoms. In the
first case, it claims that the constraint is unsatisfi-
able; in the second case, it reports the end result of
the computation as asolved formand claims that
it is satisfiable.

The saturation rules in the solver try to match
their preconditions to the constraint, and if they
do match, add their conclusions to the constraint.
For example, the following rules express that dom-
inance is a transitive relation, and that trees have
no cycles:

X /∗ Y∧Y /∗ Z → X /∗ Z
X: f (. . . ,Y, . . .)∧Y /∗ X → false

Some rules have disjunctive right-hand sides; if
they are applicable, they perform a case distinction
and add one of the disjuncts. One example is the
Choice Rule, which looks as follows:

X /∗ Z∧Y /∗ Z → X /∗ Y∨Y /∗ X

This rule checks for the presence of two variables
X andY that are known to both dominate the same
variable Z. Because models must be trees, this
means thatX andY must dominate each other in
some order; but we can’t know yet whether it isX
orY that dominates the other one. Hence the solver
tries both choices. This makes it possible to derive
multiple solved forms (one for each reading of the
sentence), such as the two different trees in Fig. 1.

It can be shown that a dominance constraint is
satisfiable iff it is not possible to derivefalsefrom
it using the rules in the algorithm. In addition, ev-
ery model of the original constraint satisfies ex-
actly one solved form. So the saturation algorithm
can indeed be used to solve dominance constraints.
However, even checking satisfiability takes nonde-
terministic polynomial time. Because all choices
in the distribution rule applications have to be
checked, a deterministic program will take expo-
nential time to check satisfiability in the worst
case.

Indeed, satisfiability of dominance constraints
is an NP-complete problem (Koller et al., 1998),
and hence it is likely that any solver for dominance
constraints will take exponential worst-case run-
time. At first sight, it seems that we have fallen
into the expressivity trap: We have a formalism
that allows us to model scope underspecification
very cleanly, but actually computing with this for-
malism is expensive.

3.2 Reduction to Set Constraints

In reaction to this NP-completeness result,
Duchier and Niehren (2000) applied techniques
fromconstraint programmingto the problem in or-
der to get a more efficient solver. Constraint pro-
gramming (Apt, 2003) is a standard approach to
solving NP-complete combinatorial problems. In
this paradigm, a problem is modelled as a for-
mula in a logical constraint language. The pro-
gram searches for values for the variables in the
formula that satisfy the formula. In order to reduce
the size of the search space, it performs cheap de-
terministic inferences that exclude some values of
the variables(propagation), and only after prop-
agation can supply no further information it per-
forms a non-deterministic case distinction(distri-
bution).
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Sidex

EqxUpx

Downx

Figure 3: The four node sets

Duchier and Niehren solved dominance con-
straints by encoding them asfinite set constraints.
Finite set constraints (Müller and Müller, 1997)
are formulas that talk about relations between
(terms that denote) finite sets of integers, such
as inclusionX ⊆ Y or equalityX = Y. Efficient
solvers for set constraints are available, e.g. as part
of the Mozart/Oz programming system (Oz Devel-
opment Team, 2004).

Reduction to set constraints. The basic idea
underlying the reduction is that a tree can be rep-
resented by specifying for each nodev of this tree
which nodes are dominated byv, which ones dom-
inate v, which ones are equal tov (i.e. just v it-
self), and which ones are “disjoint” fromv (Fig. 3).
These four node sets are a partition of the nodes in
the tree.

Now the solver introduces for each variableX
in a dominance constraintϕ four variablesEqX,
UpX, DownX, SideX for the sets of node variables
that denote nodes in the respective region of the
tree, relative toX. The atoms inϕ are translated
into constraints on these variables. For instance, a
dominance atomX /∗ Y is translated into

UpX ⊆ UpY∧DownY ⊆ DownX ∧SideX ⊆ SideY

This constraint encodes that all variables whose
denotation dominates the denotation ofX (UpX)
must also dominate the denotation ofY (UpY), and
the analogous statements for the dominated and
disjoint variables.

In addition, the constraint program contains var-
ious redundant constraints that improve propaga-
tion. Now the search for solutions consists in find-
ing satisfying assignments to the set variables. The
result is a search tree as shown in Fig. 4: The
blue circles represent case distinctions, whereas
each green diamond represents a solution of the
set constraint (and therefore, a solved form of

Figure 4: Search tree for constraint 42 from the
Rondane Treebank.

the dominance constraint). Interestingly, all leaves
of the search tree in Fig. 4 are solution nodes;
the search never runs into inconsistent constraints.
This seems to happen systematically when solving
any constraints that come from underspecification.

3.3 A graph-based solver

This behaviour of the set-constraint solver is ex-
tremely surprising: The key characteristic of an
NP-complete problem is that the search tree must
necessarily contain failed nodes on some inputs.
The fact that the solver never runs into failure is a
strong indication that there is a fragment of domi-
nance constraints that contains all constraints that
are used in practice, and that the solver automat-
ically exploits this fragment. This begs the ques-
tion: What is this fragment, and can we develop
even faster solvers that are specialised to it?

One such fragment is the fragment ofnormal
dominance constraints (Althaus et al., 2003). The
most important restriction that a normal domi-
nance constraintϕ must satisfy is that it isoverlap-
free: Wheneverϕ contains two labelling atoms
X: f (. . .) and Y:g(. . .) (where f and g may be
equal), it must also contain an inequality atom
X 6= Y. As a consequence, no two labelled vari-
ables in a normal constraint may be mapped to the
same node. This is acceptable or even desirable in
underspecification: We are not interested in solu-
tions of the constraint in Fig. 2 in which the quan-
tifier representations overlap. On the other hand,
the NP-completeness proof in (Koller et al., 1998)
is no longer applicable to overlap-free constraints.
Hence normal dominance constraints are a frag-
ment that is sufficient from a modelling perspec-
tive, and possibly admits polynomial-time solvers.

Indeed, it can be shown that the satisfiability
problem of normal dominance constraints can be
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Figure 5: An example computation of the graph
solver.

decided in linear time (Thiel, 2004), and the lin-
ear algorithm can be used to enumerateN solved
forms of a constraint of sizen in timeO(n2N). We
now present the simplerO(n2N) enumeration al-
gorithm by Bodirsky et al. (2004).1 Note thatN
may still be exponential inn.

Dominance Graphs. The crucial insight under-
lying the fast solvers for normal dominance con-
straints is that such constraints can be seen asdom-
inance graphs, and can be processed using graph
algorithms. Dominance graphs are directed graphs
with two kinds of edges:tree edgesanddominance
edges. The graph without the dominance edges
must be a forest; the trees of this forest are called
the fragmentsof the graph. In addition, the dom-
inance edges must go fromholes(i.e., unlabelled
leaves) of fragments toroots of other fragments.
For instance, we can view the graph in Fig. 2,
which we introduced as an informal notation for
a dominance constraint, directly as a dominance
graph with three fragments and two (dotted) dom-
inance edges.

A dominance graphG which is a forest is called
in solved form. We say thatG′ is asolved form of
a graphG iff G′ is in solved form,G andG′ con-
tain the same tree edges, and the reachability rela-
tion of G′ extends that ofG. Using this definition,
it is possible to define a mapping between normal
dominance constraints and dominance graphs such
that the solved forms of the graph can serve as
solved forms of the constraint – i.e., we can reduce
constraint solving to graph solving.

By way of example, consider Fig. 5. The dom-
inance graph on the left is not in solved form, be-
cause it contains nodes with more than one incom-

1The original paper defines the algorithm forweaklynor-
mal dominance constraints, a slight generalisation.

GRAPH-SOLVER(G′)
1 if G′ is already in solved form
2 then return G’
3 free← FREE-FRAGMENTS(G′)
4 if free= /0
5 then fail
6 chooseF ∈ free
7 G1, . . . ,Gk←WCCS(G′−F)
8 for eachGi ∈G1, . . . ,Gk

9 do Si ← GRAPH-SOLVER(Gi)
10 S← AttachS1, . . . ,Sk underF
11 return S

Figure 6: The graph solver.

ing dominance edge. By contrast, the other two
dominance graphs are in solved form. Because the
graph on the right has the same tree edges as the
one on the left and extends its reachability relation,
it is also a solved form of the left-hand graph.

The algorithm. The graph-based enumeration
algorithm is a recursive procedure that succes-
sively splits a dominance graph into smaller parts,
solves them recursively, and combines them into
complete solved forms. In each step, the algo-
rithm identifies thefree fragmentsof the domi-
nance (sub-)graph. A fragment is free if it has no
incoming dominance edges, and all of its holes are
in different biconnected components of the undi-
rected version of the dominance graph. It can be
shown (Bodirsky et al., 2004) that if a graphG has
any solved form andF is a free fragment ofG,
thenG has a solved form in whichF is at the root.

The exact algorithm is shown in Fig. 6. It com-
putes the free fragments of a sub-dominance graph
G′ in line 3. Then it chooses one of the free frag-
ments, removes it from the graph, and calls itself
recursively on the weakly connected components
G1, . . . ,Gk of the resulting graph. Each recursive
call will compute a solved formSi of the con-
nected componentGi . Now for eachGi there is
exactly one holehi of F that is connected to some
node inGi by a dominance edge. We can obtain a
solved form forG′ by combiningF and all theSi

with dominance edges fromhi to the root ofSi for
eachi.
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Figure 7: An unsolvable dominance graph.

The algorithm is written as a nondeterministic
procedure which makes a nondeterministic choice
in line 6, and can fail in line 5. We can turn it into a
deterministic algorithm by considering the nonde-
terministic choices as case distinctions in a search
tree, as in Fig. 4. However, if the input graphG
is solvable, we know that every single leaf of the
search tree must correspond to a (different) solved
form, because for every free fragment that can be
chosen in line 6, there is a solved form that has this
fragment as its root. Conversely, ifG is unsolv-
able, every single branch of the search tree will
run into failure, because it would claim the exis-
tence of a solved form otherwise. So the algorithm
decides solvability in polynomial time.

An example computation of GRAPH-SOLVER

is shown in Fig. 5. The input graph is shown on
the left. It contains exactly one free fragmentF ;
this is the fragment whose root is labelled with
f . (The single-node fragments both have incom-
ing dominance edges, and the two holes of the
fragment with labelg are in the same biconnected
component.) So the algorithm removesF from the
graph, resulting in the graph in the middle. This
graph is in solved form (it is a tree), so we are fin-
ished. Finally the algorithm builds a solved form
for the whole graph by plugging the solved form
in the middle into the single hole ofF ; the result is
shown on the right. By contrast, the graph in Fig. 7
has no solved forms. The solver will recognise this
immediately, because none of the fragments is free
(they either have incoming dominance edges, or
their holes are biconnected).

3.4 A graph solver with charts

The graph solver is a great step forward towards
efficient constraint solving, and towards an under-
standing of why (normal) dominance constraints
can be solved efficiently. But it wastes time when
it is called multiple times for the same subgraph,

f1 f2 f3 f4

a5 a6 a7

h1 h21 h22 h31 h32 h4
1 2 3 4

5 6 7

Figure 8: The chain of length 4.

{1,2,3,4,5,6,7} : 〈1,h1 7→ {2,3,4,5,6,7}〉
〈2,h21 7→ {1,5},h22 7→ {3,4,6,7}〉
〈3,h31 7→ {1,2,5,6},h32 7→ {4,7}〉
〈4,h4 7→ {1,2,3,5,6,7}〉

{2,3,4,5,6,7} : 〈2,h21 7→ {5},h22 7→ {3,4,6,7}〉
〈3,h31 7→ {2,5,6},h32 7→ {4,7}〉
〈4,h4 7→ {2,3,5,6,7}〉

{1,2,3,5,6,7} : 〈1,h1 7→ {2,3,5,6,7}〉
〈2,h21 7→ {1,5},h22 7→ {3,6,7}〉
〈3,h31 7→ {1,2,5,6},h32 7→ {7}〉

{2,3,5,6,7} : 〈2,h21 7→ {5},h22 7→ {3,6,7}〉
〈3,h31 7→ {2,5,6},h32 7→ {7}〉

. . . . . .

Figure 9: A part of the chart computed for the con-
straint in Fig. 8.

because it will solve it anew each time. In solv-
ing, for instance, the graph shown in Fig. 8, it
will solve the subgraph consisting of the fragments
{2,3,5,6,7} twice, because it can pick the frag-
ments 1 and 4 in either order.

We will now present a previously unpublished
optimisation for the solver that uses caching to al-
leviate this problem. The data structure we use for
caching (we call it “chart” below because of its
obvious parallels to charts in parsing) assigns each
subgraph of the original graph a set ofsplits. Splits
encode the splittings of the graph into weakly con-
nected components that take place when a free
fragment is removed. Formally, a split for the sub-
graphG′ consists of a reference to a fragmentF
that is free inG′ and a partial function that maps
some nodes ofF to subgraphs ofG′. A split is de-
termined uniquely byG′ andF .

Consider, by way of example, Fig. 9, which dis-
plays a part of the chart that we want to compute
for the constraint in Fig. 8. In the entire graphG
(represented by the set{1, . . . ,7} of fragments),
the fragments 1, 2, 3, and 4 are free. As a conse-
quence, the chart contains a split for each of these
four fragments. If we remove fragment 1 fromG,
we end up with a weakly connected graphG1 con-
taining the fragments{2, . . . ,7}. There is a dom-
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GRAPH-SOLVER-CHART(G′)
1 if there is an entry forG′ in the chart
2 then return true
3 free← FREE-FRAGMENTS(G′)
4 if free= /0
5 then return false
6 if G′ contains only one fragment
7 then return true
8
9 for eachF ∈ free

10 do split← SPLIT(G′,F)
11 for eachS∈WCCS(G′−F)
12 do if GRAPH-SOLVER-CHART(S) = false
13 then return false
14 add(G′,split) to the chart
15 return true

Figure 10: The graph solver with charts

inance edge from the holeh1 into G1, so once
we have a solved form ofG1, we will have to
plug it into h1 to get a solved form ofG; there-
fore G1 is assigned toh1 in the split. On the other
hand, if we remove fragment 2 fromG, G is split
into two weakly connected components{1,5} and
{3,4,6,7}, whose solved forms must be plugged
into h21 andh22 respectively.

We can compute a chart like this using the algo-
rithm shown in Fig. 10. This recursive algorithm
gets some subgraphG′ of the original graphG as
its first argument. It returnstrue if G′ is solvable,
andfalse if it isn’t. If an entry for its argumentG′

was already computed and recorded in the chart,
the procedure returns immediately. Otherwise, it
computes the free fragments ofG′. If there are no
free fragments,G was unsolvable, and thus the al-
gorithm returnsfalse; on the other hand, ifG′ only
contains one fragment, it is solved and we can im-
mediately returntrue.

If none of these special cases apply, the algo-
rithm iterates over all free fragmentsF of G′ and
computes the (unique) split that placesF at the
root of the solved forms. If all weakly connected
components represented in the split are solvable, it
records the split as valid forG′, and returnstrue.

If the algorithm returns with valuetrue, the
chart will be filled with splits for all subgraphs of

G that the GRAPH-SOLVER algorithm would have
visited. It is also guaranteed that every split in the
chart is used in a solved form of the graph. Ex-
tracting the actual solved forms from the chart is
straightforward, and can be done essentially like
for parse charts of context-free grammar.

Runtime analysis. The chart computed by the
chart solver for a dominance graph withn
nodes andm edges can grow to at mostO(n ·
wcsg(G)) entries, where wcsg(G) is the number of
weakly connected subgraphs ofG: All subgraphs
for which GRAPH-SOLVER-CHART is called are
weakly connected, and for each such subgraph
there can be at mostn different splits. Because a
recursive call returns immediately if its argument
is already present in the chart, this means that at
mostO(n·wcsg(G)) calls spend more than the ex-
pected constant time that it takes to look upG′ in
the chart. Each of these calls needs timeO(m+n),
the cost of computing the free fragments.

As a consequence, the total time that GRAPH-
SOLVER-CHART takes to fill the chart isO(n(n+
m)wcsg(G)). Applied to a dominanceconstraint
with k atoms, the runtime isO(k2wcsg(G)). On
the other hand, ifG hasN solved forms, it takes
time O(N) to extract these solved forms from the
chart. This is a significant improvement over the
O(n(n + m)N) time that GRAPH-SOLVER takes
to enumerate all solved forms. A particularly dra-
matic case is that ofchains– graphs with a zig-zag
shape ofn upper andn−1 lower fragments such
as in Fig. 8, which occur frequently as part of un-
derspecified descriptions. A chain has onlyO(n2)
weakly connected subgraphs andO(n) edges, so
the chart can be filled in timeO(n4), despite the
fact that the chain has1n+1

(2n
n

)
solved forms (this is

then-th Catalan number, which grows faster than
n!). The worst case for the chart size is shown in
Fig. 11. If such a graph hasn upper fragments,
it hasO(2n) weakly connected subgraphs, so the
chart-filling phase takes timeO(n22n). But this is
still dominated by theN = n! solved forms that
this graph has.

4 Evaluation

We conclude this paper with a comparative run-
time evaluation of the presented dominance con-
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Figure 11: A worst-case graph for the chart solver.

constraints max. solved forms
Rondane 961 ?
Nets 879 2.4·1012

Nets< 106 solved forms 852 997920
Solver solvable max. solved forms
Saturation (§3.1) 757 10030
Set constraints (§3.2) 841 557472
Graph (§3.3) 850 768254
Chart (§3.4) 852 997920
LKB 682 17760
All 682 7742

Figure 12: Sizes of the data sets.

straint solvers. To put the results into context, we
also compare the runtimes with a solver for Min-
imal Recursion Semantics (MRS) (Copestake et
al., 2004), a different formalism for scope under-
specification.

Resources. As our test set we use constraints ex-
tracted from the Rondane treebank, which is dis-
tributed as part of the English Resource Grammar
(Copestake and Flickinger, 2000). The treebank
contains syntactic annotations for sentences from
the tourism domain such as (4) above, together
with corresponding semantic representations.

The semantics is represented using MRS de-
scriptions, which we convert into normal domi-
nance constraints using the translation specified by
Niehren and Thater (2003). The translation is re-
stricted to MRS constraints having certain struc-
tural properties (callednets). The treebank con-
tains 961 MRS constrains, 879 of which are nets.

For the runtime evaluation, we restricted the
test set to the 852 nets with less than one mil-
lion solved forms. The distribution of these con-
straints over the different constraint sizes (i.e.
number of fragments) is shown in Fig. 15. We
solved them using implementations of the pre-
sented dominance constraint solvers, as well as
with the MRS solver in the LKB system (Copes-
take and Flickinger, 2000).

Runtimes. As Fig. 12 shows, the chart solver
is the only solver that could solve all constraints
in the test set; all other solvers ran into memory
limitations on some inputs.2 The increased com-
plexity of constraints that each solver can handle
(given as the maximum number of solved forms of
a solvable constraint) is a first indication that the
repeated analysis and improvement of dominance
constraint solvers described earlier was successful.

Fig. 13 displays the result of the runtime com-
parison, taking into account only those 682 con-
straints that all solvers could solve. For each con-
straint size (counted in number of fragments), the
graph shows the mean quotient of the time to enu-
merate all solved forms by the number of solved
forms, averaged over all constraints of this size.
Note that the vertical axis is logarithmic, and that
the runtimes of the LKB and the chart solver for
constraints up to size 6 are too small for accurate
measurement.

The figure shows that each new generation of
dominance constraint solvers improves the perfor-
mance by an order of magnitude. Another differ-
ence is in the slopes of the graphs. While the sat-
uration solver takes increasingly more time per
solved form as the constraint grows, the set con-
straint and graph solvers remain mostly constant
for larger constraints, and the line for the chart
solver even goes down. This demonstrates an im-
proved management of the combinatorial explo-
sion. It is also interesting that the line of the set-
constraint solver is almost parallel to that of the
graph solver, which means that the solver really
does exploit a polynomial fragment on real-world
data.

The LKB solver performs very well for smaller
constraints (which make up about half of the data
set): Except for the chart algorithm introduced in
this paper, it outperforms all other solvers. For
larger constraints, however, the LKB solver gets
very slow. What isn’t visible in this graph is that
the LKB solver also exhibits a dramatically higher
variation in runtimes for constraints of the same
size, compared to the dominance solvers. We be-
lieve this is because the LKB solver has been op-
timised by hand to deal with certain classes of in-

2On a 1.2 GHz PC with 2 GB memory.
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puts, but at its core is still an uncontrolled expo-
nential algorithm.

We should note that the chart-based solver is
implemented in C++, while the other dominance
solvers are implemented in Oz, and the MRS
solver is implemented in Common Lisp. This ac-
counts for some constant factor in the runtime, but
shouldn’t affect the differences in slope and vari-
ability.

Effect of the chart. Because the chart solver is
especially efficient if the chart remains small, we
have compared how the number of solved forms
and the chart size (i.e. number of splits) grow with
the constraint size (Fig. 14). The graph shows that
the chart size grows much more slowly than the
number of solved forms, which supports our intu-
ition that the runtime of the chart solver is asymp-
totically less than that of the graph solver by a sig-
nificant margin. The chart for the most ambigu-
ous sentence in the treebank (sentence (4) above)
contains 74.960 splits. It can be computed in less
than ten seconds. By comparison, enumerating all
solved forms of the constraint would take about a
year on a modern PC. Even determining the num-
ber of solved forms of this constraint is only pos-
sible based on the chart.

5 Conclusion

In this paper we described the evolution of solvers
for dominance constraints, a logical formalism
used for the underspecified processing of scope
ambiguities. We also presented a new solver,
which caches the intermediate results of a graph
solver in a chart. An empirical evaluation shows
that each solver is significantly faster than the pre-
vious one, and that the new chart-based solver
is the fastest underspecification solver available
today. It is available online athttp://utool.
sourceforge.net.

Each new solver was based on an analysis of the
main sources of inefficiency in the previous solver,
as well as an increasingly good understanding of
the input data. The main breakthrough was the re-
alisation that normal dominance constraints have
polynomial satisfiability and can be solved using
graph algorithms. We believe that this strategy of
starting with a clean, powerful formalism and then

successively searching for a fragment that con-
tains all practically relevant inputs and excludes
the pathologically hard cases is applicable to other
problems in computational linguistics as well.

However, it is clear that the concept of “all prac-
tically relevant inputs” is a moving target. In this
paper, we have equated it with “all inputs that can
be generated by a specific large-scale grammar”,
but new grammars or different linguistic theories
may generate underspecified descriptions that no
longer fall into the efficient fragments. In our case,
it is hard to imagine what dominance constraint
used in scope underspecification wouldn’t be nor-
mal, and we have strong intuitions that all use-
ful constraints must be nets, but it is definitely an
interesting question how our algorithms could be
adapted to, say, the alternative scope theory advo-
cated by Joshi et al. (2003).

An immediate line of future research is to ex-
plore uses of the chart data structure that go be-
yond pure caching. The general aim of underspec-
ification is not to simply enumerate all readings
of a sentence, but to use the underspecified de-
scription as a platform on which readings that are
theoretically possible, but infelicitous in the actual
context, can be eliminated. The chart may prove
to be an interesting platform for such operations,
which combines advantages of the underspecified
description (size) and the readings themselves (ex-
plicitness).
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Figure 13: Average runtimes per solved form, for each constraint size (number of fragments).
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Abstract

Common tasks involving orthographic
words include spellchecking, stemming,
morphological analysis, and morpho-
logical synthesis. To enable signifi-
cant reuse of the language-specific re-
sources across all such tasks, we have
extended the functionality of the open
source spellchecker MySpell, yield-
ing a generic word analysis library, the
runtime layer of the hunmorph toolkit.
We added an offline resource manage-
ment component, hunlex, which com-
plements the efficiency of our runtime
layer with a high-level description lan-
guage and a configurable precompiler.

0 Introduction

Word-level analysis and synthesis problems range
from strict recognition and approximate matching
to full morphological analysis and generation. Our
technology is predicated on the observation that
all of these problems are, when viewed algorith-
mically, very similar: the central problem is to
dynamically analyze complex structures derived
from some lexicon of base forms. Viewing word
analysis routines as a unified problem means shar-
ing the same codebase for a wider range of tasks, a
design goal carried out by finding the parameters
which optimize each of the analysis modes inde-
pendently of the language-specific resources.

The C/C++ runtime layer of our toolkit, called
hunmorph, was developed by extending the code-
base of MySpell, a reimplementation of the well-
known Ispell spellchecker. Our technology, like
the Ispell family of spellcheckers it descends
from, enforces a strict separation between the
language-specific resources (known as dictionary
and affix files), and the runtime environment,
which is independent of the target natural lan-
guage.

Figure 1: Architecture

Compiling accurate wide coverage machine-
readable dictionaries and coding the morphology
of a language can be an extremely labor-intensive
task, so the benefit expected from reusing the
language-specific input database across tasks can
hardly be overestimated. To facilitate this resource
sharing and to enable systematic task-dependent
optimizations from a central lexical knowledge
base, we designed and implemented a powerful of-
fline layer we call hunlex. Hunlex offers an easy
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to use general framework for describing the lexi-
con and morphology of any language. Using this
description it can generate the language-specific
aff/dic resources, optimized for the task at hand.
The architecture of our toolkit is depicted in Fig-
ure 1. Our toolkit is released under a permissive
LGPL-style license and can be freely downloaded
from mokk.bme.hu/resources/hunmorph.

The rest of this paper is organized as follows.
Section 1 is about the runtime layer of our toolkit.
We discuss the algorithmic extensions and imple-
mentational enhancements in the C/C++ runtime
layer over MySpell, and also describe the newly
created Java port jmorph. Section 2 gives an
overview of the offline layer hunlex. In Section 3
we consider the free open source software alterna-
tives and offer our conclusions.

1 The runtime layer

Our development is a prime example of code
reuse, which gives open source software devel-
opment most of its power. Our codebase is a
direct descendant of MySpell, a thread-safe C++
spell-checking library by Kevin Hendricks, which
descends from Ispell Peterson (1980), which in
turn goes back to Ralph Gorin’s spell (1971),
making it probably the oldest piece of linguistic
software that is still in active use and development
(see fmg-www.cs.ucla.edu/fmg-members/
geoff/ispell.html).

The key operation supported by this codebase is
affix stripping. Affix rules are specified in a static
resource (the aff file) by a sequence of conditions,
an append string, and a strip string: for example,
in the rule forming the plural of body the strip
string would be y, and the affix string would be
ies. The rules are reverse applied to complex input
wordforms: after the append string is stripped and
the edge conditions are checked, a pseudo-stem is
hypothesized by appending the strip string to the
stem which is then looked up in the base dictio-
nary (which is the other static resource, called the
dic file).

Lexical entries (base forms) are all associated
with sets of affix flags, and affix flags in turn are
associated to sets of affix rules. If the hypothe-
sized base is found in the dictionary after the re-

verse application of an affix rule, the algorithm
checks whether its flags contain the one that the
affix rule is assigned to. This is a straight table-
driven approach, where affix flags can be inter-
preted directly as lexical features that license en-
tire subparts of morphological paradigms. To pick
applicable affix rules efficiently, MySpell uses a
fast indexing technique to check affixation condi-
tions.

In theory, affix-rules should only specify gen-
uine prefixes and suffixes to be stripped before lex-
ical lookup. But in practice, for languages with
rich morphology, the affix stripping mechanism is
(ab)used to strip complex clusters of affix morphs
in a single step. For instance, in Hungarian, due
to productive combinations of derivational and in-
flectional affixation, a single nominal base can
yield up to a million word forms. To treat all
these combinations as affix clusters, legacy ispell
resources for Hungarian required so many com-
bined affix rule entries that its resource file sizes
were not manageable.

To solve this problem we extended the affix
stripping technique to a multistep method: after
stripping an affix cluster in step i, the resulting
pseudo-stem can be stripped of affix clusters in
step i + 1. Restrictions of rule application are
checked with the help of flags associated to affixes
analogously to lexical entries: this only required
a minor modification of the data structure coding
affix entries and a recursive call for affix stripping.
By cross-checking flags of prefixes on the suffix
(as opposed to the stem only), simultaneous pre-
fixation and suffixation can be made interdepen-
dent, extending the functionality to describe cir-
cumfixes like German participle ge+t, or Hungar-
ian superlative leg+bb, and in general provide the
correct handling of prefix-suffix dependencies like
English undrinkable (cf. *undrink), see Németh
et al. (2004) for more details.

Due to productive compounding in a lot of lan-
guages, proper handling of composite bases is a
feature indispensable for achieving wide coverage.
Ispell incorporates the possibility of specifying
lexical restrictions on compounding implemented
as switches in the base dictionary. However, the
algorithm allows any affixed form of the bases that
has the relevant switch to be a potential member
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of a compound, which proves not to be restrictive
enough. We have improved on this by the intro-
duction of position-sensitive compounding. This
means that lexical features can specify whether
a base or affix can occur as leftmost, rightmost
or middle constituent in compounds and whether
they can only appear in compounds. Since these
features can also be specified on affixes, this pro-
vides a welcome solution to a number of resid-
ual problems hitherto problematic for open-source
spellcheckers. In some Germanic languages, ’fo-
gemorphemes’, morphemes which serve linking
compound constituents can now be handled easily
by allowing position specific compound licensing
on the foge-affixes. Another important example is
the German common noun: although it is capital-
ized in isolation, lowercase variants should be ac-
cepted when the noun is a compound constituent.
By handling lowercasing as a prefix with the com-
pound flag enabled, this phenomenon can be han-
dled in the resource file without resort to language
specific knowledge hard-wired in the code-base.

1.1 From spellchecking to morphological
analysis

We now turn to the extensions of the MySpell
algorithm that were required to equip hunmorph
with stemming and morphological analysis func-
tionality. The core engine was extended with an
optional output handling interface that can process
arbitrary string tags associated with the affix-rules
read from the resources. Once this is done, sim-
ply outputting the stem found at the stage of dic-
tionary lookup already yields a stemmer. In mul-
tistep affix stripping, registering output informa-
tion associated with the rules that apply renders
the system capable of morphological analysis or
other word annotation tasks. Thus the processing
of output tags becomes a mode-dependent param-
eter that can be:

• switched off (spell-checking)

• turned on only for tag lookup in the dictio-
nary (simple stemming)

• turned on fully to register tags with all rule-
applications (morphological analysis)

The single most important algorithmic aspect that
distinguishes the recognition task from analysis
is the handling of ambiguous structures. In the
original MySpell design, identical bases are con-
flated and once their switch-set licensing affixes
are merged, there is no way to tell them apart.
The correct handling of homonyms is crucial for
morphological analysis, since base ambiguities
can sometimes be resolved by the affixes. In-
terestingly, our improvement made it possible to
rule out homonymous bases with incorrect simul-
taneous prefixing and suffixing such as English
out+number+’s. Earlier these could be handled
only by lexical pregeneration of relevant forms or
duplication of affixes.

Most importantly, ambiguity arises in relation
to the number of analyses output by the system.
While with spell-checking the algorithm can ter-
minate after the first analysis found, performing
an exhaustive search for all alternative analyses is
a reasonable requirement in morphological analy-
sis mode as well as in some stemming tasks. Thus
the exploration of the search space also becomes
an active parameter in our enhanced implementa-
tion of the algorithm:

• search until the first correct analysis

• search restricted multiple analyses (e.g., dis-
abling compounds)

• search all alternative analyses

Search until the first analysis is a functionality for
recognizers used for spell-checking and stemming
for accelerated document indexing. Preemption
of potential compound analyses by existing lexi-
cal bases serves as a general way of filtering out
spurious ambiguities when a reduction is required
in the space of alternative analyses. In these cases,
frequent compounds which trick the analyzer can
be precompiled to the lexicon. Finally, there is a
possibility to give back a full set of possible anal-
yses. This output then can be passed to a tagger
that disambiguates among the candidate analyses.
Parameters can be used that guide the search (such
as ’do lexical lookup first at all stages’ or ’strip the
shortest affix first’), which yield candidate rank-
ings without the use of numerical weights or statis-
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tics. These rankings can be used as disambigua-
tion heuristics based on a general idea of blocking
(e.g., Times would block an analysis of time+s).
All further parametrization is managed offline by
the resource compiler layer, see Section 2.

1.2 Reimplementing the runtime layer

In our efforts to gear up the MySpell codebase
to a fully functional word analysis library we suc-
cessfully identified various resource-related, algo-
rithmic and implementational bottlenecks of the
affix-rule based technology. With these lessons
learned, a new project has been launched in or-
der to provide an even more flexible and efficient
open source runtime layer. A principled object-
oriented refactorization of the same basic algo-
rithm described above has already been imple-
mented in Java. This port, called jmorph also uses
the aff/dic resource formats.

In jmorph, various algorithmic options guiding
the search (shortest/longest matching affix) can
be controlled for each individual rule. The im-
plementation keeps track of affix and compound
matches checking conditions only once for a given
substring and caching partial results. As a conse-
quence, it ends up being measurably faster than
the C++ implementation with the same resources.

The main loop of jmorph is driven by config-
uring consumers, i.e., objects which monitor the
recursive step that is running. For example the
analysis of the form beszédesek ’talkative.PLUR’
begins by inspecting the global configuration of
the analysis: this initial consumer specifies how
many analyses, and what kind, need to be found.
In Step 1, the initial consumer finds the rule that
strips ek with stem beszédes, builds a consumer
that can apply this rule to the output of the analy-
sis returned by the next consumer, and launches
the next step with this consumer and stem. In
Step 2, this consumer finds the rule stripping es
with stem beszéd, which is found in the lexicon.
beszéd is not just a string, it is a complete lexi-
cal object which lists the rules that can apply to
it and all the homonyms. The consumer creates a
new analysis that reflects that beszédes is formed
from beszéd by suffixing es (a suffix object), and
passes this back to its parent consumer, which ver-
ifies whether the ek suffixation rule is applicable.

If not, the Step 1 consumer requests further anal-
yses from the Step 2 consumer. If, however, the
answer is positive, the Step 1 consumer returns its
analysis to the Step 0 (initial) consumer, which de-
cides whether further analyses are needed.

In terms of functionality, there are a number of
differences between the Java and the C++ variants.
jmorph records the full parse tree of rule appli-
cations. By offering various ways of serializing
this data structure, it allows for more structured
information in the outputs than would be possible
by simple concatenation of the tag chunks asso-
ciated with the rules. Class-based restrictions on
compounding is implemented and will eventually
supersede the overgeneralizing position-based re-
strictions that the C++ variant and our resources
currently use.

Two major additional features of jmorph are
its capability of morphological synthesis as well
as acting as a guesser (hypothesizing lemmas).
Synthesis is implemented by forward application
of affix rules starting with the base. Rules have
to be indexed by their tag chunks for the search,
so synthesis introduces the non-trivial problem of
chunking the input tag string. This is currently im-
plemented by plug-ins for individual tag systems,
however, this should ideally be precompiled off-
line since the space of possible tags is limited.

2 Resource development and offline
precompilation

Due to the backward compatibility of the runtime
layer with MySpell-style resources, our software
can be used as a spellchecker and simplistic stem-
mer for some 50 languages for which MySpell
resources are available, see lingucomponent.
openoffice.org/spell dic.html.

For languages with complex morphology, com-
piling and maintaining these resources is a painful
undertaking. Without using a unified framework
for morphological description and a principled
method of precompilation, resource developers for
highly agglutinative languages like Hungarian (see
magyarispell.sourceforge.net) have to re-
sort to a maze of scripts to maintain and precom-
pile aff and dic files. This problem is intolerably
magnified once morphological tags or additional
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lexicographic information are to be entered in or-
der to provide resources for the analysis routines
of our runtime layer.

The offline layer of our toolkit seeks to remedy
this by offering a high-level description language
in which grammar developers can specify rule-
based morphologies and lexicons (somewhat in
the spirit of lexc Beesley and Karttunen (2003),
the frontend to Xerox’s Finite State Toolkit). This
promises rapid resource development which can
then be used in various tasks. Once primary re-
sources are created, hunlex, the offline precom-
piler can generate aff and dic resources op-
timized for the runtime layer based on various
compile-time configurations.

Figure 2 illustrates the description language
with a fragment of English morphology describ-
ing plural formation. Individual rules are sepa-
rated by commas. The syntax of the rule descrip-
tions organized around the notion of information
blocks. Blocks are introduced by keywords (like
IF:) and allow the encoding of various properties
of a rule (or a lexical entry), among others speci-
fying affixation (+es), substitution, character trun-
cation before affixation (CLIP: 1), regular ex-
pression matches (MATCH: [^o]o), positive and
negative lexical feature conditions on application
(IF: f-v_altern), feature inheritance, output
(continuation) references (OUT: PL_POSS), out-
put tags (TAG: "[PLUR]").

One can specify the rules that can be applied to
the output of a rule and also one can specify appli-
cation conditions on the input to the rule. These
two possibilities allow for many different styles
of morphological description: one based on in-
put feature constraints, one based on continuation
classes (paradigm indexes), and any combination
between these two extremes. On top of this, reg-
ular expression matches on the input can also be
used as conditions on rule application.

Affixation rules “grouped together” here under
PLUR can be thought of as allomorphic rules of the
plural morpheme. Practically, this allows informa-
tion about the morpheme shared among variants
(e.g., morphological tag, recursion level, some
output information) to be abstracted in a pream-
ble which then serves as a default for the individ-
ual rules. Most importantly, the grouping of rules

PL
TAG: "[PLUR]"
OUT: PL_POSS

# house -> houses
, +s MATCH: [^shoxy] IF: regular
# kiss -> kisses
, +es MATCH: [^c]s IF: regular
# ...
# ethics
, + MATCH: cs IF: regular
# body -> bodies <C> is a regexp macro
, +ies MATCH: <C>y CLIP:1 IF: regular
# zloty -> zlotys
, +s MATCH: <C>y IF: y-ys
# macro -> macros
, +s MATCH: [^o]o IF: regular
# potato -> potatoes
, +es MATCH: [^o]o IF: o-oes
# wife -> wives
, +ves MATCH: fe CLIP: 2 IF: f-ves
# leaf -> leaves
, +ves MATCH: f CLIP: 1 IF: f-ves
;

Figure 2: hunlex grammar fragment

into morphemes serves to index those rules which
can be referenced in output conditions, For exam-
ple, in the above the plural morpheme specifies
that the plural possessive rules can be applied to
its output (OUT: PL_POSS). This design makes it
possible to handle some morphosyntactic dimen-
sions (part of speech) very cleanly separated from
the conditions regulating the choice of allomorphs,
since the latter can be taken care of by input fea-
ture checking and pattern matching conditions of
rules. The lexicon has the same syntax as the
grammar only that morphemes stand for lemmas
and variant rules within the morpheme correspond
to stem allomorphs.

Rules with zero affix morph can be used as
filters that decorate their inputs with features
based on their orthographic shape or other features
present. This architecture enables one to let only
exceptions specify certain features in the lexicon
while regular words left unspecified are assigned
a default feature by the filters (see PL_FILTER in
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REGEXP: C [bcdfgklmnprstvwxyz];

DEFINE: N
OUT: SG PL_FILTER
TAG: NOUN

;

PL_FILTER
OUT:

PL
FILTER:

f-ves
y-ys
o-oes
regular

, DEFAULT:
regular

;

Figure 3: Macros and filters in hunlex

Figure 3) potentially conditioned the same way as
any rule application. Feature inheritance is fully
supported, that is, filters for particular dimensions
of features (such as the plural filter in Figure 3)
can be written as independent units. This design
makes it possible to engineer sophisticated filter
chains decorating lexical items with various fea-
tures relevant for their morphological behavior.
With this at hand, extending the lexicon with a reg-
ular lexeme just boils down to specifying its base
and part of speech. On the other hand, indepen-
dent sets of filter rules make feature assignments
transparent and maintainable.

In order to support concise and maintainable
grammars, the description language also allows
(potentially recursive) macros to abbreviate arbi-
trary sets of blocks or regular expressions, illus-
trated in Figure 3.

The resource compiler hunlex is a stand-
alone program written in OCaml which comes
with a command-line as well as a Makefile as
toplevel control interface. The internal workings
of hunlex are as follows.

As the morphological grammar is parsed by the
precompiler, rule objects are created. A block is
read and parsed into functions which each trans-

form the ‘affix-rule’ data-structure by enriching its
internal representation according to the semantic
content of the block. At the end of each unit,
the empty rule is passed to the composition of
block functions to result in a specific rule. Thanks
to OCaml’s flexibility of function abstraction and
composition, this design makes it easy to imple-
ment macros of arbitrary blocks directly as func-
tions. When the grammar is parsed, rules are ar-
ranged in a directed (possibly cyclic) graph with
edges representing possible rule applications as
given by the output specifications.

Precompilation proceeds by performing a re-
cursive closure on this graph starting from lexi-
cal nodes. Rules are indexed by ’levels’ and con-
tiguous rule-nodes that are on the same level are
merged along the edges if constraints on rule ap-
plication (feature and match conditions, etc.) are
satisfied. These precompiled affix-clusters and
complex lexical items are to be placed in the aff
and dic file, respectively.

Instead of affix merging, closure between rules
a and b on different levels causes the affix clus-
ters in the closure of b to be registered as rules in
a hash and their indexes recorded on a. After the
entire lexicon is read, these index sets registered
on rules are considered. The affix cluster rules to
be output into the affix file are arranged into max-
imal subsets such that if two output affix cluster
rules a and b are in the same set, then every item
or affix to which a can be applied, b can also be
applied. These sets of affix clusters correspond to
partial paradigms which each full paradigm either
includes or is disjoint with. The resulting sets of
output rules are assigned to a flag and items ref-
erencing them will specify the appropriate com-
bination of flags in the output dic and aff file.
Since equivalent affix cluster rules are conflated,
the compiled resources are always optimal in the
following three ways.

First, the affix file is redundancy free: no two af-
fix rules have the same form. With hand-coded af-
fix files this can almost never be guaranteed since
one is always inclined to group affix rules by lin-
guistically motivated paradigms thereby possibly
duplicating entries. A redundancy-free set of affix
rules will enhance performance by minimizing the
search space for affixes. Note that conflation of
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identical rules by the runtime layer is not possible
without reindexing the flags which would be very
computationally intensive if done at runtime.

Second, given the redundancy free affix-set,
maximizing homogeneous rulesets assigned to a
flag minimizes the number of flags used. Since the
internal representation of flags depends on their
number, this has the practical advantage of reduc-
ing memory requirements for the runtime layer.

Third, identity of output affix rules is calculated
relative to mode and configuration settings, there-
fore identical morphs with different morphologi-
cal tags will be conflated for recognizers (spell-
checking) where ambiguity is irrelevant, while for
analysis it can be kept apart. This is impossible
to achieve without a precompilation stage. Note
that finite state transducer-based systems perform
essentially the same type of optimizations, elimi-
nating symbol redundancy when two symbols be-
have the same in every rule, and eliminating state
redundancy when two states have the exact same
continuations.

Though the bulk of the knowledge used by
spellcheckers, by stemmers, and by morphologi-
cal analysis and generation tools is shared (how
affixes combine with stems, what words allow
compounding), the ideal resources for these var-
ious tasks differ to some extent. Spellcheck-
ers are meant to help one to conform to ortho-
graphic norms and therefore should be error sen-
sitive, stemmers and morphological analyzers are
expected to be more robust and error tolerant espe-
cially towards common violations of standard use.
Although this seems at first to justify the individ-
ual efforts one has to invest in tailoring one’s re-
sources to the task at hand, most of the resource
specifics are systematic, and therefore allow for
automatic fine-tuning from a central knowledge
base. Configuration within hunlex allows the
specification of various features, among others:

• selection of registers and degree of normativ-
ity based on usage qualifiers in the database
(allows for boosting robustness for analysis
or stick to normativity for synthesis and spell-
checking)

• flexible selection of output information:

choice of tagset for different encodings, sup-
port for sense indexes

• arbitrary selection of morphemes

• setting levels of morphemes (grouping of
morphs that are precompiled as a cluster to
be stripped with one rule application by the
runtime layer)

• fine-tuning which morphemes are stripped
during stemming

• arbitrary selection of morphophonological
features that are to be observed or ignored
(allows for enhancing robustness by e.g., tol-
erating non-standard regularizations)

The input description language allows for arbi-
trary attributes (ones encoding part of speech, ori-
gin, register, etc.) to be specified in the descrip-
tion. Since any set of attributes can be selected to
be compiled into the runtime resources, it takes
no more than precompiling the central database
with the appropriate configuration for the runtime
analyzer to be used as an arbitrary word annota-
tion tool, e.g., style annotator or part of speech
tagger. We also provide an implementation of a
feature-tree based tag language which we success-
fully used for the description of Hungarian mor-
phology.

If the resources are created for some filtering
task, say, extracting (possibly inflected) proper
nouns in a text, resource optimization described
above can save considerable amounts of time com-
pared to full analysis followed by post-processing.
While the relevant portion of the dictionary might
be easily filtered therefore speeding up lookup, tai-
loring a corresponding redundancy-free affix file
would be a hopeless enterprise without the pre-
compiler.

As we mentioned, our offline layer can be con-
figured to cluster any or no sets of affixes together
on various levels, and therefore resources can be
optimized for either memory use (affix by affix
stripping) or speed (generally toward one level
stripping). This is a major advantage given po-
tential applications as diverse as spellchecking on
the word processor of an old 386 at one end, and
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industrial scale stemming on terabytes of web con-
tent for IR at the other.

In sum, our offline layer allows for the princi-
pled maintenance of a central resource, saving the
redundant effort that would otherwise have to be
invested in encoding very similar knowledge in a
task-specific manner for each word level analysis
task.

3 Conclusion

The importance of word level analysis can hardly
be questioned: spellcheckers reach the extremely
wide audience of all word processor users, stem-
mers are used in a variety of areas ranging from
information retrieval to statistical machine transla-
tion, and for non-isolating languages morpholog-
ical analysis is the initial phase of every natural
language processing pipeline.

Over the past decades, two closely intertwined
methods emerged to handle word analysis tasks,
affix stripping and finite state transducers (FSTs).
Since both technologies can provide industrial
strength solutions for most tasks, when it comes
to choice of actual software and its practical use,
the differences that have the greatest impact are
not lodged in the algorithmic core. Rather, two
other factors play a role: the ease with which one
can integrate the software into applications and the
infrastructure offered to translate the knowledge of
the grammarian to efficient and maintainable com-
putational blocks.

To be sure, in an end-to-end machine learning
paradigm, the mundane differences between how
the systems interact with the human grammari-
ans would not matter. But as long as the gram-
mars are written and maintained by humans, an of-
fline framework providing a high-level language to
specify morphologies and supporting configurable
precompilation that allows for resource sharing
across word-analysis tasks addresses a major bot-
tleneck in resource creation and management.

The Xerox Finite State Toolkit provides com-
prehensive high-level support for morphology
and lexicon development (Beesley and Karttunen,
2003). These descriptions are compiled into mini-
mal deterministic FST-s, which give excellent run-
time performance and can also be extended to

error-tolerant analysis for spellchecking Oflazer
(1996). Nonetheless, XFST is not free software,
and as long as the work is not driven by aca-
demic curiosity alone, the LGPL-style license of
our toolkit, explicitly permitting reuse for com-
mercial purposes as well, can already decide the
choice.

There are other free open source ana-
lyzer technologies, either stand-alone an-
alyzers such as the Stuttgart Finite State
Toolkit (SFST, available only under the
GPL, see www.ims.uni-stuttgart.de/
projekte/gramotron/SOFTWARE/SFST.html,
Smid et al. (2004)) or as part of a power-
ful integrated NLP platform such as In-
tex/NooJ (freely available for academic re-
search to individuals affiliated with a university
only, see intex.univ-fcomte.fr; a clone
called Unitex is available under LGPL, see
www-igm.univ-mlv.fr/~unitex.) Unfortu-
nately, NooJ has its limitations when it comes
to implementing complex morphologies (Vajda
et al., 2004) and SFST provides no high-level
offline component for grammar description and
configurable resource creation.

We believe that the liberal license policy and the
powerful offline layer contributed equally to the
huge interest that our project generated, in spite
of its relative novelty. MySpell was not just our
choice: it is also the spell-checking library incor-
porated into OpenOffice.org, a free open-source
office suite with an ever wider circle of users. The
Hungarian build of OpenOffice is already running
our C++ runtime library, but OpenOffice is now
considering to completely replace MySpell with
our code. This would open up the possibility of
introducing morphological analysis capabilities in
the program, which in turn could serve as the first
step towards enhanced grammar checking and hy-
phenation.

Though in-depth grammars and lexica are avail-
able for nearly as many languages in FST-
based frameworks (InXight Corporation’s Lin-
guistX platform supports 31 languages), very lit-
tle of this material is available for grammar hack-
ing or open source dictionary development. In ad-
dition to permissive license and easy to integrate
infrastructure, the fact that the hunmorph routines
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are backward compatible with already existing and
freely available spellchecking resources for some
50 languages goes a long way toward explaining
its rapid spread.

For Hungarian, hunlex already serves as the
development framework for the MORPHDB project
which merges three independently developed lex-
ical databases by critically unifying their contents
and supplying it with a comprehensive morpho-
logical grammar. It also provided a framework
for our English morphology project that used the
XTAG morphological database for English (see
ftp.cis.upenn.edu/pub/xtag/morph-1.5,
Karp et al. (1992)). A project describing the
morphology of the Beás dialect of Romani with
hunlex is also under way.

The hunlex resource precompiler is not archi-
tecturally bound to the aff/dic format used by
our toolkit, and we are investigating the possibility
of generating FST resources with it. This would
decouple the offline layer of our toolkit from the
details of the runtime technology, and would be an
important step towards a unified open source so-
lution for method-independent resource develop-
ment for word analysis software.
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Abstract

We describe the implementation steps re-
quired to scale high-order character lan-
guage models to gigabytes of training
data without pruning. Our online models
build character-level PAT trie structures on
the fly using heavily data-unfolded imple-
mentations of an mutable daughter maps
with a long integer count interface. Ter-
minal nodes are shared. Character 8-gram
training runs at 200,000 characters per
second and allows online tuning of hy-
perparameters. Our compiled models pre-
compute all probability estimates for ob-
served n-grams and all interpolation pa-
rameters, along with suffix pointers to
speedup context computations from pro-
portional to n-gram length to a constant.
The result is compiled models that are
larger than the training models, but exe-
cute at 2 million characters per second on
a desktop PC. Cross-entropy on held-out
data shows these models to be state of the
art in terms of performance.

1 Introduction

Charactern-gram language models have been ap-
plied to just about every problem amenable to sta-
tistical language modeling. The implementation
we describe here has been integrated as the source
model in a general noisy-channel decoder (with ap-
plications to spelling correction, tokenization and

case normalization) and the class models for sta-
tistical classification (with applications including
spam filtering, topic categorization, sentiment analy-
sis and word-sense disambiguation). In addition to
these human language tasks,n-grams are also popu-
lar as estimators for entropy-based compression and
source models for cryptography. (Teahan, 2000)
and (Peng, 2003) contain excellent overviews of
character-level models and their application from a
compression and HMM perspective, respectively.

Our hypothesis was that language-model smooth-
ing would behave very much like the classifiers ex-
plored in (Banko and Brill, 2001), in that more data
trumps better estimation technique. We managed
to show that the better of the interpolation mod-
els used in (Chen and Goodman, 1996), namely
Dirichlet smoothing with or without update exclu-
sion, Witten-Bell smoothing with or without update
exclusion, and absolute discounting with update ex-
clusion converged for 8-grams after 1 billion charac-
ters to cross entropies of 1.43+/-0.01. The absolute
discounting with update exclusion is what Chen and
Goodman refer to as the Kneser-Ney method, and
it was the clear winner in their evaluation. They
only tested non-parametric Witten-Bell with a sub-
optimal hyperparameter setting (1.0, just as in Wit-
ten and Bell’s original implementation). After a bil-
lion characters, roughly 95 percent of the characters
were being estimated from their highest-order (7)
context. The two best models, parametric Witten-
Bell and absolute discounting with update exclu-
sion (aka Kneser-Ney), were even closer in cross-
entropy, and depending on the precise sample (we
kept rolling samples as described below), and after a
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million or so characters, the differences even at the
higher variance 12-grams were typically in the +/-
0.01 range. With a roughly 2.0 bit/character devi-
ation, a 10,000 character sample, which is the size
we used, leads to a 2σ (95.45%) confidence interval
of +/-0.02, and the conclusion that the differences
between these systems was insignificant.

Unlike in the token-based setting, we are not op-
timistic about the possibility of improving these re-
sults dramatically by clustering character contexts.
The lower-order models are very well trained with
existing quantities of data and do a good job of
this kind of smoothing. We do believe that train-
ing hyperparameters for different model orders in-
dependently might improve cross-entropy fraction-
ally; we found that training them hierarchically,
as in (Samuelsson, 1996), actually increased cross-
entropy. We believe this is a direct correlate of the
effectiveness of update exclusion; the lower-order
models do not need to be the best possible models
of those orders, but need to provide good estimates
when heavily weighted, as in smoothing. The global
optimization allows a single setting to balance these
attributes, but optimizing each dimension individu-
ally should do even better. But with the number of
estimates taking place at the highest possible orders,
we do not believe the amount of smoothing will have
that large an impact overall.

These experiments had a practical goal — we
needed to choose a language modeling implemen-
tation for LingPipe and we didn’t want to take the
standard Swiss Army Knife approach because most
of our users are not interested in running experi-
ments on language modeling, but rather using lan-
guage models in applications such as information
retrieval, classification, or clustering. These appli-
cations have actually been shown to perform better
on the basis of character language models than to-
ken models ((Peng, 2003)). In addition, character-
level models require no decisions about tokeniza-
tion, token normalization and subtoken modeling (as
in (Klein et al., 2003)).

We chose to include the Witten-Bell method in
our language modeling API because it is derived
from full corpus counts, which we also use for col-
location and relative frequency statistics within and
across corpora, and thus the overall implementation
effort was simpler. For just language modeling, an

update exclusion implementation of Kneser-Ney is
no more complicated than Witten-Bell.

In this paper, we describe the implementation de-
tails behind storing the model counts, how we sam-
ple the training character stream to provide low-cost,
online leave-one-out style hyperparameter estima-
tion, and how we compile the models and evaluate
them over text inputs to achieve linear performance
that is nearly independent ofn-gram length. We also
describe some of the design patterns used at the in-
terface level for training and execution. As far as
we know, the online leave-one-out analysis is novel,
though there are epoch-based precursors in the com-
pression literature.

As far as we know, no one has built a charac-
ter language model implementation that will come
close to the one presented here in terms of scala-
bility. This is largely because they have not been
designed for the task rather than any fundamental
limitation. In fact, we take the main contribution
of this paper to be a presentation of simple data
sharing and data unfolding techniques that would
also apply to token-level language models. Before
starting our presentation, we’ll review some of the
limitations of existing systems. For a start, none
of the systems of which we are aware can scale to
64-bit values for counts, which is necessary for the
size models we are considering without pruning or
count scaling. It’s simply easier to find 4 billion in-
stances of a character than of a token. In fact, the
compression models typically use 16 bits for storing
counts and then just scale downward when neces-
sary, thus not even trying to store a full set of counts
for even modest corpora. The standard implemen-
tations of character models in the compression liter-
ature represent ordinary trie nodes as arrays, which
is hugely wasteful for large sparse implementations;
they represent PAT-trie nodes as pointers into the
original text plus counts, which works well for long
n-gram lengths (32) over small data sets (1 MB) but
does not scale well for reasonablen-gram lengths (8-
12) over larger data sets (100MB-1GB). The stan-
dard token-level language models used to restrict
attention to 64K tokens and thus require 16-bit to-
ken representatives per node just as our character-
based approach; with the advent of large vocabu-
lary speech recognition, they now typically use 32-
bits per node just to represent the token. Arrays of
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daughter nodes and lack of sharing of low-count ter-
minal nodes were the biggest space hogs in our ex-
periments, and as far as we know, none of the stan-
dard approaches take the immutable data unfolding
approach we adopt to eliminate this overhead. Thus
we would like to stress again that existing character-
level compression and token-level language model-
ing systems were simply not designed for handling
large character-level models.

We would also like to point out that the stan-
dard finite state machine implementations of lan-
guage models do not save any space over the trie-
based implementations, typically only approximate
smoothing using backoff rather than interpolation,
and further suffer from a huge space explosion when
determinized. The main advantage of finite state ap-
proaches is at the interface level in that they work
well with hand-written constraints and can interface
on either side of a given modeling problem. For
instance, typical language models implemented as
trivial finite state transducers interface neatly with
triphone acoustic models on the one side and with
syntactic grammars on the other. When placed in
that context, the constraints from the grammar can
often create an overall win in space after composi-
tion.

2 Online Character Language Models

For generality, we use the 16-bit subset of unicode as
provided by Java 1.4.2 to represent characters. This
presents an additional scaling problem compared to
ASCII or Latin1, which fit in 7 and 8 bits.

Formally, if Char is a set of characters, alanguage
modelis defined to be a mappingP from the setChar

∗

of character sequences into non-negative real num-
bers. Aprocesslanguage model is normalized over
sequences of lengthn: ∑X∈Char

∗,|X|=nP(X) = 1.0.
We also implement bounded language models which
normalize over all sequences, but their implementa-
tion is close enough to the process models that we
do not discuss them further here. The basic inter-
faces are provided in Figure 1 (with names short-
ened to preserve space). Note that the process and
sequence distribution is represented through marker
interfaces, whereas the cross-cutting dynamic lan-
guage models support training and compilation, as
well as the estimation inherited from the language

interface LM {
double log2Prob(char[] cs,

int start, int end);
}
interface ProcessLM extends LM {
}
interface SequenceLM extends LM {
}
interface DynamicLM extends LM {

double train(char[] cs,
int start, int end);

void compile(ObjectOutput out)
throws IOException;

}

Figure 1: Language Model Interface

model interface.
We now turn to the statistics behind character-

level langauge models. The chain rule factors
P(x0, . . . ,xk−1) = ∏i<k P(xi |x0, . . . ,xi−1). An n-
gram language model estimates a character using
only the lastn− 1 symbols, P̂(xk|x0, . . . ,xk−1) =
P̂(xk|xk−n+1, . . . ,xk−1); we follow convention in de-
noting generic estimators bŷP.

The maximum likelihood estimator forn-grams
is derived from frequency counts for sequenceX
and symbolc, PML(c|X) = count(Xc)/extCount(X),
wherecount(X) is the number of times the sequence
X was observed in the training data andextCount(X)
is the number of single-symbol extensions ofX
observed:extCount(X) = ∑c∈Char count(Xc). When
training over one or more short samples, the dis-
parity betweencount(X) and extCount(X) can be
large: forabracadabra, count(a) = 5, count(bra) =
2, extCount(a) = 4, andextCount(bra) = 1.

We actually provide two implementations of lan-
guage models as part of LingPipe. For language
models as random processes, there is no padding.
They correspond to normalizing over sequences of a
given length in that the sum of probabilities for char-
acter sequences of lengthk will sum to 1.0. With
a model that inserts begin-of-sequence and end-of-
sequence characters and estimates only the end-of-
sequence character, normalization is over all strings.
Statistically, these are very different models. In
practice, they are only going to be distinguishable
if the boundaries are very significant and the to-
tal string length is relatively small. For instance,
they are not going to make much difference in esti-
mating probabilities of abstracts of 1000 characters,
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even though the start and ends are significant (e.g.
capitals versus punctuation being preferred at be-
ginning and end of abstracts) because cross-entropy
will be dominated by the other 1000 characters. On
the other hand, for modeling words, for instance
as a smoothing step for token-level part-of-speech,
named-entity or language models, the begin/end of
a word will be significant, representing capitaliza-
tion, prefixes and suffixes in a language. In fact, this
latter motivation is why we provide padded models.
It is straightforward to implement the padded mod-
els on top of the process models, which is why we
discuss the process models here. But note that we
do not pad all the way to maximumn-gram length,
as that would bias the begin/end statistics for short
words.

We use linear interpolation to form a mixture
model of all orders of maximum likelihood es-
timates down to the uniform estimatePU(c) =
1/|Char|. The interpolation ratioλ (dX) ranges be-
tween 0 and 1 depending on the contextdX.

P̂(c|dX) = λ (dX)PML(c|dX)

+ (1−λ (dX))P̂(c|X)

P̂(c) = λ ()PML(c)

+ (1−λ ())(1/|Char|)

The Witten-Bell estimator computed the interpo-
lation parameterλ (X) using only overall training
counts. The best performing model that we evalu-
ated is parameterized Witten-Bell interpolation with
hyperparameterK, for which the interpolation ratio
is defined to be:

λ (X) =
extCount(X)

extCount(X)+K · numExts(X)

We takenumExts(X) = |{c|count(Xc) > 0}| to be the
number of different symbols observed following the
sequenceX in the training data. The original Witten-
Bell estimator setK = 1. We optimize the hyperpa-
rameterK online (see the next section).

3 Online Models and Hyperparameter
Estimation

A language model isonline if it can be estimated
from symbols as they arrive. An advantage of online
models is that they are easy to use for adaptation to
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Figure 2: Optimal Hyperparameter Settings for
Witten-Bell

documents or styles, hence their inclusion in com-
mercial dictation packages such as DragonDictate
and ViaVoice. Another advantage is that they are
easy to integrate into tag-a-little/learn-a-little sys-
tems such as MITRE’s Alembic Workbench.

With online models, we are able to estimate hy-
perparameters using an online form of leave-one-out
analysis (Ney et al., 1995). This can be performed
in a number of ways as long as the model efficiently
estimates likelihoods given a set of hyperparameter
settings. We opted for the simplest technique we
could muster to find the right settings. This was
made easier because we only have a single hyperpa-
rameter whose behavior is fairly flat around the op-
timal setting and because the optimal setting didn’t
change quickly with increasing data. The optimal
settings are shown in Figure 2. Also note that the op-
timal value is rarely at 1 except for very low-ordern-
grams. To save the complexity of maintaining an in-
terval around the best estimate do do true hill climb-
ing, we simply kept rolling averages of values log-
arithmically spaced from 1/4 to 32. We also imple-
mented a training method that kept track of the last
10,000 character estimates (made before the charac-
ters were used for training, of course). We used a cir-
cular queue for this data structure because its size is
fixed and it allowed a constant time insert of the last
recorded value. We used one circular queue for each
hyperparameter setting, thus storing around 5MB or
so worth of samples. These samples can be used
to provide an estimate of the best hyperparameter
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at any given point in the algorithm’s execution. We
used this explicit method rather than the much less
costly rolling average method so that results would
be easier to report. We actually believe just keep-
ing a rolling average of measured cross-entropies on
online held-out samples is sufficient.

We also sampled the character stream rather than
estimating each character before training. With a gi-
gabyte of characters, we only needed to sample 1
in 100,000 characters to find enough data for esti-
mates. At this rate, online hyperparameter estimate
did not measurably affect training time, which was
dominated by simply constructing the trie.

We only estimated a single hyperparameter rather
than one for each order to avoid having to solve a
multivariate estimation problem; although we can
collect the data online, we would either have to im-
plement an EM-like solution or spend a lot time per
estimate iterating to find optimal parameters. This
may be worthwhile for cases where less data is avail-
able. As the training data increased, the sensitivity to
training parameters decreased. Counterintuitively,
we found that recursively estimating each order from
low to high, as implemented in (Samuelsson, 1996),
actually increased entropy considerably. Clearly the
estimator is using the fact that lower-order estimates
should not necessarily be optimal for use on their
own. This is a running theme of the discounting
methods of smoothing such as absolute discounting
or Kneser-Ney.

Rather than computing each estimate for hyperpa-
rameter andn-gram length separately, we first gather
the counts for each suffix and each context and the
number of outcomes for that context. This is the ex-
pensive step, as it require looking up counts in the
trie structure. Extension counts require a loop over
all the daughters of a context node in the trie be-
cause we did not have enough space to store them on
nodes. With all of these counts, then-gram etimates
for eachn and each hyperparameter setting can be
computed from shortest to longest, with the lower
order estimates contributing the smoothed estimate
for the next higher order.

4 Substring Counters

Our n-gram language models derive estimates from
counts of substrings of lengthn or less in the training

interface Node {
Node increment(char[] cs,

int start, int end);
long count(char[] cs,

int start, int end);
long extCount(char[] cs,

int start, int end);
int numExts(char[] cs,

int start, int end);
Node prune(long minCount);

}

Figure 3: Trie Node Interface

corpus. Our counter implementation was the trick-
iest component to scale as it essentially holds the
statistics derived from the training data. It contains
statistics sufficient to implement all of the estimators
defined above. The only non-trivial case is Kneser-
Ney, which is typically implemented using the tech-
nique known in the compression literature as “up-
date exclusion” (Moffat, 1990). Under update ex-
clusion, if a count “abc” is updated and the context
“ab” was known, then counts for “a” and “ab” are
excluded from the update process. We actually com-
pute these counts from the total counts by noting that
the update exclusion count is equal to the number of
unique characters found following a shorter context.
That is, the count for “ab” for smoothing is equal to
the number of characters “x” such that “xab” has a
non-zero count, because these are the situations in
which the count of “ab” is not excluded. This is not
an efficient way to implement update exclusion, but
merely an expedient so we could share implementa-
tions for experimental purposes. Straight update ex-
clusion is actually more efficient to implement than
full counts, but we wanted the full set of character
substring counts for other purposes, as well as lan-
guage modeling.

Our implementation relies heavily on a data un-
folded object-oriented implementation of Patricia
tries. Unlike the standard suffix tree algorithms for
constructing this trie for all substrings as in (Cleary
and Teahan, 1997), we limit the length and make
copies of characters rather than pointing back into
the original source. This is more space efficient than
the suffix-tree approach for our data set sizes andn-
gram lengths.

The basic node interface is as shown in Figure 3.
Note that the interface is in terms of long integer val-
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ues. This was necessary to avoid integer overflow in
our root count when data size exceeded 2 GB and
our 1-gram counts when data sizes exceeded 5 or
6GB. A widely used alternative used for compres-
sion is to just scale all the counts by dividing by
two (and typically pruning those that go to zero);
this allows PPM to use 8-bit counters at the cost of
arithmetic precision ((Moffat, 1990)). We eschew
pruning because we also use the counts to find sig-
nificant collocations. Although most collocation and
significance statistics are not affected by global scal-
ing, cross-entropy suffers tremendously if scaling is
done globally rather than only on the nodes that need
it.

Next note that the interface is defined in terms
of indexed character slices. This obviates a huge
amount of otherwise unnecessary object creation
and garbage collection. It is simply not efficient
enough, even with the newer generational garbage
collectors, to create strings or even lighter character
sequences where needed on the heap; slice indices
can be maintained in local variables.

Theincrement method increments the count for
each prefix of the specified character slice. The
count method returns the count of a given character
sequence,extensionCount the count of all one-
character extensions,numExtensions the number
of extensions. Theextensions method returns
all the observed extensions of a character sequence,
which is useful for enumerating over all the nodes in
the trie.

Global pruning is implemented, but was not nec-
essary for our scalability experiments. Itis neces-
sary for compilation; we could not compile models
nearly as large as those kept online. Just the size
of the floating point numbers (two per node for es-
timate and interpolation) lead to 8 bytes per node.
In just about every study every undertaken, includ-
ing our informal ones, unpruned models have out-
performed pruned ones. Unfortunately, applications
will typically not have a gigabyte of memory avail-
able for models. The best performing models for a
given size are those trained on as much data avail-
able and pruned to the specified size. Our prun-
ing is simply a minimum count approach, because
the other methods have not been shown to improve
much on this baseline.

Finally, note that both the increment and prune
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Figure 4: Unfolded Trie Classes

methods return nodes themselves. This is to sup-
port the key implementation technique for scalabil-
ity – replacing immutable objects during increments.
Rather than having a fixed mutable node representa-
tion, nodes can return results that are essentially re-
placements for themselves. For instance, there is an
implementation ofNode that provides a count as a
byte (8 bits) and a single daughter. If that class gets
incremented above the byte range, it returns a node
with a short-based counter (16 bits) and a daughter
that’s the result of incrementing the daughter. If the
class gets incremented for a different daughter path,
then it returns a two-daughter implementation. Of
course, both of these can happen, with a new daugh-
ter that pushes counts beyond the byte range. This
strategy may be familiar to readers with experience
in Prolog (O’Keefe, 1990) or Lisp (Norvig, 1991),
where many standard algorithms are implemented
this way.

A diagram of the implementations ofNode is pro-
vided in Figure 4. At the top of the diagram is the
Node interface itself. The other boxes all represent
abstract classes, with the top class,AbstractNode,
forming an abstract adapter for most of the utility
methods inNode (which were not listed in the inter-
face).

The abstract subclassDtrNode is used for nodes
with zero or more daughters. It requires its exten-
sions to return parallel arrays of daughters and char-
acters and counts from which it implements all the
update methods at a generic level.

91



abstract class TwoDtrNode
extends DtrNode {

final char mC1; final Node mDtr1
final char mC2; final node mDtr2;

TwoDtrNode(char c1, Node dtr1,
char c2, Node dtr2,

mC1 = c1; mDtr1 = dtr1;
mC2 = c2; mDtr2 = dtr2;

}

Node getDtr(char c) {
return c == mC1

? mDaughter1
: ( c == mC2

? mDaughter2
: null );

}

[] chars() {
return new char[] { mC1, mC2 };

}

Node[] dtrs() {
return new Node[] { mDaughter1,

mDaughter2 };
}

int numDtrs() { return 2; }
}

Figure 5: Two Daughter Node Implementation

The subclassTerminalNode is used for nodes
with no daughters. Its implementation is particu-
larly simple because the extension count, the num-
ber of extensions and the count for any non-empty
sequence starting at this node are zero. The nodes
with non-empty daughters are not much more com-
plex. For instance, the two-daughter node abstract
class is shown in Figure 5.

All daughter nodes come with four concrete im-
plementations, based on the size of storage allocated
for counts:byte (8 bits),short (16 bits),int (32
bits), orlong (64 bits). The space savings from only
allocating bytes or shorts is huge. These concrete
implementations do nothing more than return their
own counts as long values. For instance, theshort

implementation of three-daughter nodes is shown in
Figure 6. Note that because these nodes are not pub-
lic, the factory can be guaranteed to only call the
constructor with a count that can be cast to a short
value and stored.

Increments are performed by the superclass

final class ThreeDtrNodeShort
extends ThreeDtrNode {

final short mCount;

ThreeDtrNodeShort(char c1, Node dtr1,
char c2, Node dtr2,
char c3, Node dtr3,
long count) {

super(c1,dtr1,c2,dtr2,c3,dtr3);
mCount = (short) count;

}

long count() { return mCount; }
}

Figure 6: Three Daughter Short Node

and will call constructors of the appropriate
size. The increment method as defined in
AbstractDtrNode is given in Figure 7. This
method increments all the suffixes of a string.

The first line just increments the local node if the
array slice is empty; this involves taking its charac-
ters, its daughters and calling the factory with one
plus its count to generate a new node. This gener-
ates a new immutable node. If the first character in
the slice is an existing daughter, then the daughter is
incremented and the result is used to increment the
entire node. Note the assignment todtrs[k] after
the increment; this is to deal with the immutability.
The majority of the code is just dealing with the case
where a new daughter needs to be inserted. Of spe-
cial note here is the factory instance called on the
remaining slice; this will create a PAT node. This
appears prohibitively expensive, but we refactored to
this approach from a binary-tree based method with
almost no noticeable hit in speed; most of the arrays
stabilize after very few characters and the resizings
of big arrays later on is quite rare. We even replaced
the root node implementation which was formerly
a map because it was not providing a measurable
speed boost.

Once the daughter characters and daughters are
marshalled, the factory calls the appropriate con-
structor based on the number of the character and
daughters. The factory then just calls the appropri-
ately sized constructor as shown in Figure 8.

Unlike other nodes, low count terminal nodes are
stored in an array and reused. Thus if the result of
an increment is within the cache bound, the stored

92



Node increment(char[] cs,
int start, int end) {

// empty slice; incr this node
if (start == end)
return NodeFactory

.createNode(chars(),dtrs(),
count()+1l);

char[] dtrCs = chars();
// search for dtr
int k = Arrays.binarySearch(dtrCs,

cs[start]);
Node[] dtrs = dtrs();
if (k >= 0) { // found dtr
dtrs[k] = dtrs[k]

.increment(cs,start+1,end);
return NodeFactory

.createNode(dtrCs,dtrs,
count()+1l);

}
// insert new dtr
char[] newCs = new char[dtrs.length+1];
Node[] newDtrs = new Node[dtrs.length+1];
int i = 0;
for (; i < dtrs.length

&& dtrCs[i] < cs[start];
++i) {

newCs[i] = dtrCs[i];
newDtrs[i] = dtrs[i];

}
newCs[i] = cs[start];
newDtrs[i] = NodeFactory

.createNode(cs,start+1,
end,1);

for (; i < dtrCs.length; ++i) {
newCs[i+1] = dtrCs[i];
newDtrs[i+1] = dtrs[i];

}
return NodeFactory

.createNode(newCs,newDtrs,
count()+1l);

}

Figure 7: Increment inAbstractDtrNode

version is returned. Because terminal nodes are im-
mutable, this does not cause problems with consis-
tency. In practice, terminal nodes are far and away
the most common type of node, and the greatest sav-
ing in space came from carefully coding terminal
nodes.

The abstract classPatNode implements a so-
called “Patricia” trie node, which has a single chain
of descendants each of which has the same count.
There are four fixed-length implementations for the
one, two, three and four daughter case. For these
implementations, the daughter characters are stored
in member variables. For the array implementa-
tion, PatArrayNode, the daughter chain is stored

static Node createNode(char c, Node dtr,
long n) {

if (n <= Byte.MAX_VALUE)
return new OneDtrNodeByte(c,dtr,n);

if (n <= Short.MAX_VALUE)
return new OneDtrNodeShort(c,dtr,n);

if (n <= Integer.MAX_VALUE)
return new OneDtrNodeInt(c,dtr,n);

return new OneDtrNodeLong(c,dtr,n);
}

Figure 8: One Daughter Factory Method

as an array. Like the generic daughter nodes, PAT
nodes contain implementations for byte, short, int
and long counters. They also contain constant im-
plementations for one, two and three counts. We
found in profiling that the majority of PAT nodes
had counts below four. By providing constant imple-
mentations, no memory at all is used for the counts
(other than a single static component per class). Pat
nodes themselves are actually more common that
regular daughter nodes in high-order character tries,
because most long contexts are deterministic. As
n-gram order increases, so does the proportion of
PAT nodes. Implementing increments for PAT nodes
is only done once in the abstract classPatNode.
Each PAT node implementation supplied an array in
a standardized interface to the implementations in
PatNode. That array is created as needed and only
lives long enough to carry out the required increment
or lookup. Java’s new generational garbage collector
is fairly efficient at dealing with garbage collection
for short-lived objects such as the trie nodes.

5 Compilation

Our online models are tuned primarily for scalabil-
ity, and secondarily for speed of substring counts.
Even the simplest model, Witten-Bell, requires for
each context length that exists, summing over exten-
sion counts and doing arithmetic including several
divisions and multiplications per order a logarithm
at the end. Thus straightforward estimation from
models is unsuitable for static, high throughput ap-
plications. Instead, models may be compiled to a
less compact but more efficient static representation.

We number trie nodes breadth-first in unicode or-
der beginning from the root and use this indexing for
four parallel arrays following (Whittaker and Raj,
2001). The main difference is that we have not
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char int float float int
Idx Ctx C Suf logP log(1-λ ) Dtr

0 n/a n/a n/a n/a -0.63 1
1 a 0 -2.60 -0.41 6
2 b 0 -3.89 -0.58 9
3 c 0 -4.84 -0.32 10
4 d 0 -4.84 -0.32 11
5 r 0 -3.89 -0.58 12
6 a b 2 -2.51 -0.58 13
7 a c 3 -3.49 -0.32 14
8 a d 4 -3.49 -0.32 15
9 b r 5 -1.40 -0.58 16

10 c a 1 -1.59 -0.32 17
11 d a 1 -1.59 -0.32 18
12 r a 1 -1.17 -0.32 19
13 ab r 9 -0.77 n/a n/a
14 ac a 10 -1.10 n/a n/a
15 ad a 11 -1.10 n/a n/a
16 br a 12 -0.67 n/a n/a
17 ca d 8 -1.88 n/a n/a
18 da b 6 -1.55 n/a n/a
19 ra c 7 -1.88 n/a n/a

Figure 9: Compiled Representation of 3-grams for
“abracadabra”

coded to a fixedn-gram length, costing us a bit of
space in general, and also that we included context
suffix pointers, costing us more space but saving
lookups for all suffixes during smoothing.

The arrays are (1) the character leading to the
node, (2) the log estimate of the last character in the
path of characters leading to this node given the pre-
vious characters in the path, (3) the log of one mi-
nus the interpolation parameter for the context rep-
resented by the full path of characters leading to this
node, (4) the index of the first daughter of the node,
and (5) index of the suffix of this node. Note that the
daughters of a given node will be contiguous and in
unicode order given the breadth-first nature of the in-
dexing, ranging from the daughter index of the node
to the daughter index of the next node.

We show the full set of parallel arrays for trigram
counts for the string “abracadabra” in Figure 9. The
first column is for the array index, and is not explic-
itly represented. The second column, labeled “Ctx”,

is the context, and this is also not explicitly repre-
sented. The remaining columns are explicitly repre-
sented. The third column is for the character. The
fourth column is an integer backoff suffix pointer;
for instance, in the row with index 13, the context
is “ab”, and the character is “r”, meaning it repre-
sents “abr” in the trie. The suffix index is 9, which
is for “br”, the suffix of “abr”. The fifth and sixth
columns are 32-bit floating point estimates, the fifth
of log2P(r|ab), and the sixth is empty because there
is no context for “abr”, just an outcome. The value
of log2(1− λ (ab)) is found in the row indexed 6,
and equal to -0.58. The seventh and final column
is the integer index of the first daughter of a given
node. The value of the daughter pointer for the fol-
lowing node provides an upper bound. For instance,
in the row index 1 for the string “a”, the daughter in-
dex is 6, and the next row’s daughter index is 9, thus
the daughters of “a” fall between 6 and 8 inclusively
— these are “ab”, “ac” and “ad” respectively. Note
that the daughter characters are always in alphabeti-
cal order, allowing for a binary search for daughters.

For n-gram estimators, we need to compute
logP(cn|c0 · · ·cn−1). We start with the longest se-
quenceck, . . . ,cn−1 that exists in the trie. If binary
search finds the outcomecn among the daughters of
this node, we return its log probability estimate; this
happens in over 90 percent of estimates with rea-
sonably sized training sets. If the outcome character
is not found, we continue with shorter and shorter
contexts, adding log interpolation values from the
context nodes until we find the result or reach the
uniform estimate at the root, at which point we add
its estimate and return it. For instance, the estimate
of log2P(r|ab) = −0.77 can be read directly off the
row indexed 13 in Figure 9. But log2P(a|ab) =
−0.58+ log2P(a|b) =−0.58+−0.58+ log2P(a) =
−0.58+−0.58+−2.60, requiring two interpolation
steps.

For implementation purposes, it is significant that
we keep track of where we backed off from. The
row for “a”, where the final estimate was made, will
be the starting point for lookup next time. This is
the main property of the fast string algorithms — we
know that the context “ba” does not exist, so we do
not need to go back to the root and start our search
all over again at the next character. The result is
a linear bound on lookup time because each back-
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off of n characters guarantees at leastn steps to get
back to the same context length, thus there can’t be
more backoff steps than characters input. The main
bottleneck in run time is memory bandwidth due to
cache misses.

The log estimates can be compressed using as
much precision as needed (Whittaker and Raj,
2001), or even reduced to integral values and integer
arithmetic used for computing log estimates. We use
floats and full characters for simplicity and speed.

6 Corpora and Parsers

Our first corpus is 7 billion characters from theNew
York Timessection of the Linguistic Data Consor-
tium’s Gigaword corpus. Only the body of docu-
ments of type story were used. Paragraphs indi-
cated by XML markup were begun with a single
tab character. All newlines were converted to single
whitepspaces, and all other data was left unmodi-
fied. The data is problematic in at least two ways.
First, the document set includes repeats of earlier
documents. Language models provide a good way
of filtering these repeated documents out, but we did
not do so for our measurements because there were
few enough of them that it made little difference
and we wanted to simplify other comparative eval-
uations. Second, the document set includes numer-
ical list data with formatting such as stock market
reports. TheTimesdata uses 87 ASCII characters.

Our second corpus is the 5 billion characters
drawn from abstracts in the United States’ National
Library of Medicine’s 2004 MEDLINE baseline ci-
tation set. Abstract truncation markers were re-
moved. MEDLINE uses a larger character set of 161
characters, primarily extending ASCII with diacrit-
ics on names and Greek letters.

By comparison, (Banko and Brill, 2001) used one
billion tokens for a disambiguation task, (Brown et
al., 1991) used 583 million tokens for a language
model task, and (Chen and Goodman, 1996) cleverly
sampled from 250 million tokens to evaluate higher-
order models by only training on sequences used in
the held-out and test sets.

Our implementation is based a generic text parser
and text handler interface, much like a simplified
version of XML’s SAX content handler and XML
parser. A text parser is implemented for the various

data sets, including decompressing their zipped and
gzipped forms and parsing their XML, SGML and
tokenized form. A handler is then implemented that
adds data to the online models and polls the model
for results intermittently for generating graphs.

7 Results

We used a 1.4GB Java heap (unfortunately, the max-
imum allowable with Java on 32-bit Intel hardware
without taking drastic measures), which allowed us
to train 6-grams on up to 7 billion characters with
room to spare. Roughly, 8-grams ran out of mem-
ory at 1 billion characters, 12 grams at 100 million
characters, and 32 grams at 10 million characters.
We did not experiment with pruning for this paper,
though our API supports both thresholded and pdi-
visive scaling pruning. Training the counters de-
pends heavily on the length ofn-gram, with 5-grams
training at 431,000 characters per second, 8-grams
at 204,000 char/s, 12-grams at 88,000 char/s and 32-
grams at 46,000 char/s, including online hyperpara-
meter estimation (using a $2000 PC running Win-
dows XP and Sun’s 1.4.2 JDK, with a 3.0GHz Pen-
tium 4, 2GB of ECC memory at 800MHz, and two
10K SATA drives in RAID 0).

Our primary results are displayed in Figure 11
and Figure 10, which plot sample cross-entropy
rates against amount of text used to build the mod-
els for variousn-gram lengths. Sample cross en-
tropy is simply the average log (base 2) probabil-
ity estimate per character. All entropies are re-
ported for the best hyperparameter settings through
online leave-one-out estimation for parameterized
Witten-Bell smoothing. Each data point in the plot
uses the average entropy rate over a sample size
of up to 10,000 for MEDLINE and 100,000 for
the Times, with the samples being drawn evenly
over the data arriving since the last plot point.
For instance, the point plotted at 200,000 charac-
ters for MEDLINE uses a sample of every 10th
character between character 100,000 and 200,000
whereas the sample at 2,000,000,000 characters
uses every 100,000th character between characters
1,000,000,000 and 2,000,000,000.

Like the Tipster data used by (Chen and Good-
man, 1996), the immediately noticeable feature of
the plots is the jaggedness early on, including some
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ridiculously low cross-entropy rates reported for the
Times data. This is largely due to low training
data count, highn-gram models being very good
at matching repeated passages coupled with the fact
that a 2000 word article repeated out of 10,000 sam-

ple characters provides quite a cross-entropy reduc-
tion. For later data points, samples are sparser and
thus less subject to variance.

For applications other than cross-entropy bake-
offs, 5-grams to 8-grams seem to provide the right
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compromise between accuracy and efficiency.

We were surprised that MEDLINE had lower
n-gram entropy bounds than theTimes, especially
given the occurrence of duplication within theTimes
data (MEDLINE does not contain duplicates in the
baseline). The best MEDLINE operating point is in-
dicated in the figure, with a sample cross-entropy
rate of 1.36 for 12-grams trained on 100 million
characters of data; 8-gram entropy is 1.435 at nearly
1 billion characters. The best performance for the
Times corpus was also for 12-grams at 100 mil-
lion characters, but the sample cross-entropy was
1.49; with 8-gram sample cross-entropy as low as
1.570 at 1 billion characters. Although MEDLINE
may be full of jargon and mixed-case alphanumeric
acronyms, the way in which they are used is highly
predictable given enough training data. Data in the
Timessuch as five and six digit stock reports, sports
scores, etc., seem to provide a challenge.

The per-character sample variances for 2-grams,
4-grams and 8-grams for MEDLINE are given in
Figure 12. We did not plot results for higher-order
n-grams, as their variance was almost identical to
that of 8-grams. Standard error is the square root of
variance, or about 2.0 in the range of interest. With
10,000 samples, variance should be 4/10,000, with

standard error the square root of this, or 0.02. This
is in line with measurement variances found at the
tail end of the plots, but not at the beginnings.

Most interestingly, it turned out that smoothing
method did not matter oncen-grams were large, thus
bringing the results of (Banko and Brill, 2001) to
bear on those of (Chen and Goodman, 1996). The
comparison for 12-grams and then for the tail of
more data for 8-grams in Figures 13 and 14. Fig-
ure 14 shows the smoothing methods for 8-grams on
an order of magnitude more data.

Conclusions

We have shown that it is possible to use object ori-
ented techniques to scale language model counts to
very high levels without pruning on relatively mod-
est hardware. Even more space could be saved by
unfolding characters to bytes (especially for token
models). Different smoothing models tend to con-
verge to each other after gigabytes of data, making
smoothing much less critical.

Full source with unit tests, javadoc, and applica-
tions is available from the LingPipe web site:

http://www.alias-i.com/lingpipe
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Abstract

This paper introduces xfst2fsa, a compiler
which translates grammars expressed in
the syntax of the XFST finite-state tool-
box to grammars in the language of the
FSA Utilities package. Compilation to
FSA facilitates the use of grammars de-
veloped with the proprietary XFST tool-
box on a publicly available platform. The
paper describes the non-trivial issues of
the compilation process, highlighting sev-
eral shortcomings of some published algo-
rithms, especially where replace rules are
concerned. The compiler augments FSA
with most of the operators supported by
XFST. Furthermore, it provides a means
for comparing the two systems on compa-
rable grammars. The paper presents the
results of such a comparison.

1 Introduction
Finite-state technology is widely considered to be
the appropriate means for describing the phonolog-
ical and morphological phenomena of natural lan-
guages since the pioneering works of Koskenniemi
(1983) and Kaplan and Kay (1994). Finite state
technology has some important advantages, making
it most appealing for implementing natural language
morphology. One can find it very hard, almost im-
possible, to build the full automaton or transducer
describing some morphological phenomena. This
difficulty arises from the fact that there are a great
number of morpho-phonological processes combin-
ing together to create the full language. However, it

is usually very easy to build a finite state machine
to describe a specific morphological phenomenon.
The closure properties of regular languages make
it most convenient to implement each phenomenon
independently and combine them together. More-
over, finite state techniques have the advantage of
being efficient in their time and space complexity,
as the membership problem is solvable in time lin-
ear in the length of the input. Furthermore, there are
known algorithms for minimizing and determinizing
automata and some restricted kinds of transducers.

Several finite state toolboxes (software packages)
provide extended regular expression description lan-
guages and compilers of the expressions to finite
state devices, automata and transducers (Karttunen
et al., 1996; Beesley and Karttunen, 2003; Mohri,
1996; van Noord and Gerdemann, 2001a; van No-
ord and Gerdemann, 2001b). Such toolboxes typ-
ically include a language for extended regular ex-
pressions and a compiler from regular expressions
to finite-state devices (automata and transducers).
These toolboxes also include efficient implementa-
tions of several standard algorithms on finite state
machines, such as union, intersection, minimiza-
tion, determinization etc. More importantly, they
also implement special operators that are useful for
linguistic description, such as replacement (Kaplan
and Kay, 1994; Mohri and Sproat, 1996; Karttunen,
1997; Gerdemann and van Noord, 1999) or predi-
cates over alphabet symbols (van Noord and Gerde-
mann, 2001a; van Noord and Gerdemann, 2001b),
and even operators for particular linguistic theories
such as Optimality Theory (Karttunen, 1998; Gerde-
mann and van Noord, 2000). Unfortunately, there
are no standards for the syntax of extended regular
expression languages and switching from one tool-
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box to another is a non-trivial task.
This work focuses on two toolboxes, XFST

(Beesley and Karttunen, 2003) and FSA Utilities
(van Noord, 2000). Both are powerful tools for spec-
ifying and manipulating finite state machines (ac-
ceptors and transducers) using extended regular ex-
pression languages. In addition to the standard oper-
ators, XFST also provides advanced operators such
as replacement, markup, and restriction (Karttunen,
1995; Karttunen, 1996; Karttunen, 1997; Karttunen
and Kempe, 1995), and advanced methods such as
compile-replace and flag-diacritics. FSA, on the
other hand, supports weighted finite state machines
and provides visualization of finite state networks.
In addition, FSA is built over Prolog, allowing the
additional usage of Prolog predicates. A first signifi-
cant difference between the two packages is the wide
variety of operators that XFST provides in compar-
ison to FSA. However, FSA has the clear advantage
of being a free, open source package, whereas XFST
is proprietary.

This paper describes xfst2fsa, a compiler which
translates XFST grammars to grammars in the lan-
guage of the FSA Utilities package.1 There is a
strong parallelism between the languages, but cer-
tain constructs are harder to translate and require
more innovation. In particular, all the replace op-
erators that XFST provides do not exist in FSA and
had to be re-implemented. In this work we relate
only to the core of the finite state calculus – naı̈ve
automata and transducers. We do not deal with ex-
tended features such as the weighted networks of
FSA or with advanced methods such as Prolog ca-
pabilities in FSA and compile replace and flag dia-
critics in XFST.

The contribution of this work is manifold. Our
main motivation is to facilitate the use of grammars
developed with XFST on publicly available systems.
Furthermore, this work gives a closer insight into the
theoretical algorithms which XFST is based on. We
show that the algorithms published in the literature
are incomplete and require refinement in order to be
correct for all inputs. Moreover, our compiler en-
riches FSA with implementations of several replace
rules, thereby scaling up the system and improving

1The system and the source code are available for download
from http://cl.haifa.ac.il/projects/fstfsa/index.shtml

its expressivity. Finally, this work offers an inves-
tigation of two similar, but different systems: the
compiler facilitates a comparison of the two systems
on very similar benchmarks.

2 The xfst2fsa compiler

Compilation of a given XFST grammar into an
equivalent FSA code is done in two main stages:
first, the XFST grammar is parsed, and a tree rep-
resenting its syntax is created. Then, by traversing
the tree, the equivalent FSA grammar is generated.

In order to parse XFST grammars, a specifica-
tion of the XFST syntax is required. Unfortunately,
we were unable to obtain a formal specification
and we resorted to reconstructing it from available
documentation (Beesley and Karttunen, 2003).This
turned out to be a minor inconvenience; a more ma-
jor obstacle was the semantics of XFST expressions,
especially those involving advanced operators such
as replace rules, markup and restriction. We exem-
plify in this section some of these issues.

XFST operators can be divided into three groups
with respect to their FSA equivalence: those which
have an equivalent operator in FSA, those which do
not but can be easily constructed from basic FSA op-
erators, and those whose constructions is more com-
plicated. In what follows we refer to operators of
the first two groups as basic operators. Figure 1 dis-
plays a comparison table of some basic operators in
XFST and FSA.2 For example, consider the XFST
operator ����� (“contains at most one”). This opera-
tor is not provided by FSA but can be constructed as ���"!"#�$�%�&('�)+*�,��.-/�102-3�14�56-7�148!9�(��: . It is now
provided by FSA in our publicly available package
of extended FSA operators. The same holds for
XFST operators such as ��;/<.;�= (internally ignore),
�.;�� (contains one) etc. As another example con-
sider the XFST operator > (n-ary concatenation). It
does not have an equivalent operator in FSA, but it
can be simply constructed in FSA by explicitly ex-
pressing the concatenation as many times as needed.
Thus, the XFST regular expression ,@?�42ACB6>ED
0 is
translated into the equivalent FSA regular expres-
sion

 ?�4F-�,GBH-IBH-IB�0�: . Similar techniques are used
for other basic XFST operators such as ��>KJL% (more

2The complete list of XFST operators and the way they
where translated into FSA can be found in Appendix A.
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than n concatenations of A), ��>  %�-@M�: (n to k con-
catenations of A) etc.

Another minor issue is the different operator
precedence in XFST and FSA. This problem was
solved by bracketing each translated operator in
XFST with ‘( )’ to force the correct precedence.

Special care is needed in order to deal with XFST
operators of the third group, e.g., all the replace,
markup and restriction rules in XFST. These rules
do not have any equivalents in FSA, and hence the
only way to use them in FSA is to implement them
from scratch. This was done using the existing
documentation (Karttunen, 1995; Karttunen, 1996;
Karttunen, 1997; Karttunen and Kempe, 1995) on
the construction of these operators from the basic
ones. However, not all the operators are fully doc-
umented and in some cases some innovation was
needed. As an example, consider the XFST opera-
tor �1N�O1!�= (obligatory, lower to upper, left to right,
longest match replacement). To the best of our
knowledge, this operator is not documented. How-
ever, by Karttunen (1995), the operator ��O1!�= (oblig-
atory, lower to upper replacement ) is defined as
,I=�!1J��10�;�# (where =�!
J(� is the obligatory, upper to
lower replacement of the language B by the lan-
guage A). We then concluded that ��N�O
!�= is con-
structed as ,P=�N1!1J(�
0�;�# (where ,I=�N�!1J��10 is the oblig-
atory, upper to lower, left to right, longest match re-
placement of the language B by the language A) and
from Karttunen (1996) the construction of the oper-
ator =�N�!
J(� is known.

For some of the documented operators, we found
that the published algorithms are erroneous in
some special cases. Consider the replace operator
��!
J�=QA
ASRUTWV (conditional replacement of the
language A by the language B, in the context of
L on the left and R on the right side, where both
contexts are on the upper side). In Karttunen (1997;
1995), a detailed description of the construction of
this operator is given. In addition, Karttunen (1997)
discusses some boundary cases, such as the case
in which the language A contains the empty string.
We discovered that there are some cases which are
not discussed as boundary ones in Karttunen (1997)
and for which the standard algorithm in Karttunen
(1997; 1995) does not produce the expected result
by the definition of the operator denotation. One
such case is a rule of the form ��!
J�=XA
AYTZ� , where

A and B are some regular expressions denoting
languages. This rule states that any member of the
language A on the upper side is replaced by all
members of the language B on the lower side when
the upper side member is not followed by the end of
the string on which the rule operates. For example,
the rule ?1!
JLB[A
AYTZ� is expected to generate
the automaton of Figure 2. However, a direct
implementation of the algorithms of Karttunen
(1997; 1995) always yields a network accepting the
empty language, independently of the way A and B
are defined. Other ambiguous cases are discussed in
Vaillette (2004).

a

? \ b

a : b

a
a : b

? \ b

Figure 2: Desired interpretation of the regular ex-
pression a ]_^ b `a` ?

Furthermore, in some cases XFST produces net-
works that are somewhat different from the ones
in the literature: the relations (as sets) are equal
but the resulting automata (as graphs) are not iso-
morphic. For example, consider the replace rule
?1!
JLBbA
AdcWT9e . This expression is compiled by
XFST to the automaton shown in Figure 3. Imple-
menting this rule from basic operators as described
in Karttunen (1997; 1995), results in the automaton
of Figure 4. Observe that in some cases multiple ac-
cepting paths are obtained. This is probably a result
of adding ε-self-loops in order to deal correctly with
ε symbols, following Pereira and Riley (1997); the
multiple paths can then be removed using filters. We
assume that the same solution is adopted by XFST.
This solution requires direct access to the underly-
ing network, and cannot be applied at the level of
the regular expression language. Therefore, we did
not utilitize it in our implementation of replace rules.

To validate the construction of the compiler, one
would ideally want to check that the obtained FSA
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XFST syntax FSA syntax Meaning
��4 ��4 Kleene star
�XAf=  �2-/=�: union
�9g9= �9g9= intersection
�"!W= �"!W= A minus B
��<�= #�$�%�&('�)+*��.-/=�5 A ignoring B
�(� �(� containment
���L�  ���"!"#�$�%�&('�)+*�,I�.-/�10.-7�14�5h-i�
4W!"����: maximum one containment
�j= ,��2-/=�0 concatenation
��>�% does not exist n-ary concatenation
��;�k�;I= �9k9= crossproduct
��;@&l;I= �m&j= composition
*n��5 ��> optionality
,o0 *p5 precedence
Vq;�# #E%�r�)('
s2*/V�5 or #E%�r�)�'�t�)F*uV�5 regular relation inverse

Figure 1: A comparison table of some simple classic operators in XFST and FSA

? \ a \ b \ d c

? \ b \ d
c

? \ a \ b a : ba

c

d

Figure 3: Automaton created from the regular ex-
pression a ]_^ b `a` c d by XFST

networks are equivalent to the XFST ones from
which they were generated. Unfortunately, this is
only possible for very small networks, since XFST
does not allow to print its networks, when they are
significantly large. We could only test XFST net-
works and their FSA images over test strings to vali-
date the identity of the outputs. In addition to check-
ing each operator by itself for several instances, we
tested the compiler on a more comprehensive code,
namely HAMSAH (Yona and Wintner, 2005), which
was designed and implemented using XFST. We
successfully converted the entire network into FSA
with the compiler. Exhaustive tests produced the
same outputs for both networks.

? \ a \ b \ d c

? \ b \ d
c

? \ a \ b a : ba

c

d

a : ε

ε : b

Figure 4: Automaton created from the regular ex-
pression a ]_^ b `a` c d by the published algorithm

3 Comparison of XFST and FSA
A byproduct of the compiler is a full implementa-
tion, in FSA, of a vast majority of XFST’s opera-
tors.3 In addition to the contribution to FSA users,
this also facilitates an effective comparison between
the two toolboxes on similar benchmarks. We now
describe the results of such a comparison, focusing
on usability and performance.

3.1 Display of networks
FSA displays networks in two possible formats: as
text, by listing the network states and transitions,

3We implemented in FSA all the operators of XFST, except
parallel conditional replace rules and some direct replacement
and markup rules.
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and through a graphical user interface. The GUI that
FSA employs is user friendly, allows many kinds
of manipulations of the networks and significantly
helps to the understanding of the networks, espe-
cially when they are small. The viewing parame-
ters can be scaled by the user, thus improving the
visualization possibilities. Moreover, networks can
be saved in many different formats including bi-
nary (for fast loading and saving), text (allowing in-
spection of the network without the necessity to use
FSA) and postscript (for printing). FSA also enables
generation of C, C++, Java and Prolog code, imple-
menting analysis with a network.

XFST, on the other hand, prints its networks only
in text format, and even this is supported for small
networks only. Networks in XFST can be saved
in binary format only, thus requiring the usage of
XFST in order to inspect the network. With respect
to visual display and ease of use, therefore, FSA has
clear benefits over XFST.

3.2 Performance
A true comparison of the two systems should com-
pare two different grammars, each designed specifi-
cally for one of the two toolboxes, yielding the same
comprehensive network. However, as such gram-
mars are not available, we compared the two tool-
boxes using a grammar designed and implemented
in XFST and its conversion into FSA. Again we used
HAMSAH (Yona and Wintner, 2005) for this pur-
pose. The Hebrew morphological analyzer is a large
XFST grammar: the complete network consists of
approximately 2 million states and 2.2 million arcs.
We also inspected two subnetworks: the Hebrew ad-
jectives network (approximately 100,000 states and
120,000 arcs) and the Hebrew nouns network (ap-
proximately 700,000 states and 950,000 arcs). Each
of the networks was created by composing a series
of rules over a large-scale lexicon. Since Hebrew
morphology is non-trivial, the final network is cre-
ated by composing many intermediate complex reg-
ular expressions (including many replace rules and
compositions). The grammars were compiled and
executed on a 64-bit computer with 16Gb of mem-
ory. The table in Figure 5 shows the differences
in compilation and analysis times and memory re-
quirements between the two toolboxes. XFST per-
formed immeasurably better than FSA. In particular,

we were unable to use the complete FSA network for
analysis, compared to analyzing 70 words per sec-
ond with the full network in XFST. Another issue
that should be noticed is the difference in memory
requirements.

4 Conclusions

We presented a compiler which translates XFST
grammars to grammars in the language of the FSA
Utilities package. This work allows a closer look
into two of the most popular finite state toolboxes.
Although FSA has the advantage of being a pub-
licly available software, we discovered that it does
not scale up as well as XFST. However, for the non-
expert user or for teaching purposes, where more
modest networks are manipulated, FSA seems to be
more friendly, especially with regard to graphical
representation of networks. With our new imple-
mentation of replace rules in FSA, it seems that for
such uses FSA is better. However, for larger sys-
tems and when time performance is an issue, XFST
is preferable.

This work can be extended in several directions.
Not all XFST operators are implemented in FSA.
Some for lack of documentation and some simply
require more time for implementation. Thus, fur-
ther work can be done to construct more opera-
tors (see footnote 3). We believe that replace rules
still hide boundary cases which require special treat-
ment. More work is needed in order to locate such
cases. Furthermore, other finite state toolboxes ex-
ist (Mohri, 1996) which present different operators.
Extending the compiler to convert XFST grammars
into those formalisms will provide opportunities for
better comparison of different finite-state toolboxes.
On a different course, an fsa2xfst compiler can be
constructed. Such a compiler will enable a reverse
performance comparison, i.e. using a larger network
for FSA and making it operational in XFST. Notice
that in contrast to the xfst2fsa direction, this course
is rather trivial: FSA allows the user to save its net-
works in a readable format (listing the network states
and arcs). Although XFST is not capable of read-
ing any format but its own, Kleene (1954) presents a
simple algorithm for generating from a given FSA a
regular expression denoting it. Using this algorithm,
an XFST regular expression denoting the network
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FSA XFST
Time Memory Time Memory

complete network 13h 43m v 11G 27m 41s v 3G
Compilation nouns network 2h 29m 11m 4s

adjectives network 14m 56s 8m 21s
complete network, 350 words not possible 5s

Analysis nouns network, 120 nouns 1h 50m 0.17s
adjectives network, 50 adjectives 2m 34s 0.17s

Figure 5: Times and memory requirements

can be generated. The only disadvantage of such an
approach is that the resulting XFST expression will
be most cumbersome.
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Appendix
A A comparison table of XFST and FSA operators
A.1 Symbols

XFST syntax FSA syntax Meaning
a a single symbol a
% w or “*” escape(*) or ’*’ escape literal symbol
abc abc multi-character symbol
? ? any symbol
0 or x3y or z zEz z x{y epsilon symbol, the empty string|
abcd } x a \ b \ c \ d y single character brace

A.2 Basic operators
XFST syntax FSA syntax Meaning
A w A w Kleene star
A ~ A ~ iteration (Kleene plus)
A ` B |

A \ B } union
A & B A & B intersection
A ] B A ] B A minus B�
A x�� A y & ? term complement
� A � A complement
A � B ignore � A \ B � A ignoring B
A ���
� B ignore � A \ B ��] | xB \ ? w{y \ x ? w \ B yG} A ignoring internally B
$A $A containment
$ � A $A ] ignore �uxA \ A y \ ? wK� one containment
$?A

|
$A ] ignore �ux A \ A y \ ? wK� \ ? w�] $A } maximum one containment

A B xA \ B y concatenation
Aˆn n-ary concatenation
Aˆ
|
n \ k } n to k concatenations of A

Aˆ ^ n more than n concatenations of A
Aˆ � n less than n concatenations of A
A � x � B A x B crossproduct
A � o � B A o B composition
� A � Aˆ optionality
a : b a : b symbol pair
[ ] ( ) order control
R � P�Q |

R \ � domain � Q ��] domain � R �u� o Q } upper-side priority union
R � p �Q |

R \ Q o � range � Q ��] range � R �u�n} lower-side priority union
R �3] u �Q � domain � R ��] domain � Q �u� o R upper-side minus
R �3] l �Q R o � range � R ��] range � Q �u� lower-side minus
A � B � $ xB \ A y A before B
A ^ B � $ xA \ B y A after B
A � r reverse � A � reverse
R � u or R � 1 domain � R � upper language of the regular relation R
R � l or R � 2 range � R � lower language of the regular relation R
R � i invert � R � or inverse � R � regular relation inverse
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A.3 Restriction
XFST restriction rules are not provided by FSA, nor did we implement them. Therefore, we only present
their syntax in XFST.

� A ��^ L R
� A ��^ L1 R1 \ L2 R2 \ �u�u� \ Ln Rn

A.4 Replacement
XFST replace rules do not exist in FSA. We present implementation of most of them in FSA, based on
(Karttunen, 1995; Karttunen, 1996; Karttunen, 1997; Karttunen and Kempe, 1995). XFST replace rules can
be divided into 4 groups:

1. Unconditional replace rules (one rule with no context).

2. Unconditional parallel replace rules (several rules with no context that are performed at the same time).

3. Conditional replace rules (one rule and one condition).

4. Conditional parallel replace rules (several rules and/or several contexts).

A.4.1 ]_^ (obligatory, upper to lower replacement)� XFST syntax: A ]�^ B
Meaning: Unconditional replacement of the language A by the language B.
Construction: [ xNO A xA � x � B y�yGw NO A] where NO A abbreviates � $ x A ]�xny�y .

� XFST syntax: A1 ]�^ B1 \ �u�u� \ An ]_^ Bn

Meaning: Unconditional parallel replacement of the language A1 by the language B1 and the language
A2 by the language B2 ... and the language An by the language Bn.
Construction: x�x N R yKw N y where N denotes the language of strings that do not contain any A i:

N ��� $ x�x A1 `K�a�a�
` An y�]�x�y�y
and R stands for the relation that pairs every Ai with the corresponding Bi:

R �9x�x A1 � x � B1 y�`E�a�a�1`�xAn � x � Bn y�y
.

� XFST syntax: A ]�^ B `a` L R
Meaning: Conditional replacement of the language A by the language B. This is like the relation
A ]�^ B except that any instance of A in the upper string corresponds to an instance of B in the lower
string only when it is preceded by an instance of L and followed by an instance of R. Other instances of
A in the upper string remain unchanged. A, B, L, and R must all denote simple languages, not relations.
The slant of the double bars indicates whether the precede/follow constraints refer to the instance of A
in the upper string or to its image in the lower string. In the `a` version, both contexts refer to the upper
string.
Construction: InsertBrackets � o � ConstrainBrackets � o � Le f tContext � o � RightContext � o � Replace � o �
RemoveBrackets where:
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– Let � and ^ be two symbols not in Σ. The escape character % is used since � and ^ are saved
symbols in XFST.

– InsertBrackets �9x�x3y���] % �Q` % ^�y
InserBrackets eliminates from the upper side language all context markers that appear on the lower
side.

– ConstrainBrackets �9x�� $ x% � % ^Hy�y
ConstrainBrackets denotes the language consisting of strings that do not contain ��^ anywhere.

– Le f tContext �9x��mx��9x��a�a� LEFT y�x��_�a�a� y�y & �9x�x��a�a� LEFT y��9x����a�a� y�y�y
LeftContext denotes the language in which any instance of � is immediately preceded by LEFT
and every LEFT is immediately followed by � , ignoring irrelevant brackets. x��a�a� LEFT y denotes
x�x ? w L ��x% �Q` % ^Hy�yL]�x ? w % �qy�y , the language of all strings ending in L, ignoring all brackets
except for a final � . x��j�a�a� y denotes x% ��� % ^ ? w{y , the language of strings beginning with � ,
ignoring the other bracket.

– RightContext �9x��jx�x��a�a�
^Hyp�9xRIGHT �a�a� yEy & �9x��9x��a�a�(^Hy�x RIGHT �a�a� yLy�y
RightContext denotes the language in which any instance of ^ is immediately followed by RIGHT
and any RIGHT is immediately preceded by ^ , ignoring irrelevant brackets. xRIGHT �a�a� y denotes
x�x R ��x% ��` % ^Hy ? wqy
]�x% � ? w{y�y , the language of all strings beginning with R, ignoring all
brackets except for an initial ^ . x��a�a��^Hy denotes x ? w % ^8� % �Hy , the language of strings ending
with ^ , ignoring the other bracket.

– The definition of Replace divides into three cases:
1. If A does not contain the empty string (epsilon) then

Replace �mx% � A ��x% �Q` % ^Hy % ^�]_^ % � B ��x% �Q` % ^Hy % ^Hy
This is the unconditional replacement of � A ^ by � B ^ , ignoring irrelevant brackets.

2. If A is the empty string (i.e., A � ε) then

Replace �9x% ^ % ��]_^ % � B w % ^Hy
3. If A contains the empty string but is not equal to it (i.e., contains other strings too) then

Replace �

x% � A ��x% ��` % ^Hy % ^X]�^ % � B ��x% ��` % ^Hy % ^Hy \ % ^ % ��]�^ % � B w % ^
That is, the first two cases are performed in parallel.

– RemoveBrackets �Ux % ��` % ^�]W^�x�y
y . RemoveBrackets denotes the relation that maps the
strings of the upper language to the same strings without any context markers.

� XFST syntax: A ]�^ B ��� L R

Meaning: Conditional replacement of the language A by the language B. This is like the relation
A ]�^ B `a` L R except that the // variant requires the left context on the lower side of the replacement
and the right context on the upper side.

Construction: InsertBrackets � o � ConstrainBrackets � o � RightContext � o � Replace � o � Le f tContext � o �
RemoveBrackets where InsertBrackets, ConstrainBrackets, RightContext, Replace, LeftContext and
RemoveBrackets are the same as above.
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� XFST syntax: A ]�^ B
���

L R
Meaning: Conditional replacement of the language A by the language B. This is like the relation
A ]�^ B `a` L R except that the

���
variant requires the left context on the upper side of the replacement

and the right context on the lower side.
Construction: InsertBrackets � o � ConstrainBrackets � o � Le f tContext � o � Replace � o � RightContext � o �
RemoveBrackets where InsertBrackets, ConstrainBrackets, RightContext, Replace, LeftContext and
RemoveBrackets are the same as above.

� XFST syntax: A ]�^ B
� � L R

Meaning: Conditional replacement of the language A by the language B. This is like the relation
A ]�^ B `a` L R except that in the

� � variant, both contexts refer to the lower string.
Construction: InsertBrackets � o � ConstrainBrackets � o � Replace � o � Le f tContext � o � RightContext � o �
RemoveBrackets where InsertBrackets, ConstrainBrackets, RightContext, Replace, LeftContext and
RemoveBrackets are the same as above.

The rest of the obligatory upper to lower replace rules are conditional parallel replace rules that where not
implemented. An example of such a rule is A11 ]_^ B11 \ �u�u� \ A1n ]�^ B1n `a` L11 R11 \ �u�u� \ L1m R1m.

A.4.2 �/]_^�� (optional, upper to lower replacement)� XFST syntax: A �/]�^�� B
Construction: x�x ? w�xA � x � B y�yGw ? w2y .

� XFST syntax: A1 �/]_^�� B1 \ �u�u� \ An �/]_^�� Bn

Construction: x�x ? w R yGw ? w.y where R stands for the relation that pairs every Ai with the corresponding
Bi: R �9x�xA1 � x � B1 y�`E�a�a�1`LxAn � x � Bn y�y .

� XFST syntax: A �/]�^�� B `a` L R, A �/]_^�� B ��� L R, A �/]�^�� B ��� L R, A �/]_^�� B � � L R
Construction: The same as the construction for the corresponding rules with the operator ]9^ with
the difference that in the Replace stage, for each one of the three cases the obligatory upper to lower
replace operator ]�^ is replaced by the optional upper to lower replace operator �/]�^�� .

The rest of the optional upper to lower replace rules are conditional parallel replace rules and were not
implemented.

A.4.3 �_] (obligatory, lower to upper replacement)� XFST syntax: A �_] B
Construction: xB ]_^ A yP� i

� XFST syntax: A1 �_] B1 \ �u�u� \ An ��] Bn

Construction: x B1 ]_^ A1 \ �u�u� \ Bn ]�^ An yP� i
� XFST syntax: A �_] B `a` L R, A �_] B ��� L R, A �_] B

���
L R, A �_] B

� � L R
Construction: The same as the construction for the corresponding rules with the operator ]9^ with
the difference that in the Replace stage, for each one of the three cases the obligatory upper to lower
replace operator ]�^ is replaced by the operator �_] .

The rest of the obligatory lower to upper replace rules are conditional parallel replace rules and were not
implemented.
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A.4.4 �/�_]�� (optional, lower to upper replacement)� XFST syntax: A �/��]�� B
Construction: xB �/]_^�� A yP� i

� XFST syntax: A1 �/�_]�� B1 \ �u�u� \ An �/�_]�� Bn

Construction: x B1 �/]_^�� A1 \ �u�u� \ Bn �/]_^�� An yP� i
� XFST syntax: A �/��]�� B `a` L R, A �/�_]�� B ��� L R, A �/��]�� B ��� L R, A �/�_]�� B � � L R

Construction: The same as the construction for the corresponding rules with the operator ]9^ with
the difference that in the Replace stage, for each one of the three cases the obligatory upper to lower
replace operator ]�^ is replaced by the operator �/�_]�� .

The rest of the optional lower to upper replace rules are conditional parallel replace rules and were not
implemented.

A.4.5 �_]_^ (obligatory, upper to lower, lower to upper replacement)� XFST syntax: A �_]�^ B
Construction: Let @ be a character not in Σ. We use the escape character % to precede @, since @ is
a reserved character in XFST. Thus, A �_]_^ B is defined as

� $ x%@ y
� o �

A ]�^ %@

� o �
%@ �_] B

� o �
� $ x%@ y

� XFST syntax: A1 �_]�^ B1 \ �u�u� \ An �_]�^ Bn

Construction: Let @1 \ �u�u� \ @n be characters not in Σ. We use the escape character % to precede each
@i, since @ is a reserved character in XFST. Thus, A �_]_^ B is defined as

� $ x%@1 `��u�u�F` %@n y
� o �

A1 ]�^ %@1 \ �u�u� \ An ]�^ %@n

� o �
%@1 �_] B1 \ �u�u� \ %@n �_] Bn

� o �
� $ x%@1 `��u�u�F` %@n y

The rest of the obligatory upper to lower and lower to upper replace rules are conditional replace rules
and they were not implemented.
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A.4.6 �/�_]_^�� (optional, upper to lower, lower to upper replacement)� XFST syntax: A �/��]�^�� B
Construction: Let @ be a character not in Σ. We use the escape character % to precede @, since @ is
a reserved character in XFST. Thus, A �/��]_^�� B is defined as

� $ x%@ y
� o �

A �/]�^�� %@
� o �

%@ �/�_]�� B
� o �

� $ x%@ y
The rest of the optional upper to lower and lower to upper replace rules are conditional and parallel replace

rules and they were not implemented.

A.4.7 @ ]�^ (obligatory, upper to lower, left to right, longest match replacement)
The following operations are the same as in section A.4.1, except that instead of ] ^ occurs @ ]_^ . As

]�^ represented an obligatory upper to lower replacement, @ ]�^ represents an obligatory upper to lower
left to right longest match replacement. Instances of the language A on the upper side of the relation are
replaced selectively. The selection factors each upper language string uniquely into A and non-A substrings.
The factoring is based on a left-to-right and longest match regimen. The starting locations are selected from
left-to-right. If there are overlapping instances of A starting at the same location, only the longest one is
replaced by all strings of B.
� XFST syntax: A@ ]�^ B

Construction: InitialMatch � o � Le f tToRight � o � LongestMatch � o � Replacement
Where:

– Let ˆ \ � \ ^ be characters not in Σ. We use the escape character % to precede them since they are
reserved characters in XFST.

– InitialMatch �
� $ x %ˆ ` % �Q` % ^¡y

� o �
x���� y�]_^ %ˆ `a` A

where x���� y�]Z^ LOW ER `a` LEFT RIGHT is a version of empty string replacement that al-
lows only one application between any LEFT and RIGHT. The construction for x��+� yH]¢^
LOWER `a` LEFT RIGHT is the same as for UPPER ]9^ LOW ER `a` LEFT RIGHT except
that Replace �9x% ^ % ��]_^ % � LOWER % ^Hy .

– Le f tToRight �
x�� $ x%ˆ y�x%ˆ : % � UPPER z 0 : % ^�y�yGw�� $ x%ˆ y

� o �
%ˆ ]_^Xx7y

where UPPER z �9x A ��x%ˆ y�]�x ? w %ˆ y�y
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– LongestMatch �_� $ x % �Xx UPPER z z & $ x% ^Hy�y�y
where UPPER z z � A ��x% �Q` % ^Hyq]¢x ? w�x % �Q` % ^Hy�y

– Replacement � % ��� $ x% ^Hy % ^X]_^ B

The rest of the obligatory upper to lower left to right longest match replace rules are conditional and
parallel replace rules and they were not implemented.

The following XFST operators were not implemented:

� @ ^ (obligatory, upper to lower, left to right, shortest match replacement)

� ]�^ @ (obligatory, upper to lower, right to left, longest match replacement)

� ^ @ right (obligatory, upper to lower, right to left, shortest match replacement)

A.5 Markup
Markup rules take an input string and mark it by inserting some strings before and after it. XFST markup
rules do not exist in FSA. We present the implementation of most of them in FSA, based on Karttunen
(1996).

� XFST syntax: A ]�^ L �u�u� R
Meaning: Markup. Instances of the language A on the upper side of the relation are selected for
markup. Each selected A string is marked by inserting all strings of L to its left and all strings of R to
its right. The selected A strings themselves remain unchanged, along with the non-A segments.

Construction: A ]_^ L A R

� XFST syntax: A@ ]�^ L �u�u� R
Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under left-to-right, longest match regimen. Thus, the starting locations are selected from
left-to-right. If there are overlapping instances of A starting at the same location, only the longest one
is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its left
and all strings of S to its right. The selected A strings themselves remain unchanged, along with the
non-A segments.

Construction: InitialMatch � o � Le f tToRight � o � LongestMatch � o � Insrtion
Where:

– Let ˆ \ � \ ^ be characters not in Σ. We use the escape character % to precede them since they are
reserved characters in XFST.

– InitialMatch �
� $ x %ˆ ` % �Q` % ^¡y

� o �
x���� y�]_^ %ˆ `a` A

where x���� y�]Z^ LOW ER `a` LEFT RIGHT is a version of empty string replacement that al-
lows only one application between any LEFT and RIGHT. The construction for x��+� yH]¢^
LOWER `a` LEFT RIGHT is the same as for UPPER ]9^ LOW ER `a` LEFT RIGHT except
that Replace �9x% ^ % ��]_^ % � LOWER % ^Hy .
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– Le f tToRight �
x�� $ x%ˆ y�x%ˆ : % � UPPER z 0 : % ^�y�yGw�� $ x%ˆ y

� o �
%ˆ ]_^Xx7y

where UPPER zE�9x A ��x%ˆ y�]�x ? w %ˆ y�y
– LongestMatch �_� $ x % �Xx UPPER z z & $ x% ^Hy�y�y

where UPPER z zL� A ��x% �Q` % ^Hyq]¢x ? w�x % �Q` % ^Hy�y
– Insrtion � % ��]_^ L \ % ^�]_^ R

The rest of the markup rules were not implemented since we could not obtain any documentation of their
constructions. These operators are:

� XFST syntax: A@ ^ L �u�u� R
Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under left-to-right, shortest match regimen. Thus, the starting locations are selected from
left-to-right. If there are overlapping instances of A starting at the same location, only the shortest one
is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its left
and all strings of S to its right. The selected A strings themselves remain unchanged, along with the
non-A segments.

� XFST syntax: A ]�^ @L �u�u� R
Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under right-to-left, longest match regimen. Thus, the starting locations are selected from
right-to-left. If there are overlapping instances of A starting at the same location, only the longest one
is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its left
and all strings of S to its right. The selected A strings themselves remain unchanged, along with the
non-A segments.

� XFST syntax: A ^ @L �u�u� R
Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under right-to-left, shortest match regimen. Thus, the starting locations are selected from
right-to-left. If there are overlapping instances of A starting at the same location, only the shortest one
is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its left
and all strings of S to its right. The selected A strings themselves remain unchanged, along with the
non-A segments.

A.6 Boundary symbol for restriction and replacement
In the restriction, �£^ , and conditional replacement, ]8^ \ �/]8^�� \ �8] \ �/��]�� \ �p]8^ \ �/�8]p^�� \ @ ]p^ \ @ ^
\ ]_^ @ \ ^ @ expressions we can use a special boundary marker, � # � , to refer to the beginning or to the end
of a string. In the left context, the boundary marker signals the beginning of the string; in the right context
it means the end of the string.

Construction: We do not deal with all the cases where the boundary symbol � # � can be used. We only
deal with boundary cases contexts that are in one of the following forms (Le f tContext and RightContext are
assumed not to contain � # � ):
� � # � Le f tContext RightContext
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� x�� # � Le f tContext y RightContext
� x�� # � y Le f tContext RightContext
� xax�� # � y Le f tContext y RightContext
� Le f tContext RightContext � # �
� Le f tContext xRightContext � # � y
� Le f tContext RightContext x�� # � y
� Le f tContext xRightContext x�� # � yay
� � # � Le f tContext RightContext � # �
� x�� # � Le f tContext y RightContext � # �
� x�� # � y Le f tContext RightContext � # �
� xax�� # � y Le f tContext y RightContext � # �
� � # � Le f tContext xRightContext � # � y
� x�� # � Le f tContext y xRightContext � # � y
� x�� # � y Le f tContext xRightContext � # � y
� xax�� # � y Le f tContext y xRightContext � # � y
� � # � Le f tContext RightContext x�� # � y
� x�� # � Le f tContext y RightContext x�� # � y
� x�� # � y Le f tContext RightContext x�� # � y
� xax�� # � y Le f tContext y RightContext x�� # � y
� � # � Le f tContext xRightContext x�� # � yay
� x�� # � Le f tContext y xRightContext x�� # � yay
� x�� # � y Le f tContext xRightContext x�� # � yay
� xax�� # � y Le f tContext y xRightContext x�� # � yay
As we do not deal with restriction rules we need to deal with boundary cases only in replace rules. The

replace rules were constructed from six stages: InsertBrackets, ConstrainBrackets, LeftContext, RightCon-
text, Replace and RemoveBrackets. In boundary cases where the left context is in the beginning of a string,
only the LeftContext stage is changed. The LeftContext stage was defined as

Le f tContext �9x��jx��9x��a�a� LEFT y�x����a�a� y�y & �jx(x��a�a� LEFT y8�jx����a�a� y(y�y
where x��a�a� LEFT y denoted

x�x ? w L ��x% �Q` % ^Hy�y�]�x ? w % �qy�y
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and x��_�a�a� y denoted
x% �¤� % ^ ? w{y

The definition of LeftContext is not changed but the definition of x��a�a� LEFT y is changed into

x�x L ��x% �[` % ^Hy�yL]�x ? w % �Hy�y
In boundary cases where the right context is at the end of a string, only the RightContext stage is changed.
The RightContext stage was defined as

RightContext �9xE�jx�x��a�a�(^Hyp�9x RIGHT �a�a� yKy & �9x��9x��a�a�
^Hy�xRIGHT �a�a� yLy�y
where x RIGHT �a�a� y denoted

x�x R ��x% �Q` % ^Hy ? w2y�]�x% � ? w{y�y
and x��a�a�
^Hy denoted

x ? w % ^�� % �qy
The definition of RightContext is not changed but the definition of xRIGHT �a�a� y is changed into

x�x R ��x% �[` % ^Hy�yL]�x% � ? w{y�y
In boundary cases where both the right context and the left context are at the end and in the beginning of
a string respectively, both the RightContext and the LeftContext stages are changed as described above.
The idea behind these changes is that the context part of replacement expression can be actually seen as
? w LEFT RIGHT ? w and by simply eliminating one of the ? w in one of the ends we can relate to a
boundary case. The definitions that were changed above did exactly that: eliminated the appropriate ? w for
each case. More complicated cases, for example a ]�^ b `a`�x�� # ��` a y should be dealt by conditional parallel
replacement. For example, a ]�^ b `a`Lx�� # �1` a y , should be interpreted as

a ]_^ b `a`Lx�� # � y \u\ a ]_^ b `a`�x a y
Since we do not deal with conditional parallel replacement, we cannot deal with these cases.

A.7 Order of Precedence
A.7.1 XFST

The following list defines the order of precedence of all XFST operators. Operators of same precedence
are evaluated from left to right, except the prefix operators �P� �

$ $? $ ��� that are evaluated from right
to left. The list begins with the operators of highest precedence, i.e., with the most tightly binding ones.
Operators of same precedence are on the same line.

:
� �

$ $? $ �
~ w ˆ � 1 � 2 � u � l � i � r
�
concatenation
^��
` & ]
�£^ ]�^ �/]_^��¥��]Q�/��]��Z�_]�^ �/�_]_^�� @ ]_^ @ ^ ]�^ @ ^ @
� x ��� o �
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A.7.2 FSA
The following list defines the order of precedence in FSA:

: �
�a�
~ w ˆ
& ]
o x xx
! #

A.8 Advanced techniques
Both XFST and FSA have advanced techniques that do no exist in the other toolbox. For XFST these
techniques include Compile-Replace and Flag-Diacritics; for FSA these techniques include predicates and
weighted networks.
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