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Introduction

Welcome to the ACL Workshop on Software, the first of its kind. Itis intended as a venue for discussing
and comparing the implementation of software and algorithms used in Natural Language and Speech
Processing. The goal is to bring together researchers, software developers, teachers, and students with
a common interest in the implementation of NLP applications, and to allow useful implementation
techniques and “tricks of the trade” to be discussed in detail and disseminated widely.

We received 13 submissions, of which 8 were selected for presentation and inclusion in the proceedings,
after a careful review process. Because the number of reviewers exceeded the number of submissions,
each submission received more than four reviews on average, while the workload per reviewer was
less than three papers on average. This being the workshop on software, the initial assignment of
reviews was performed algorithmically using the Ford—Fulkerson max-flow algorithm, while taking
into account individual reviewer preferences. The reviewers did an admirable job dealing with a diverse
set of submissions, for which they deserve the thanks of the community.

The papers presented in this workshop deal with many different aspects of NLP software: Carpenter
describes a scalable implementation of high-order character language models; Clegg & Shepherd take
three existing parsers that were trained on business news text and perform a comparative evaluation on
a corpus of biomedical journal papers; Cohen-Sygal & Wintner have implemented a compiler which
translates between the description languages of two different finite state toolboxes; Foster has designed
a generation module for a dialogue system which can ship out text without having to wait for the
planning phase to finish; Koller & Thater describe the intelligent design of increasingly powerful
constraint solvers; Newman proposes a uniform formalism for representing the output of parsers for
easy inspection and comparisonpmt Gyepesi, Hacsy, Kornai, Nmeth & Varga have implemented

a generic library for analyzing orthographic words; and White discusses the design of a generation
component which flexibly incorporates language models in a syntactic surface realizer.

The workshop proceedings are being made available in electronic form only. Not only does this save
costs, but it also allows the distribution of additional software and resources that could not be included in
printed proceedings. A number of authors have included the software described in their papers directly
on the proceedings CD. As always, the latest versions of the included software can be found on the
Internet or by contacting the individual authors.

| would like to thank the reviewers and authors once again for their hard work and look forward to an
exciting workshop.

Martin Jansche
Columbia University, New York
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TextTree Construction for Parser and Treebank Development

Paula S. Newman
newmanp@acm.org

Abstract although relatively flat 2D node + edge trees for
short sentences can be grasped at a glance, for
TextTrees, introduced in (Newman, long sentences this property must be
2005), are skeletal representations compromised.

formed by systematically converting
parser output trees into unlabeled
indented  strings  with  minimal
bracketing. Files of TextTrees can be
read rapidly to evaluate the results of
parsing long documents, and are easily
edited to allow limited-cost treebank
development. This paper reviews the
TextTree concept, and then describes

In contrast, for languages with a relatively
fixed word order, and a tendency to post-
modification, TextTrees capture the
dependencies found by a parser in a natural,
almost self-explanatory way. For example:

They
must have
a clear delineation

of
[roles,

the implementation of the almost M SSi Ons
parser- and grammar-independent and
TextTree generator, as well as auxiliary authority].

methods for producing parser review
files and inputs to bracket scoring tools.
The results of some limited
experiments in TextTree usage are also
provided.

I ntroduction

Indented elements are usually right-hand post-
modifiers or subordinates of the lexical head of
the nearest preceding less-indented line. Brackets
are generally used only to delimit coordinations
(by [...]), nested clauses (by {...}), and identified
multi-words (by |...|).

Reading a TextTree for a correct parse is

The TextTree representation was developed §milar to reading ordinary text, but reading a
support a limited-resource effort to build a new €xtTree for an Incorrect parse Is jarring. For
hybrid English parsér When the parser reachedex@mple, the following TextTree for a 33-word
significant apparent coverage, in terms ofentence exposes several errors made by the
numbers of sentences receiving some parse, thdrid parser:

need arose to quickly assess the quality of theg

parses produced, for purposes of detecting by | Sept ember 2001|,

coverage gaps, refining analyses, and the executive branch

measurement. But this was hampered by the use  ©f

of a detailed parser output representation.

The two most common parser-output displays
of constituent structure are: (a) multi-line lalukle
and bracketed strings, with indentation indicating
dominance, and (b) 2-dimensional trees. While
these displays are indispensable in grammar
development, they cannot be scanned quickly.
Labels and brackets interfere with reading. And,

[the U.S. governnent,
the Congress,
the news nedi a,
and
the Anerican public]
had received
cl ear warning
t hat
{Islam st terrorists
nmeant
to kill
Aneri cans
i n hi gh nunbers}.

! The hybrid combines the chunker part of the fast,
robust XIP parserAXit-Mokhtar et al., 2002) with an
ATN-style parser operating primarily on the chunks.
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TextTrees can be embedded in bulk parsénan the original parse trees), and compared by
output files with arbitrary surrounding bracket scoring methods derived from Black et al
information. Figure 1 shows an excerpt fron{1991).
such a file, containing the TextTree-form results Section 2 below examines the problems
of parsing the roughly 500-sentence "Executivpresented by detailed parse trees for late-stage
Summary" of the 9/11 Commission Reporparser development activities in more detail.
(2004) by the hybrid parser, with more detaileéection 3 describes the inputs to and outputs
results for each sentence accessible via linkkom the TextTree generator, and Section 4 the
(Note: the links in Figure 1 are greyed taenerator implementation. Section 5 discusses
indicate that they are not operational in th¢he use of the TextTree generator in producing
illustration.) TextTree files for parser output review and

Such files can also be edited efficiently tdrextTreebank construction, and the use of
produce limited-function treebanks, because theEextTreebanks in parser measurement. The
needed modifications are easy to identify, labelgsults of some limited experiments in TextTree
are unnecessary, and little attention to bracketirfie use are provided in Section 6. Section 7
is required. Edited and unedited TextTree filediscusses related work and Section 8 explores
can then be mapped into files containing fullsome directions for further exploitation of
bracketed strings (although bracketed differentlfextTrees.

6 (3) We have come together with a unity of purpgeseause our nation demandistmore
chunks

We
have come together
with a unity
of purpose
because
{our nation
demands

it}.

7 (15) September 11, 2001 , was a day of unpretedeshock and suffering in the history of the
United Stateshestmorechunks

| Sept ember 11 , 2001

was
a day
of
[ unprecedent ed shock
and
suffering]

in the history
of the United States.

8 (1) The nation was unpreparegkstmorechunks

The nation
was
unpr epar ed.

Figure 1. A TextTree file excerpt
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Figure 2. An LFG c-structure

2 Problemsof Detailed Parse Trees trees so as to provide an "at-a-glance"
appreciation of structure for sentences longer
This section examines the readability problemgan 25 words, which are very prevalérthe
posed by conventional parse tree representationsethods currently in use or suggested either
and their implications for parser developmengbscure the structure or require additional actions
activities. by the reader. Allowing trees to be as wide as
As noted above, parse trees are usualljie sentences requires horizontal scrolling.
displayed using either 2-dimensional trees aCollapsing some subtrees into single nodes
fully bracketed strings. Two dimensional treegwrapping represented token sequences under
are intended to provide a clear understanding @iose nodes) requires repeated expansions to
structure. Yet because of the level of detailiew the entire parse. Using more of the display
involved in many grammars, and the problem ofpace by overlapping subtrees vertically
dealing with long sentences, they often fail innterferes with comprehension because it
this regard. Figure 2 illustrates an LFG cobscures dominance and sequence. In Figure 2,
structure, reproduced from King et al. (2000), fofor example, the period at the end of the
the 7 word sentence "Mary sees the girl with theequence is the second constituent at the top. For
telescope.” Similar structures would be obtainegl longer sentence, a coordinated constituent
from parsers using other popular grammaticahight be placed here as well. Such
paradigms. The amount of detail created by thénpredictable arrangements impede reading,

deep category nesting makes it difficult to graspecause the reader does not know where to look
the structure by casual inspection, and the tree in

this case is actually wider than the sentence.

Grammar-specific transformations have been
used in the LKB system to simplify displays 2 casual records of parser results for many English
(Oepen et al., 2002). But there are no trulgon-fiction documents suggest an average of about 20
satisfactory approaches for dealing with thevords per sentence, with a standard deviation of about
problem of tree width, that is, for presenting 2011




S (NP-SBJ Stokely) sentences given a parse, and declare victory if a

(VP says high rate of parsing is reported.
(SBAR 0 Another approach to assessing parser quality
(S (NP-SBJ stores) is to rely on treebank-based bracket scoring
(VP Eﬁ‘l’a'v(eNP specials) measures, if treebanks are available in the
(PP Iilfe particular genre. This can also can be a pitéaill,
(NP (NPdbrcans) bracket scores tend to be unconsciously
(BP interpreted as measures of full-sentence parse
(NP peas)) correctness, which they are not.
(RIP On the other hand, treebank-based
_ (NP 99 cents )))))))) measurements can play a useful secondary role
Figure 3. A Penn Treebank Tree in evaluating parser development progress and in

comparing parsers. But if insufficient

The other conventional parse tredreebanked material is available for the relevant
representation is as a fully-bracketed stringjomains and/or genres, a custom treebank must
usually including category labels and, for displaype developed. This process generally consists of
purposes, using indentation to indicatéwo phases: (a) a bootstrapping phase in which
dominance. Figure 3 shows such a tree, dravam existing parser is applied to the corpus to
from a Penn Treebank annotation guide (Bies gtoduce either a single "best" tree, or multiple
al.,, 1995), shown with somewhat narrowealternative trees, for each sentence, and thea (b)
indentation than the original. Even though theecond phase in which annotators approve or edit
tree is in the relatively flat form developed fora given parse tree, select among alternative trees,
use by annotators, the brackets, labels, and depth manually create a full parse tree when no
of nesting combine to prohibit rapid scanning. parse exists. All of the second phase alternatives

However, it should be noted that this format isre difficult given conventional parse-tree
the source of the TextTree concept. Because bgpresentations. For example, experiments by
eliminating labels, null elements, and mosMarcus et al. (1993) associated with the Penn
brackets, and further flattening, the mord&reebank indicated that for the first annotation

readable TextTree form emerges: pass "At an average rate of 750 words per hour, a
team of five part-time annotators ...", i.e., a bit
St okel y more than a page of this text per hour. Aids to
Says{stores selecting among alternative 2D trees can be
revive given in the form of differentiating features
speci al s (Oepen et al., 2002), but their effectiveness in
like three cans helping to select among large trees differing in
of peas attachment choices is not clear.

for 99 cent AN -
or 99 cents} Another activity impeded by conventional

2.1 Implications parse tree representations is regression testing.
As a grammar increases in size, it is advisable to
The conventional parse tree representatiorfikequently re-apply the grammar to a large test
discussed above can be a bottleneck in parsmrpus to determine whether recent changes have
development, most importantly in checkinghad negative effects on accuracy. While the
parser accuracy with respect to current focusxistence of differences in output can be detected
areas and in extending coverage to hew genreshyr automatic means, one would like to assess the
domains. For these purposes, one would like thfferences by quickly comparing the divergent
review the results of analyzing collections oparses, which is difficult to do using detailed
relatively long (100+ sentence) documents. Buygarse displays for long sentences.
unless this can be done quickly, a parser Finally, an activity that is rarely discussed
developer or grammar writer is tempted to relpput is becoming increasingly important is
on statistics with respect to the number ofroviding comprehensible parser demonstrations.
A syntactic parser is not an end-in-itself, but a



building block in larger NLP research and Parser/grammar specific | Parser independent
development efforts. The criteria for selecting | senzence I
parser for a project include both the kind o @ """"" a
information provided by the parser and parsq
accuracy. However, current parser outp
representations are not geared to allowin & Parse Tree
potential users to quickly assess accuracy wi @

respect to document types of interest.

Parser + grammar |

TextTree
Generator

Kxxx
XXXXX

3 TheTextTree Generator: Externals

TextTrees are generated by an essentia|l  Category
grammar-independent  processor  from Directives
combination of

(a) parser output trees that have been put into a
standard form that retains the grammar-specific

category labels and constituents, but whosneSted subtrges_, e_ach representing a constituent
, and each indicating:

details conform to the requirements of a parser- A grammar-specific category label for C.

independent tool interface, and, . = Whether C should be considered the head of
(b) a set of grammar-specific <category, . _ . : L .
directive> pairs. e.d.. "<ROOT. Align>". Each 't immediately containing constituent P for
parrs, €.g., » AIGN= - formatting purposes. Generally, this is the

pair specifies a default formatting for e . .
constituents in the category, specifically whether case if C.'S’ or_domlnates, the Iexma_l head of
' P, but might differ from that to obtain some

their sub-constituents are to be aligned vertically : .
. ; . desired formatting effects. As heads are
or concatenated relative to a marked point, with . o X
identified by most parsers, this marker can

subsequent children indented. These defaults are o
. - usually be set by parser-specific rules
used in the absence of overriding factors such as .
embedded in the adaptor.

coordination. Whether C is aoord_dom that is, whether

The directives used are very simple ones, . . . . . .
. , it immediately dominates the participants in
because the simpler the formatting rules, the S
a coordination.

more likely it is that outputs can be accurately FCi .
. . is a leaf, the associated token, and

checked for correctness, and edited convenlently (optionally) whether C is a multi-word

It is assumed that the parser output either b y '
includes conventional parse trees, or that sugb Formatting Directives
trees can be derived from the output. This
assumption covers many grammaticalo generate TextTrees for a particular grammar,
approaches, such as CG, HPSG, LFG, and TAGa <category, directive> pair is provided for each

The logical configuration implied by thesecategory that will appear in a ParseTree for the
inputs is shown in Figure 4. It includes a parsegrammar. The directive specifies how to format
specific adaptor to convert parser-output tree®e children of constituents in the category in the
into a standard form. The adaptor need not kebsence of lengthy coordinations.
very large; for the hybrid parser it consists of The definitions of the directives make use of
about 75 lines of Java code. one additional locator for a constituent, its

The subsections below discuss the standardal head While we generally want the
ParseTree form, the directives that have beefirectives to format constituents relative to their
identified to date and their formatting effects|exical heads, in some grammars, those heads are

Figure 4: Logical Configuration.

and the treatment of coordination. deeply nested. For example, a tree for an NP
might be generated by rules such as:
3.1 Standard ParseTrees NPz => DET NPy

NPy => ADJ* NPx

A standard ParseTree consists of recursively NPx => NOUNPP*



where each of the underscored terms hagads, ConcatPreHead: This directive concatenates
but thereal headof NPz is the head NOUN of material, if any, before theeal _head and then if
NPx. More generally, thereal head of a such material exists, increases the indent leltel.
constituent C is the first constituent found byhen aligns the following component. The
following the headmarked descendants of Cdirective is intended for formatting clauses that
downward until either (a) a leaf or headlesbegin  with  subordinating  conjunctions,
constituent is reached, or (b) a post-modifiedomplementizers, or relative pronouns, where the

headmarked constituent is found. grammar has identified the following sentential
Using this definition, the current formattingcomponent as the head, but it is more readable to
directives are as follows: indent that head under the initial constituent. In

Align: Align specifies that all children of the practice, in such cases it is easier to just dfier
constituent are vertically aligned. Thus, foheadmarker within the adaptor.
example, a directive <ROOT, Align>, would o
cause a constituent generated by a rule "ROGRB Treatment of Coordination
=> NP, VP' to be formatted as:
formatted NP
formatted VP
ConcatHead: ConcatHead concatenates th

The directives listed in the previous subsection
are defaults that specify the handling of
gategories in the absence of coordination. A set

tokens of a constituent (with separating blank f coordlnate_d constituents are always indicated
y surrounding square brackets ([ ]). If the

up to and including itgeal_head (as defined dinati ithi q
above), and indents and aligns the post-modifie@Or Ination —occurs  within —a requeste
concatenation, then if the width of coordination

of the real_head For example, given the . . .
directive "<NP, ConcatHead>", a constituerlt Ies_s than a predeS|gn_atec_i size, the non-token
produced by the rules: pqnstltuents of the coordination are bracketed, as
NPz => PreMod* NPx n:
NPx => NOUNPostMods*
would be formatted as:
All-words-in-PreMod* NOUN
Formatted PostMod1

[{Od men} and wonen]
in the park.
However, if the width of the coordination
exceeds that size, the concatenation is converted
to an alignment to avoid line wrap, for example,

Formatted PostMod?2 He

ConcatCompHead: ConcatCompHead gave
concatenates everything up to and including the si zeabl e donati ons
real_head and concatenates with that the results to
of a ConcatHead of the first post-modifier of the [the church,
real_head(if any). the school,

This directive is motivated by rules such as ?Eg e museum
"PP => _PNP", where the desired formatting of art.]

groups the head with words up to and including

the lexical head of the single complement, €.9., 4 TextTree Generator: Implementation
of the man '

in the nmoon _ TextTrees are produced in two steps. First, a
ConcatSimpleComp:  ConcatSimpleComp parseTree is processed to form one or more
concatenates material up to and including thgyemalTextTrees (ITTs), which are then mapped
real_headand if first post-modifying constituent iy an external TextTree. Most of the work is
is a simple token, concatenates that as well, a'&@complished in the first step; the use of a

then aligns and indents any further posiecond step allows the first to focus on logical
modifiers of thereal_head It thus formats noun g cture independent of many details of
phrases for languages that routinely use simplgjentation, linebreaks, and punctuation.

adjective post-modifiers. For example (Sp.): We begin by describing ITTs and their

La casgugl anca relationship to external TextTrees, to motivate




the description of ITT formation. We thenare an input subtreg, and a directiveverride
describe the mapping from ParseTrees to ITTs. which may be null. It returns an ITT fpr

_ _ BuildITT sets the operational directivk as
4.1 Transforming ITTsto Strings either theoverride argument, if that is non-null,

. . . .. or to the default directive for the categorypof
Figure 5 shows a simple ITT and its assouateJ Uy cirectiy gonpo

Then, ifd is "Align", the result ITT has a null
external TextTree. The node labels of an ITT ar, ’ P -
called the "headparts" of their associateg'z%ldpalrt and, ip is acoord_dom the isCoord

. - property of the ITT is set. The children of the
subtrees. Headparts may be null, simple strin sult ITT are the ITTs af's children
or references to other ITTs. - . o
. . However, ifd specifies that an initial sequence
If the headpart of a subtree is null, like that 06 P q

; p is to be concatenated, BuildITUises the
the outermost _subtrfee of F|gurg >, the e>_<tern cursive function Catenai&igure 9) to obtain
TextTrees for its chlldrgn are gllgned ver’glcall){he initial sequence if possible.
at the current level of indentation. Also, if the
subtree is not outermost, the aligned sequenceri=
bracketed. | |

However, if the headpart of a subtree is | T 1
simple string, as in the other subtrees of Figure| |However, |[asimple transformation | | can expedite |
ITT, that string is printed at the current level o

indentation, and the external TextTrees for it [of parsetrees | [1o Texttrees | | these activities |
children, if any, are aligned vertically at the hex| ———-
level of indentation. a sinple transformtion
The headpart of a subtree may also referen of parse trees
another ITT, as illustrated in Figure 6. Such | |__° ngggftﬂeees
reference headpart signals the bracketd these activities.

inclusion of the referenced tree, which has a nul
headpart, at the current indentation level. This
permits the entire referenced tree to be pog*

modified. The brackets used depend on a featy | |
associated with the referenced tree, and &
either [ ], if the referenced tree represents

Figure 5: Simple InternalTextTree.

i g X |H0wever, | |asimp|etransformation | |-)T1 |
coordination, or { } otherwise.
Pseudo-code for the ITT2Strirfgnction that ([rowever,
H a sinple transformation
produces external TextTrees from ITTs is show| £ > 5 8t or oo

in Figure 7. The code omits the treatment d| and

H R . general |y expedites]
non-bracketing punctuation; in general, care these activities. [ ] 71 oo
taken to prefix or suffix punctuation to tokeng
appropriately. 1 1
. significantly and generzglly
4.2 Transforming ParseTreestoITTs simplifies expedites

To transform ParseTrees into ITTs, subtrees  Figure 6: ITT with long coordination
are processed recursively top-down using the
function BuildITT of Figure 8. Its arguments



Function ITT2String(ITT s, String indent)
returns String

/I indent is a string of blanks, eol is end-of-ling
Setls to null
If shas a null headpart, sgxtindento indent

+ 1 blank (adds space for [ or { bracket )
Otherwise semextlndentoindent+ N blanks,

where N is the constant indent increment
If s has a headpart reference

sehextindento nextindent+ 1 blank

Function Catenate (ParseTreep,
ParseTreer) returns<Code, String>
1. Setresult= null, code= incomplete.
If pis a leafresult=the token op.
2. for each chilati of p,
whilecode# complete:
If ci =r, setcode= complete.
Set <code, cstring to result of
Catenate(ci, r)
If (ccode= failed) return <failed, null>

If shas children, sds to the lines produced If pis a coord_dom &stringnot 1 word
byl TT2String (ci, nextinden) /I indicate coordinated within concdt
for each child of s Suffix "gstring” to result

Otherwise suffix¢string' to result
If ccode= complete, satode= complete
3. Finally,
If p=r, setcode= complete.
if pis a coord_dom and
the length ofesult > LONG_CONST,
return <failed, null>.

If shas a headpart stritcp
Return the concatenation of
indent, hseol,lIs
Else ifs has a headpart reference to an 2T
Return the concatenation of
ITT2String(s2 indent), Is
Else 6has a null headpart) o
Remove initial & trailing whitespace fram Else if p is a coord_dom
If sis a coordination, setfxto [ andsfxto ] Retu_rn sode_ [resulf™>
Else sepfxto {andsfxto } Elseifpisa multlll-word,"
Return the concatenation of return sode “Fesul{™>
nextindent 4 blank pfx, Is, sfxgol Otherwise returncode, resuft

Figure 7. The ITT2String Function Figure 9. The Catenate Function

Function BuildI TT(ParseTreep, Directiveoverride returnsITT
Set dto overrideif non-null, otherwise to the default categoryediive forp.
1. If pisaleaf or a multiword:
- return an ITT whose headline concatenates the sogpanned bp, and which has no childre
If p is a multiword, bracket the headline by |.
2. Elseif disAlign
return an ITT with a null headpart, and childreriltdoy invoking BuildI TT(ci, null) for each|
child ci of p. If p is acoord_domijndicate that the ITT isCoord.
3. Otherwise concatenate:
a) Find the nested subtre¢hat contains the rightmost elemend be concatenated accordingito
b) Set the pairectode, cstring to the result o€Catenate (p, 1).
c) If ccode# "failed”, return ITT with headpartcstring, and children formed bBuildI TT(ci, null)
for each childi of safterr. .
d) Otherwise return a directive-dependent treenaligthe contained coordination, for example:
For ConcatHead: i. Let be likep but without the right siblings of theal_headof p
ii. Return an IWith headpart referencing the result®BeoildITT (p’, Align)
and with children obtained froBuildI TT(ci, null)
for each right siblingi of the real_headof p
For ConcatCompHead: Return an ITT obtainedthiagking Buildl TT(p, ConcatHead)

Figure 8. The BuildITT Function



Catenatetakes two arguments: a ParseTee

whose initial sequence is to be concatenated, an [ Docurnent ]

Category [P‘arseT o= File ]
Directives

ParseTree, beyond which the concatenation is tc ¥

stop, based on the particular directive involved. PARSER I PARSETREE FILE
returns a pair €ode, String. TheCodeindicates u;zr:e $ Other PROCESSDR

if the concatenation succeeded, failed, or ADAPTOR | Parse || ther

TEATTREE Trees

incomplete. If the concatenation succeede SENERATOR

BuildITT creates an ITT with a headpart string

HML Form
ParzeTres

containing the concatenated sequence, and childj #%_ . .. ™ .

consisting of ITTs of the right-hand siblingsrof iy HMLHTML Teddfres Hle
Complex aspects of BuildITTand Catenate :gjbf;;‘fa:% ot dpire::

relate to coordinations within to-be-concatenatel | . TesdTree

extents. The desired effect is to include sho| | =/Fars=Tras= :fﬁ?mumm

coordinations within the concatenation, whilg | 2nt MLHTML =pra=

bracketing its boundaries and non-lea _/

components, e.g. " [{Old men} and women]", bu

aligning the elements of longer coordinations. Figure 10. TextTree file creation
So if Catenate(in step 3) determines that the

string resulting from a coordination is very loiitg, Such a process may be used to create the

directly or indirectly returns an indicator toHTML TextTree file of Figure 1, which is a

BuildITT that the concatenation failed. BuildITTstandard output form for the hybrid parser. The
(step 3d) then returns an ITT structured so that tiTextTrees are surrounded by HTML <pre> and
sub-constituents that were to be concatenated ampre> tags to maintain the spacing and linebreaks
eventually shown as aligned, using differenproduced by the generator. The interspersed

methods dependent on the directive information in this case consists of the sentence
For example, if d is ConcatHead or text and links to detailed displays of the besspar
ConcatSimpleComp, the result ITT contains: found, other parses with high preference scores, as
a) a headpart reference to an ITT built bywell as the initial chunks.
BuildITT(p’,Align), where p’ is likep but Reviewing parse results for a document then
without the right-hand siblings of its consists of reading the TextTree file and,
real_headand depending on circumstances, either simply noting
b) children consisting of the ITTs for thoseor classifying the errors found for later debugging
right-hand siblings, if any or investigating them further via the links to the

. detailed displays.
5 TextTreeFilesand TextTreebanks

_ _ 5.1 TextTreebanks
Previous sections focused on the production of

individual TextTrees by the TextTree generatorWhatever the limitations (Carroll et al., 1998) of
This section considers some uses of the generatbe various treebank-based bracket scoring
and auxiliary methods within parser development.measures derived from the Parseval approach of

A particularly useful approach for producingBlack et al. (1991), they can be useful in
parser output review material using the generator finonitoring parser development progress and in
sketched in Figure 10. In that approach, the besdmparing the capabilities of different parsers, at
parses for a document are converted to standdedst if there are large differences in scores.
ParseTrees expressed as XML entities and writtenBut, as noted earlier, obtaining a fully labeled
to a file of such entities, interspersed with adsig treebank for a specific domain or genre is generall
other information. A separate, parser-independeatvery labor-intensive process. A potentially less
process that includes the TextTree generator theastly alternative is to create informal treebanks
creates a TextTree file by substituting TextTreesonsisting of TextTree files corrected by manual
for the ParseTree entities. editing.



Both corrected and uncorrected TextTree filethe misplaced Line e begins at a point closer ¢o th
can be converted to files consisting of fullybeginning of Line a than Line b. It is then
bracketed strings by a simple script that considersasonable to guess that Line e is sibling to kine
only the contained TextTrees. The script brackets _
the TextTrees so as to retain the explicit brackete EXxperiments

and to add brackets around each subtree, i.e,,. ) ] o )
around each sequence of a line and the Iines,Tih'S section describes two limited experiments to

any, indented beneath it, directly or indirectly. assess the efficiency of reviewing parser outputs

For example, a full bracketing of the TextTredor accuracy using TextTrees. —One of the
of Figure 5 would be: experiments also measures the efficiency of

TextTreebank creation

{However,}
{a simple transformation 6.1 First Experiment

{of parse trees} _ _ .

{to text trees}} The document used in the first experiment was the
{can expedite {these activities}} roughly 500-sentence "Executive Summary" of the

_ 9/11 Commission Report (2004). After parsing by
The actual bracketed strings produced by thge hyprid parser, the expected TextTree file,

script are ones acceptable as input to the EVALBycerpted in Figure 1, was created, reproducing
bracket scoring program (Sekine and Collingach sentence and, for parsed sentences, the

1997) with all brackets expressed as parenthesg§gyiTree string for the best parse obtained, and a
and brackets added around words (apparenflyks to the detailed two-dimensional tree
required but subsequently discarded by thr‘aepresentation.

program). Also, most punctuation is removed, to Of the 503 sentences, averaging 20 words in
avoid spurious token differences. Then bracketqdnqgth 939 received a parse. However, reviewing
files deriving from noncorrected and correctegne TextTree file revealed that at least 191 of the
TextTree files can be submited to EVALB 10470 parsed sentences were not parsed correctly,

obtain a bracket score. o indicating an actual parser accuracy for the
Lest this approach be dismissed as overlyycument of at most 55%.

sketchy, we note that the resulting brackets are geyiewing the TextTrees required 92 minutes,
similar to those resulting from a proposal bX:;iving a review rate of 6170 words per hour,
Ringger et al. (2004) for neutralizing differencesyciyding checking detailed parses for sentences
between parser outputs and treebanks ere errors might have lain in the TextTree
braqketlng maX|maI_head projections, pIU_S,S‘?m%rmatting.

additional - mechanisms to further minimize Tpa; review rate can be compared to the results
brackets. of Marcus et al. (1993) for post-annotation
proofreading of relatively flat, indented, butljul
labelled and bracketed trees. Those results

To avoid bracketing errors resulting fromindicated that:

imprecise spacing in manually edited trees, the -~ €xperienced annotators can proofread
TextTree indentations used are relatively wide. Previously corrected material at very high

With indentations of five spaces, it is likely that speeds. A parsed subcorpus ...was r(_ecently
imprecisely positioned line will be placed closert Proofread at an average speed of approximately
the desired level of indentation, so that an 4000 words per annotator per hour. At this

intelligent guess can be made as to the interdr F rate..., annotators are able to find and correct

5.2 Preventing Bracketing Errors

example, in: gross errors in parsing, but do not have time to
Line a check, for example, whether they agree with all
Line b prepositional phrase attachments."
Line c While the two tasks are not exactly comparable,
Line e?? if we assume that little or no editing was required
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in proofreading, the ballpark improvement of 50% Editing the TextTrees for the 104 sentences,

is encouraging. with an average sentence length of 21 words,
. required 83 minutes, giving a rate of 1518 words
6.2 Second Experiment per hour. This might be compared with the

average of 750 words per hour for the initial

For the second experiment, we used the cBoi fil nnotation of parses in the Penn Treebank

of the Brown Corpus (Francis and Kucera, 1964 - ;

and reviewed both the TextTree file and the ;[r)”eer:ment (Marcus et al., 1993) mentioned
separately, the detailed 2D parse trees also Afte-r
produced.

While the parser reported that 91 of the 10
sentences, or 88%, received a parse, the review
the TextTree file determined that at most only 5
sentences, or 48.5%, received a fully correct parg
The review of the detailed parse trees revealed
three additional errors.

The comparison of review times was les

the TextTreebank was created, the
racketing script described in section 5.1 was
lied both to the original TextTree file andlte t
xtTreebank, and the results were submitted to
e EVALB program, which reported a bracketing
call of 71%, a bracketing precision of 84%, and
average crossing bracket count of £.1%wo
sentences were not processed because of token
Thismatches. As expected, these scores were much

decisive in th's experiment, with the rate for th igher than the percentage of sentences correctly
TextTree review being 5733 words per hour, an o rsed

that for the detailed 2D representation 4410 words
per hour. .. 7 Related Work
However, there were non-quantifiable
differences in the reviews. One difference was thlost natural language parsers include some
the TextTree review was a fairly relaxed exercis@rovision for displaying their outputs, including
while the review of the 2D representations wagarse tree representations, and/or other material,
done with a conscious attempt at speed, and wasch as head-dependent relationships, feature
quite stressful—not something one would like tatructures, etc. These displays are generally
repeat. Another difference was that scanning thetended for deep review of parse results, and thu
TextTree file provided a far better cumulativeattempt to maximize information content
sense of the kinds of problems presented by thework on reducing review effort usually takes
document/genre, which might be further exploitefllace in the context of developing treebanks by
by a more interactive format (e.g., using HTMLselection among, and/or manual correction of,
forms) allowing users to classify erroneous parsegrser outputs. In this area, the most relevant
by error type. work may be the experiments of Marcus et al.
The experiment was then extended to check tlig993) using bracketed, indented trees. They found
extent to which TextTree files could efficientlythat annotator efficiency required eliminating
edited for purposes of limited-function treebanknany detailed brackets and category labels from
creation. the parser outputs presented. Other approaches
For this purpose, to minimize typing when &aest, in whole or in part, on selecting among
sentence had no complete parse, the TextTree filRernative two dimensional parse trees, such as
included the list of chunks identified by the XIPthe distinguishing-feature-augmented approach of
parser. A similar strategy could be used witlDepen et al. (2002), discussed in Section 2. As
parsers that, when no complete parse is foundiscussed in that section, however, two-
return an unrelated sequence of adjacedimensional tree displays are problematical for
constituent parses. This is done by some statistidarge trees, and it is not clear to what extent
and finite-state-based parsers, as well as by fsarsgistinguishing feature information can expedite
employing the "fitted parse” method of Jensen &klecting among attachment choices.
al. (1983) or the "fragment parse” method
described by Riezler et al. (2002).

* Sentences not receiving complete parses were
submitted to EVALB without any brackets, contributing
® With part-of-speech tags removed zero counts to the total # of correct constituents recalled.
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Other related work deals with reducingbootstrapping practice is to allow annotators to
measured differences between parser outputs ampbrove, or select among, parser output trees
treebanks due solely to grammar style. Asonnected with the deeper information (King et al.,
discussed in section 5, the bracketed material us2@d03). TextTrees might be used to facilitate this
in treebank-based measurement by Ringger et ptocess, with annotators either (a) interactively
(2004) is similar to the bracketed material thagelecting among alternative TextTrees or, because
would result from systematically bracketingthere may be many alternatives, (b) editing a
TextTrees. TextTree file containing at most one parse for each

Finally, work by Walker (2001), intended notsentence (possibly chosen arbitrarily) and usieg th
for parser/grammar development, but to facilitateesult for offline selection. Also, a parser used
reading and improve retention, produces texhe bootstrapping might refer to bracketed
formats that bear some similarity to TextTrees, butextTreebanks to avoid pruning away elements of
are more closely attuned to spoken phrasing thaporrect parses at intermediate points in parsing.
syntactic form. The method uses complex A third direction for further work is in extending
segmentation and indentation strategies generatlye TextTree approach to deal with outputs of
based on a combination of punctuation and closedependency-based parsers that do not produce

class words. constituent trees. While this should be a natural
extension, an alternative system of features and
8 Directionsfor Further Development directives would seem to be needed.
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Abstract

It is not cleara priori how well parsers
trained on the Penn Treebank will parse
significantly different corpora without
retraining. We carried out a compet-
itive evaluation of three leading tree-
bank parsers on an annotated corpus
from the human molecular biology do-
main, and on an extract from the Penn
Treebank for comparison, performing a
detailed analysis of the kinds of errors
each parser made, along with a quan-
titative comparison of syntax usage be-
tween the two corpora. Our results sug-
gest that these tools are becoming some-
what over-specialised on their training
domain at the expense of portability, but
also indicate that some of the errors en-
countered are of doubtful importance for
information extraction tasks.

Furthermore, our inital experiments

with unsupervised parse combination
techniques showed that integrating the
output of several parsers can ameliorate
some of the performance problems they
encounter on unfamiliar text, providing

accuracy and coverage improvements,
and a novel measure of trustworthiness.

Supplementary materials are available
at http://textmining.cryst.bbk.
ac.uk/acl05/.

1 Introduction

The availability of large-scale syntactically-
annotated corpora in general, and the Penn Tree-
bank (PTB;Marcus et al.1994) in particular, has
enabled the field of stochastic parsing to advance
rapidly over the course of the last 10-15 years.
However, the newspaper English which makes up
the bulk of the PTB is only one of many dis-
tinct genres of writing in the Anglophone world,
and certainly not the only domain where poten-
tial natural-language processing (NLP) applica-
tions exist that would benefit from robust and re-
liable syntactic analysis. Due to the massive glut
of published literature, the biomedical sciences in
general, and molecular biology in particular, con-
stitute one such domain, and indeed much atten-
tion has been focused recently on NLP in this area
(Shatkay and Feldma2003 Cohen and Hunter
2009.

Unfortunately, annotated corpora of a large
enough size to retrain stochastic parsers on do not
exist in this domain, and are unlikely to for some
time. This is partially due to the same differences
of vocabulary and usage that set biomedical En-
glish apart from th&Vall Street Journain the first
place; these differences necessitate the input of
both biological and linguistic knowledge on bio-
logical corpus annotation projectsylick et al,
2004, and thus require a wider variety of annota-
tor skills than general-English projects. For exam-
ple,5 (pronounced “five-prime”) is an adjective in
molecular biology, bup53 is a noun;amino acid

http://www.cis.upenn.edu/ treebank/
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is an adjective-noun sequerRdrit cadmium chlo-  idiosyncracies of biomedical text?
ride is a pair of nouns. These tagging decisions The differences discovered in the behaviour of
would be hard to make correctly without biologi-each parser, either between domains or between
cal background knowledge, as would the prepostifferent software versions on the same domain,
tional phrase attachment decisions-igure 1 will also be of interest to those in the computa-
Although it is intuitively apparent that there tional linguistics community who are involved in
are differences between newspaper English anghrser design. These values will give a compara-
biomedical English, and that these differencesive index of the flexibility of each parsing model
are quantifiable enough for biomedical writingon being presented with out-of-domain data, and
to be characterised as a sublanguage of Emay help parser developers to detect signs of over-
glish (Friedman et a).2002), the performance of training or, analogously, ‘over-design’ for one nar-
conventionally-trained parsers on data from thisow genre of English. It is hoped that our findings
domain is to a large extent an open questiorcan assist those better equipped than ourselves in
Nonetheless, papers have begun to appear whiphoperly investigating these phenomena, and that
employ treebank parsers on biomedical text, esur analysis of the problems encountered can shed
sentially untestedXjao et al, 2009. Recently, new light on the thorny problem of parser evalua-
however, the GENIA projectkim et al, 2003 tion.
and the Mining the Bibliome projecK(lick et al,, Finally, several questions arise from the use of
2004 have begun producing small draft corpora ofnultiple parsers on the same corpus that are of
biomedical journal paper abstracts with PTB-styl§oth theoretical and practical interest. Does agree-
syntactic bracketing, as well as named-entity anghent between several parsers indicate that a sen-
part-of-speech (POS) tags. These are not curreniynce has been parsed correctly, or do they tend to
on a scale appropriate for retraining parsers (Comnake the same mistakes? How best can the output
pare the~50,000 words in the GENIA Treebank of an ensemble of parsers be integrated, in order
to the ~1,000,000 in the PTB; but see alS&c- to boost performance above that of the best sin-
tion 7.2 but can provide a sound basis for empirigle member? And what additional information can
cal performance evaluation and analysis. A college gleaned from comparing the opinions of sev-

tion of methods for performing such an analysiseral parsers that can help make sense of unfamiliar
along with several interesting results and an invegext?

tigation into techniques for narrowing the perfor-
mance gap, is presented here. 2 Evaluation methodologies

1.1 Motivation We initially chose to rate the parsers in our as-
We undertook this project with the intention ofsessment by several different means which can
addressing several questions. Firstly, in order tbe grouped into two broad classes: constituent-
deploy existing parsing technologies in a bioinand lineage-based. Whieampson and Babarczy
formatics setting, the biomedical NLP commu+2003 showed that there is a limited degree of cor-
nity needs a comprehensive assessment of perfoelation between the per-sentence scores assigned
mance — which parser(s) to choose, what accurabdy the two methods, they are independent enough
each should be expected to achieve etc., along withat a fuller picture of parser competence can be
information about the different situations in whichbuilt up by combining them and thus sidestep-
each parser can be expected to perform well gring the drawbacks of either approach. However,
poorly. Secondly, assuming there is a performanaaverall performance scores designed for competi-
deficit, can any simple steps be taken to mitigatévely evaluating parsers do not provide much in-
it? Thirdly, what engineering issues arise from theight into the aetiology of errors and anomalies, so
— _ _ we developed a third approach based on produc-
According to some annotators at least; othersatafho . .
as a noun, although one would not speakaf amino, *some tion rules that enabled us to mine the megabytes
amino or *several aminos. of syntactic data for enlightening results more ef-
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a. [ This protein | [ binds the DNA [ by the TATA box [ on its minor groove. ] |1 |

b. [ This protein ] [ binds the DNA [ by the TATA box ]y [ at its C-terminal domain. J» ]

Figure 1. These two sentences are biologically clear but syntactically ambiguous. Only the knowledge
that the C-terminal domain is part of a protein, whereas the TATA box and minor groove are parts of
DNA, allows a human to interpret them correctly, by attaching the prepositional phrases 1 and 2 at the
right level.

fectively. All the Perl scoring routines we wrote or even most of the words in the constituent were

are available from owvebsite correctly categorised. One can of course suggest
_ modifications for these measures designed to ac-
2.1 Constituent-based assessment count for particular situations like these, although

Most evaluations of parser performance are baseut without losing some of their elegance. The
upon three primary measures: labelled constituesame is true for label mismatches, where a con-
precision and recall, and number of crossingtituent’s boundaries are correct but its category is
brackets per sentence. Calculation of these scoresong.

for each sentence is straightforward. Each con- More fundamentally, it could be argued that by
stituent in a candidate parse is treated as a teaking as it were horizontal slices through the syn-
ple (Ibound LABEL rbound), wherelboundand tax tree, these measures lose important informa-
rbound are the indices of the first and last wordsion about the ability of a parser to recreate the
covered by the constituent. Precision is the pragross grammatical structure of a sentence. The
portion of candidate constituents that are corregieight of a given constituent in the tree, and the
and is calculated as follows: details of its ancestors and descendants, are not
directly taken into account, and it is surely the
case that these broader phenomena are at least as
important as the extents of individual constituents

Recall is the proportion of constituents from then affecting meaning. However, constituent-based
gold standard that are in the candidate parse: ~Measures are not without specific advantages too.
These include the ease with which they can be bro-

_ # true positives ken down into scores per label to give an impres-
# true positives + # false negatives sion of a parser’s performance on particular kinds
of constituent, and the straightforwvard message

The crossing brackets score is reached by courﬁiey deliver about whether a badly-performing

ing the number of c_onstltuents in the ca'ndldat. arser is tending to over-generate (low precision),
parse that overlap with at least one constituent i nder-generate (low recall) or mis-generate (high
the gold standard, in such a way that one is not &ossing brackets)

subsequence of the other.

Although this scoring system is in wide use, it .
is not without its drawbacks. Most obviously, it2'2 Lineage-based assessment
gives no credit for partial matches, for exampldn contrast to this horizontal-slice philosophy,
when a constituent in one parse covers most @ampson and Babarc{2003 advocate a verti-
the same words as the other but is truncated or egal view of the syntax tree. By walking up the
tended at one or both ends. Indeed, one can imagee structure from the immediate parent of a given
ine situations where a long constituent is truncatediord until the top node is reached, and adding
at one end and extended at the other comparedé¢ach label encountered to the end of a list, a ‘lin-
the gold standard; this would incur a penalty uneage’ representing the word’s ancestry can be re-
der each of the above metrics even though somgeved. Boundary symbols are inserted into this

B # true positives
~ #true positives + # false positives
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lineage before the highest constituent that begirend crossing brackets do. Another possible objec-
on the word, and after the highest constituent thaion is that since an error high in the tree will af-
ends on the word, if such conditions apply; this alfect many words, the system implicitly gives most
lows potential ambiguities to be avoided, so thatveight to the correct determination of those fea-
the tree as a whole has one and only one corrédres of a sentence which are furthest from be-
sponding set of ‘lineage strings’ (s€eure 2. ing directly observable. One might argue, how-
Using dynamic programming, a Levenshteirever, that since a high-level attachment error can
edit distance can be calculated between eadossly perturb the structure of the tree and thus
word’s lineage strings in the candidate parse antthe interpretation of the sentence, this is a perfectly
the gold standard, by determining the smallestalid approach; it is certainly complementary to
number of symbol insertions, deletions and substthe uniform scoring scheme described in the previ-
tutions required to transform one of the strings int@us section, where every mistake is weighted iden-
the other. The leaf-ancestor (LA) metric, a simitically.
larity score ranging between 0 (total parse failure)
and 1 (exact match), is then calculated by taking-3 Production-based assessment
into account the lengths of the two lineages: In order to properly characterise the kinds of errors
that occurred in each parse, and to help elucidate
the differences between multiple corpora and be-
tween each parser’s behaviour on each corpus, we
The per-word score can then be averaged overdgveloped an additional scoring process based on
sentence or a whole corpus in order to arrive at goroduction rules. A production rule is a syntactic
overall performance indicator. Besides avoidingperation that maps from a parent constituent in a
some of the limitations of constituent-based evalsyntax tree to a list of daughter constituents and/or
uation discussed above, one major advantage POS tags, of the general form:
this approach is that it can provide a word-by-word
measure of parser performance, and thus draw at- LABEL, — LABEL;...LABEL,
tention easily to those regions of a sentence which
have proved problematic (s&tection 6.2for an For example, the rule that maps from the top-
example). The algorithm can be made more semaost constituent ifrigure 2to its daughters would
sitive to near-matches between phrasal categoriee S — NP VP. A production is the application
by tuning the cost incurred for a substitution beof a production rule at a particular location in the
tween similar labels, e.g. those for ‘singular nounsentence, and can be expressed as:
and ‘proper noun’, rather than adhering to the uni-
form edit cost dictated by the standard LevenshteinABE Ly, (Ibound rbound) — LABEL; ... LABEL,
scheme. In order to avoid over-complicating this
study, however, we chose to keep the standard Production precision and recall can be calcu-
penalty of 1 for each insertion, deletion or substitated as in a normal labelled constituent-based as-
tution. sessment, except that a proposed production is a
One drawback to leaf-ancestor evaluation is thdtue positive if and only if there exists a production
although it scores each word (sentence, corpus)the gold standard with the same parent label and
between 0 and 1, and these scores are presentalindaries, and the same daughter labels in the
here as percentages for readability, it is misleadsame order. (The respective widths of the daughter
ing to think of them as percentages of correctnesnstituents, where applicable, are not taken into
in the same way that one would regard constituertccount, only their labels and order; any errors of
precision and recall. Indeed, the very fact thawidth in the daughters are detected when they are
it results in a single score means that it reveal®sted as parents themselves.)
less at first glance about the broad classes of er-Furthermore, as an aid to the detection and anal-
rors that a parser is making than precision, recajlsis of systematic errors, we developed a heuristic

dist(lineageg, lineage)

LA=1-— Ien(“neagq) + |en(IineagQ)
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Figure 2: Skipping the POS tag, the lineage stringuiaijuely is: [ ADVP ] VP VP S. The left and
right boundary markers record the fact that AP constituent both starts and ends with this word.

for finding the closest-matching candidate produc- 5. Failing that, it looks for all extensions
tionsPROD; ...PRODy, in a parse, in each case and truncations of the production where
where a productioPROD in the gold standard is the parent label is correct but the daugh-
not exactly matched in the parse. ters are incorrect, keeping only those

that are closest in width t¢®ROLy. The
1. First, the heuristic looks for productions with meta-rules EXT_PARENTMATCH and/or

correct boundaries and parent labels, but in-  Truync PARENTMATCH are returned.
correct daughters. The corresponding pro-
duction rules are returned. 6. If no matches are found in any of these

. _ _ _ classes, a null result is returned.
2. Failing that, it looks for productions with

correct boundaries and daughters, preserving Note that in some cases) production rules of

the ord:—:r Ofl the ﬂaughters, but with incorrect, o g me class may be returned, for example when
parent labels. The corresponding productiogs ¢josest matches in the parse are two produc-
rules are returned. tions with the correct parent label, one of which is

3. Failing that, it looks for productions with cor- ©N€ Word longer thaROD,, and one of which

rect boundaries but incorrect parent label& ©n€é word shorter. It is also conceivable that
and daughters. The corresponding produ({pulnple productions with the same parent or same
tion rules are returned daughters could occupy the same location in the

sentence without branching, although it seems un-
4. Failing that, it looks for all extensions andlikely that this would occur apart from in patho-

truncations of the production (boundary mod{ogically bad parses. In any ambiguous cases, no
ifications such that there is at least one woréttempt is made to decided which is the ‘real’ clos-
from PROL still covered) with correct par- est match; almmatches are returned, but they are
ent and daughter labels and daughter ordeflownweighted so that each counts gsnlof an
keeping only those that are closest in width terror when error frequencies are calculated. In no
PROL, (minimum number of extensions andcircumstances are matches from different classes
truncations). The meta-rul&XT_ALLMATCH returned.
and/or TRUNC_ALLMATCH as appropriate are  The design of this procedure reflects our re-
returned. guirements for a tool to facilitate the diagnosis and
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summarisation of parse errors. We wanted to befic manually-prepared evaluation corpus in a
able to answer questions like “given that parsemon-treebank format. In addition, none of them
A has a low recall foNP — NN NN productions, deliver the richness of information supplied by
what syntactic structures is it generating in theiproduction-based assessment, particularly in com-
place? Why might this be so? And what effecbination with the other methods outlined above.
might these errors have on the interpretation of the

sentence?” Accordingly, as the heuristic casts th@ Comparing the corpora

net further and further to find the closest match _

for a productionPROD, the classes to which it The gold standard data for our experiments was

assigns errors become broader and broader. AR/Wn from the GENIA Treebarik a beta-stage
match at stages 1-3 is not simply recorded as@rPus of 200 abstracts drawn randomly from
substitution error, but a substitution foparticu- theé MEDLINE databasewith the search terms
lar incorrect production rule. However, matches athuman”, “blood cell” and “transcription factor”,
stages 4 and 5 do not make a distinction betweel{'€s€ abstracts have been annotated with POS
different magnitudes of truncation and extensiori2ds, named entity classes and boundayiesd

and at stage 5 the information about the daugifyntax trees which broadly follow the conventions
ters of incorrect productions is discarded. This al°f the PTB. Some manual editing was required
lowed us to identify broad trends in the data evefP COITect annotation errors and remove sentences
where the correspondences between the gold staMith uncorrectable errors, leaving 1757 sentences
dard and the parses were weak, yet nonethele@é"’oe tokens) in the gold standard. All errors

recover detailed substitution information akin tovere reported to the GENIA group.
confusion matrices where possible. For comparison purposes, we used the standard

Similar principles guided the decision not toset-aside test set from the PTB, section 23. This

consider extensions and truncations with differerftonsists of 56684 words in 2416 sentences.
parent labels as potential loose matches, in order to T gain insight into the differences between the
avoid uninformative matches to productions elsetwo corpora, we ran several tests of the grammati-
where in the syntax tree. In practice, the matchegal composition of each. For consistency with the
returned by the heuristic accounted for almost aparser evaluation results, we stripped the follow-
of the significant systematic errors suffered by théhg punctuation tokens from the corpora before
parsers (se&ection § — null matches were in- gathering these statistics: period, comma, semi-
frequent enough in general that their presence @plon, colon, and double-quotes (whether they
larger numbers on certain production rules was itwere expressed as a single double-quotes charac-
self useful from an explanatory point of view. ter, or pairs of opening or closing single-quotes).
We also removed any super-syntactic information
2.4 Alternative approaches such as grammatical function suffixes, pruned any
Several other proposed solutions to the evaludree branches that did not contain textual termi-
tion problem exist, and it is an ongoing and conhals (e.g. traces), and deleted any duplicated
tinually challenging field of research. Suggestegonstituents — that is, constituents with only one
protocols based on grammatical or dependendiaughter that has the same label.
relations Crouch et al. 2009, head projection
(Ringger et al. 2004, alternative edit distance 3-1 Sentence length and complexity

metrics Roark 2002 and various other schemesHaying performed these pre-processing steps, we

have been suggested. Many of these alterngounted the distributions of sentence lengths (in
tive methodologies, however, suffer from one or
more disadvantages, such as specificity to one par- 3http://www-tsujii.is.s.u-tokyo.ac.jp/
ticular grammatical formalism (e.g. head-driverfEVA/topics/Corpus/GTB. htnl

h | f http://www.pubmed.org/
phrase Strucwre grammar) or O_ne Class Of parser stpg named entity annotations are supplied in a separate
(e.g. partial parsers), or a requirement for a speite which was discarded.
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words) and sentence complexities, using the nunage. Such differences are invisible to conventional
ber of constituents, not counting POS tags, asonstituent-based analysis.
a simple measure of complexity — although of The comparative lack of syntactic diversity in
course one can imagine various other ways tGENIA may seem counter-intuitive, since biolog-
gauge complexity (mean tree depth, maximunical language seems at first glance dense and dif-
tree depth, constituents per word etc.). The resultgult. However, it must be remembered that the
are shown inFigure 3 and reveal an unexpectedtext in GENIA consists only of abstracts, which
level of correlation. Apart from a few sparse in-are tailored to the purpose of communicating a
stances at the right-hand tails of the two GENIAew salient points in a short passage, and tend
distributions, and a single-constituent spike on thé& be composed in a somewhat formulaic man-
PTB complexity distribution (due to one-phrasener. They are written in a very restricted regis-
headings likesSTOCK REPORT.), the two corpora ter, compared to the range of registers that may
have broadly similar distributions of word countbe present in one issue of a newspaper — news ar-
and constituent count. The PTB has slightly morgicles, lifestyle features, opinion pieces, financial
mass on the short end of the length scale, buéports and letters will be delivered in very dif-
GENIA does not have a corresponding number derent voices. Also, some of the apparent com-
longer sentences. This ran contrary to our initiablexity of biomedical texts is illusory, stemming
intuition that newspaper English would tend to b&rom the unfamiliar vocabulary, and furthermore,
composed predominantly of shorter and simples distinction must be made between syntactic and
sentences than biological English. semantic complexity. Consider a phrase liken-
sulphur cluster assembly transcription factor, the
name of a family of DNA-binding proteins, which
Next, we counted the frequency with which eachs a semantically-complex concept expressed in a
constituent label appears in each corpus. The reyntactically-simple form — essentially just a se-
sults are shown ifrigure 4 The distributions are ries of nouns.
reasonably similar between the two corpora, with
the most obvious difference being that GENIA4  Evaluating the parsers
uses noun phrases more often, by just over six per-
centage points. This may reflect the fact that muchhe parsers chosen for this evaluation were those
of the text in GENIA describes interactions be-described originally inCollins (1999, Charniak
tween multiple biological entities at the molecular(1999 andBikel (2002. These were selected be-
and cellular levels; conjunction phrases are thregause they are up-to-date (having last been up-
times as frequent in GENIA too, although this isdated in 2002, 2003 and 2004 respectively), highly
not obvious from the chart as the numbers are segarded by the computational linguistics com-
low in each corpus. munity, and importantly, free to use and modify
One surprising result is revealed by lookingfor academic research. Since part of our moti-
at Table 1 which shows production rule usagevation was to detect signs of over-specialisation
across the corpora. Although GENIA uses slighthon the PTB, we assessed the current (0.9.9) and
more productions per sentence on average, it uspeevious (0.9.8) versions of the Bikel parser in-
marginally fewedistinct production ruleper sen- dividually. The current version was invoked
tence, and considerably fewer overall — 62% of thevith the newbikel.properties settings file,
number of rules used in the PTB, despite beingvhich enables parameter pruningikel, 20049,
73% of the size in sentences. These figures, alonghereas the previous version used the original
with the significantly different rankings and fre-collins.properties settings which were de-
guencies of the actual rules themselvéshle 3, signed to emulate the Collins parser model 2 (see
demonstrate that there are important syntactic dibelow). The same approach was attempted with
ferences between the corpora, despite the simthe Charniak parser, but the latest version (re-
larities in length, complexity and constituent usdeased February 2005) suffered from fatal errors

3.2 Constituent and production rule usage
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Figure 3: Sentence length and complexity distributions, GENIA vs. PTB.
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Figure 4: Constituent usages, GENIA vs. PTB.

GENIA PTB
Num. productions used in corpus 78831 (44.87/sent.) 96694 (40.02/sent.)
Num. distinct production rules | 1364 (5.47/sentence) 2184 (5.55/sent.)

Table 1: Production and production rule usage in the two corpora.

on GENIA which could not be diagnosed in timetime constants and run-time parameters available
for publication. Earlier versions of the Collinsto the programs; furthermore, it is probably safe
parser are not available; however, the distributioto assume that each author distributes his software
comes with three language models of increasingith an optimal or near-optimal configuration, at
sophistication which were treated initially as disdeast for in-domain data.

tinct parsers.

Tweaking of parser options was kept to a min-1  Partof-speech tagging

imum, aside from trivial changes to allow for The Collins parser requires pre-tagged input, and
unexpectedly long words, long or complex senalthough the Bikel parser can take untagged in-
tences (e.g. default memory/time limits), and difput, the author recommends the use of a dedicated
fering standards of tokenisation and punctuatiorROS tagger. For this reason, we pre-processed
although a considerable degree of pre- and poSGENIA with MedPost Emith et al, 2009, a spe-
processing by Perl scripts was also necessary tialised biomedical POS tagger that was devel-
bring these into line. More detailed tuning wouldoped and trained on MEDLINE abstracts. The
have massively increased the number of variablesipplied gold-standard POS tags were discarded
under consideration, given the number of compileas using them would not provide a realistic ap-
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Top-25 production rules in GENIA (left) and PTB (right)
Freq. Rule Rank | Freq. Rule
6.36 PP — IN NP 1 4.80 PP — IN NP
3.32 NP — NN 2 2.95 S — NP VP
3.13 NP — NP PP 3 2.26 NP — NP PP
2.17 S — NP VP 4 2.15| TOP — S
2.03 TOP — S 5 1.86 NP — DT NN
1.23 NP — DT NN 6 1.43 S — VP
0.89 NP — NN NN 7 1.08 NP — PRP
0.85 NP — NP CC NP 8 0.92 | ADVP — RB
0.82 S — VP 9 0.91 NP — NNP
0.76 VP — VBN PP 10 | 0.83 NP — NNS
0.74 | ADVP — RB 11 | 0.81 VP — TO VP
0.70 NP —DT JJ NN | 12 | 0.78 NP — NN
0.66 NP — NNS 13 | 0.74 NP — NNP NNP
0.58 NP — JJ NNS 14 0.63 | SBAR — IN S
0.53 NP — JJ NN 15 0.62 NP — DT JJ NN
0.51 | SBAR — IN S 16 0.60 NP — NP NP
0.51 PP — TO NP 17 | 0.57 | SBAR — S
0.49 NP — DT NN NN 18 0.50 VP — VB NP
0.48 NP — NP PRN 19 0.48 NP — NP SBAR
0.48 | ADJP — JJ 20 0.47 VP — MD VP
0.47 NP — NP PP PP 21 0.46 NP — JJ NNS
0.47 PRN — ( NP ) 22 0.41 | SBAR — WHNP S
0.45 NP — NN NNS 23 | 0.40 PP — TO NP
0.44 NP — NP VP 24 0.33 VP — VBD SBAR
0.40 VP — VBD VP 25 0.32 NP — NP CC NP

Table 2: The most common production rules in the two corpora, in order, with the frequency of occur-
rence of each. Notice that several rules are much more common in one corpus than the otheiBuch as
— TO VP, which is the 11th most common rule in the PTB but doesn’t make it into GENIA's list.

proximation of the kinds of scenario where parsingupplied tagging scored 97% accuracy. The Char-
software would be deployed on unseen text. Medhiak parser re-tagged this corpus with 96% accu-
Post was found to tag GENIA with 93% accuracyracy.

Likewise, although the Charniak parser assigng 2 [nitial performance comparison
POS tags itself and was developed and traineﬂ

. ) : ) aving parsed each corpus with each parser, the
without exposure to a biological vocabulary, it was . .
. ; output was post-processed into a standardised
allowed to compete on its own terms against th

) . ) : XML format. The same pruning operations per-
other two parsers each in conjunction with Med- i P g op . P
. . . formed on the original corpora (segection 3

Post. Although this may seem slightly unfair, to do
) . were repeated where necessary. TOP nodes (S1
otherwise would not reflect real-life usage scenar-

. . nodes in the case of the Charniak parser) were
':fséSI/?e parser tagged GENIA with an accuracYe moved from all files as these remain constant

across every sentence&lAC and NX labels were
The PTB extract used was included prefeplaced byNP labels in the parses of GENIA as
processed with the MXPOST tagg@&dtnaparkhi the GENIA annotators uskP labels where these
1996 as part of the Collins parser distribution; thewould occur. We then performed lineage- and
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Raw scores on GENIA (1757 sentences)
Parser LA score Precision Recall F-measure % perfect % failure
Bikel 0.9.8| 91.12 81.33 77.43 79.33 14.29 0.06
Bikel 0.9.9| 65.30 81.68 55.75 66.27 11.21 25.04
Charniak 89.91 77.12 76.05 76.58 12.81 0.00
Collins 1 88.74 79.06 73.87 76.38 13.15 0.68
Collins 2 87.85 81.30 74.49 77.75 14.00 1.42
Collins 3 86.33 81.57 73.28 77.20 14.00 2.28
Raw scores on PTB (2416 sentences)
Parser LA score Precision Recall F-measure % perfect % failure
Bikel 0.9.8| 94.45 88.09 88.13 88.11 33.44 0.04
Bikel 0.9.9| 80.11 88.03 74.61 80.76 29.80 12.7%
Charniak 94.36 88.09 88.28 88.18 35.06 0.00
Collins 1 94.17 86.80 86.70 86.75 31.13 0.00
Collins 2 94.36 87.29 87.20 87.24 33.49 0.04
Collins 3 94.25 87.28 87.10 87.19 33.11 0.08

Table 3: Initial performance comparison.

constituent-based scoring runs using our own Peshows recalculated scores based on evaluation of
scripts. successfully-parsed sentences only. Conflating the
The results of this experiment are summarisegderformance drops caused by poorly parsed sen-
in Table 3 showing both the scores on bothtences with those caused by total failures gives an
GENIA and the PTB. The LA score given is theinaccurate picture of parser behaviour. In order to
mean of the leaf-ancestor scores for all the worddetermine if there was any pattern to these fail-
in the corpus, and the precision and recall scorages, we plotted the number of parse failures for
are taken over the entire set of constituents in theach parser against sentence length and sentence
corpus. Initially, these measures were calculatecomplexity (seg-igure 5. These charts revealed
per sentence, and then averaged across each cgme interesting trends.
pus, but the presence of pathologically short sen-

tgncss such aginergy. gives an unrtTpresen.ta-IeIS 2 and 3 failing on two sentences in the PTB
tive boost to per-sentence averages. (Interestingly, ion 23 due to complexity, but this problem

many published papers do not make clear wheth% exacerbated in GENIA, with even the simpler
the results they present are per-sentence averages .| 1 failing on a number of sentences, one of

OI“COI‘pUS-V\{Iqe sc_:ores.) which was only 24 words long plus punctuation.
Mean X' is simply the average number of

Crossing brackets per sentence. ‘F_measum( Overa”, however, the failures do tend to cluster
Rijsbergen1979 is the harmonic mean of preci- around the right-hand tails of the sentence length
sion and recall; it is a balanced score that penalisé§d constituent count distributions. Discounting

algorithms which favour one to the detriment ofSuch sentences, the three models do show a con-
the other, and is calculated as follows: sistent monotonic increase in precision, recall and

2% PxR LA score from the simplest to the most complex,
=~ PIR accompanied by a decrease in the number of cross-
_ ing brackets per sentence. Interestingly, these
4.3 Parse failures intervals are much more pronounced on GENIA
Since most of the parsers suffered from a considhan on the PTB, where the performance seems to
erable number of parse failures in GENIA — senlevel off between models 2 and 3. Difficult sen-
tences where no parse could be obtainddble 4 tences aside, then, it appears that the advanced fea-

There is a known problem with the Collins mod-
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Scores on GENIA, successfully-parsed sentences only
Parser LA score Precision Recall F-measure Mean X # parsed
Bikel 0.9.8| 91.15 81.33 77.46 79.35 2.06 1756
Bikel 0.9.9| 91.17 81.68 77.04 79.29 1.89 1317
Charniak 89.91 77.12 76.05 76.58 2.42 1757
Collins 1 90.53 79.06 75.35 77.16 2.29 1745
Collins 2 91.21 81.30 77.24 79.22 2.01 1732
Collins 3 91.32 81.57 77.42 79.44 1.95 1717
Scores on PTB, successfully-parsed sentences only
Parser LA score Precision Recall F-measure Mean X # parsed
Bikel 0.9.8| 94.53 88.09 88.20 88.15 1.07 2415
Bikel 0.9.9| 94.52 88.03 88.07 88.05 1.04 2108
Charniak 94.36 88.09 88.28 88.18 1.08 2416
Collins 1 94.17 86.80 86.70 86.75 1.23 2416
Collins 2 94.45 87.29 87.28 87.28 1.19 2415
Collins 3 94.44 87.28 87.27 87.28 1.18 2414

Table 4: Performance scores, discounting all parse failures. Scores for the Charniak parser, and Collins
model 1 on the PTB, are shown again for comparison, although they did not fail on any sentences.

tures of models 2 and 3 are actually more valuablieas been cleaned of all unparseable sentences; this
on this unfamiliar corpus than on the original deimpression is reinforced by the fact that the preci-
velopment domain — provided that they do not trigsion and recall scores reported by the author agree
the parser up completely. quite closely with our results on the PTB once the

While Bikel 0.9.8's failures are relatively few parse failures have been removed.

and tend to occur more often in longer and more bini h
complex sentences, like those of the Collins moo5 Combining the parsers

els, the distributions irFigl_Jre_qur Bikel 0.9.9 Given the poorer results of these parsers on
follow the shapes of the distributions remarkablyGENIA than on the PTB, and the comparative

accurately. In other words, the length or complexraCk of annotated data in this domain, it is im-

::;y of & sentehnce l;i_?es r;oéie?rg ;ogbe a major Irif)'ortant to consider ways in which performance
uence on the ability of Bikel 0.9.9 to parse it. ., e enhanced without recourse to supervised

Undoubtedly, there is something more subtle iI?raining methods. Various experimental tech-

th'e c,omposmon of these sentences that Confusﬁmues exist for reducing or eliminating the need
B_'kel s updated algorithm, although we (_;OUId N0y |abelled training data, particularly in the pres-
discern any pattern by eye. Perhaps this problgghce of several diverse parsers (or more generally,
could be diagnosed by F“‘?”'to_””g the parser "Elassifiers). These include active learningsf
a Java debugger or modifying it to produce more |- e and Baldridge2004), bagging and boost-
verbose output_, but such an examination is beyormg (Henderson1999 and éo-training $teedman
the scope of this work. et al, 2003. In addition to these ‘knowledge-
Although version 0.9.9 fails on far fewer sen-poor’ techniques, one can easily imagine domain-
tences in the PTB than in GENIA, it still suffers specific ‘knowledge-rich’ techniques that employ
from two orders of magnitude more failures tharexisting biological data sources and NLP meth-
any other parser on the same corpus. These reds in order to select, modify, or constrain parses
sults suggest that the author’s claim that paramésee Section 7.2  For this preliminary investi-
ter pruning results in “no loss of accuracyikel, gation, however, we concentrated on knowledge-
20049 can only be taken seriously when the test sgtoor methods originating in work on parsing the
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PTB which could exploit the availability of multi- converge on the correct set of constituents.
ple parsers whilst requiring no time-consuming re- We implemented a three-way majority vote en-
training processes or integration with external resemble between the Collins and Bikel cascades
sources. Perl implementations of the algorithmand the Charniak parser; the results are shown in
discussed below can be downloaded from oufable 6 The most notable gain was in precision,
website as one would hope from an algorithm designed
to screen out minority parsing decisions, but the
scores also illustrate an interesting phenomenon.
In the Collins parser instructions, the author sugAlthough the ensemble took the lead on all the
gests stacking the three models in decreasing ordesnstituent-based performance indicators, it per-
of sophistication (3— 2 — 1), and for each sen- formed poorly on LA score. This demonstrates
tence, falling back to the next less sophisticatedn important point about parser scoring metrics —
model each time a more sophisticated one fails tthhat an algorithm designed to boost one measure of
obtain a parse. The principle behind this is that thquality can do so without necessarily raising per-
more complex a model is, the more often it willformance according to a different yardstick.
fail, but the better the results will be when it does Part of the reason for this discrepancy may be
return a parse. We implemented this system fax quirk of the constituent voting algorithm that
the Collins models, and also for the Bikel parserconstituent-based precision and recall scores gloss
starting with version 0.9.9 and falling back to 0.9.8&ver. The trees it produces are not guaranteed
on failure. Since the Charniak parser did not suffeto be well-formed under the grammars of any of
any failures, we added it to each of these cascadtee members of the ensemble; if, for example,
as a last-resort level, to fill any remaining gaps. the parsers cannot reach consensus about the exact
As expected, the results for each cascadeoundaries of a verb phrase, a sentence without a
(Table 5 were comparable to their componentVP constituent will be produced, leading to some
parsers’ scores on successfully-parsed sentenagsusual attachments at a higher level. Unlike the
(Table 9, except with 100% coverage of the cor-constituent-based approach, LA scoring tends to
pus. In each of the following parser integratiorfavour parses that are accurate at the upper lev-
methods, we used these fallback cascades to regis of the tree, so an increase in precision and re-
resent the Bikel and Collins parsers, rather thaoall without a corresponding increase in LA score
any of their individual parser models. The Bikelwould be consistent with this kind of oddity.
cascade was used as a baseline against which to _
test the results of each method for statistical sig2-> Parse selection
nificance, using a two-tailed dependent t-test ovekn alternative approach to integrating the out-

5.1 Fallback cascades

paired scores. puts of a parser ensemble is whole parse selection
_ , on a per-sentence basis, which has the potential
5.2 Constituent voting added advantage over hybridisation methods like

Henderson(1999 reports good results when us-constituent voting that the gaps in trees described
ing a simple parse integration method called corabove cannot occur. The most obvious way to
stituent voting, where a hybrid parse is produceduess the best candidate parse for a sentence is to
by taking votes from all the parsers in an ensemassume that the true parse lies close to the centroid
ble. Essentially, all the constituents proposed bgf all the candidates in parse space, and then, using
the parsers are pooled, and each one is addedsome similarity or distance measure between the
the hybrid parse if more than half of the parsersandidates, pick the candidate that is most similar
in the ensemble agree on it. The assumption bés (or least distant from) all the other parses.

hind this concept is that the mistakes made by the We implemented three parse switchers, two
parsers are reasonably independently distributedsased on constituent overlap, and one based on lin-
if different kinds of errors beset the parsers, andage similarity between pairs of parses. Similarity
at different times, then a majority vote will tend toand distance switchingdendersonl1999 take the
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Ensemble scores on GENIA, all sentences parsed successfully
Ensemble LA score Precision Recall F-measure Mean X % perfect
Collins-Charniak fallback 90.74 80.51 76.44 78.42 2.16 14.00
Bikel-Charniak fallback 91.08 81.31 76.96 79.08 2.05 14.11

Table 5: Ensemble scores on GENIA for Collins(3, 2-Tharniak and Bikel(0.9.9, 0.9.8)Charniak
fallback cascades.

Ensemble scores on GENIA, all sentences parsed successfully
Algorithm LA score Precision Recall F-measure MeanX % perfect
Majority vote ensemble 90.21 83.41 77.50 80.35 1.71 14.68

Table 6: Ensemble scores on GENIA for parse combination by majority constituent voting.

number of constituents that each parse has in coomance gains we achieved with such methods are
mon, and the number that are proposed by eithstatistically significant, they are nonetheless some-
one but not both parsers, as measures of similarhat unimpressive compared to the 30% reduction
ity and distance respectively. Levenshtein switchef recall errors and 6% reduction of precision er-
ing, a novel method, uses the sentence-mean Lrs reported for the best ensemble techniques in
scores between parses as the similarity measuig¢enderson and Bri(1999 on the PTB.
In all methods, the parse with the maximum total
pairwise similarity (minimum total pairwise dis-
tance) to the set of rival parses for a sentence is __, . ,

) P . This led us to suspect that the parsers in the en-
chosen. In no case were POS tags taken into ac- . . .

. L sembles were making similar kinds of errors on

count when calculating similarity, as they would

have made the Collins and Bikel parsers artificiaIIfENlA' perhaps not across the board, but cer
similar. ainly often enough that consensus methods pick

The results of these experiments are shown iirqcorrect constituents, and centroid methods con-
Table 7 Al three methogs achieved compara-verge on incorrect parses, with a significant fre-
L . ncy. To investi his phenomenon, an
ble improvements overall, with the similarity andquoerecyenergll t(ff;ag:;eatarst tf]eiec;s:nsofo,r zagh

distance switching routines favouring recall and" g y P

- . . L Parsers performance drop on GENIA, we mea-
precision respectively (both differences significan .
at p < 0.0001). Note however that the Winningsured the precision and recall for each parser on

) ’ . o each production rule over GENIA and the PTB.

LA score for Levenshtein switching is not a sta- .
. — . We then gathered the 25 most common production
tistically significant improvement over the other

o rules in GENIA and compared the scores achieved
switching methods.

by each parser on each rule to the same rule in
PTB, thus drawing attention to parser-specific is-
sues and more widespread systematic errors. We
All of the parser integration methods discussedlso collected closest-match data on each missed
above make the assumption that the parsemoduction in GENIA, for each parser, and calcu-
in an ensemble will suffer from independently-lated substitution frequencies for each production
distributed errors, to a greater or lesser extentule. This enabled us to identify both the sources
Simple fallback cascades rely on their individuabf performance problems, and to a certain extent
members failing on different sentences, but théheir causes and connotations. These data tables
more sophisticated methods Bection 5.2and have been omitted for space reasons, since the dis-
Section 5.3re all ultimately based on the princi- cussion below covers the important lessons learnt
ple that agreement between parsers indicates cdnem them, but they are available as supplemen-
vergence on the true parse. Although the perfotary materials on owvebsite

6 Error analysis
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Ensemble scores on GENIA, all sentences parsed successfully
Algorithm LA score Precision Recall F-measure MeanX % perfect
Similarity switching 91.34 81.73 78.01 79.83 1.97 14.85
Distance switching 91.35 82.10 77.72 79.85 1.92 15.08
Levenshtein switching 91.39 81.83 77.51 79.61 1.95 14.74

Table 7: Ensemble scores on GENIA for parse selection by three centroid-distance algorithms

6.1 Bikel parser errors lowest in both LA score and F-measure when only
Despite the similar overall LA score and I:_successfully parsed sent(_ances are _taken into ac
. count, and still only achieves mediocre perfor-
measure for the two versions on parseable seni- , :
. : mance when the other parsers’ scores cover failed
tences only, there are signs that the differences . -
. sentences too, despite not failing on any sentences
between them run deeper than failure rates. The o .
o . itself. This discrepancy can be explained by a lack
newer version’s higher precision and lower cross-, . . . . . o
egf biomedical vocabulary available to its built-in
call, indicates that it is generating slightly more OS tagger. Although it tags GENIA W'.th an ac
) . curacy of 85% across all word classes, it achieves
conservatively than the older version, on GENIA .
ly 63% on theNN (singular/mass noun) class.

at least; these scores are much closer on the PTB. 7 . . .
is is the most numerous single class in GENIA,

Also, the production rule scores show one unex- . ) e
and that which many domain-specific single-word

ected phenomenon — the older version is acty- )
P P . Lferms and components of multi-word phrases be-
ally considerably better at labelling noun phraseFéng to

of the form ( NP ) as parenthetical expressions

in GENIA (F = 81.07) than in PTB £ = 61.29), The knock-on syntactic effects of this disability

as are the Collins and Charniak parsers, while the, ;o yaceq in the leaf-ancestor metrics, where

newer version is much worse at_ this taskiin GENI'Athe parser scores an impressive mean of 91.50 for
(F = 4236). On closer inspection, however, 84%

correctly-tagged words, compared to just 80.71
of the occurrences ®RN — ( NP ) mislabelled y-tagg P J

by th . instead KedPRE for incorrectly-tagged words. A similar effect can
y the hewer version are instead marke ._be seen in the statistics for productions witi
— ( NN ) productions of the same width — in

h q it diatep fituent tags on the right hand sideNP — NN and NP
otherwords, an intermedialt> constituent cov-__“yy yy are identified with respective recalls

ering just a single noun has in these cases be%? only 33% and 19% in GENIA, for example,

removed, and the noun _‘promoted’ toa dir.eCtas opposed to 90% and 82% in the PTB. More
daughter of thePRN constituent. Although this than 40% of mislabelledi® — NN productions

demonstrates a difference in the modelling ofnoun1 GENIA were identified instead 28 — NNP

:)hhr?seshbet;\(fefen the two l\éerlstlontsr; it is un,“kelgoroper noun) omP — NS (plural noun) pro-
al such a ditierence woll'd atter the meaning Qf o by the parser, and the implications of

asentence. Furthermore, it must be notedRRAt these mistakes for information extraction tasks do

t; (.NiT)B'S n?[ECh more com;non hm GEEIA{hnOt seem great, especially since the majority of
anin » S0 € Improvements achieved by ingle-word noun phrases of particular interest in

other parsers may be partially accidental_; €VeN this domain are likely to be genes, proteins etc.

Yhat can be tagged independently by a dedicated
cH}:lmed—entity recognizer. The story is different
for mislabellediP — NN NN productions, where
29% are mistaken fafP — JJ NN productions,

a substitution that one can imagine causing greater
The Charniak parser goes from state-of-the-art asemantic confusion. On the other hand, the Char-
PTB to comparatively poor on GENIA. It ranks niak parser goes from being the worst at identify-

theses is a noun phrase, they would do better
this production in GENIA as a result.

6.2 Charniak parser errors
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ing ADVP — RB productions (single-word adverb with all parsers having problems with identifica-
phrases) on the PTHB-(= 87.68) to being the best tion of the boundaries of the conjunction in the
at this task on GENIAK = 87.06). text, and often with correct labelling of the con-

Accuracy issues notwithstanding, Charniak’s istituents involved too. Cases where eatthis
still the most robust of all the parsers, failinga single word were handled relatively well, with
on none of the supplied sentences in either cothe essentially equivale® CC NN construction
pus. This may reflect a strategy of 'making-do’often being proposed instead, but more complex
when an exact parse cannot be derived; it desases caused widespread difficulty.
ployed more general-purpos@&®AG (fragment) More surprisingly, the labelling of single-word
and X (unknown/unparseable) constituents comnoun and adjective phrasé&( — NN and AJDP
bined than any other parser, and even a handfub JJ), both of which are significantly more fre-
of INTJ (interjection) phrases that no other parseguent in GENIA, seemed challenging across the
used in GENIA. Of course, such productions aréoard. The most commonly-occurring error in-
not always correct — there are actually no intervolved subsumption by a wider constituent with
jections in GENIA — but from an information ex- the same label, apart from the errors of vocabulary
traction point of view, a rough parse may be bettefor the Charniak parser as described above. How-
than no parse at all, especially if the inclusion okver, for correctly-tagged adjectives and nouns,
such inexact labels can be reflected in a reducebere are many situations where this will not make
level of confidence or trustworthiness for the senany difference to the sense of a sentence. For ex-
tence. ample, in a production lik§P — DT JJ NN, the
adjective still has its modificatory effect on the
noun without needing to be placed within AbBJP
We noted inSection 4.2that the Collins mod- phrase of its own, and the noun is entirely capable
els achieved successively better performance af acting as the head of the phrase without being
GENIA once parse failures were discounted. Cormested within anlP sub-phrase.
sidering individual production rules, however, the Similar effects occurred frequently with longer
trends are not so clear-cut. There are rules that giwrases containing nouns, suchN® — DT NN
follow this overall pattern, such & — NP VP, orNP — NN NN, where the most common errors
which model 3 actually assigns more effectivelywere also subsumptions by wider noun phrases.
on GENIA (F = 88.98) than it does on the PTB Although the GENIA annotators warn that "when
(F = 88.79). However, there are several commomoun phrase consists with sequence of ngsic$,
productions where model 3's accuracy degradebe internal structure is not neccessarily shofvn,”
more than model 2's, most of which begin with  which must account for some of the noun handling
— . ... Most of these are found in the PTB moreproblems, such subsumptions suggest that the op-
effectively by model 3 than model 2, which sug-posite may be occurring too — that there are cases
gests over-fitting; these specific increases in pewhere the parsers are failing to generate internal
formance have apparently come at the expense sifructure within noun phrases.
portability. Note, however, the caveat regarding Prepositions were involved in many of the prob-
noun phrases below. lematic cases, both on the left-hand and right-hand
sides of productions, and understandably so. The
disambiguation of prepositional attachment is a
In addition to these parser-specific observationgontinuing problem in parser design, and meth-
there are various phenomena that are common tals that take into account lexical dependencies be-
all or most of the parsers. Due to slight differ-tween head words will be less effective when the
ences in the annotation of co-ordinated structuregords in question are out-of-domain and thus un-
between the GENIA and PTB guidelines, the cor— o .

. . . http://www-tsujii.is.s.u-tokyo.ac.jp/

rect generation of noun-phrase conjunctiolB ( ~genia/topics/Corpus/manual-for-bracketing.
— NP CC NP) proved much harder on GENIA, htm1

6.3 Collins parser errors

6.4 Common trends
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seen in training. The productiomP — NP PP tence size where necessary, correlate fairly well
PP is a good example. The most common errof|r| = 0.5) with those parses’ true LA scores and F-
for all parsers was to produt® — NP PP atthe measures (se®ection 7.2 We developed a sim-
same span of words in the sentence, indicating thé&r measurement for constituent voting based on
one of the prepositional phrases is frequently athe level of consensus among the ensemble mem-
tached at the wrong level. The second most conbers — the number of constituents winning a ma-
mon error was to substitute a shork#, suggest- jority vote divided by the number of distinct can-
ing that one or both of th@Ps were excluded. didate constituents — which showed a comparable
Such errors are potentially of more serious semaidegree of correlation. This provides an answer
tic importance than differences of opinion abouto our initial question about the extent to which
how to mark up the internal structure of noun-onlyparser agreement signals parse correctness. Pre-

phrases. sumably the major limiting factor on these corre-
lations is the presence of widespread systematic
7 Discussion errors like those described Bection 6.4

Although the performance gains achieved by ouf-1 Engineering issues

parser integration methods are statistically signifas noted previously, the Charniak parser takes raw
icant, and illustrative of some important pointstext and performs tokenisation and POS tagging
about parser behaviour and syntactic evaluatioiternally. While this may seem like an advanta-
methodologies, it is doubtful that the results argyeous convenience, in practice it is the source of
good enough to justify deploying these techniquegonsiderable extra work, besides being the cause
on large amounts of text, at least in their currengf avoidable parse errors. The tokenisation stan-
form. The small increases in accuracy are proRards encoded by Charniak did not match those as-
ably outweighed by the additional computationakumed by either the GENIA corpus, or indeed the
costs. The fallback cascades provided the sanperB extract, although problems were much more
protection from parse failure, with better perforwidespread in the GENIA. Words containing em-
mance than the widest-coverage parser alone, apddded punctuation were frequently splitinto mul-
in a production system most sentences would onkiple tokens, so these word-internal symbols had
need to be parsed by the first parser in the cascadg. be converted into textual placeholders before
However, the parser integration idea as a wholgarsing and converted back afterwards. The some-
is not without its merits; we determined that an orwhat idiosyncratic conventions of the GENIA cor-
acle picking the best sentences on GENIA woulgus did not help differentiation/activation being
achieve an LA score of 93.56, so there is still roomagged as one token for example) but the fact that
for improvement if the algorithms can be madesimilar issues occurred on the newspaper corpus
smarter. Although our analysis of the parsers{e.g. withUS$ or 81-year-old) suggests that mak-
mistakes on GENIA indicated that the ideal ofing assumptions about the ‘correct’ way to to-
independently-distributed errors which underpingenise text is a bad policy in any domain.
these integration methods does not hold true, the Even when working on in-domain data, it seems
very fact that we can analyse their behaviour patike a bad design decision to assume the parser will
terns in such detail suggests that a sufficientlpe able to match the performance of a state-of-the-
well-designed ensemble could in principle learrart POS tagger on unseen text. The Bikel parser
the circumstances under which each parser coutghn operate in either mode, which is a much more
be trusted on a given corpus. flexible policy. In all fairness, however, it would
Furthermore, there are additional ways in whichprobably be fairly trivial for an interested C++ de-
an ensemble might assist with practical NLP isveloper to bypass the Charniak parser’s tokeniser
sues. While analysing the data from the parse sand tagger and recompile it.
lection algorithms, we discovered that the centroid A different kind of engineering issue is that of
distances for thavinning parses, scaled by sen-computation time. Parsing is a slow process in any
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case, and ensemble methods compound this pradind the Mining the Bibliome project begins post-
lem. However, parsing is a canonically easy taskg official releases. In the meantime, we have be-
to perform in parallel, since (at this level of under-gun investigating the potential for using biological
standing at least) each sentence has no dependaamed-entity and ontological-class information to
cies on the previous, so even the parse integratidrelp rule out unlikely parses, for example in cases
step can be split across multiple pipelines. We inwhere an entity name is bisected by a constituent
tend to run pilot studies on the scalability of paralboundary.
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Abstract

We give a technical description of the
fission module of the COMIC mul-
timodal dialogue system, which both
plans the multimodal content of the sys-
tem turns and controls the execution of
those plans. We emphasise the parts of
the implementation that allow the sys-
tem to begin producing output as soon as
possible by preparing and outputting the
content in parallel. We also demonstrate
how the module was designed to ensure
robustness and configurability, and de-
scribe how the module has performed
successfully as part of the overall sys-
tem. Finally, we discuss how the tech-
niques used in this module can be ap-
plied to other similar dialogue systems.

Introduction

being played. This means that the initial parts of
the output can be produced more quickly, and any
delay in preparing the later parts is partly or en-
tirely eliminated. The net effect is that the over-

all perceived delay in the output is much shorter
than if the whole turn had been prepared before
any output was produced.

In this paper, we give a technical description of
the output system of the COMIC multimodal dia-
logue system, which is designed to allow exactly
this interleaving of preparation and output. The
paper is arranged as follows. Bection 2 we
begin with a general overview of multimodal di-
alogue systems, concentrating on the design de-
cisions that affect how output is specified and
produced. InSection 3 we then describe the
COMIC multimodal dialogue system and show
how it addresses each of the relevant design de-
cisions. Next, inSection 4 we describe how
the segments of an output plan are represented in
COMIC, and how those segments are prepared and
executed in parallel. I®ection 5 we discuss two

In a multimodal dialogue system, even minor deaspects of the module implementation that are rel-
lays in processing at each stage can add up to prevant to its role within the overall COMIC system:
duce a system that produces an overall sluggighe techniques that were used to ensure the robust-
impression. It is therefore critical that the outpunness of the fission module, and how it can be con-
system avoid as much as possible adding any dégured to support a variety of requirements. In
lays of its own to the sequence; there should be &ection 6 we then assess the practical impact of
little time as possible between the dialogue marthe parallel processing on the overall system re-
ager’s selection of the content of the next turn andponsiveness, and show that the output speed has
the start of that turn’s output. When the output ina perceptible effect on the overall user experiences
corporates temporal modalities such as speechwith the system. Finally, irsection 7 we outline

is possible to take advantage of this by planninthe aspects of the COMIC output system that are
later parts of the turn even as the earlier parts aapplicable to similar systems.
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Figure 1: High-level architecture of a typical multimodal dialogue system
2 Output in Multimodal Dialogue per concentrates on the output components high-
Systems lighted inFigure 1, we will discuss the design de-

_ , cisions that have a particular impact on those parts
Most multimodal dialogue systems use the basigt yhe gialogue system: the domain of the applica-

high-level architecture shown ifigure 1 Input  4qn the output modalities, the turn-taking proto-
from the user is analysed by one or more inputzq) anq the division of labour among the modules.
processing modules, each of which deals with alle will use as examples the the WITASemon

individual input channel; depending on the ap; al, 2002, MATCH (Walker et al, 2002, and
plication, the input channels may include Speec@martKom (Vahlster 2005 systems.

recognition, pen-gesture or handwriting recogni- _ _ _
tion, or information from visual sensors, for ex- 1he domain of the system and the interactions

ample. The messages from the various sources 4h@t it is intended to support both have an influ-
then combined by a fusion module, which resolve§Nc€ ©n the type of output that is to be gener-
any cross-modal references and produces a cof€d: Many systems are designed primarily to sup-
bined representation of the user input. This comROrtinformation exploration and presentation, and
bined representation is sent to the dialogue ma/foncentrate on effectively communicating the nec-
ager, which uses a set of domain and dialogu%ssary mformatlo_n to the user. SmartKkom and
knowledge sources to process the user input, if/ATCH both fall into this category: Smartkom

teract with the underlying application if necessaryd€@ls with movie and television listings, while

and specify the content to be output by the Syg\_/IATCH wqus in the domain of restaurant rec-

tem in response. The output specification is sent nmendations. In a system such as WITAS,
the fission module, which creates a presentation ¥§hich incorporates real-time control of a robot he-
meet the specification, using a combination of thicoPter, very different output must be generated

available output channels. Again, depending olp communicate the current state and goals of the

the application, a variety of output channels may°Pot to the user.

be used; typical channels are synthesised speech;The choice of output modalities also affects the
on-screen displays, or behaviour specifications fayutput system—different combinations of modali-
an animated agent or a robot. ties require different types of temporal and spatial
This general structure is typical across muleoordination, and different methods of allocating
timodal dialogue systems; however, there are the content across the channels. Most multimodal
number of design decisions that must be maddialogue systems use synthesised speech as an out-
when implementing a specific system. As this paput modality, often in combination with lip-synch
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and other behaviours of an animated agent (e.gther hand, the specific content is selected by the
MATCH, SmartKom). Various types of visual dialogue manager. The tasks of text planning and
output are also often employed, including intersentence planning may be addressed by various
active maps (MATCH, WITAS), textual informa- combinations of the fission module and any text-
tion presentations (SmartKom, MATCH), or im-generation modules involved—SmartKom creates
ages from visual sensors (WITAS). Some systentbe text in a separate generation module, while
also dynamically adapt the output channels baséd MATCH text and sentence planning is more
on changing constraints; for example, SmartKontightly integrated with content selection.
chooses a spoken presentation over a visual one inCoordination across multiple output channels is
an eyes-busy situation. also implemented in various ways. If the only pre-
Another factor that has an effect on the desigsentation modality is an animated agent, in many
of the output components is the turn-taking protoeases the generated text is sent directly to the
col selected by the system. Some systems—sudlgent, which then communicates privately with
as WITAS—supporbarge-in (Strom and Seneff the speech synthesiser to ensure synchronisation.
2000; that is, the user may interrupt the systenThis “visual text-to-speech” configuration is the
output at any time. Allowing the user to inter-default behaviour of the Gretal¢ Rosis et a).
rupt can permit a more intuitive interaction with2003 and RUTH DeCarlo et al.2004) animated
the system; however, supporting barge-in creatggesentation agents, for instance. However, if the
many technical complications. For example, it i9ehaviour of the agent must be coordinated with
crucial that the output system be prepared to stagther forms of output, it is necessary that the be-
at any point, and that any parts of the system th&taviour of all synchronised modules be coordi-
track the dialogue history be made aware of howmated centrally. How this is accomplished in prac-
much of the intended content was actually protice depends on the capabilities of selected speech
duced. For simplicity, many systems—includingsynthesiser that is used. In SmartKom, for exam-
SmartKom—instead use half-duplex turn-takingple, the presentation planner pre-synthesises the
when the system is producing output, the inpuspeech and uses the schedule returned by the syn-
modules are not active. This sort of system is techthesiser to create the full multimodal schedule; in
nically more straightforward to implement, but re-MATCH, on the other hand, the speech synthe-
quires that the user be given very clear signals asser sends progress messages as it plays its out-
to when the system is and is not paying attention tput, which are used to control the output in the
their input. MATCH uses a click-to-talk interface, other modalities at run time.
where the user presses a button on the interface
to indicate that they want to speak; it is not clead The COMIC Dialogue System

whether the system supports barge-in. COMIC! (COnversational Multimodal Interac-

The division of labour across the modules als%on with Computers) is an EU IST 5th frame-

differs among |mplemente_d systems. First of a”\’/vork project combining fundamental research on
not all systems actually incorporate a separatﬁ

L uman-human dialogues with advanced technol-
component that could be labellédsion for ex- g

. . ) ogy development for multimodal conversational
ample, in WITAS, the dialogue manager itself alsg 9y P

. . systems. The COMIC multimodal dialogue sys-
addresses the tasks of presentation planning a é g y

o . em adds a dialogue interface to a CAD-like ap-
coordination. The components of the typical nat- . . . o .
S . plication used in sales situations to help clients
ural language generation “pipelineR¢iter and

. . redesign their bathrooms. The input to COMIC
Dale, 2000 may be split across the modules in g ; .

. ) consists of speech, pen gestures, and handwriting;
variety of ways. When it comes to content selec:

. . . . turn-taking is strictly half-duplex, with no barge-in
tion, for instance, in MATCH the dialogue man- . 9 y P : 9
o . ..., or click-to-talk. The output combines the follow-
ager specifies the content at a high level, while the o
|qu modalities:
text planner selects and structures the actual fac

to include in the presentation; in WITAS, on the http://www.hcrc.ed.ac.uk/comic/
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“[Nod] Okay.[Choose design] [Look at screef]HIs design[circling gesture]is CLAS-
SIC. It uses tiles from VLLEROY AND BocCHs CENTURY ESPRIT series. There are
FLORAL MOTIFS andGEOMETRIC SHAPESON theDECORATIVE tiles.”

Figure 2: COMIC interface and sample output

e Synthesised speech, created using thhe OpenCCG realiser. The fission module also
OpenCCG surface realiseWWpite, 2005gb)  controls the output of the planned presentation by
and synthesised by a custom Festival 2 voiceending appropriate messages to the output mod-
(Clark et al, 2004 with support for APML ules including the text realiser, speech synthesiser,
prosodic markupde Carolis et a].2004). talking head, and bathroom-design GUI. Coordi-

) ) . _ nation across the modalities is implemented using

* Facial expressions and gaze shifts of a talking o chnique similar to that used in Smartkom: the
head Breidt et al, 2003. synthesised speech is prepared in advance, and the

timing information from the synthesiser is used to

create the schedule for the other modalities.

e Deictic gestures at objects on the application 11,4 plan for an output turn in COMIC is rep-

screen, using a simulated mouse pointer.  osented in a tree structure; for exampiggure 3
|shows part of the plan for the output igure 2
A plan tree like this is created from the top down,
with the children created left-to-right at each level,

speech, with corresponding facial emphasis. and is exec_uted in the same order. The planning
The specifications from the COMIC dialogueand execution processes for'a turn are'starteq to-
manager are high-level and modality—independeng,ether_ and run in parallel, which makes it ppssmle
for example, the specification of the output showi® Pegin producing output as soon as possible and
in Figure 2would indicate that system shoulg!® con_tlnue plf_;mnlng while o_utput is active. In the
show a particular set of tiles on the screen, anf!loWing section, we describe the set of classes
should give a detailed description of those tiles2d @lgorithms that make this interleaved prepara-
When the fission module receives input from thdion and execution possible.
dialogue manager, it selects and structures mul- The COMIC fission module is implemented in a
timodal content to create an output plan, useombination of Java and XSLT. The current mod-
ing a combination of scripted and dynamically-ule consists of 18 000 lines of Java code in 88
generated output segments. The fission modusmurce files, and just over 9000 lines of XSLT tem-
addresses the tasks of low-level content seleplates. In the diagrams and algorithm descriptions
tion, text planning, and sentence planning; sutthat follow, some non-essential details are omitted
face realisation of the sentence plans is done dgr simplicity.

e Direct commands to the design application.

Figure 2shows the COMIC interface and a typica
output turn, including commands for all modali-
ties; the small capitals indicate pitch accents in th
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Turn

Acknowledge| |Choose design| |Look at screen Describe design

Nod “Okay.” “This design “It uses tiles [...]
is classic.” from ...”

Figure 3: Output plan

4 Representing an Output Plan Segment

# parent : Sequence
# ready : boolean

# skip : boolean

# active : boolean

+ plan()

+ execute()

# reportDone()

Each node in a output-plan tree such as that shown
in Figure 3is represented by an instance of the
Segment class. The structure of this abstract class
is shown inFigure 4 the fields and methods de-
fined in this class control the preparation and out-
put of the corresponding segment of the plan tree,
and allow preparation and output to proceed in
parallel. Figure 4: Structure of the Segment class

Each Segment instance stores a reference to its
parent in the tree, and defines the following three
methods:

e active This flag is set externally by the Seg-
ment's parent, and indicates that this Seg-
e plan() Begins preparing the output. ment should produce its output as soon as it

e execute () Produces the prepared output. Is ready.

The activity diagram inFigure 5shows how
these flags and methods are used during the prepa-
ration and output of a Segment. Note that a
plan() andexecute () are abstract methods of Segment may send asynchronous queries to other
the Segment class; the concrete implementatiomsodules as part of its planning. When such a
of these methods on the subclasses of Segmeydery is sent, the Segment sets its internal state
are described later in this section. Each Segmeahd exits itsplan () method; when the response
also has the following Boolean flags that controls received, preparation continues from the last
its processing; all are initially false. state reached. Since planning and execution pro-

e ready This flag is set internally once the Seg_ceed in parallel across the tree, and the planning

ment has finished all of its preparation and ifI’OCGSS may be interrupted to wait for responses
ready to be output rom other modules, thecady andactive flags

may be set in either order on a particular Seg-
e skip This flag is set internally if the Segmentment. Once both of these flags have been set, the
encounters a problem during its planning, andxecute () method is called automatically. If both
indicates that the Segment should be skippeskip andactive are set, the Segment instead au-
when the time comes to produce output.  tomatically callsreportDone () without ever ex-

e reportDone () Indicates to the Segment's
parent that its output has been completed.
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Called by parent

Success X Error

Set ready Set skip

Communicates
with other modules

47/

Called by parent

Set active

*4

&

y

Calls
parent.childlsDone()

‘reportDone()

Figure 5: Segment preparation and output
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ecuting; this allows Segments with errors to beublic void plan() {
skipped without affecting the output of the rest of ~ // Create child Segments
the turn. cur = 0;
The full class hierarchy under Segmentis shown  ready =
in Figure 6 There are three main top-level sub- ‘ .
. . . . or ( Segment seg: children ) {
classes of Segment, which differ primarily based seg.plan ();

on how they implemengxecute () : }
}

Sequence An ordered sequence of Segments. It

. L I public void execute () {
is executed by activating each child in turn. children.get ( 0 ).activate ();

true ;

BallisticSegment A single command whose du- }
ration is determined by the module producing th@ublic void childIsDone () {
output. It is executed by sending a message to the Sur**i

. .. if ( cur >= children.size () ) {
appropriate module and waiting for that module to reportDone () ;
report back that it has finished. } else {
children.get ( cur ).activate();

Sentence A single sentence, incorporating coor- }
dinated output in all modalities. Its schedule is
computed in advance, as part of the planning pro-

cess; it is executed by sending a “go” command to Figure 7: Pseudocode for Sequence methods
the appropriate output modules.

In the remainder of this section, we discuss eac®rder. Once all of the Sequence’s children have re-

of these classes and its subclasses in more detaiPorted that they are done, the Sequence itself calls
reportDone ().

4.1 Sequence The main subclasses of Sequence, and their rel-
All internal nodes in a presentation-plan treeevant features, are as follows:
(coloured blue irFigure 3 are instances of some
type of Sequence. A Sequence stores a list of chi
Segments, which it plans and activates in orde
along with a pointer to the currently active Seg-
ment.Figure 7shows the pseudocode for the mainfurn  Corresponds to a single message from the
methods of a typical Sequence. dialogue manager; the root of the output plan in
Note that a Sequence calls setsritady flag as Figure 3is a Turn. Itsplan() implementation
soon as all of its necessary child Segments hawgeates a Segment corresponding to each dialogue
been created, and only then begins callingn ()  act from the dialogue manager; in some cases, the
on them. This allows the Sequencesecute ()  Turn adds additional children not directly speci-
method to be called as soon as possible, whidied by the DAM, such as the verbal acknowledge-
is critical to allowing the fission module to beginment and the gaze shift Figure 3
producing output from the tree before the full tre
has been created.

arent of all Turns. It is always active, and new

TEJJrnSequence The singleton class that is the
hildren can be added to its list at any time.

E'ScrlptedSequence A sequence of canned output
. . segments stored as an XSLT template. A Scripted-
When execute () is called on a Sequence, it 9 . ) P ) P

, . oy Sequence is used anywhere in the dialogue where
callsactivate () on the first child in its list. All . . )

. ) dynamically-generated content is not necessary;
subsequent children are activated by calls to th X .
or example, instructions to the user and acknowl-

Ch.ildISDone 3 .method, which is called by egch edgements such as the leftmost subtrdeguire 3
child as part of itseportDone () method after its .
a{e stored as ScriptedSequences.

execution is completed. Note that this ensures tha
the children of a Sequence will always be executeBlannedSequence In contrast to a ScriptedSe-
in the proper order, even if they are prepared out afuence, a PlannedSequence creates its children
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dynamically depending on the dialogue contextiorms part of a PlannedSequence, and is based on
The principal type of PlannedSequence is a ddegical forms for the OpenCCG realiseWite,
scription of one or more tile designs, such as thd&t005ab). The logical forms may contain multiple
shown inFigure 2 To create the content of suchpossibilities for both the text and the multimodal

a description, the fission module uses informatiobehaviours; the OpenCCG realiser uses statistical
from the system ontology, the dialogue historylanguage models to make a final choice of the ac-
and the model of user preferences to select ardal content of the sentence.

structure the facts about the selected design and ] ] ) ]

to create the sequence of sentences to realise that N€ first step in preparing either type of Sen-
content. This process is described in detaiFing- €NC€ IS to send the text to the speech synthe-

ter and White2004 2009. siser Figure 8(a). For a ScriptedSentence, the
canned text is sent directly to the speech synthe-
4.2 BallisticSegment siser; for a PlannedSentence, the logical forms are

A BallisticSegment is a single command for a sinSent to the realiser, which then creates the text

gle output module, where the output module is aland sends it to the synthesiser. In either case, the
lowed to choose the duration at execution times.peech-synthesiser input also includes marks at all

In Figure 3 the orangeNod, Choose desigrand points where multimodal output is intended. The

Look at screemodes are examples of BallisticSeg-SPe€ch synthesiser prepares and stores the wave-

ments. In itsolan () method, a BallisticSegment form based on the input text, and returns timing in-

transforms its input specification into an appropriformation for the words and phonemes, along with

ate message for the target output module. Whéﬂe timing of any multimodal coordination marks.

execute () is called, the BallisticSegment sends 114 fission module uses the returned timing
the transformed command to the output modulg.t,mation to create the final schedule for all

and waits for that module to report back that it isy,qgajities. It then sends the animation schedule
done; it callsreportDone () when it receives that (lip-synch commands, along with any coordinated
acknowledgement. expression or gaze behaviours) to the talking-head
module so that it can prepare its animation in ad-

_ vance Figure 8(b). Once the talking-head mod-
The Sentence class represents a single sentengg, s prepared the animation for a turn, it returns

combining synthesised speech, lip-synch comy «eaqy" message. The design application does
mands for the talking head, and possible coord;os need its schedule in advance, so once the re-
nated behaviours on the other multimodal chang,qnse is received from the talking head, the Sen-

nels. The timing of a sentence is based on th@ e has finished its preparation and is able to set
timing of the synthesised speech; all multlmodahs ready flag.

behaviours are scheduled to coincide with partic-
ular words in the text. Unlike a BallisticSegment, When a Sentence is executed by its parent,
which allows the output module to determine thet selects a desired start time slightly in the fu-
duration at execution time, a Sentence must prédre and sends two messages, as showRign
pare its schedule in advance to ensure that outpute 8(c) First, it sends a “go” message with
is coordinated across all of the channels.Fig- the selected starting time to the speech-synthesis
ure 3 all of the green leaf nodes containing textand talking-head modules; these modules then
are instances of Sentence. play the prepared output for that turn at the given
There are two types of Sentences: ScriptedSetime. The Sentence also sends the concrete sched-
tences and PlannedSentences. A ScriptedSentende for any coordinated gesture commands to the
is generally created as part of a ScriptedSequendsathroom-design application at this point. Af-
and is based on pre-written text that is sent directlier sending its messages, the Sentence waits until
to the speech synthesiser, along with any necethie scheduled duration has elapsed, and then calls
sary multimodal behaviours. A PlannedSentencesportDone ().

4.3 Sentence
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’—> Realiser Generated text —i

Logical
forms .
4% Synthesiser ‘
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‘Talking head

Design application ‘

(a) Preparing the speech

Realiser

Synthesiser
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h J

- "Ready" — Talking head

Design application ‘

(b) Preparing the animation

4% Synthesiser

Fission Start time ——

Gesture
schedule

4" Talking head

‘ Design application ‘

(c) Producing the output

Figure 8: Planning and executing a Sentence
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5 Robustness and Configurability wait for “ready” and “done” responses from either

, _ .. orboth of the talking-head and design-application
In the preceding section, we gave a description qf,oqjes: the fission module simply proceeds with

the dat_a structures anq methods that are used WNER rest of its processing as if the required response
preparing and executing and output plan. In thi 4 heen received. This allows the whole COMIC
section, we describe two other aspects of the Mody srem to be run without those output modules en-
ule that are important to its functioning as part 0bpeq This is useful during development of other
the overall_dlalogue_system: its ?.blhty to detecbarts of the system, and for running demos and
and deal with errors in its processing, and the valsa1yation experiments where not all of the output
ious configurations in which it can be run. channels are used. The module also has a num-
ber of other configuration options to control fac-
tors such as query time-outs and the method of se-
Since barge-in is not implemented in COMIC, thqecting multimodal coarticulations.

fission module plays an important role in turn-  as well, the fission module has the ability to
taking for the whole COMIC system: it is the generate multiple alternative versions of a single
module that informs the input components whelym, using different user models, dialogue-history
the system output is finished, so that they are ablgsttings, or multimodal planning techniques; this
to process the next user input. The fission mods yseful both as a testing tool and as part of a sys-
ule therefore incorporates several measures to &m demonstration. The module can also store all
sure that it is able to_ det_ect and recover from ungfthe generated output to a script, and to play back
expected events during its processing, so that thge scripted output at a later time using a subset of
dialogue is able to continue even if there are errosge fyl| system. This allows alternative versions
in some parts of the output. of the system output to be directly compared in

Most input from external modules is validatedyser evaluation studies such &ter 2004 Fos-
against XML schemas to ensure that it is wellter and White2005.

formed, and any messages that fail to validate are
not processed further. As well, all queries to exter6 Output Speed

nal modules are sent with configurable time-outs,

and any Segment that is expecting a response td"atne fi_naléversion of the COMIC system, the av-
query is also prepared to deal with a time-out. erage timeé that the speech synthesiser takes to

If a problem occurs while preparing any SegPrePare the waveform for a sentence is 1.9 sec-
ment for output—either due to an error in internapnds’ Wh'_le the average sy_nthe5|sed length of a
sentence is 2.7 seconds. This means that, on aver-

ternal module—that Segment immediately sets i ge, each sentence takes long enough to play that

skip flag and stops the preparation process. A e next sentence _is'ready as soon as it is needed;
described irBection 4 any Segments with this flag and even when tf_ns 'S not the case, the delay be-
set are then skipped at execution time. This e ween sen_tences s still greatly reduced by the par-

sures that processing is able to continue as mu&hlelhpla_tnnlng procesfsb .

as possible despite the errors, and that the fission | € Importance of beginning output as Soon as

module is still able to produce output from theP0SSible was demonstrated by a user evaluation of
parts of an output plan unaffected by the problem@n interim version of COMICWhite et al, 2003.

and to perform its necessary turn-taking functions>UPI€CtS in that study used the full COMIC sys-
tem in one of two configurations: an “expressive”

5.2 Configurability condition, where the talking head used all of the

. . expressions it was capable of, or a “zombie” con-
The COMIC fission module can be run in sev- P P

eral different configurations. to meet a variet Opition where all of the behaviours of the head were
9 ' Y Olisabled except for lip-synch. One effect of this

evaluation, demonstration, and development situa-
tions. The fission module can be configured not to 20n a Pentium 4 1.6GHz computer.

5.1 Error Detection and Recovery

processing, or because of an issue with some €
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difference was that the system gave a consistently help choose the content of many of its turns, and
earlier response in the expressive condition—a fahe implementation of the design application is ob-
cial response was produced an average of 1.4 sadously COMIC-specific.
onds after the dialogue-manager message, while However, the general technique of interleaving
spoken input did not begin for nearly 4 Second§_)|’epal’ati0n and execution, using the time while
Although that version of the system was very slowthe system is playing earlier parts of a turn to
the subjects in the expressive condition were sigirepare the later parts, is easily applicable to any
nificantly less likely to mention the overall slow- System that produces temporal output, as long as
ness than the subjects in the zombie condition. the same module is responsible for preparing and
After this interim evaluation, effort was put into €xecuting the output. There is nothing COMIC-
further reducing the delay in the final system. Foppecific about the design of the Segment class or
example, we now store the waveforms for acits immediate sub-classes.
know|edgements and other frequently-used texts As We”, the method of Coordinating distributed
pre-synthesised in the speech module instead Bfultimodal behaviour with the speech timing
sending them to Festival, and other internal protSection 4.3is a general one. Although the cur-
cessing bottlenecks were eliminated. Using thent implementation relies on the output modules
same computers as the interim evaluation, the fi$0 respect the schedules that they are given—with
sion delay for initial output is under 0.5 seconds if10 adaptation at run time—in practice the coordi-

the final system. nation in COMIC has been generally successful,
_ providing that three conditions are met. First, the
7 Conclusions selected starting time must be far enough in the fu-

The COMIC fission module is able to prepare an{'r€ that it can be received and processed by each
control the output of multimodal turns. It preparedn@dule intime. Second, the clocks on all comput-
and executes its plans in parallel, which allows i€"S involved in running the system must be syn-

to begin producing output as soon as possible arfdironised precisely. Finally, the processing load

to continue with preparing later parts of the pre©" €ach computer must be low enough that timer

sentation while executing earlier parts. It is abl&Vents do not get delayed or pre-empted.

to produce output coordinated and synchronised SiNce the COMIC system does not support
across multiple modalities, to detect and recovet@9€-in, the current fission module always pro-
from a variety of errors during its processing, andluces the full presentation that is planned, bar-
to be run in a number of different configurationdNd Processing errors. However, since the mod-
to support testing, demonstrations, and evaluatidi{€ Produces its output incrementally, it would be

experiments. The parallel planning process is abfiraightforward to extend the processing to allow
to make a significant reduction in the time taken t&Xecution to be interrupted after any Segment, and

produce output, which has a perceptible effect ofp know how much of the planned output was ac-

user satisfaction with the overall system. tually produced.
Some a_spects of the fission. module are Spec”ﬂ&cknowledgements
to the design of the COMIC dialogue system; for
example, the module performs content-selectiolany thanks to Peter Poller, Tilman Becker, and
and sentence-planning tasks that in other systeraspecially Michael White for helpful advice on
might be addressed by a dialogue manager or texand discussions about the implementation of the
generation module. Also, aspects of the commu=OMIC fission module, and to the anonymous re-
nication with the output modules are tailored toviewers for their comments on the initial version
the particular modules involved: the fission modeof this paper. This work was supported by the

ule makes use of features of the OpenCCG realis€OMIC project (IST-2001-32311).
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Abstract

We present an extensible API for inte-
grating language modeling and realiza-
tion, describing its design and efficient
implementation in the OpenCCG sur-
face realizer. With OpenCCG, language
models may be used to select realiza-
tions with preferred word orders, pro-
mote alignment with a conversational
partner, avoid repetitive language use,
and increase the speed of the best-first
anytime search. The API enables a vari-
ety of n-gram models to be easily com-
bined and used in conjunction with ap-
propriate edge pruning strategies. The
n-gram models may be of any order,
operate in reverse (“right-to-left”), and
selectively replace certain words with
their semantic classes. Factored lan-
guage models with generalized backoff
may also be employed, over words rep-
resented as bundles of factors such as
form, pitch accent, stem, part of speech,
supertag, and semantic class.

CCG’s unique accounts of coordination and infor-
mation structure—based prosody.

Like other surface realizers, the OpenCCG re-
alizer takes as input a logical form specifying the
propositional meaning of a sentence, and returns
one or more surface strings that express this mean-
ing according to the lexicon and grammar. A dis-
tinguishing feature of OpenCCG is that it imple-
ments a hybrid symbolic-statistical chart realiza-
tion algorithm that combines (1) a theoretically
grounded approach to syntax and semantic com-
position, with (2) the use of integrated language
models for making choices among the options
left open by the grammar (thereby reducing the
need for hand-crafted rules). In contrast, previous
chart realizers (Kay, 1996; Shemtov, 1997; Car-
roll et al., 1999; Moore, 2002) have not included
a statistical component, while previous statisti-
cal realizers (Knight and Hatzivassiloglou, 1995;
Langkilde, 2000; Bangalore and Rambow, 2000;
Langkilde-Geary, 2002; Oh and Rudnicky, 2002;
Ratnaparkhi, 2002) have employed less general
approaches to semantic representation and com-
position, and have not typically made use of fine-
grained logical forms that include specifications
of such information structural notions as theme,
rheme and focus.

1 Introduction In this paper, we present OpenCCG's extensi-

ble API (application programming interface) for

2003; White, 2004a; White, 2004c) is an opeﬁm?g_rat",qg '3”9“6‘99 modgl_lng gnd reallzathn, o_le-

source sutface realizer for Steedman’s (Zooogprlbmg its design and efficient implementation in
Java. With OpenCCG, language models may be

2000b) Combinatory Categorial Grammar (CCG):

It is designed to be the first practical, reusable reised to select realizations with preferred word or-

alizer for CCG, and includes implementations Ofiers (Wh'_te’ 2004c), promote alignment with a
conversational partner (Brockmann et al., 2005),

In addition,

The OpenCCG& realizer (White and Baldridge,

Ihttp://openccg.sourceforge.net and avoid repetitive language use.
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by integrating language model scoring into theules in the grammar’s rule group. Derived signs
search, it also becomes possible to use more acaunaintain a derivation history, and their word lists
rate models to improve realization times, when thehare structure with the word lists of their input
realizer is run in anytime mode (White, 2004b). signs.

To allow language models to be combined As mentioned in the introduction, for general-
in flexible ways—as well as to enable researchty, the realizer makes use of a configurable sign
on how to best combine language modeling ansicorer and pruning strategy. A sign scorer imple-
realization—OpenCCG’s design includes interments a function that returns a number between
faces that allow user-defined functions to be use@ and 1 for an input sign. For example, a stan-
for scoring partial realizations and for pruningdard trigram language model can be used to im-
low-scoring ones during the search. The desigplement a sign scorer, by returning the probability
also includes classes for supporting a range of a sign’s words as its score. A pruning strat-
language models and typical ways of combininggy implements a method for determining which
them. As we shall see, experience to date indedges to prune during the realizer’s search. The
cates that the benefits of employing a highly gennput to the method is a ranked list of edges for
eralized approach to scoring and pruning can bggns that have equivalent categories (but different
enjoyed with little or no loss of performance. words); grouping edges in this way ensures that

The rest of this paper is organized as followsPruning cannot “break” the realizer, i.e. prevent it
Section 2 gives an overview of the realizer archifrom finding some grammatical derivation when
tecture, highlighting the role of the interfaces forone exists. By default, an N-best pruning strategy
plugging in custom scoring and pruning functionsis employed, which keeps the N highest scoring in-
and illustrating how n-gram scoring affects accuput edges, pruning the rest (where N is determined
racy and speed. Sections 3 and 4 present Opdpy the current preference settings).

CCG’s classes for defining scoring and pruning The realization algorithm is implemented by the
functions, respectively, giving examples of theirrealize method. As in the chart realizers cited
usage. Finally, Section 5 summarizes the desigg@rlier, the algorithm makes use of a chart and

and concludes with a discussion of future work. an agenda to perform a bottom-up dynamic pro-
gramming search for signs whose LFs completely

2 Realizer Overview cover the elementary predications in the input log-
ical form. See Figure 9 (Section 3.1) for a real-
The UML class diagram in Figure 1 shows thezation trace; the algorithm’s details and a worked
high-level architecture of the OpenCCG realizerexample appear in (White, 2004a; White, 2004c).
sample Java code for using the realizer appears Ttherealize method returns the edge for the best
Figure 2. A realizer instance is constructed withrealization of the input LF, as determined by the
a reference to a CCG grammar (which supportsign scorer. After a realization request, the N-best
both parsing and realization). The grammar’s lexeomplete edges—or more generally, all the edges
icon has methods for looking up lexical items vigfor complete realizations that survived pruning—
their surface forms (for parsing), or via the prin-are also available from the chart.
cipal predicates or relations in their semantics (for The search for complete realizations proceeds
realization). A grammar also has a set of hieralin one of two modes, anytime and two-stage
chically organized atomic types, which can servgpacking/unpacking). In the anytime mode, a best-
as the values of features in the syntactic categoriefist search is performed with a configurable time
or as ontological sorts for the discourse referentimit (which may be a limit on how long to look
in the logical forms (LFs). for a better realization, after the first complete one
Lexical lookup yields lexical signs. A sign pairsis found). With this mode, the scores assigned by
a list of words with a category, which itself pairsthe sign scorer determine the order of the edges
a syntactic category with a logical form. Lexicalon the agenda, and thus have an impact on realiza-
signs are combined into derived signs using théon speed. In the two-stage mode, a packed forest
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A realizer for a CCG grammar makes use of

_ a configurable sign scorer and pruning strategy.
Lexicon The realize method takes a logical form (LF)

as input and returns the edge for the best
realization of that LF.

/

+getSignsFromWord(...): Set<Sign>

+getSignsFromPred(...): Set<Sign> ’,' «interface»

+getSignsFromRel(...): Set<Sign> .
SignScorer

i
i
;
/

/
/
/

Realizer +score(sign: Sign, complete: boolean): double

+timeLimitMS: int
+Realizer(grammar: Grammar)
+realize(If: LF): Edge

Types [——<¢ Grammar

+getChart(): Chart

«interface»
PruningStrategy

RuleGroup

+pruneEdges(edges: List<Edge>): List<Edge>

Chart

+bestEdge: Edge
+bestEdges( ): List<Edge> .| _

+applyRules(...): List<Sign>

are also available from the chart.

After a realization request, the N-best edges j

*

The lexico-grammar and signs Edge
are the same for parsing and +score: double
realization. +completeness: double

[

1.n A 0.2 . . .
Sign >—< DerivationHistory

[

«interface»
Category

Word

+getLF(): LF

Figure 1: High-level architecture of the OpenCCG realizer
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// load grammar, instantiate realizer

URL grammarURL = ...;

Grammar grammar = new Grammar (grammarURL);
Realizer realizer = new Realizer (grammar);

// configure realizer with trigram backoff model

// and 10-best pruning strategy

realizer.signScorer = new StandardNgramModel (3, "1lm.3bo");
realizer.pruningStrategy = new NBestPruningStrategy (10);

// ... then, for each request:

// get LF from input XML
Document inputDoc =
LF 1f = realizer. gethFromDoc(lnputDoc)

// realize LF and get output words in XML
Edge bestEdge = realizer.realize(1lf);
Document outputDoc = bestEdge.sign.getWordsInXml ();

// return output
outputDoc ...;

Figure 2: Example realizer usage

of all possible realizations is created in the firs{Baldridge, 2002). Table 1 gives the sizes of the
stage; then in the second stage, the packed reptest suites. Using these two test suites, we timed
sentation is unpacked in bottom-up fashion, withhow long it took on a 2.2 GHz Linux PC to realize
scores assigned to the edge for each sign as itéach logical form under each realizer configura-
unpacked, much as in (Langkilde, 2000). In bothion. To measure accuracy, we counted the num-
modes, the pruning strategy is invoked to deteber of times the best scoring realization exactly
mine whether to keep or prune newly constructethatched the target, and also computed a modified
edges. For single-best output, the anytime modeersion of the Bleu n-gram precision metric (Pap-
can provide signficant time savings by cutting offineni et al., 2001) employed in machine translation
the search early; see (White, 2004c) for discusevaluation, using 1- to 4-grams, with the longer
sion. For N-best output—especially when a comn-grams given more weight (cf. Section 3.4). To
plete search (up to the edges that survive the prurank candidate realizations, we used standard n-
ing strategy) is desirable—the two-stage mode cagram backoff models of orders 2 through 6, with
be more efficient. semantic class replacement, as described in Sec-

To illustrate how n-gram scoring can guide thdion 3.1. For smoothing, we used Ristad’s nat-
best-first anytime search towards preferred realsral discounting (Ristad, 1995), a parameter-free
izations and reduce realization times, we repramethod that seems to work well with relatively
duce in Table 1 and Figures 3 through 5 the crossmall amounts of data.

validation tests reported in (White, 2004b). In To gauge how the amount of training data af-

thedse tesgs W?j measure(i th? rea:clzerstaccura%lcts performance, we ran cross-validation tests
and speed, under a variety ot configurations, ofy,, increasing numbers of folds, with 25 as the

:he Irlegref]smn test swtetifozztwcl) srr]nall but Img?' maximum number of folds. We also compared the
ically rich grammars. th€ Engiish grammar 10f i ation results using the n-gram scorers with

fther?Ohgleth?Aog;Sé)ﬁ;esm—tthe co'\;le of Wht'CTtwo baselines and one topline (oracle method).
IS shared wi € system (Moore et a The first baseline assigns all strings a uniform

2004)—and the Worldcup grammar discussed ig Iscore of zero, and adds new edges to the end of the
®http://www.hcrc.ed.ac.uk/comic/ agenda, corresponding to breadth-first search. The
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Time (ms)

Figure 3. Mean time (in ms.) until first realization is found using n-grams of different orders and Ristad’s

LF/target Unique up Length Input nodes
pairs to SC Mean Min Max Mean Min Max
CcoMIC 549 219 131 6 34 84 2 20
Worldcup 276 138 9.2 4 18 6.8 3 13
Table 1: Test suite sizes.
COMIC: First Worldcup: First
500 200
400 4 —e—Baseline 1 160
x“—'—'—'—'—'—'—' —=—Baseline 2 n
300 \F_’\h:——f N2 £ 120 ;‘—_—ﬁﬁ
200 e —" N3 £ 80
=
100 r:g 40 -
0 T T T T T T T T . —+—N6 0 T T T T T T T T T
1.04 11 12 133 15 2 3 5 10 25 ——Topline 104 11 12 133 15 2 3 5 10 25

Num Folds

Num Folds

natural discounting (N), for cross-validation tests with increasing numbers of folds.

Time (ms

Time (ms)

COMIC: Exact Worldcup: Exact
600 300
00 | — e ———% . 250 |

5 J&( —e—Baseline 1

400 —#—Baseline 2 % 200 4
N2 E

300 > 150
N3 E 100

200 A N4 = 1

100 - —e—N5 50

0 T T T T T T T - - ——N6 0 T T T T T T T T T
1.04 11 12 133 15 2 3 5 10 25 |——Topline 1.04 11 12 133 15 2 3 5 10 25

Num Folds

Num Folds

—e—Baseline 1
—#—Baseline 2

N2

N3
—*—N4
—e—N5
—+—N6
——Topline
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N2

N3
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Figure 4: Number of realizations exactly matching target using n-grams of different orders.
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Figure 5: Modified BLEU scores using n-grams of different orders.
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second baseline uses the same scorer, but adds reasses for scoring with n-gram models, in order to
edges at the front of the agenda, corresponding tvoid any necessary runtime dependencies on the
depth-first search. The topline uses the modifie8RILM toolkit.
Bleu score, computing n-gram precision against The n-gram tables are efficiently stored in a trie
just the target string. With this setup, Figures 3data structure (as in the SRILM toolkit), thereby
5 show how initial realization times decrease andvoiding any arbitrary limit on the n-gram order.
accuracy increases when longer n-grams are erfie save memory and speed up equality tests, each
ployed. Figure 3 shows that trigrams offer a substring is interned (replaced with a canonical in-
stantial speedup over bigrams, while n-grams dftance) at load time, which accomplishes the same
orders 4-6 offer a small further improvement. Figpurpose as replacing the strings with integers, but
ures 4 and 5 show that with the COMIC test suitewithout the need to maintain a separate mapping
all n-gram orders work well, while with the World- from integers back to strings. For better gener-
cup test suite, n-grams of orders 3-6 offer somalization, certain words may be dynamically re-
improvement over bigrams. placed with the names of their semantic classes
To conclude this section, we note that togethewhen looking up n-gram probabilities. Words are
with OpenCCG’s other efficiency methods, n-assigned to semantic classes in the lexicon, and the
gram scoring has helped to achieve realizatiopemantic classes to use in this way may be config-
times adequate for interactive use in both thered atthe grammar level. Note that (Oh and Rud-
COMIC and FLIGHTS dialogue systems, alongnicky, 2002) and (Ratnaparkhi, 2002) make simi-
with very high quality. Estimates indicate thatlar use of semantic classes in n-gram scoring, by
n-gram scoring typically accounts for only 2-5%deferring the instantiation of classes (suchdas
of the time until the best realization is found,parture city) until the end of the generation pro-
while it can more than double realization speed bgess; our approach accomplishes the same goal in
accurately guiding the best-first anytime searcha slightly more flexible way, in that it also allows
This experience suggests that more complex scdhe specific word to be examined by other scoring
ing models can more than pay for themselvesnodels, if desired.
efficiency-wise, if they yield significantly more ac- As discussed in (White, 2004c), with dialogue

curate preference orders on edges. systems like COMIC n-gram models can do an
excellent job of placing underconstrained adjec-
3 Classes for Scoring Signs tival and adverbial modifiers—as well as bound-

_ . . ary tones—without resorting to the more com-
The classes for implementing sign scorers appegex methods investigated for adjective ordering in
in Figure 6. In the diagram, classes for n-gramishaw and Hatzivassiloglou, 1999; Malouf, 2000).
scoring appear towards the bottom, while classgsy jnstance, in examples like those in (1), they
for combining scorers appear on the left, and thgyrectly select the preferred positions fiareand
class for avoiding repetition appears on the right.5iso (as well as for the boundary tones), with re-

spect to the verbal head and sister dependents:
3.1 Standard N-gram Models

a. Herg .y, LH% we have a design in

The StandardNgramModel class can load stan- (1) .
the classig, style LL% .

dard n-gram backoff models for scoring, as shown _ _
earlier in Figure 2. Such models can be con- b. This ;1. design LH% here;i. LH%
structed with the SRILM toolkit (Stolcke, 2002), is alsqy. classic LL% .

which we have found to be very useful; in princi- We have also found that it can be useful to

ple, other toolkits could be used instead, aslong a5 |\ erse (or “right-to-left’) models, as they can
their output could be converted into the same ﬁl%elp to place adverbs likiaough as in &2)_

formats. Since the SRILM toolkit has more re-
strictive licensing conditions than those of Open- (2) The tiles are alsg, from the Jazg, series
CCG’s LGPL license, OpenCCG includes its own though LL% .
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scorers

via linear interpolation.

Utility classes for combining

SignScorerProduct

or

RepetitionScorer

+penalty: double

«interface»
2.n SignScorer

lity class for g
n-gram models at the word lev

SignScorerinterpolation

+score(sign: Sign, complete: boolean): double

#weights: double[ ]

Returns zero for all signs, thereby
providing no distinguishing information.

+resetContext( )

]

NgramScorer

+updateContext(sign: Sign)
+ageContex
Returns a score that is linear in

log space with the number of
repeated items times the penalty.

LinearNgramScorerCombo

#order: int
n #reverse: boolean

#weights: double[ ]

#logProbFromNgram(i: int, order: int): float

N-gram models can be of any order,
can reverse the words, and

can replace certain words with

their semantic classes.

#score( ): double

lasses: boolean
#wordsToScore: List<Word>
#prepareToScorewords( )

#logProbFromNgram

«interface»
NgramFilter

Filters bigrams with the wrong
choice ofa oran given

+filterOut(words: List<Word>): boolean
£y

the initial letter of the following

ordel float

StandardNgramModel

#prepareToScoreWords( )
#logProbFromNgram(i: int, order: int): float

int, i

FactoredNgramModel

1l.n

word, with configurable exceptions.

AAnFilter

1: String, w2: String)

NgramPrecisionModel

#prepareToScoreWords( )
#score(): double

+NgramPrecisionModel(targets: String[ ], order: int)

FactoredNgramModelFamily

#prepareToScoreWords( )
#logProbFromNgram(i: int, order: int): float

+FactoredNgramModel(child: String, parents: String[ ], filename: String)

#prepareToScoreWords( )

into families.

Factored n—-gram models return the probability of the
child factor of the current word given a sequence of
parent factors. Multiple models can be organized

ly(filename: String)

#logProbFromNgrami order: int): float

Figure 6: Classes for scoring signs

53

Returns a modified version of the
BLEU score used in MT evaluation.




In principle, the forward and reverse probabilitiessearch, high probability phrases suchtlas tiles
should be the same—as they are both derived vie alsq, can be added to the chart before low-
the chain rule from the same joint probability offrequency words such akhoughhave even left
the words in the sequence—but we have found théte agenda. The first complete realization, cor-
with sparse data the estimates can differ substaresponding to (2), also turns out to be the best
tially. In particular, sincgéhoughtypically appears one here. As noted in the figure, complete realiza-
at the end of a variety of clauses, its right contextions are scored with sentence delimiters, which—
is much more predictable than its left context, antby changing the contexts of the initial and final
thus reverse models yield more accurate estimate®rds—can result in a complete realization hav-
of its likelihood of appearing clause-finally. To il- ing a higher probability than its input partial real-
lustrate, Figures 7 and 8 show the forward and rezations (see next section for discussion). One way
verse trigram probabilities for two competing realto achieve more monotonic scores—and thus more
izations of (2) in a 2-fold cross-validation test (i.e.efficient search, in principle—could be to include
with models trained on the half of the test suitesentence delimiters in the grammar; we leave this
not including this example). With the forward tri- question for future work.
gram model, sincéhoughhas not been observed
following series and sinceseriesis a frequently 3-2 N-gram Scorers
occurring word, the penalty for backing off to theThe StandardNgramModel class is implemented
unigram probability forthoughis high, and thus as a subclass of the base claggramScorer.
the probability is quite low. The medial placementAll NgramScorer instances may have any num-
(following alsay,) also yields a low probability, ber of NgramFilter instances, whoséilter-
but not as low as the clause-final one, and thugut methods are invoked prior to n-gram scoring;
the forward model ends up preferring the mediaif any of these methods return true, a score of zero
placement, which is quite awkward. By contrastis immediately returned. TheAnFilter provides
the reverse model yields a very clear preferencene concrete implementation of thigramFilter
for the clause-final position ahough and for this interface, and returns true if it finds a bigram con-
reason interpolating the forward and reverse modisting ofa followed by a vowel-inital word, oan
els (see Section 3.3) also yields the desired prefdllowed by a consonant-initial word, subject to a
ence order. configurable set of exceptions that can be culled
Figure 9 shows a trace of realizing (2) with sucHrom bigram counts. We have found that such n-
an interpolated model. In the trace, the interpogram filters can be more efficient, and more reli-
lated model is loaded by the claggEvenScorer. able, than relying on n-gram scores alone; in par-
The input LF appears at the top. It is flattenedicular, with a/an, since the unigram probability
into a list of elementary predications, so that covfor a tends to be much higher than thataof, with
erage of these predications can be tracked using bibseen words beginning with a vowel, there may
vectors. The LF chunks ensure that the subtreemt be a clear preference for the bigram beginning
underh1 ands1 are realized as independent subwith an.
problems; cf. (White, 2004a) for discussion. The The base clas§gramScorer implements the
edges produced by lexical lookup and instantiatiobulk of thescore method, using an abstrabig-
appear next, under the headingitial Edges, ProbFromNgram method for subclass-specific cal-
with only the edges foalsqy,. andthoughshown culation of the log probabilities (with backoff) for
in the figure. For each edge, the coverage percentdividual n-grams. Thescore method also in-
age and score (here a probability) appear first, folrokes theprepareToScoreWords method, in or-
lowed by the word(s) and the coverage vector, thetgier to allow for subclass-specific pre-processing
the syntactic category (with features suppressed)f the words in the given sign. Wititandard-
and finally any active LF chunks. The edges addeligramModel, this method is used to extract the
to the chart appear (unsorted) under the headingord forms or semantic classes into a list of strings
A11 Edges. As this trace shows, in the best-firstto score. It also appends any pitch accents to the
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the tiles are also_H* from the SERIES_H* series though LLY% .
p( the | <s> ) = [2gram] 0.0999418 [ -1.00025 ]

p( tiles | the ...) = [3gram] 0.781102 [ -0.107292 ]
p( are | tiles ...) = [3gram] 0.484184 [ -0.31499 ]
p( also_H* | are ...) = [3gram] 0.255259 [ -0.593018 ]

p( from | also_H* ...) = [3gram] 0.0649038 [ -1.18773 ]
p( the | from ...) = [3gram] 0.5 [ -0.30103 ]
p( SERIES_H* | the ...) = [3gram] 0.713421 [ -0.146654 ]
p( series | SERIES H* ...) = [3gram] 0.486827 [ -0.312626 ]
p( though | series ...) = [1gram] 1.58885e-06 [ -5.79892 ]
p( LL% | though ...) = [2gram] 0.416667 [ -0.380211 ]
pC . | LL% ...) = [3gram] 0.75 [ -0.124939 ]
p( </s> | . ...) = [3gram] 0.999977 [ -1.00831e-05 ]
1 sentences, 11 words, O 00Vs
0 zeroprobs, logprob= -10.2677 ppl= 7.17198 ppll= 8.57876

the tiles are also_H* though from the SERIES_H* series LLY% .
p( the | <s> ) = [2gram] 0.0999418 [ -1.00025 ]
p( tiles | the ...) = [3gram] 0.781102 [ -0.107292 ]
p( are | tiles ...) = [3gram] 0.484184 [ -0.31499 ]
p( also_H* | are ...) [3gram] 0.255259 [ -0.593018 ]
p( though | also_H* ...) = [lgram] 1.11549e-05 [ -4.95254 ]
p( from | though ...) [1gram] 0.00805451 [ -2.09396 ]
p( the | from ...) = [2gram] 0.509864 [ -0.292545 ]
p( SERIES_H* | the ...) = [3gram] 0.713421 [ -0.146654 ]
p( series | SERIES_Hx ...) = [3gram] 0.486827 [ -0.312626 ]
p( LLY | series ...) = [3gram] 0.997543 [ -0.00106838 ]
pC . | LL% ...) = [3gram] 0.733867 [ -0.134383 ]
p( </s> | . ...) = [3gram] 0.999977 [ -1.00831e-05 ]
1 sentences, 11 words, O 00Vs
0 zeroprobs, logprob= -9.94934 ppl= 6.74701 ppll= 8.02574

o~

Figure 7: Forward probabilities for two placementstafugh(COMIC test suite, 2-fold cross validation)
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the tiles are also_H* from the SERIES_H* series though LLY% .
pC . | <s> ) = [2gram] 0.842366 [ -0.0744994 ]
pC( LL% | . ...) = [3gram] 0.99653 [ -0.00150975 ]
p( though | LL% ...) = [3gram] 0.00677446 [ -2.16913 ]
p( series | though ...) = [igram] 0.00410806 [ -2.38636 ]
p( SERIES_H* | series ...) = [2gram] 0.733867 [ -0.134383 ]
p( the | SERIES_H* ...) = [3gram] 0.744485 [ -0.128144 ]
p( from | the ...) = [3gram] 0.765013 [ -0.116331 ]
p( also_H* | from ...) = [3gram] 0.0216188 [ -1.66517 ]
p( are | also_Hx ...) = [3gram] 0.5 [ -0.30103 ]
p( tiles | are ...) = [3gram] 0.432079 [ -0.364437 ]
p( the | tiles ...) [3gram] 0.9462 [ -0.0240173 ]
p( </s> | the ...) = [3gram] 0.618626 [ -0.208572 ]

1 sentences, 11 words, O 00Vs

0 zeroprobs, logprob= -7.57358 ppl= 4.27692 ppll= 4.88098

the tiles are also_H* though from the SERIES_H* series LLY% .
p( . | <s> ) = [2gram] 0.842366 [ -0.0744994 ]
pC LL% | . ...) = [3gram] 0.99653 [ -0.00150975 ]
p( series | LL% ...) = [3gram] 0.0948425 [ -1.023 ]
p( SERIES_Hx | series ...) = [3gram] 0.733867 [ -0.134383 ]
p( the | SERIES_H* ...) = [3gram] 0.744485 [ -0.128144 ]
p( from | the ...) = [3gram] 0.765013 [ -0.116331 ]
p( though | from ...) = [lgram] 3.50735e-08 [ -7.45502 ]
p( also_H* | though ...) = [igram] 0.00784775 [ -2.10525 ]
p( are | also_Hx ...) = [2gram] 0.2291 [ -0.639975 ]
p( tiles | are ...) = [3gram] 0.432079 [ -0.364437 ]
p( the | tiles ...) = [3gram] 0.9462 [ -0.0240173 ]
p( </s> | the ...) = [3gram] 0.618626 [ -0.208572 ]

1 sentences, 11 words, O 00Vs

0 zeroprobs, logprob= -12.2751 ppl= 10.5421 ppli= 13.0594

Figure 8: Reverse probabilities for two placementtholuigh(COMIC test suite, 2-fold cross validation)
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Input LF:
@bl:state(be ~ <info>rh "~ <mood>dcl ~ <tense>pres <owner>s ~ <kon>- ~
<Arg>(t1l:phys-obj ~ tile " <det>the ~ <num>pl ~ <info>rh ~ <owner>s "~ <kon>-) "
<Prop>(hl:proposition "~ has-rel ~ <info>rh "~ <owner>s ~ <kon>- ~
<0f>t1:phys-obj ~
<Source>(sl:abstraction ~ series " <det>the "~ <num>sg ~ <info>rh ~ <owner>s "
<HasProp>(jl:series ~ Jazz "~ <kon>+ "~ <info>rh ~ <owner>s))) ~
<HasProp>(al:proposition ~ also " <kon>+ " <info>rh "~ <owner>s) ~
<HasProp>(t2:proposition ~ though ~ <info>rh ~ <owner>s ~ <kon>-))

<kon>- ~

Instantiating scorer from class: MyEvenScorer

Preds:

ep[0]: @al:proposition(also)

ep[1]: @al:proposition(<info>rh)

ep[2]: @al:proposition(<kon>+)

ep[3]: @al:proposition(<owner>s)

ep[4]: @bl:state(be)

ep[5]: @bl:state(<info>rh)

LF chunks:

chunk[0]: {14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}
chunk[1]: {20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30}

Initial Edges:

{0.12} [0.011] also_H* {0, 1, 2, 3, 12} :- s\.s

{0.12} [0.011] also_H* {0, 1, 2, 3, 12} :- s\np/~(s\np)
{0.12} [0.011] also_H* {0, 1, 2, 3, 12} :- s/"s

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\np/~(s\np)
{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\.s

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s/"s
Uninstantiated Semantically Null Edges:

{0.00} [0.073]
{0.00} [0.011]

LLY {} :- s$1\*(s$1)
L {} :- s$1\#(s$1)

All Edges:

{0.02} [0.059] . {7} :- sent\xs

{0.02} [0.059] . {7} :- sent\*(s\np)

{0.02} [0.052] the {25} :- np/™n <O 1>

{0.02} [0.052] the {32} :- np/°n

{0.12} [0.032] tiles {31, 33, 34, 35, 36} :- n

{0.02} [0.018] from {19} :- n\n/<np < 0 >

{0.15} [0.018] from {14, 15, 16, 17, 18, 19} :- s\!np/<np < 0 >

{0.17} [0.017] is {4, 5, 6, 8, 9, 10, 11} :- s\np/(s\!np)

{0.15} [0.009] the tiles {31, 32, 33, 34, 35, 36} :- np

{0.15} [0.009] the tiles {31, 32, 33, 34, 35, 36} :- s/@i(s\@inp)

{0.15} [0.009] the tiles {31, 32, 33, 34, 35, 36} :- s$1\@i(s$1/@inp)

{0.44} [0.001] the tiles are also_H* {0, 1, 2, 3, 4, 5, 6, 8, 9, 10, 11, 12, 31, 32, 33, 34, 35, 36} :- s/(s\!np)

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\np/~(s\np)

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s\.s

{0.12} [6E-4] though {13, 37, 38, 39, 40} :- s/"s

{0.85} [1.32E-5] the tiles are also_H* from the Jazz_Hx series {...} :-

{0.85} [1.32E-5] the tiles are also_H# from the Jazz_Hx series LL} {...} :- s

{0.24} [2.64E-6] also_H* though {0, 1, 2, 3, 12, 13, 37, 38, 39, 40} :- s\np/~(s\np)

{0.24} [2.64E-6] also_H* though {0, 1, 2, 3, 12, 13, 37, 38, 39, 40} :- s\.s

{0.88} [5.44E-8] the tiles are from the Jazz_H* series though LL} . {...} :- sent

{0.85} [4.85E-8] the tiles are from the Jazz_H* series also_H* {...} :- s

{0.88} [3.14E-9] the tiles also_H* are from the Jazz_Hx series LLY% . {...} :- sent

{0.98} [2.96E-9] the tiles are also_H* from the Jazz_H* series though {...} :- s

{0.98} [1.51E-9] the tiles are also_H* from the Jazz_H* series though LL% {.. - s

{1.00} [1.34E-8] the tiles are also_H* from the Jazz_H* series though LL% . ..} :- sent
*#**kkxx first complete realization; scored with <s> and </s> tags ¥¥***x

{0.24} [1.44E-9] also_H* though L {...} :- s\np/~(s\np)

{0.56} [2E-10] though the tiles are also_H* LL% {...} :- s/(s\!'np)

Complete Edges (sorted):
{1.00} [1.34E-8] the tiles are also_H* from the Jazz_H* series though LL% . {...} :- sent
{1.00} [1.33E-8] the tiles are also_H* from the Jazz_H* series LL} though LLY% . {...} :- sent

Figure 9: Realizer trace for example (2) with interpolated model
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word forms or semantic classes, effectively treateombined using theignScorerInterpolation
ing them as integral parts of the words. class. For example, Figure 10 shows how forward
Since the realizer builds up partial realizationgnd reverse n-gram models may be interpolated.
bottom-up rather than left-to-right, it only adds With n-gram models of the same direction, it is
start of sentence (and end of sentence) tags witliso possible to linearly interpolate models at the
complete realizations. As a consequence, theord level, using th&inearNgramScorerCombo
words with less than a fulh— 1 words of history class. Word-level interpolation makes it easier to
are scored with appropriate sub-models. For exise cache models created with maximum likeli-
ample, the first word of a phrase is scored witthood estimation, as word-level interpolation with
a unigram sub-model, without imposing backoffa base model avoids problems with zero probabil-
penalties. ities in the cache model. As discussed in (Brock-
Another consequence of bottom-up realizatiomann et al., 2005), cache models can be used to
is that both the left- and right-contexts may changpromote alignment with a conversational partner,
when forming new signs from a given input signby constructing a cache model from the bigrams
Consequently, it is often not possible (even in prinin the partner’s previous turn, and interpolating it
ciple) to use the score of an input sign directly irwith a base model. Figure 11 shows one way to
computing the score of a new result sign. If onereate such an interpolated model.
could make assumptions about how the score of an
input sign has been computed—e.g., by a bigra®4 N-gram Precision Models

model—one could determine the score of the refhe NgramPrecisionModel subclass ofigram-

sult sign from the scores of the input signs togeth&corer computes a modified version of the Bleu
with an adjustment for the word(s) whose contexgcore used in MT evaluation (Papineni et al.,
has changed. However, our general approach fmo1). Its constructor takes as input an array of
sign scoring precludes making such assumptiongarget strings—from which it extracts the n-gram
Nevertheless, it is still possible to improve the effisequences to use in computing the n-gram preci-
ciency of n-gram scoring by caching the log probsjon score—and the desired order. Unlike with
ability of a sign’s words, and then looking up thatthe Bleu score, rank order centroid weights (rather
log probability when the sign is used as the firsthan the geometric mean) are used to combine
input sign in creating a new combined sign—thuscores of different orders, which avoids problems
retaining the same left context—and only recomyjith scoring partial realizations which have no n-
puting the log probabilities for the words of any in-gram matches of the target order. For simplicity,
put signs past the first one. (With reverse modelshe score also does not include the Bleu score’s

the sign must be the last sign in the combinationfells and whistles to make cheating on length dif-
In principle, the derivation history could be con-ficult.

sulted further to narrow down the words whose n- We have found n-gram precision models to be

gram probabilities must be recomputed to the mingery useful for regression testing the grammar, as
imum possible, thougligramScorer only imple-  an n-gram precision model created just from the
ments a single-step lookup at presgn€inally, target string nearly always leads the realizer to
note that a JavéleakHashMap is used to imple- choose that exact string as its preferred realiza-
ment the cache, in order to avoid an undesirablgon. Such models can also be useful for evaluating
buildup of entries across realization requests.  the success of different scoring models in a cross-
validation setup, though with high quality output,

manual inspection is usually necessary to deter-

Scoring models may be linearly interpolated immine the importance of any differences between

two ways. Sign scorers of any variety may be

- 4At present, such cache models must be constructed with
SInformal experiments indicate that caching log probabil-a call to the SRILM toolkit; it would not be difficult to add

ities in this way can yield an overall reduction in best-firstOpenCCG support for constructing them though, since these

realization times of 2-3% on average. models do not require smoothing.

3.3 Interpolation
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// configure realizer with 4-gram forward and reverse backoff models,
// interpolated with equal weight
NgramScorer forwardModel = new StandardNgramModel (4, "lm.4bo");
NgramScorer reverseModel = new StandardNgramModel(4, "lm-r.4bo");
reverseModel .setReverse (true);
realizer.signScorer = new SignScorerInterpolation(

new SignScorer[] { forwardModel, reverseModel }

)

Figure 10: Example interpolated n-gram model

// configure realizer with 4-gram backoff base model,
// interpolated at the word level with a bigram mazimum-likelihood
// cache model, with more wetght given to the base model
NgramScorer baseModel = new StandardNgramModel(4, "lm.4bo");
NgramScorer cacheModel = new StandardNgramModel(2, "lm-cache.mle");
realizer.signScorer = new LinearNgramScorerCombo (

new SignScorer[] { baseModel, cacheModel },

new double[] { 0.6, 0.4 }

)

Figure 11: Example word-level interpolation of a cache model

the preferred realization and the target string.  distant word first, but rather may be specified as
a path through the set of contextual parent vari-
3.5 Factored Language Models ables; additionally, parallel backoff paths may be

A factored language model (Bilmes and Kirch-specified, with the possibility of combining these
hoff, 2003) is a new kind of language model thaPaths dynamically in various ways. In OpenCCG,
treats words as bundles of factors. To suppoth€FactoredNgramModel class supports scoring
scoring with such models, OpenCCG representith factored language models that employ gen-
words as objects with a surface form, pitch accengralized backoff, though parallel backoff is not
stem, part of speech, supertag, and semantic cla¥§t supported, as it remains somewhat unclear
Words may also have any number of further atwhether the added complexity of parallel backoff
tributes, such as associated gesture classes, in rworth the implementation effort. Typically, sev-
der to handle in a general way elements like pitcﬁral related factored language models are specified
accents that are “coarticulated” with words. in a single file and loaded byFEectoredNgram-

To represent words efficiently, and to speed ufjodelFamily, which can multiplicatively score
equality tests, all attribute values are interned, anfpodels for different child variables, and include
theword objects themselves are interned via a facdifferent sub-models for the same child variable.
tory method. Note that in Java, it is straightfor- 14 jjjystrate, let us consider a simplified version
ward to intern objects other than strings by ey the factored language model family used in the
ploying aWeakHashMap to map from an object comiC realizer. This model computes the proba-
key to a weak reference to itself as the canonicgjjjity of the current word given the preceding ones
instance. (Using a weak reference avoids acClcording to the formula shown in (3), where a
mulating interned objects that would otherwise b§orq consists of the factors word (W), pitch accent
garbage collected.) (A), gesture class (GC), and gesture instance (Gl),

With the SRILM toolkit, factored language p|ys the other standard factors which the model ig-
models can be constructed that suppyeheral- nores:

ized parallel backoff that is, backoff order is
not restricted to just dropping the most temporally
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P((W,A,GC,GI) | (W,A,GC,Gl)_; ...) ~ extracting the appropriate sequence of factor keys,
P(W‘W,]_W,QA,]_A,Q) X . .
(3)  paciw) x and using them to compute the log probability as
P(GI|GC) with standard n-gram models. Thactored-
NgramModelFamily class computes log probabil-
In (3), the probability of the current word is ap-jties by delegating to its component factored n-
proximated by the probability of the current wordgram models (choosing appropriate sub-models,
form given the preceding two word forms and prewhen appropriate) and summing the results.
ceding two pitch accents, multiplied by the proba-
bility of the current gesture class given the curren8.6  Avoiding Repetition

word form, and by the probability of the current, . -
. . While cache models appear to be a promising av-
gesture instance given the current gesture class.

Note that in the COMIC grammar, the choice otnue to promote lexical and syntactic alignment

. ) ) with a conversational partner, a different mech-
pitch accent is entirely rule governed, so the cur- . W
: : . anism appears to be called for to avoid “self-

rent pitch accent is not scored separately in the. y ) . "
alignment’—that is, to avoid the repetitive use of

model. However, the preceding pitch accents are .
P gp ords and phrases. As a means to experiment

taken into account in predicting the current word . - " .
: predicting ith avoiding repetition, OpenCCG includes the
form, as perplexity experiments have suggeste

) . . . RepetitionScorer class. This class makes use
that they do provide additional information be_ofaconfi urable penalty plus a set of methods for
yond that provided by the previous word forms. 9 P yp

. 4 , . dynamically managing the context. It returns a
The specification file for this model appears in.. . o 1 goxp whereg, is the count of repeated
Figure 12. The format of the file is a restrlcteditems’ andp is the penalty. Note that this formula

for.m of the files used by the SRILM_tOOIkit to returns 1 if there are no repeated items, and returns
build factored language models. The file specmeg score that is linear in log space with the number
four models, where the first, third and fourth mod-

. i s of repeated items otherwise.
els correspond to those in (3). With the first model

since the previous words are typically more infor  Arepetition scorer can be combined multiplica-
P ypically %vely with an n-gram model, in order to discount

mative thar_1 _the previous p|tch_accents, the baCkorealizations that repeat items from the recent con-
order specifies that the most distant accgft2), : .
text. Figure 13 shows such a combination, to-

should be dropped first, followed by the prevlousgether with the operations for updating the con-
accentA(-1), then the most distant word(-2),

: . text. By default, open class stems are the consid-
and finally the previous wordy(-1). The sec- y b

: . ~ _ered the relevant items over which to count rep-
ond model is considered a sub-model of the first—_. . : . -

) N . etitions, though this behavior can be specialized
since it likewise predicts the current word—to b

. by subclassin®epetitionScorer and overrid-
used when there is only one word of context avail- .
: o . ing theupdateItems method. Note that in count-
able (i.e. with bigrams). Note that when scorin

) . . 4ng repetitions, full counts are given to items in the
a bigram, the second model will take the previous grep 9

itch accent into account. whereas the first mod glrevious words or recent context, while fractional
P ' counts are given to older items; the exact details

would not. For documentation of the file format as . i )
_ . ) , ay lik be ch ed in a subclass, by over-
it is used in the SRILM toolkit, see (Kirchhoff et may AKewlse changed ! subclass, by over

al., 2002). riding therepeatedItems method.

Like StandardNgramModel, the Factored- 4 Pruning Strategies

NgramModel class stores its n-gram tables in a trie

data structure, except that it stores an interned fadhe classes for defining edge pruning strategies
tor key (i.e. a factor name and value pair, or just appear in Figure 14. As mentioned in Section 2,
string, in the case of the word form) at each nodean N-best pruning strategy is employed by default,
rather than a simple string. During scoring, thevhere N is determined by the current preference
logProbFromNgram method determines the log settings. It is also possible to define custom strate-
probability (with backoff) of a given n-gram by gies. To support the definition of a certain kind
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## Simplified COMIC realizer FLM spec file

## Trigram Word model based on previous words and accents, dropping accents first,
##  with bigram sub-model;

## Unigram Gesture Class model based on current word; and

## Unigram Gesture Instance model based on current gesture class

4

## 3gram with A
W : 4 W(-1) W(-2) A(-1) A(-2) w_wlw2ala2.count w_wlw2ala2.lm 5
W1,W2,A1,A2 A2 ndiscount gtmin 1
W1,W2,A1 A1l ndiscount gtmin 1
W1,W2 W2 ndiscount gtmin 1
Wl W1l ndiscount gtmin 1
0 0 ndiscount gtmin 1

## bigram with A

W : 2 W(-1) A(-1) w_wlal.count w_wlal.lm 3
W1,A1 Al ndiscount gtmin 1
Wl W1l ndiscount gtmin 1
0 0 ndiscount gtmin 1

## Gesture class depends on current word
GC : 1 W(0) gc_wO.count gc_w0.lm 2

WO WO ndiscount gtmin 1

0 0 ndiscount gtmin 1

## Gesture instance depends only on class
GI : 1 GC(0) gi_gcO.count gi_gc0.1lm 2
GCO GCO ndiscount gtmin 1

00
Figure 12: Example factored language model family specification
// set up mn-gram scorer and repetition scorer
String 1lmfile = "ngrams/combined.flm";
boolean semClasses = true;
NgramScorer ngramScorer = new FactoredNgramModelFamily(lmfile, semClasses);

ngramScorer .addFilter (new AAnFilter ());
RepetitionScorer repetitionScorer = new RepetitionScorer ();

// combine m-gram scorer with repetition scorer
realizer.signScorer = new SignScorerProduct(
new SignScorer[] { ngramScorer, repetitionScorer }

)

// ... then, after each realization request,
Edge bestEdge = realizer.realize(1lf);

// ... update repetition context for next realization:
repetitionScorer.ageContext ();
repetitionScorer.updateContext (bestEdge.getSign());

Figure 13: Example combination of an n-gram scorer and a repetition scorer
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of custom strategy, the abstract classersity- 5 Conclusions and Future Work
PruningStrategy provides an N-best pruning . :
strategy that promotes diversity in the edges thall this paper, we have presented OpenCCG's ex-

are kept, according to the equivalence reIatioF1enSIble API for efficiently integrating language

established by the abstrasbtCompellingly- modeling and realization, in order to select realiza-

Different method. In particular, in order to de- tions W'.th preferred qud orders, promo'te allgn.-

. . . . ._ment with a conversational partner, avoid repeti-
termine which edges to keep, a diversity prunlnciy.Ve lanauage use. and increase the speed of the
strategy clusters the edges into a ranked list f guag ' P

. . . %est—first anytime search. As we have shown,
equivalence classes, which are sequentially sar{‘h-e desian enables a variety of n-aram models
pled until the limit N is reached. If theingle- 9 y 9

. . to be easily combined and used in conjunction
BestPerGroup flag is set, then a maximum of one . . . :
: . : with appropriate edge pruning strategies. The n-
edge per equivalence class is retained.

As an example, the COMIC realizer's diversitygram models may be of any order, operate in re-

pruning strategy appears in Figure 15. The iqeyerse (“right-to-left”), and selectively replace cer-

behind this strategy is to avoid having the N-be ttam words with thelr' semantic (?Iasses. Factored
: ) . anguage models with generalized backoff may
lists become full of sighs whose words differ only

in the exact gesture instance associated with Org(lfso be employed, over words rgpresented as bun-
. . . es of factors such as form, pitch accent, stem,
or more of the words. With this strategy, if two

signs differ in just this way, the edge for the Iower-Ioart of speech, supertag, and semantic class.
. . . : p . In future work, we plan to further explore
scoring sign will be considered “not compellingly :
) . . how to best employ factored language models; in
different” and pruned from the N-best list, mak- . .
ing way for other edges whose signs exhibit mor articular, inspired by (Bangalore and Rambow,
000), we plan to examine whether factored lan-

interesting differences. uage models using supertags can provide an ef
OpenCCG also provides a concrete subcla?qs 9 g stpertag P

of DiversityPruningStrategy namedigram- ective way to combine syntactic and lexical prob-

DiversityPruningStrategy, which general- abilities. We also plan to implement the capabil-

izes the approach to pruning described in (Lang jty to useone-of alternations in the input logical

ilde, 2000). With this class, two signs are consid-orms (Foster and White, 2004), in order to more

ered not compellingly different if they share thee1‘f|C|entIy defer lexical choice decisions to the lan-

samen—1 initial and final words, wherea is the guage models.

n-gram order. When one is interested in SingleAcknowledgements

best output, an n-gram diversity pruning strategy

can increase efficiency while guaranteeing no losEhanks to Jason Baldridge, Carsten Brockmann,
in quality—as long as the reduction in the searcMary Ellen Foster, Philipp Koehn, Geert-Jan Krui-
space outweighs the extra time necessary to cheffik Johanna Moore, Jon Oberlander, Miles Os-
for the same initial and final words—since anyborne, Mark Steedman, Sebastian Varges and the
words in between an input sign’s-1 initial and anonymous reviewers for helpful discussion.

final ones cannot affect the n-gram score of a

new sign formed from the input sign. However,

when N-best outputs are desired, or when repeti-

tion scoring is employed, it is less clear whether

it makes sense to use an n-gram diversity pruning

strategy; for this reason, a simple N-best strategy

remains the default option.
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«interface» Returns the edges pruned from

. the given ones, which always have
PfUﬂlngStrategy T equivalent categories and are

sorted by score.

+pruneEdges(edges: List<Edge>): List<Edge>

NBestPruningStrategy | -..-----------------1 Keeps only the n-best edges. j

#CAT_PRUNE_VAL: int

Prunes edges that are not
B | compellingly different.

DiversityPruningStrategy

+singleBestPerGroup: boolean
+notCompellinglyDifferent(signl: Sign, sign2: Sign): boolean

f : f Defines edges to be not compellingly different
NgramDlverSItyPrunmgStratEQY when the n—1 initial and final words are the same
#order: int (where n is the order).
+notCompellinglyDifferent(sign1: Sign, sign2: Sign): boolean

Figure 14: Classes for defining pruning strategies

// configure realizer with gesture diversity pruner
realizer.pruningStrategy = new DiversityPruningStrategy () {
VAE
* Returns true iff the given signs are not compellingly dirfferent;
* in particular, returns true <1ff the words differ only in thesir
* gesture instances. */
public boolean notCompellinglyDifferent(Sign signl, Sign sign2) {

List wordsl = signl.getWords(); List words2 = sign2.getWords();

>

if (wordsl.size() != words2.size()) returmn false;

for (int i = 0; i < wordsil.size(); i++) {
Word wl = (Word) wordsl.get(i); Word w2 = (Word) words2.get(i);
if (w1l == w2) continue;
if (wl.getForm() != w2.getForm()) return false;
if (wl.getPitchAccent() != w2.getPitchAccent()) return false;
if (wl.getVal("GC") != w2.getVal("GC")) return false;
// nb: assuming that they differ in the wal of GI at this point

return true;

Figure 15: Example diversity pruning strategy
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Abstract

We describe the evolution of solvers
for dominance constraints, a formalism
used in underspecified semantics, and
present a new graph-based solver using
charts. An evaluation on real-world data
shows that each solver (including the

In this paper, we advocate a third option: Use a
general, powerful formalism, analyse what makes
it complex and what inputs actually occur in prac-
tice, and then find a restricted fragment of the for-
malism that supports all practical inputs and can
be processed efficiently. We demonstrate this ap-
proach by describing the evolution of solvers for
dominance constrainf&gg et al., 2001), a certain

formalism used for the underspecified descrip-
tion of scope ambiguities in computational seman-
tics. General dominance constraints have an NP-
complete satisfiability problem, butormal dom-
inance constraints, which subsume all constraints
that are used in practice, have linear-time satisfia-
bility and can be solved extremely efficiently.

We describe a sequence of four solvers, rang-

. Lo .ing from a purely logic-based saturation algorithm
In many areas of computational linguistics, there i
zKoIIer et al., 1998) over a solver based on con-

a tension between a need for powerful formalisms . . i )

. - . . straint programming (Duchier and Niehren, 2000)
and the desire for efficient processing. Expressive ticient solvers based on araph algorithm
formalisms are useful because they allow us t%o etlicient solvers based on graph aigo S

e : Bodirsky et al., 2004). The first three solvers have
specify linguistic facts at the right level of abstrac- o .
pecify ling 9 . geen described in the literature before, but we also

tion, and in a way that supports the creation an ; iant of th h solver that
maintenance of large language resources. On tl%ei?n ?ne;\i variant o _de grbaILp S0 Vgr ?:.us”es
other hand, by choosing a more powerful formalS2cMng oto ain a CTnStI. er?h (;:spee up- Illnfa y
ism, we typically run the risk that our processingWe presenta new evaluation that compares afl four
. . solvers with each other and with a different under-
tasks (say, parsing or inference) can no longer be feati ver f the LKB devel
performed efficiently. specification solver from the grammar devel-

One way to address this tension is to switch tgpment syste.m (Copestake and Fllcklnger,.20.00).
The paper is structured as follows. We will first

simpler formalisms. This makes processing more .
. . . . sketch the problem that our algorithms solve (Sec-
efficient, but sacrifices the benefits of expressive

formalisms in terms of modelling. Another com—tlon 2). Then we present the solvers (Section 3)

. . and conclude with the evaluation (Section 4).
mon strategy is to simply use the powerful for-

malisms anyway. This sometimes works pPretts  The Problem

well in practice, but a system built in this way can-

not give any runtime guarantees, and may becon¥he problem we use to illustrate the progress to-
slow for certain inputs unpredictably. wards efficient solvers is that of enumerating all

new one) is significantly faster than its
predecessors. We believe that our strat-
egy of successively tailoring a powerful
formalism to the actual inputs is more
generally applicable.

1 Introduction

65

Proceedings of the ACL 2005 Workshop on Softwaages 65-76,
Ann Arbor, June 2005©) 2005 Association for Computational Linguistics



readings of amunderspecified descriptiotunder- Vx

specification is a technique for dealing with the —
combinatorial problems associated with quantifier ~ stud Jy
scope ambiguities, certain semantic ambiguities X A
that occur in sentences such as the following: book read
y ex y

(1) Every student reads a book.

_ _ _ Figure 1: Trees for the readings (2) and (3).
This sentence has two different readings. Read-

ing (2) expresses that each studentreads a possibly vy

different book, while reading (3) claims that there - 2 Vj&z)xﬁ) A
is a single book which is read by every student. stud Xs @ studXg) A
X X5 1 XA
(2) Vx.student(x) — (Jy.book(y) Aread(X,y)) % < Yo A
(3) Jy.book(y) A (Vx.student(x) — read(x,Y)) ;(; )r(ei(ig(?&xg’) A

_ The' number of readings can grow exponenrigyre 2: A dominance constraint (right) and its
tially in the number of quantifiers and othergraphical representation (left); the solutions of the

scope-bearing operators occuring in the sentencynstraint are the two trees in Fig. 1.
A patrticularly extreme example is the follow-

ing sentence from the Rondane Treebank, which _ _
the English Resource Grammar (Copestake afgeminance constraints. The particular under-

Flickinger, 2000) claims to have about 2.4 trillionSPecification formalism whose enumeration prob-
readings. lem we consider in this paper is the formalism

of dominance constraintéEgg et al., 2001). The
(4) Myrdal is the mountain terminus of the Flambasic idea behind using dominance constraints in
rail line (or Flamsbana) which makes its wayunderspecification is that the semantic representa-
down the lovely Flam Valley (FlAmsdalen) totions (2) and (3) can be consideredteses(see
its sea-level terminus at Flam. Fig. 1). Then a set of semantic representations can
(Rondane 650) be characterised as the set of models of a formula

) _ in the following language:
Of course, this huge number of readings results

not only from genuine meaning differences, but ¢ ::= Xif (X, oo, %) [ XY [ XAY [ OAD
from the (quite reasonable) decision of the ERG
developers to uniformly treat all noun phrases, in- The labelling atom Xf(Xi,...,X,) expresses
cluding proper names and definites, as quantifierthat the node in the tree which is denoted by the
But a system that builds upon such a grammar stillariableX has the labef, and its children are de-
has to deal with these readings in some way.  noted by the variableX; to X,. Dominance atoms
The key idea of underspecification is now to noX <* Y say that there is a path (of length O or more)
enumerate all these semantic readings from a syfrom the node denoted by to the node denoted
tactic analysis during or after parsing, but to derivédy Y; andinequality atoms X£ Y require thatX
from the syntactic analysis a single, compant andY denote different nodes.
derspecified descriptionThe individual readings  Dominance constrainty can be drawn infor-
can beenumeratedrom the description if they are mally as graphs, as shown in Fig. 2. Each node
needed, and this enumeration process should béthe graph stands for a variable; node labels and
efficient; but it is also possible to eliminate readsolid edges stand for labelling atoms; and the dot-
ings that are infelicitous given knowledge abouted edges represent dominance atoms. The con-
the world or the context on the level of underspecstraint represented by the drawing in Fig. Zi-
ified descriptions. isfiedby both trees shown in Fig. 1. Thus we can
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use it as an underspecified description representhis rule checks for the presence of two variables
ing these two readings. X andY that are known to both dominate the same
The two obvious processing problems convariable Z. Because models must be trees, this
nected to dominance constraints aedisfiability means thaX andY must dominate each other in
(is there a model that satisfies the constraint®ome order; but we can’t know yet whether iis
and enumeration(compute all models of a con- orY that dominates the other one. Hence the solver
straint). Because every satisfiable dominance cotries both choices. This makes it possible to derive
straint technically has an infinite number of mod-multiple solved forms (one for each reading of the
els, the algorithms below solve the enumeratiosentence), such as the two different trees in Fig. 1.

problem by computingolved formsof the con- It can be shown that a dominance constraint is
straint, which are finite characterisations of infinitesatisfiable iff it is not possible to derifalsefrom
model sets. it using the rules in the algorithm. In addition, ev-
ery model of the original constraint satisfies ex-
3 The Solvers actly one solved form. So the saturation algorithm

We present four different solvers for dominancé&an indeed be used to solve dominance constraints.
constraints. As we go along, we analyse whdtowever, even checking satisfiability takes nonde-

makes dominance constraint solving hard, an_;frminist_ic poly_nomial time. _Bec_ause all choices
what characterises the constraints that occur iR the distribution rule applications have to be

practice. checked, a deterministic program will take expo-
nential time to check satisfiability in the worst
3.1 A saturation algorithm case.

The first dominance constraint solver (Koller etal., Indeed, satisfiability of dominance constraints
1998; Duchier and Niehren, 2000) is an algorithms an NP-complete problem (Koller et al., 1998),
that operates directly on the constraint as a logic&@nd hence itis likely that any solver for dominance
formula. It is asaturation algorithm which suc- constraints will take exponential worst-case run-
cessively enriches the constraint usgajuration time. At first sight, it seems that we have fallen
rules The algorithm terminates if it either derivesinto the expressivity trap: We have a formalism
a contradiction (marked by the special attatse), that allows us to model scope underspecification
or if no rule can contribute any new atoms. In thevery cleanly, but actually computing with this for-
first case, it claims that the constraint is unsatisfinalism is expensive.
able; in the second case, it reports the end result 8f
the computation as solved formand claims that ™
it is satisfiable. In reaction to this NP-completeness result,
The saturation rules in the solver try to matcHPuchier and Niehren (2000) applied techniques
their preconditions to the constraint, and if theyfrom constraint programmingp the problem in or-
do match, add their conclusions to the constrain€ler to get a more efficient solver. Constraint pro-
For example, the following rules express that domgramming (Apt, 2003) is a standard approach to
inance is a transitive relation, and that trees hawolving NP-complete combinatorial problems. In

2 Reduction to Set Constraints

no cycles: this paradigm, a problem is modelled as a for-
mula in a logical constraint language. The pro-

XITYAY < Z — X4z gram searches for values for the variables in the
XA, )AY X — false formula that satisfy the formula. In order to reduce

Some rules have disjunctive right-hand sides: if'€ Size of the search space, it performs cheap de-

they are applicable, they perform a case distinctioWrminiStiC inferences that exclude some values of

and add one of the disjuncts. One example is tH8€ variablespropagation) and only after prop-
Choice Rulewhich looks as follows: agation can supply no further information it per-
forms a non-deterministic case distinctiistri-

XTZAYSZ - XaYVY ' X bution).
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Upx z?g Eqx
Sidey Downy
Figure 3: The four node sets Figure 4: Search tree for constraint 42 from the
Rondane Treebank.
Duchier and Niehren solved dominance con-
straints by encoding them &gite set constraints

Finite set constraints (Muller and Mdller, 1997)
are formulas that talk about relations betwee

(terms that denote) finite sets of integers, such, . . .
his seems to happen systematically when solving

as inclusionX C Y or equalityX =Y. Efficient . ..
) . any constraints that come from underspecification.
solvers for set constraints are available, e.g. as part

of the Mozart/Oz programming system (Oz Devel i
opment Team, 2004). 3.3 A graph-based solver

the dominance constraint). Interestingly, all leaves
of the search tree in Fig. 4 are solution nodes;
e search never runs into inconsistent constraints.

Reduct . The basic id This behaviour of the set-constraint solver is ex-
eduction to set constraints. € basic idea tremely surprising: The key characteristic of an

underlying the reduption is that a tree can be relq\'lP—compIete problem is that the search tree must
resented by specifying for each nodef this tree necessarily contain failed nodes on some inputs.

which nodes are dominated aywhich ones dom- . ¢+ that the solver never runs into failure is a

mall:ev, \gh'ﬁh r(])nes are ﬁg?’?" ,M)”('f'e' JUFS,W:';' strong indication that there is a fragment of domi-
self), and which ones are Isjoint romn(Fig. 3). nance constraints that contains all constraints that
These four node sets are a partition of the nodes I} . <4 in practice, and that the solver automat-
the tree. ically exploits this fragment. This begs the ques-

) NO(\jN th.e solver mtrodgcefs for ea_cf;)lva::ab{e tion: What is this fragment, and can we develop
in a dominance constraint four variablesEqy, even faster solvers that are specialised to it?

Upy, Downy, Side for the sets of node variables One such fragment is the fragment srmal
that denote nodes in the respective region of thg

) ) minan nstraints (Alth l., 2 . Th
tree, relative toX. The atoms inp are translated 0 _a ce constra ts( thaus et al., 2003) _e
. . . . most important restriction that a normal domi-
into constraints on these variables. For mstance,naance constraing must satisfy is that it isverlap-
dominance atonX <* Y is translated into P

free Whenever¢ contains two labelling atoms
Upy C Up, A Downy C Downy A Side C Sidey X:if(...) _and Yo(...) (where f ar_1d g may be
equal), it must also contain an inequality atom
This constraint encodes that all variables whos¥ # Y. As a consequence, no two labelled vari-
denotation dominates the denotation)f(Upy) ables in a normal constraint may be mapped to the
must also dominate the denotationvofUpy,), and Same node. This is acceptable or even desirable in
the analogous statements for the dominated andhderspecification: We are not interested in solu-
disjoint variables. tions of the constraint in Fig. 2 in which the quan-
In addition, the constraint program contains vartifier representations overlap. On the other hand,
ious redundant constraints that improve propagdhe NP-completeness proof in (Koller et al., 1998)
tion. Now the search for solutions consists in findis no longer applicable to overlap-free constraints.
ing satisfying assignments to the set variables. THdence normal dominance constraints are a frag-
result is a search tree as shown in Fig. 4: Thenent that is sufficient from a modelling perspec-
blue circles represent case distinctions, wheredige, and possibly admits polynomial-time solvers.
each green diamond represents a solution of the Indeed, it can be shown that the satisfiability
set constraint (and therefore, a solved form oproblem of normal dominance constraints can be
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GRAPH-SOLVER(G)

f f . : .
I I 1 if G is already in solved form
s ' then return G’
:' “ g
":'g/\‘:_‘ ’/g\‘ /\ free — FREE-FRAGMENTS(G')
¢ v e EEE if free=0
a b a b a b

then fail

2
3
4
5
) ) 6 chooseF ¢ free
Figure 5: An example computation of the graph 7
8
9

Gy,...,Gc+— WccyG —F
solver. . ¥ s )

for eachG; € Gy, ...,Gx

do § « GRAPH-SOLVER(G;)
decided in linear time (Thiel, 2004), and the lin-10 S« AttachS, ..., S underF

ear algorithm can be used to enumendteolved 11 return S

forms of a constraint of sizein time O(n°N). We

now present the simpléd(n’N) enumeration al- _

gorithm by Bodirsky et al. (2004).Note thatN Figure 6: The graph solver.
may still be exponential in.

ing dominance edge. By contrast, the other two

Dominance Graphs. The crucial insight under- . .
) . dominance graphs are in solved form. Because the
lying the fast solvers for normal dominance con-

straints is that such constraints can be seelvas graph on the right has the same tree edges as the

. : ne on the left and extends its reachability relation,
inance graphsand can be processed using grapl) .

. . . It is also a solved form of the left-hand graph.
algorithms. Dominance graphs are directed graphs

with two kinds of edgesree edgeanddominance The gigorithm. The graph-based enumeration
edges The graph without the dominance edgesqorithm is a recursive procedure that succes-

must be a forest; the trees of this forest are callegve|y splits a dominance graph into smaller parts,

the fragmentsof the graph. In addition, the dom- g e them recursively, and combines them into
inance edges must go frohwoles(i.e., unlabelled complete solved forms. In each step, the algo-

leaves) of fragments twots of other fragments. jhm identifies thefree fragmentsof the domi-

For instance, we can view the graph in Fig. 2nance (sub-)graph. A fragment is free if it has no

which we introduced as an informal notation forincoming dominance edges, and all of its holes are

a dominance constraint, directly as a dominancgy giferent biconnected components of the undi-
graph with three fragments and two (dotted) doMyecteq version of the dominance graph. It can be
inance edges. o _ shown (Bodirsky et al., 2004) that if a grapthas

A dominance grapks which is a forest is called any solved form and is a free fragment ofs,
in solved formWe say thaG' is asolved form of {henG has a solved form in which is at the root.

DA )

a graphG iff G'is in solved formG andG' con-  1pg gxact algorithm is shown in Fig. 6. It com-
tain the same tree edges, and the reachability re'ﬁates the free fragments of a sub-dominance graph
tion of G’ extends that o6. Using this definition, ' in line 3. Then it chooses one of the free frag-
itis possible to define a mapping between Normahents removes it from the graph, and calls itself
dominance constraints and dominance graphs SuFé”bursively on the weakly connected components
that the solved forms of the graph can serve g, G, of the resulting graph. Each recursive
solved forms of the constraint —i.e., we can reducgy| will compute a solved forn§ of the con-
constraint solving to graph solving. nected componer®;. Now for eachG; there is
~ By way of example, consider Fig. 5. The dom-gxactly one holdy of F that is connected to some
inance graph on the left is not in solved form, beg,qge inGi by a dominance edge. We can obtain a
cause it contains nodes with more than one incomy,|ved form forG’' by combiningF and all theS

1The original paper defines the algorithm feeaklynor- with (_jomlnance edges from to the root ofS for
mal dominance constraints, a slight generalisation. eachi.
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AN I oL e

S0 ® © % @
Figure 7: An unsolvable dominance graph. Figure 8: The chain of length 4.

{1,2,3,45.6,7}: (1,hy — {2,3,4,5,6,7})

2,hp1 — {1,5},hpp— {3,4,6,7})

The algorithm is written as a nondeterministic
3, h31 — {]_7 2,5,6},h32 — {47 7}>

(
(
procedure which makes a nondeterministic choice §47 ha— {1,2,3,5,6,7})
inline 6, and can failinline 5. We canturnitintoa {23,4,56,7}:  (2,ha+— {5},h2+— {3,4,6,7})
deterministic algorithm by considering the nonde- g 231:{{2273556%7 %?H 47
terministic choices as case distinctions in a search;; 5 3567,: (1, h‘l‘ — {2.3,5.6,7})
tree, as in Fig. 4. However, if the input gragh (2,hg1+—{1,5},hp2+— {3,6,7})
is solvable, we know that every single leaf of the g 231: %}Ziqsﬁii ?%,2;7‘5”
search tree must correspond to a (different) solved 3, hi —1{2.5, éihszé {7y
form, because for every free fragment that can be
choseninline 6, there is a solved form that has thi
fragment as its root. Conversely, @ is unsolv-
able, every single branch of the search tree w
run into failure, because it would claim the exis-
tence of a solved form otherwise. So the algorithmyecause it will solve it anew each time. In solv-
decides solvability in polynomial time. ing, for instance, the graph shown in Fig. 8, it
An example computation of GAPH-SOLVER  will solve the subgraph consisting of the fragments
is shown in Fig. 5. The input graph is shown on{2 3 5 6,7} twice, because it can pick the frag-
the left. It contains exactly one free fragmdéfnt ments 1 and 4 in either order.
this is the fragment whose root is labelled with \we will now present a previously unpublished
f. (The single-node fragments both have incomgptimisation for the solver that uses caching to al-
ing dominance edges, and the two holes of thRwiate this problem. The data structure we use for
fragment with labeg are in the same biconnectedcaching (we call it “chart” below because of its
component.) So the algorithm removesrom the  ppvious parallels to charts in parsing) assigns each
graph, resulting in the graph in the middle. Thissybgraph of the original graph a setsplits Splits
graph is in solved form (it is a tree), so we are finencode the splittings of the graph into weakly con-
ished. Finally the algorithm builds a solved formpected components that take place when a free
for the whole graph by plugging the solved formragment is removed. Formally, a split for the sub-
in the middle into the single hole & the resultis graphG’ consists of a reference to a fragmént
shown on the right. By contrast, the graph in Fig. fhat is free inG’ and a partial function that maps
has no solved forms. The solver will recognise thisome nodes df to subgraphs of'. A split is de-
immediately, because none of the fragments is fre@rmined uniquely by’ andF.
(they either have incoming dominance edges, or Consider, by way of example, Fig. 9, which dis-
their holes are biconnected). plays a part of the chart that we want to compute
for the constraint in Fig. 8. In the entire gragh
(represented by the s¢i.,...,7} of fragments),
The graph solver is a great step forward towardihe fragments 1, 2, 3, and 4 are free. As a conse-
efficient constraint solving, and towards an underguence, the chart contains a split for each of these
standing of why (normal) dominance constraint$our fragments. If we remove fragment 1 frd&
can be solved efficiently. But it wastes time wherwe end up with a weakly connected graphcon-
it is called multiple times for the same subgraphtaining the fragment$2,...,7}. There is a dom-

{27 37 57 67 7} :

I§igure 9: A part of the chart computed for the con-
iﬁtraint in Fig. 8.

3.4 A graph solver with charts
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GRAPH-SOLVER-CHART(G') G that the GRAPH-SOLVER algorithm would have

1 if there is an entry fo€' in the chart visited. It is also guaranteed that every split in the
2 thenreturn true chart is used in a solved form of the graph. Ex-
3 free« FREE-FRAGMENTS(G) tracting the actual solved forms from the chart is
4 if free=0 straightforward, and can be done essentially like
5  thenreturn false for parse charts of context-free grammar.
6 if G’ contains only one fragment
7  then return true Runtime analysis. The chart computed by the
8 chart solver for a dominance graph with
9 for eachF € free nodes andm edges can grow to at mo€d(n-
10 do split— SPLIT(G/,F) wcsg G)) entries, where weg) is the number of
11 for eachSe Wces(G —F) weakly connected subgraphs @f All subgraphs
12 do if GRAPH-SOLVER-CHART(S) = false for which GRAPH-SOLVER-CHART is called are
13 then return false weakly connected, and for each such subgraph
14 add(G', split) to the chart there can be at mosi different splits. Because a
15 return true recursive call returns immediately if its argument

is already present in the chart, this means that at
mostO(n-wcsg G)) calls spend more than the ex-
Figure 10: The graph solver with charts pected constant time that it takes to look@pin
the chart. Each of these calls needs t@{en+n),
the cost of computing the free fragments.

As a consequence, the total time thakA»H-
SOLVER-CHART takes to fill the chart i©(n(n-+
m)wcsg G)). Applied to a dominanceonstraint
with k atoms, the runtime i©(k’wcsgG)). On
the other hand, iG hasN solved forms, it takes
Jime O(N) to extract these solved forms from the
into hy1 andhy, respectively. chart. This is a significant improvement over the

We can compute a chart like this using the algo- O(n(n + m)N) t“ne Itha:jt fGQAPH SO"VERItalkedS
rithm shown in Fig. 10. This recursive algorlthmto enumerate all solved forms. A particularly dra-

gets some subgrap® of the original graplG as matic case is that athains— graphs with a zig-zag
its first argument. It returnsue if G’ is solvable, shgpe _ofn uppe_r anch —1 lower fragments such
andfalseif it isn't. If an entry for its argumeng’ @S N Fig. 8, which occur frequently as part of un-

2
was already computed and recorded in the chaHerSpeC'f'ed descriptions. A chain has o@l{n”)

the procedure returns immediately. Otherwise, M;/1eakrl1y connecte(: I'Isubgraphs a0dn) edges, Eo
computes the free fragments @f. If there are no € chart can be filled in time(n "), despite the

2n e
free fragments was unsolvable, and thus the al-fact thatthe chain hag; () solved forms (this is
gorithm returngalse: on the other hand, &' only the n-th Catalan number, which grows faster than

contains one fragment, it is solved and we can imf?)- The worst case for the chart size is shown in
mediately returrirue. Fig. 11. If such a graph has upper fragments,

If none of these special cases apply, the algdt hasO(2") weakly connected subgraphs, so the

rithm iterates over all free fragmenfsof G' and  cnart-filling phase takes tim®(n2"). But this is

computes the (unique) split that placEsat the stl_ll dominated by theN = n! solved forms that
root of the solved forms. If all weakly connectedth's graph has.
components represented in the split are solvable At
records the split as valid f&®’, and returngrue.

If the algorithm returns with valugérue, the We conclude this paper with a comparative run-
chart will be filled with splits for all subgraphs of time evaluation of the presented dominance con-

inance edge from the hole; into G;, so once
we have a solved form o651, we will have to
plug it into h; to get a solved form of5; there-
fore G; is assigned tdy; in the split. On the other
hand, if we remove fragment 2 frof, G is split
into two weakly connected componerts 5} and
{3,4,6,7}, whose solved forms must be plugge

Evaluation
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gI fI hI iI Runtimes. As Fig. 12 shows, the chart solver
is the only solver that could solve all constraints
in the test set; all other solvers ran into memory
limitations on some input$.The increased com-
plexity of constraints that each solver can handle
Figure 11: A worst-case graph for the chart solvergiven as the maximum number of solved forms of
a solvable constraint) is a first indication that the
epeated analysis and improvement of dominance

v’
a

constraints  max. solved formsr . . .
Rondane 961 2 constraint solvers described earlier was successful.
Nets 879 24-10' Fig. 13 displays the result of the runtime com-
gglt\f; 10 solved forms so?f;ble max.gsgc;\glég —— parison, taking into account only those 682 con-
Saturation G310 757 10030 straints that all solvers could solve. For each con-
Set constraints  (§3.2 841 557472 straint size (counted in number of fragments), the
SLZ?P ggg ggg ;g%gg graph shows the mean quotient of the time to enu-
KB 682 17760 merate all solved forms by the number of solved
All 682 7742 forms, averaged over all constraints of this size.

Note that the vertical axis is logarithmic, and that

the runtimes of the LKB and the chart solver for

constraints up to size 6 are too small for accurate
straint solvers. To put the results into context, wéneasurement.

also compare the runtimes with a solver for Min- The figure shows that each new generation of
imal Recursion Semantics (MRS) (Copestake @tominance constraint solvers improves the perfor-
al., 2004), a different formalism for scope underimance by an order of magnitude. Another differ-

specification. ence is in the slopes of the graphs. While the sat-

_ uration solver takes increasingly more time per
Resources. As our test set we use constraints exgglved form as the constraint grows, the set con-

tracted from the Rondane treebank, which is dissiraint and graph solvers remain mostly constant
tributed as part of the English Resource Grammapy |arger constraints, and the line for the chart
(Copestake and Flickinger, 2000). The treebanksyer even goes down. This demonstrates an im-
contains syntactic annotations for sentences fro’&l'oved management of the combinatorial explo-
the tourism domain such as (4) above, togeth&lion, It is also interesting that the line of the set-
with corresponding semantic representations.  constraint solver is almost parallel to that of the
The semantics is represented using MRS depaph solver, which means that the solver really
scriptions, which we convert into normal domi-goes exploit a polynomial fragment on real-world
nance constraints using the translation specified y4ta.
Niehren and Thater (2003). The translation is re- The LKB solver performs very well for smaller

stricted to MRS constraints having certain strucggnstraints (which make up about half of the data
tural properties (calleahety. The treebank con- get): Except for the chart algorithm introduced in
tains 961 MRS constrains, 879 of which are netsypig paper, it outperforms all other solvers. For
For the runtime evaluation, we restricted thearger constraints, however, the LKB solver gets
test set to the 852 nets with less than one Mikery slow. What isn't visible in this graph is that
lion solved forms. The distribution of these contne KB solver also exhibits a dramatically higher
straints over the different constraint sizes (i.eyariation in runtimes for constraints of the same
number of fragments) is shown in Fig. 15. Wesjze compared to the dominance solvers. We be-
solved them using implementations of the prejieve this is because the LKB solver has been op-

sented dominance constraint solvers, as well @gnised by hand to deal with certain classes of in-
with the MRS solver in the LKB system (Copes-

take and Flickinger, 2000). 20n a 1.2 GHz PC with 2 GB memory.

Figure 12: Sizes of the data sets.
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puts, but at its core is still an uncontrolled exposuccessively searching for a fragment that con-
nential algorithm. tains all practically relevant inputs and excludes
We should note that the chart-based solver ithe pathologically hard cases is applicable to other
implemented in C++, while the other dominanceroblems in computational linguistics as well.
solvers are implemented in Oz, and the MRS o “
L . . . However, itis clear that the concept of “all prac-
solver is implemented in Common Lisp. This ac-. . y . .
. : t{cally relevant inputs” is a moving target. In this
counts for some constant factor in the runtime, bu R
, . . .paper, we have equated it with “all inputs that can
shouldn't affect the differences in slope and variz o N
. be generated by a specific large-scale grammar”,
ability. . S .
but new grammars or different linguistic theories
Effect of the chart. Because the chart solver ismay generate underspecified descriptions that no
especially efficient if the chart remains small, wdonger fall into the efficient fragments. In our case,
have compared how the number of solved formi is hard to imagine what dominance constraint
and the chart size (i.e. number of splits) grow wittised in scope underspecification wouldn’t be nor-
the constraint size (Fig. 14). The graph shows th&pal, and we have strong intuitions that all use-
the chart size grows much more slowly than théul constraints must be nets, but it is definitely an
number of solved forms, which supports our intuinteresting question how our algorithms could be
ition that the runtime of the chart solver is asympadapted to, say, the alternative scope theory advo-

totically less than that of the graph solver by a sigcated by Joshi et al. (2003).
nificant margin. The chart for the most ambigu- An immediate line of future research is to ex-

ous sentence In the treebank (sentence (4) abmb%re uses of the chart data structure that go be-

tcr?ntatlns 74'968 Spé'ts' It can _be computed Itn le nd pure caching. The general aim of underspec-
an ten seconds. by comparison, enumerating gl.iion js not to simply enumerate all readings

solved forms of the constraint would take about ¢ 2 sentence. but to use the underspecified de-

year on a modern PC. Eyen deterr_mn!ng the nunEcription as a platform on which readings that are
ber of solved forms of this constraint is only pos-

: theoretically possible, but infelicitous in the actual
sible based on the chart. context, can be eliminated. The chart may prove
to be an interesting platform for such operations,
which combines advantages of the underspecified
In this paper we described the evolution of solvergescription (size) and the readings themselves (ex-
for dominance constraints, a logical formalisnplicitness).
used for the underspecified processing of scope
ambiguities. We also presented a new solver,

which caches the intermediate results of a grapﬂcknowledgements The work has been funded
solver in a chart. An empirical evaluation showsoy the DEG in the Collaborative Research Cen-

that each solver is significantly faster than the Prée 378Ressource-Adaptive Cognitive Processes
vious one, and that the new chart-based SOIV?JrrojectMl 2 (CHORUS).

is the fastest underspecification solver available
today. It is available online atttp://utool. We would like to thank Joachim Niehren and

sourceforge.net. Denys Duchier for the extremely fruitful col-

Each new solver was based on an analysis of th@boration on dominance constraint solving, Ann
main sources of inefficiency in the previous solverCopestake and Dan Flickinger for helpful discus-
as well as an increasingly good understanding &fions about the ERG and the LKB solver, and our
the input data. The main breakthrough was the réeviewers for their comments. The primary imple-
alisation that normal dominance constraints hav@entors of the various earlier constraint solvers
polynomial satisfiability and can be solved usingvere Katrin Erk and Sebastian Pado (83.1), Denys
graph algorithms. We believe that this strategy oPuchier (83.2), and Sebastian Miele (83.3).
starting with a clean, powerful formalism and then

5 Conclusion
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Figure 13: Average runtimes per solved form, for each constraint size (number of fragments).
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Figure 14: Average size of the chart compared to the average number of solved forms, for each constraint
size. Notice that the measurements are based upon the same set of constraints as in Fig. 13, which
contains very few constraints of size 20 or more.
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Abstract

Common tasks involving orthographic
words include spellchecking, stemming,
morphological analysis, and morpho-
logical synthesis. To enable signifi-
cant reuse of the language-specific re-
sources across all such tasks, we have
extended the functionality of the open
source spellchecker MySpell, yield-
ing a generic word analysis library, the
runtime layer of the hunmorph toolkit.
We added an offline resource manage-
ment component, hunlex, which com-
plements the efficiency of our runtime
layer with a high-level description lan-
guage and a configurable precompiler.

0 Introduction

Word-level analysis and synthesis problems range
from strict recognition and approximate matching
to full morphological analysis and generation. Our
technology is predicated on the observation that
all of these problems are, when viewed algorith-
mically, very similar: the central problem is to
dynamically analyze complex structures derived
from some lexicon of base forms. Viewing word
analysis routines as a unified problem means shar-
ing the same codebase for a wider range of tasks, a
design goal carried out by finding the parameters
which optimize each of the analysis modes inde-
pendently of the language-specific resources.

e

nemeth@mokk.bme.hu

daniel@mokk.bme.hu

The C/C++ runtime layer of our toolkit, called
hunmorph, was developed by extending the code-
base of MySpell, a reimplementation of the well-
known Ispell spellchecker. Our technology, like
the Ispell family of spellcheckers it descends
from, enforces a strict separation between the
language-specific resources (known as dictionary
and affix files), and the runtime environment,
which is independent of the target natural lan-
guage.

offline layer runtime: layer
language
software
3 -
language
resources lexicon grammar
morphdb task specific resource

Figure 1: Architecture

Compiling accurate wide coverage machine-
readable dictionaries and coding the morphology
of a language can be an extremely labor-intensive
task, so the benefit expected from reusing the
language-specific input database across tasks can
hardly be overestimated. To facilitate this resource
sharing and to enable systematic task-dependent
optimizations from a central lexical knowledge
base, we designed and implemented a powerful of-
fline layer we call hunlex. Hunlex offers an easy

Proceedings of the ACL 2005 Workshop on Softwaages 77-85,
Ann Arbor, June 2005©) 2005 Association for Computational Linguistics



to use general framework for describing the lexi-
con and morphology of any language. Using this
description it can generate the language-specific
aff/dic resources, optimized for the task at hand.
The architecture of our toolkit is depicted in Fig-
ure 1. Our toolkit is released under a permissive
LGPL-style license and can be freely downloaded
from mokk . bme . hu/resources/hunmorph.

The rest of this paper is organized as follows.
Section 1 is about the runtime layer of our toolkit.
We discuss the algorithmic extensions and imple-
mentational enhancements in the C/C++ runtime
layer over MySpell, and also describe the newly
created Java port jmorph. Section 2 gives an
overview of the offline layer hunlex. In Section 3
we consider the free open source software alterna-
tives and offer our conclusions.

1 The runtime layer

Our development is a prime example of code
reuse, which gives open source software devel-
opment most of its power. Our codebase is a
direct descendant of MySpell, a thread-safe C++
spell-checking library by Kevin Hendricks, which
descends from Ispell Peterson (1980), which in
turn goes back to Ralph Gorin’s spell (1971),
making it probably the oldest piece of linguistic
software that is still in active use and development
(see  fmg-www.cs.ucla.edu/fmg-members/
geoff/ispell.html).

The key operation supported by this codebase is
affix stripping. Affix rules are specified in a static
resource (the af f file) by a sequence of conditions,
an append string, and a strip string: for example,
in the rule forming the plural of body the strip
string would be y, and the affix string would be
ies. The rules are reverse applied to complex input
wordforms: after the append string is stripped and
the edge conditions are checked, a pseudo-stem is
hypothesized by appending the strip string to the
stem which is then looked up in the base dictio-
nary (which is the other static resource, called the
dic file).

Lexical entries (base forms) are all associated
with sets of affix flags, and affix flags in turn are
associated to sets of affix rules. If the hypothe-
sized base is found in the dictionary after the re-
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verse application of an affix rule, the algorithm
checks whether its flags contain the one that the
affix rule is assigned to. This is a straight table-
driven approach, where affix flags can be inter-
preted directly as lexical features that license en-
tire subparts of morphological paradigms. To pick
applicable affix rules efficiently, MySpell uses a
fast indexing technique to check affixation condi-
tions.

In theory, affix-rules should only specify gen-
uine prefixes and suffixes to be stripped before lex-
ical lookup. But in practice, for languages with
rich morphology, the affix stripping mechanism is
(ab)used to strip complex clusters of affix morphs
in a single step. For instance, in Hungarian, due
to productive combinations of derivational and in-
flectional affixation, a single nominal base can
yield up to a million word forms. To treat all
these combinations as affix clusters, legacy ispell
resources for Hungarian required so many com-
bined affix rule entries that its resource file sizes
were not manageable.

To solve this problem we extended the affix
stripping technique to a multistep method: after
stripping an affix cluster in step i, the resulting
pseudo-stem can be stripped of affix clusters in
step i + 1. Restrictions of rule application are
checked with the help of flags associated to affixes
analogously to lexical entries: this only required
a minor modification of the data structure coding
affix entries and a recursive call for affix stripping.
By cross-checking flags of prefixes on the suffix
(as opposed to the stem only), simultaneous pre-
fixation and suffixation can be made interdepen-
dent, extending the functionality to describe cir-
cumfixes like German participle ge+t, or Hungar-
ian superlative leg+bb, and in general provide the
correct handling of prefix-suffix dependencies like
English undrinkable (cf. *undrink), see Németh
et al. (2004) for more details.

Due to productive compounding in a lot of lan-
guages, proper handling of composite bases is a
feature indispensable for achieving wide coverage.
Ispell incorporates the possibility of specifying
lexical restrictions on compounding implemented
as switches in the base dictionary. However, the
algorithm allows any affixed form of the bases that
has the relevant switch to be a potential member



of a compound, which proves not to be restrictive
enough. We have improved on this by the intro-
duction of position-sensitive compounding. This
means that lexical features can specify whether
a base or affix can occur as leftmost, rightmost
or middle constituent in compounds and whether
they can only appear in compounds. Since these
features can also be specified on affixes, this pro-
vides a welcome solution to a number of resid-
ual problems hitherto problematic for open-source
spellcheckers. In some Germanic languages, *fo-
gemorphemes’, morphemes which serve linking
compound constituents can now be handled easily
by allowing position specific compound licensing
on the foge-affixes. Another important example is
the German common noun: although it is capital-
ized in isolation, lowercase variants should be ac-
cepted when the noun is a compound constituent.
By handling lowercasing as a prefix with the com-
pound flag enabled, this phenomenon can be han-
dled in the resource file without resort to language
specific knowledge hard-wired in the code-base.

1.1 From spellchecking to morphological
analysis

We now turn to the extensions of the MySpell
algorithm that were required to equip hunmorph
with stemming and morphological analysis func-
tionality. The core engine was extended with an
optional output handling interface that can process
arbitrary string tags associated with the affix-rules
read from the resources. Once this is done, sim-
ply outputting the stem found at the stage of dic-
tionary lookup already yields a stemmer. In mul-
tistep affix stripping, registering output informa-
tion associated with the rules that apply renders
the system capable of morphological analysis or
other word annotation tasks. Thus the processing
of output tags becomes a mode-dependent param-
eter that can be:

e switched off (spell-checking)

e turned on only for tag lookup in the dictio-
nary (simple stemming)

e turned on fully to register tags with all rule-
applications (morphological analysis)
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The single most important algorithmic aspect that
distinguishes the recognition task from analysis
is the handling of ambiguous structures. In the
original MySpell design, identical bases are con-
flated and once their switch-set licensing affixes
are merged, there is no way to tell them apart.
The correct handling of homonyms is crucial for
morphological analysis, since base ambiguities
can sometimes be resolved by the affixes. In-
terestingly, our improvement made it possible to
rule out homonymous bases with incorrect simul-
taneous prefixing and suffixing such as English
out+number+’s. Earlier these could be handled
only by lexical pregeneration of relevant forms or
duplication of affixes.

Most importantly, ambiguity arises in relation
to the number of analyses output by the system.
While with spell-checking the algorithm can ter-
minate after the first analysis found, performing
an exhaustive search for all alternative analyses is
a reasonable requirement in morphological analy-
sis mode as well as in some stemming tasks. Thus
the exploration of the search space also becomes
an active parameter in our enhanced implementa-
tion of the algorithm:

e secarch until the first correct analysis

e scarch restricted multiple analyses (e.g., dis-
abling compounds)

e scarch all alternative analyses

Search until the first analysis is a functionality for
recognizers used for spell-checking and stemming
for accelerated document indexing. Preemption
of potential compound analyses by existing lexi-
cal bases serves as a general way of filtering out
spurious ambiguities when a reduction is required
in the space of alternative analyses. In these cases,
frequent compounds which trick the analyzer can
be precompiled to the lexicon. Finally, there is a
possibility to give back a full set of possible anal-
yses. This output then can be passed to a tagger
that disambiguates among the candidate analyses.
Parameters can be used that guide the search (such
as 'do lexical lookup first at all stages’ or ’strip the
shortest affix first’), which yield candidate rank-
ings without the use of numerical weights or statis-



tics. These rankings can be used as disambigua-
tion heuristics based on a general idea of blocking
(e.g., Times would block an analysis of time+s).
All further parametrization is managed offline by
the resource compiler layer, see Section 2.

1.2 Reimplementing the runtime layer

In our efforts to gear up the MySpell codebase
to a fully functional word analysis library we suc-
cessfully identified various resource-related, algo-
rithmic and implementational bottlenecks of the
affix-rule based technology. With these lessons
learned, a new project has been launched in or-
der to provide an even more flexible and efficient
open source runtime layer. A principled object-
oriented refactorization of the same basic algo-
rithm described above has already been imple-
mented in Java. This port, called jmorph also uses
the aff/dic resource formats.

In jmorph, various algorithmic options guiding
the search (shortest/longest matching affix) can
be controlled for each individual rule. The im-
plementation keeps track of affix and compound
matches checking conditions only once for a given
substring and caching partial results. As a conse-
quence, it ends up being measurably faster than
the C++ implementation with the same resources.

The main loop of jmorph is driven by config-
uring consumers, i.e., objects which monitor the
recursive step that is running. For example the
analysis of the form beszédesek ’talkative.PLUR’
begins by inspecting the global configuration of
the analysis: this initial consumer specifies how
many analyses, and what kind, need to be found.
In Step 1, the initial consumer finds the rule that
strips ek with stem beszédes, builds a consumer
that can apply this rule to the output of the analy-
sis returned by the next consumer, and launches
the next step with this consumer and stem. In
Step 2, this consumer finds the rule stripping es
with stem beszéd, which is found in the lexicon.
beszéd is not just a string, it is a complete lexi-
cal object which lists the rules that can apply to
it and all the homonyms. The consumer creates a
new analysis that reflects that beszédes is formed
from beszéd by suffixing es (a suffix object), and
passes this back to its parent consumer, which ver-
ifies whether the ek suffixation rule is applicable.
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If not, the Step 1 consumer requests further anal-
yses from the Step 2 consumer. If, however, the
answer is positive, the Step 1 consumer returns its
analysis to the Step O (initial) consumer, which de-
cides whether further analyses are needed.

In terms of functionality, there are a number of
differences between the Java and the C++ variants.
jmorph records the full parse tree of rule appli-
cations. By offering various ways of serializing
this data structure, it allows for more structured
information in the outputs than would be possible
by simple concatenation of the tag chunks asso-
ciated with the rules. Class-based restrictions on
compounding is implemented and will eventually
supersede the overgeneralizing position-based re-
strictions that the C++ variant and our resources
currently use.

Two major additional features of jmorph are
its capability of morphological synthesis as well
as acting as a guesser (hypothesizing lemmas).
Synthesis is implemented by forward application
of affix rules starting with the base. Rules have
to be indexed by their tag chunks for the search,
so synthesis introduces the non-trivial problem of
chunking the input tag string. This is currently im-
plemented by plug-ins for individual tag systems,
however, this should ideally be precompiled off-
line since the space of possible tags is limited.

2 Resource development and offline
precompilation

Due to the backward compatibility of the runtime
layer with MySpell-style resources, our software
can be used as a spellchecker and simplistic stem-
mer for some 50 languages for which MySpell
resources are available, see lingucomponent.
openoffice.org/spell dic.html.

For languages with complex morphology, com-
piling and maintaining these resources is a painful
undertaking. Without using a unified framework
for morphological description and a principled
method of precompilation, resource developers for
highly agglutinative languages like Hungarian (see
magyarispell.sourceforge.net) have to re-
sort to a maze of scripts to maintain and precom-
pile aff and dic files. This problem is intolerably
magnified once morphological tags or additional



lexicographic information are to be entered in or-
der to provide resources for the analysis routines
of our runtime layer.

The offline layer of our toolkit seeks to remedy
this by offering a high-level description language
in which grammar developers can specify rule-
based morphologies and lexicons (somewhat in
the spirit of lexc Beesley and Karttunen (2003),
the frontend to Xerox’s Finite State Toolkit). This
promises rapid resource development which can
then be used in various tasks. Once primary re-
sources are created, hunlex, the offline precom-
piler can generate aff and dic resources op-
timized for the runtime layer based on various
compile-time configurations.

Figure 2 illustrates the description language
with a fragment of English morphology describ-
ing plural formation. Individual rules are sepa-
rated by commas. The syntax of the rule descrip-
tions organized around the notion of information
blocks. Blocks are introduced by keywords (like
IF:) and allow the encoding of various properties
of a rule (or a lexical entry), among others speci-
fying affixation (+es), substitution, character trun-
cation before affixation (CLIP: 1), regular ex-
pression matches (MATCH: ["o]o), positive and
negative lexical feature conditions on application
(IF: f-v_altern), feature inheritance, output
(continuation) references (0OUT: PL_P0SS), out-
put tags (TAG: "[PLUR]").

One can specify the rules that can be applied to
the output of a rule and also one can specify appli-
cation conditions on the input to the rule. These
two possibilities allow for many different styles
of morphological description: one based on in-
put feature constraints, one based on continuation
classes (paradigm indexes), and any combination
between these two extremes. On top of this, reg-
ular expression matches on the input can also be
used as conditions on rule application.

Affixation rules “grouped together” here under
PLUR can be thought of as allomorphic rules of the
plural morpheme. Practically, this allows informa-
tion about the morpheme shared among variants
(e.g., morphological tag, recursion level, some
output information) to be abstracted in a pream-
ble which then serves as a default for the individ-
ual rules. Most importantly, the grouping of rules
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PL

TAG: "[PLUR]"

0UT: PL_POSS
# house -> houses
, +s  MATCH: ["shoxy] IF: regular
# kiss -> kisses
, tes MATCH: [“cls IF: regular
# .
# ethics
, + MATCH: cs IF: regular
# body -> bodies <C> is a regexp macro

+ies MATCH: <C>y CLIP:1 IF: regular

# zloty -> zlotys

, +s  MATCH: <C>y IF: y-ys

# macro -> macros

, +s  MATCH: ["olo IF: regular
# potato -> potatoes

, +es MATCH: [“olo IF: o-oes

# wife -> wives

, tves MATCH: fe CLIP: 2 IF: f-ves

# leaf -> leaves

, tves MATCH: f CLIP: 1 IF: f-ves

Figure 2: hunlex grammar fragment

into morphemes serves to index those rules which
can be referenced in output conditions, For exam-
ple, in the above the plural morpheme specifies
that the plural possessive rules can be applied to
its output (OUT: PL_P0SS). This design makes it
possible to handle some morphosyntactic dimen-
sions (part of speech) very cleanly separated from
the conditions regulating the choice of allomorphs,
since the latter can be taken care of by input fea-
ture checking and pattern matching conditions of
rules. The lexicon has the same syntax as the
grammar only that morphemes stand for lemmas
and variant rules within the morpheme correspond
to stem allomorphs.

Rules with zero affix morph can be used as
filters that decorate their inputs with features
based on their orthographic shape or other features
present. This architecture enables one to let only
exceptions specify certain features in the lexicon
while regular words left unspecified are assigned
a default feature by the filters (see PL_FILTER in



REGEXP: C [bcdfgklmnprstvwxyz] ;

DEFINE: N
OUT: SG PL_FILTER
TAG: NOUN
PL_FILTER
OUT:
PL
FILTER:
f-ves
y-ys
o-oes
regular
, DEFAULT:
regular

Figure 3: Macros and filters in hunlex

Figure 3) potentially conditioned the same way as
any rule application. Feature inheritance is fully
supported, that is, filters for particular dimensions
of features (such as the plural filter in Figure 3)
can be written as independent units. This design
makes it possible to engineer sophisticated filter
chains decorating lexical items with various fea-
tures relevant for their morphological behavior.
With this at hand, extending the lexicon with a reg-
ular lexeme just boils down to specifying its base
and part of speech. On the other hand, indepen-
dent sets of filter rules make feature assignments
transparent and maintainable.

In order to support concise and maintainable
grammars, the description language also allows
(potentially recursive) macros to abbreviate arbi-
trary sets of blocks or regular expressions, illus-
trated in Figure 3.

The resource compiler hunlex is a stand-
alone program written in OCaml which comes
with a command-line as well as a Makefile as
toplevel control interface. The internal workings
of hunlex are as follows.

As the morphological grammar is parsed by the
precompiler, rule objects are created. A block is
read and parsed into functions which each trans-
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form the ‘affix-rule’ data-structure by enriching its
internal representation according to the semantic
content of the block. At the end of each unit,
the empty rule is passed to the composition of
block functions to result in a specific rule. Thanks
to OCaml’s flexibility of function abstraction and
composition, this design makes it easy to imple-
ment macros of arbitrary blocks directly as func-
tions. When the grammar is parsed, rules are ar-
ranged in a directed (possibly cyclic) graph with
edges representing possible rule applications as
given by the output specifications.

Precompilation proceeds by performing a re-
cursive closure on this graph starting from lexi-
cal nodes. Rules are indexed by ’levels’ and con-
tiguous rule-nodes that are on the same level are
merged along the edges if constraints on rule ap-
plication (feature and match conditions, etc.) are
satisfied. These precompiled affix-clusters and
complex lexical items are to be placed in the aff
and dic file, respectively.

Instead of affix merging, closure between rules
a and b on different levels causes the affix clus-
ters in the closure of b to be registered as rules in
a hash and their indexes recorded on a. After the
entire lexicon is read, these index sets registered
on rules are considered. The affix cluster rules to
be output into the affix file are arranged into max-
imal subsets such that if two output affix cluster
rules a and b are in the same set, then every item
or affix to which a can be applied, b can also be
applied. These sets of affix clusters correspond to
partial paradigms which each full paradigm either
includes or is disjoint with. The resulting sets of
output rules are assigned to a flag and items ref-
erencing them will specify the appropriate com-
bination of flags in the output dic and aff file.
Since equivalent affix cluster rules are conflated,
the compiled resources are always optimal in the
following three ways.

First, the affix file is redundancy free: no two af-
fix rules have the same form. With hand-coded af-
fix files this can almost never be guaranteed since
one is always inclined to group affix rules by lin-
guistically motivated paradigms thereby possibly
duplicating entries. A redundancy-free set of affix
rules will enhance performance by minimizing the
search space for affixes. Note that conflation of



identical rules by the runtime layer is not possible
without reindexing the flags which would be very
computationally intensive if done at runtime.

Second, given the redundancy free affix-set,
maximizing homogeneous rulesets assigned to a
flag minimizes the number of flags used. Since the
internal representation of flags depends on their
number, this has the practical advantage of reduc-
ing memory requirements for the runtime layer.

Third, identity of output affix rules is calculated
relative to mode and configuration settings, there-
fore identical morphs with different morphologi-
cal tags will be conflated for recognizers (spell-
checking) where ambiguity is irrelevant, while for
analysis it can be kept apart. This is impossible
to achieve without a precompilation stage. Note
that finite state transducer-based systems perform
essentially the same type of optimizations, elimi-
nating symbol redundancy when two symbols be-
have the same in every rule, and eliminating state
redundancy when two states have the exact same
continuations.

Though the bulk of the knowledge used by
spellcheckers, by stemmers, and by morphologi-
cal analysis and generation tools is shared (how
affixes combine with stems, what words allow
compounding), the ideal resources for these var-
ious tasks differ to some extent. Spellcheck-
ers are meant to help one to conform to ortho-
graphic norms and therefore should be error sen-
sitive, stemmers and morphological analyzers are
expected to be more robust and error tolerant espe-
cially towards common violations of standard use.
Although this seems at first to justify the individ-
ual efforts one has to invest in tailoring one’s re-
sources to the task at hand, most of the resource
specifics are systematic, and therefore allow for
automatic fine-tuning from a central knowledge
base. Configuration within hunlex allows the
specification of various features, among others:

e selection of registers and degree of normativ-
ity based on usage qualifiers in the database
(allows for boosting robustness for analysis
or stick to normativity for synthesis and spell-
checking)

o flexible selection of output information:
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choice of tagset for different encodings, sup-
port for sense indexes

e arbitrary selection of morphemes

e setting levels of morphemes (grouping of
morphs that are precompiled as a cluster to
be stripped with one rule application by the
runtime layer)

o fine-tuning which morphemes are stripped
during stemming

e arbitrary selection of morphophonological
features that are to be observed or ignored
(allows for enhancing robustness by e.g., tol-
erating non-standard regularizations)

The input description language allows for arbi-
trary attributes (ones encoding part of speech, ori-
gin, register, etc.) to be specified in the descrip-
tion. Since any set of attributes can be selected to
be compiled into the runtime resources, it takes
no more than precompiling the central database
with the appropriate configuration for the runtime
analyzer to be used as an arbitrary word annota-
tion tool, e.g., style annotator or part of speech
tagger. We also provide an implementation of a
feature-tree based tag language which we success-
fully used for the description of Hungarian mor-
phology.

If the resources are created for some filtering
task, say, extracting (possibly inflected) proper
nouns in a text, resource optimization described
above can save considerable amounts of time com-
pared to full analysis followed by post-processing.
While the relevant portion of the dictionary might
be easily filtered therefore speeding up lookup, tai-
loring a corresponding redundancy-free affix file
would be a hopeless enterprise without the pre-
compiler.

As we mentioned, our offline layer can be con-
figured to cluster any or no sets of affixes together
on various levels, and therefore resources can be
optimized for either memory use (affix by affix
stripping) or speed (generally toward one level
stripping). This is a major advantage given po-
tential applications as diverse as spellchecking on
the word processor of an old 386 at one end, and



industrial scale stemming on terabytes of web con-
tent for IR at the other.

In sum, our offline layer allows for the princi-
pled maintenance of a central resource, saving the
redundant effort that would otherwise have to be
invested in encoding very similar knowledge in a
task-specific manner for each word level analysis
task.

3 Conclusion

The importance of word level analysis can hardly
be questioned: spellcheckers reach the extremely
wide audience of all word processor users, stem-
mers are used in a variety of areas ranging from
information retrieval to statistical machine transla-
tion, and for non-isolating languages morpholog-
ical analysis is the initial phase of every natural
language processing pipeline.

Over the past decades, two closely intertwined
methods emerged to handle word analysis tasks,
affix stripping and finite state transducers (FSTs).
Since both technologies can provide industrial
strength solutions for most tasks, when it comes
to choice of actual software and its practical use,
the differences that have the greatest impact are
not lodged in the algorithmic core. Rather, two
other factors play a role: the ease with which one
can integrate the software into applications and the
infrastructure offered to translate the knowledge of
the grammarian to efficient and maintainable com-
putational blocks.

To be sure, in an end-to-end machine learning
paradigm, the mundane differences between how
the systems interact with the human grammari-
ans would not matter. But as long as the gram-
mars are written and maintained by humans, an of-
fline framework providing a high-level language to
specify morphologies and supporting configurable
precompilation that allows for resource sharing
across word-analysis tasks addresses a major bot-
tleneck in resource creation and management.

The Xerox Finite State Toolkit provides com-
prehensive high-level support for morphology
and lexicon development (Beesley and Karttunen,
2003). These descriptions are compiled into mini-
mal deterministic FST-s, which give excellent run-
time performance and can also be extended to
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error-tolerant analysis for spellchecking Oflazer
(1996). Nonetheless, XFST is not free software,
and as long as the work is not driven by aca-
demic curiosity alone, the LGPL-style license of
our toolkit, explicitly permitting reuse for com-
mercial purposes as well, can already decide the
choice.

There are other free open source ana-

lyzer technologies, either stand-alone an-
alyzers such as the Stuttgart Finite State
Toolkit (SFST, available only wunder the
GPL, see www.ims.uni-stuttgart.de/

projekte/gramotron/SOFTWARE/SFST.html,
Smid et al. (2004)) or as part of a power-
ful integrated NLP platform such as In-
tex/NooJ (freely available for academic re-
search to individuals affiliated with a university

only, see intex.univ-fcomte.fr; a clone
called Unitex is available under LGPL, see
www-igm.univ-mlv.fr/"unitex.)  Unfortu-

nately, NooJ has its limitations when it comes
to implementing complex morphologies (Vajda
et al., 2004) and SFST provides no high-level
offline component for grammar description and
configurable resource creation.

We believe that the liberal license policy and the
powerful offline layer contributed equally to the
huge interest that our project generated, in spite
of its relative novelty. MySpell was not just our
choice: it is also the spell-checking library incor-
porated into OpenOffice.org, a free open-source
office suite with an ever wider circle of users. The
Hungarian build of OpenOffice is already running
our C++ runtime library, but OpenOffice is now
considering to completely replace MySpell with
our code. This would open up the possibility of
introducing morphological analysis capabilities in
the program, which in turn could serve as the first
step towards enhanced grammar checking and hy-
phenation.

Though in-depth grammars and lexica are avail-
able for nearly as many languages in FST-
based frameworks (InXight Corporation’s Lin-
guistX platform supports 31 languages), very lit-
tle of this material is available for grammar hack-
ing or open source dictionary development. In ad-
dition to permissive license and easy to integrate
infrastructure, the fact that the hunmorph routines



are backward compatible with already existing and
freely available spellchecking resources for some
50 languages goes a long way toward explaining
its rapid spread.

For Hungarian, hunlex already serves as the
development framework for the MORPHDB project
which merges three independently developed lex-
ical databases by critically unifying their contents
and supplying it with a comprehensive morpho-
logical grammar. It also provided a framework
for our English morphology project that used the
XTAG morphological database for English (see
ftp.cis.upenn.edu/pub/xtag/morph-1.5,
Karp et al. (1992)). A project describing the
morphology of the Beds dialect of Romani with
hunlex is also under way.

The hunlex resource precompiler is not archi-
tecturally bound to the aff/dic format used by
our toolkit, and we are investigating the possibility
of generating FST resources with it. This would
decouple the offline layer of our toolkit from the
details of the runtime technology, and would be an
important step towards a unified open source so-
lution for method-independent resource develop-
ment for word analysis software.
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Scaling High-Order Character Language M odelsto Gigabytes
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carp@colloquial.com

Abstract

We describe the implementation steps re-
quired to scale high-order character lan-
guage models to gigabytes of training
data without pruning. Our online models
build character-level PAT trie structures on
the fly using heavily data-unfolded imple-
mentations of an mutable daughter maps
with a long integer count interface. Ter-
minal nodes are shared. Character 8-gram
training runs at 200,000 characters per
second and allows online tuning of hy-
perparameters. Our compiled models pre-
compute all probability estimates for ob-
served n-grams and all interpolation pa-
rameters, along with suffix pointers to
speedup context computations from pro-
portional to n-gram length to a constant.
The result is compiled models that are
larger than the training models, but exe-
cute at 2 million characters per second on
a desktop PC. Cross-entropy on held-out
data shows these models to be state of the
art in terms of performance.

Introduction

case normalization) and the class models for sta-
tistical classification (with applications including
spam filtering, topic categorization, sentiment analy-
sis and word-sense disambiguation). In addition to
these human language taskggrams are also popu-
lar as estimators for entropy-based compression and
source models for cryptography. (Teahan, 2000)
and (Peng, 2003) contain excellent overviews of
character-level models and their application from a
compression and HMM perspective, respectively.

Our hypothesis was that language-model smooth-
ing would behave very much like the classifiers ex-
plored in (Banko and Brill, 2001), in that more data
trumps better estimation technique. We managed
to show that the better of the interpolation mod-
els used in (Chen and Goodman, 1996), namely
Dirichlet smoothing with or without update exclu-
sion, Witten-Bell smoothing with or without update
exclusion, and absolute discounting with update ex-
clusion converged for 8-grams after 1 billion charac-
ters to cross entropies of 1.43+/-0.01. The absolute
discounting with update exclusion is what Chen and
Goodman refer to as the Kneser-Ney method, and
it was the clear winner in their evaluation. They
only tested non-parametric Witten-Bell with a sub-
optimal hyperparameter setting (1.0, just as in Wit-
ten and Bell’s original implementation). After a bil-
lion characters, roughly 95 percent of the characters

Charactem-gram language models have been apwere being estimated from their highest-order (7)
plied to just about every problem amenable to stacontext. The two best models, parametric Witten-

tistical language modeling.

The implementatiorBell and absolute discounting with update exclu-

we describe here has been integrated as the sousien (aka Kneser-Ney), were even closer in cross-
model in a general noisy-channel decoder (with apentropy, and depending on the precise sample (we
plications to spelling correction, tokenization andkept rolling samples as described below), and after a
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million or so characters, the differences even at thepdate exclusion implementation of Kneser-Ney is
higher variance 12-grams were typically in the +/110 more complicated than Witten-Bell.
0.01 range. With a roughly 2.0 bit/character devi- In this paper, we describe the implementation de-
ation, a 10,000 character sample, which is the sizails behind storing the model counts, how we sam-
we used, leads to ad2(95.45%) confidence interval ple the training character stream to provide low-cost,
of +/-0.02, and the conclusion that the differencesnline leave-one-out style hyperparameter estima-
between these systems was insignificant. tion, and how we compile the models and evaluate
Unlike in the token-based setting, we are not opthem over text inputs to achieve linear performance
timistic about the possibility of improving these re-that is nearly independent ofgram length. We also
sults dramatically by clustering character contextslescribe some of the design patterns used at the in-
The lower-order models are very well trained withterface level for training and execution. As far as
existing quantities of data and do a good job ofve know, the online leave-one-out analysis is novel,
this kind of smoothing. We do believe that train-though there are epoch-based precursors in the com-
ing hyperparameters for different model orders inpression literature.
dependently might improve cross-entropy fraction- As far as we know, no one has built a charac-
ally; we found that training them hierarchically,ter language model implementation that will come
as in (Samuelsson, 1996), actually increased crosdese to the one presented here in terms of scala-
entropy. We believe this is a direct correlate of théility. This is largely because they have not been
effectiveness of update exclusion; the lower-ordestesigned for the task rather than any fundamental
models do not need to be the best possible moddimitation. In fact, we take the main contribution
of those orders, but need to provide good estimates this paper to be a presentation of simple data
when heavily weighted, as in smoothing. The globatharing and data unfolding techniques that would
optimization allows a single setting to balance thesalso apply to token-level language models. Before
attributes, but optimizing each dimension individustarting our presentation, we’ll review some of the
ally should do even better. But with the number ofimitations of existing systems. For a start, none
estimates taking place at the highest possible orders, the systems of which we are aware can scale to
we do not believe the amount of smoothing will haves4-bit values for counts, which is necessary for the
that large an impact overall. size models we are considering without pruning or
These experiments had a practical goal — weount scaling. It's simply easier to find 4 billion in-
needed to choose a language modeling implemestances of a character than of a token. In fact, the
tation for LingPipe and we didn’t want to take thecompression models typically use 16 bits for storing
standard Swiss Army Knife approach because mosbunts and then just scale downward when neces-
of our users are not interested in running experisary, thus not even trying to store a full set of counts
ments on language modeling, but rather using larfer even modest corpora. The standard implemen-
guage models in applications such as informatiotations of character models in the compression liter-
retrieval, classification, or clustering. These appliature represent ordinary trie nodes as arrays, which
cations have actually been shown to perform bettés hugely wasteful for large sparse implementations;
on the basis of character language models than tthey represent PAT-trie nodes as pointers into the
ken models ((Peng, 2003)). In addition, charactewriginal text plus counts, which works well for long
level models require no decisions about tokenizar-gram lengths (32) over small data sets (1 MB) but
tion, token normalization and subtoken modeling (adoes not scale well for reasonablgram lengths (8-
in (Klein et al., 2003)). 12) over larger data sets (100MB-1GB). The stan-
We chose to include the Witten-Bell method indard token-level language models used to restrict
our language modeling API because it is derivedttention to 64K tokens and thus require 16-bit to-
from full corpus counts, which we also use for colken representatives per node just as our character-
location and relative frequency statistics within andbased approach; with the advent of large vocabu-
across corpora, and thus the overall implementatidary speech recognition, they now typically use 32-
effort was simpler. For just language modeling, amits per node just to represent the token. Arrays of
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; _ interface LM {
daughter nodes and lack of sharing of low-count ter: double log2Prob(char(] cs,

minal nodes were the biggest space hogs in our ex- int start, int end);
periments, and as far as we know, none of the stah-
dard approaches take the immutable data unfoldi
approach we adopt to eliminate this overhead. ThuSterface SequenceLM extends LM {
we would like to stress again that existing characte?-
level compression and token-level language model™*®3 %07 "V ot <rencs L {
ing systems were simply not designed for handling int start, int end);
large character-level models. void compile(ObjectOutput out)
i X throws IOException;

We would also like to point out that the stan-y
dard finite state machine implementations of lan-
guage models do not save any space over the trie- Figure 1: Language Model Interface
based implementations, typically only approximate
smoothing using backoff rather than interpolation,
and further suffer from a huge space explosion whefodel interface.
determinized. The main advantage of finite state ap- We now turn to the statistics behind character-
proaches is at the interface level in that they workevel langauge models. The chain rule factors
well with hand-written constraints and can interfac®(Xo, - -, X%-1) = [1i<kP(Xi[X0,...,Xi-1). An n-
on either side of a given modeling problem. Fo@ram Ianguage model estimates a character using
instance, typical language models implemented &9ly the lastn — 1 symbols, P(x[X, ..., 1) =
trivial finite state transducers interface neatly with?(%[Xk—n+1, .-, Xc1); we follow convention in de-
triphone acoustic models on the one side and withoting generlc estimators .
syntactic grammars on the other. When placed in The maximum likelihood estimator far-grams
that context, the constraints from the grammar cai¢ derived from frequency counts for sequerne
often create an overall win in space after composRnd symbolc, By (C|X) = count(Xc)/extCount(X),

terface ProcessLM extends LM {

tion. wherecount(X) is the number of times the sequence
X was observed in the training data afeCount(X)
2 OnlineCharacter Language Models is the number of single-symbol extensions Xf

observed:extCount(X) = 3 ccchar count(Xc). When
For generality, we use the 16-bit subset of unicode asaining over one or more short samples, the dis-
provided by Java 1.4.2 to represent characters. Thigrity betweencount(X) and extCount(X) can be
presents an additional scaling problem compared targe: forabracadabra count(a) = 5, count(bra) =
ASCI!I or Latinl, which fit in 7 and 8 bits. 2, extCount(@) = 4, andextCount(bra) = 1.

Formally, if Char is a set of characters language We actually provide two implementations of lan-
modelis defined to be a mappiifrom the sethar* guage models as part of LingPipe. For language
of character sequences into non-negative real numodels as random processes, there is no padding.
bers. Aprocesdanguage model is normalized overThey correspond to normalizing over sequences of a
sequences of length 3y char x|—nP(X) = 1.0.  given length in that the sum of probabilities for char-
We also implement bounded language models whidicter sequences of lengkhwill sum to 1.0. With
normalize over all sequences, but their implementa model that inserts begin-of-sequence and end-of-
tion is close enough to the process models that waequence characters and estimates only the end-of-
do not discuss them further here. The basic intesequence character, normalization is over all strings.
faces are provided in Figure 1 (with names shortStatistically, these are very different models. In
ened to preserve space). Note that the process gmectice, they are only going to be distinguishable
sequence distribution is represented through markirthe boundaries are very significant and the to-
interfaces, whereas the cross-cutting dynamic lamal string length is relatively small. For instance,
guage models support training and compilation, abey are not going to make much difference in esti-
well as the estimation inherited from the languagenating probabilities of abstracts of 1000 characters,
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even though the start and ends are significant (e.g.
capitals versus punctuation being preferred at be- * ‘ ‘ T —
ginning and end of abstracts) because cross-entropy:r 1 peeeeses S o
will be dominated by the other 1000 characters. On .| 1‘
the other hand, for modeling words, for instance |
as a smoothing step for token-level part—of-speecl‘lé,
named-entity or language models, the begin/end of
a word will be significant, representing capitaliza-z
tion, prefixes and suffixes in a language. In fact, thig f—= ¢ =
latter motivation is why we provide padded models. *f
It is straightforward to implement the padded mod- N A4 :
els on top of the process models, which is why we ol - - -
discuss the process models here. But note that we ’ Amouno s sty )
do not pad all the way to maximumgram length, Figyre 2: Optimal Hyperparameter Settings for
as that would bias the begin/end statistics for sho{{jiiten-Bell
words.

We use linear interpolation to form a mixture
model of all orders of maximum likelihood es-documents or styles, hence their inclusion in com-

N

o

timates down to the uniform estimat@;(c) = mercial dictation packages such as DragonDictate
1/|char|. The interpolation ratiol (dX) ranges be- and ViaVoice. Another advantage is that they are
tween 0 and 1 depending on the conteXt easy to integrate into tag-a-little/learn-a-little sys-
R tems such as MITRE’s Alembic Workbench.
P(cldX) = A(dX)R(cldX) With online models, we are able to estimate hy-
+ (1—=A(dX))P(c|X) perparameters using an online form of leave-one-out
B(c) = A(O)Pw.(C) analysis (Ney et al., 1995). This can be performed

in a number of ways as long as the model efficiently
1-A())(1/|ch : oo ,
+ 0)(L/|Char|) estimates likelihoods given a set of hyperparameter
The Witten-Bell estimator computed the interpoS€tings. We opted for the simplest technique we
lation paramete\ (X) using only overall training could mu§ter to find the right settmgg This was
counts. The best performing model that we evalyhade easier because we only have a single hyperpa-

ated is parameterized Witten-Bell interpolation witf@meter whose behavior is fairly flat around the'op,-
hyperparamete, for which the interpolation ratio timal setting and because the optimal setting didn’t

is defined to be: cha_nge quickly with in_creasing data. The optimal
settings are shown in Figure 2. Also note that the op-
(X) = extCount(X) timal value is rarely at 1 except for very low-order
extCount(X) + K - numExts(X) grams. To save the complexity of maintaining an in-

terval around the best estimate do do true hill climb-
We takenumExts(X) = |{C|count(XC) > 0}| to be the i \ye simply kept rolling averages of values log-
number of different symbols observed following the, it mically spaced from 1/4 to 32. We also imple-
sequenc& in the training data. The original WItten- 1o yta 4 training method that kept track of the last
Bell estimator seK = 1. We optimize the hyperpa- 14 goq character estimates (made before the charac-
rameterK online (see the next section). ters were used for training, of course). We used a cir-
cular queue for this data structure because its size is
fixed and it allowed a constant time insert of the last
recorded value. We used one circular queue for each
A language model i®nlineif it can be estimated hyperparameter setting, thus storing around 5MB or
from symbols as they arrive. An advantage of onlingo worth of samples. These samples can be used
models is that they are easy to use for adaptation to provide an estimate of the best hyperparameter

3 Online Models and Hyper parameter
Estimation

89



. L. . ) : interface Node {
at any given point in the algorithm’s execution. We' Node increment(char[] cs,

used this explicit method rather than the much less int start, int end);
costly rolling average method so that results would  long count(char[] cs, )
. . . int start, int end);
pe easier to report. We actually believe just keep- long extCount (char[] cs,
ing a rolling average of measured cross-entropies on int start, int end);

online held-out samples is sufficient. int numExts(charl] cs,
int start, int end);

We also sampled the character stream rather than yoge prune(iong minCount);
estimating each character before training. With a gi+
gabyte of characters, we only needed to sample 1
in 100,000 characters to find enough data for esti- Figure 3: Trie Node Interface
mates. At this rate, online hyperparameter estimate

did not measurably affect training time, which was _ . _
dominated by simply constructing the trie. corpus. Our counter implementation was the trick-

We only estimated a single hyperparameter rathdgSt component to scale as it essentially holds the

than one for each order to avoid having to solve gtatistics derived from the training data. It contains

multivariate estimation problem; although we Car§tatistics sufficient to implement all of the estimators
collect the data online, we would either have to imdefined above. The only non-trivial case is Kneser-
plement an EM-like solution or spend a lot time perN_ey’ which is prically implemgnteo_l using the tech-
estimate iterating to find optimal parameters. Thigique known in the compression literature as “up-
may be worthwhile for cases where less data is avaﬁj-ate_ exc_lusmn (N‘I‘Oﬁa&’ ,1990)' Under update ex-
able. As the training data increased, the sensitivity tfg‘)luf'on’ If a count "abc” is updateEI ?nd th? c?ntext
training parameters decreased. Counterintuitively; b was known, then counts for “a” and “ab” are
we found that recursively estimating each order frorﬁXCIUded from the update process. We actual_ly com-
low to high, as implemented in (Samuelsson, 1996&ute these counts_from the tptal counts by noting that
actually increased entropy considerably. Clearly the'® update exclusion count is e_qual to the number of
estimator is using the fact that lower-order estimated'14€ characters found following a shorter context.

should not necessarily be optimal for use on thei-lrhat Is, the count for “ab f:)r”smoothlng“ls etﬂual to
own. This is a running theme of the discountingthe number of characters “x” such that “xab” has a

methods of smoothing such as absolute discountir{b%r_"zero count, becaus_e these are the sﬁ_ugtlons n
or Kneser-Ney. which the count of “ab” is not excluded. This is not

Rather than computing each estimate for hyperpg‘-n efficient way t.o implement update explusmn, but
. merely an expedient so we could share implementa-
rameter and-gram length separately, we first gatherﬁons for experimental purposes. Straight update ex
the counts for each suffix and each context and the > 0" <XP PUTPOSES. Straignt up
o clusion is actually more efficient to implement than
number of outcomes for that context. This is the exf- I nts. but we wanted the full set of character
pensive step, as it require looking up counts in the', counts, but we wanted the Ul Set of characte
. . . substring counts for other purposes, as well as lan-
trie structure. Extension counts require a loop over :
uage modeling.

all the daughters of a context node in the trie be? ) ) ) )
cause we did not have enough space to store them orOU implementation relies heavily on a data un-
nodes. With all of these counts, thegram etimates folded object-oriented implementation of Patricia

for eachn and each hyperparameter setting can Hgies. UnI_ike th_e st_andard suffix tr_ee algo_rithms for
computed from shortest to longest, with the lowefonstructing this trie for all substrings as in (Cleary

order estimates contributing the smoothed estimafé!d Téahan, 1997), we limit the length and make
for the next higher order. copies of characters rather than pointing back into

the original source. This is more space efficient than
4 Substring Counters the suffix-tree approach for our data set sizesrand
gram lengths.
Our n-gram language models derive estimates from The basic node interface is as shown in Figure 3.
counts of substrings of lengthor less in the training Note that the interface is in terms of long integer val-
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ues. This was necessary to avoid integer overflow in -

our root count when data size exceeded 2 GB and L |
our 1-gram counts when data sizes exceeded 5 or B S
6GB. A widely used alternative used for compres- AbstractNode
sion is to just scale all the counts by dividing by [ 1 |
two (and typically pruning those that go to zero); o o
this allows PPM to use 8-bit counters at the cost of
arithmetic precision ((MOﬁat’ 1990))' We eschew TerminalNode ThreeDtrNode Pat1Node Patd4Node
pruning because we also use the counts to find sig| &s:+ B& L 123584t 123854t
nificant collocations. Although most collocation and [ o..ornoge ArrayDirNode pat2Node PatArrayNods
significance statistics are not affected by global scal{__**"" Be il el
ing, cross-entropy suffers tremendously if scaling iS| Twobtode Pat3Node
done globally rather than only on the nodes that need—-—" it
it.

Next note that the interface is defined in terms Figure 4: Unfolded Trie Classes

of indexed character slices. This obviates a huge
amount of otherwise unnecessary object creation
and garbage collection. It is simply not efficientmethods return nodes themselves. This is to sup-
enough, even with the newer generational garbagmrt the key implementation technique for scalabil-
collectors, to create strings or even lighter charactély — replacing immutable objects during increments.
sequences where needed on the heap; slice indidgather than having a fixed mutable node representa-
can be maintained in local variables. tion, nodes can return results that are essentially re-
Theincrement method increments the count for placements for themselves. For instance, there is an
each prefix of the specified character slice. Thanplementation ofNode that provides a count as a
count method returns the count of a given charactdvyte (8 bits) and a single daughter. If that class gets
sequenceextensionCount the count of all one- incremented above the byte range, it returns a node
character extensiongsumExtensions the number with a short-based counter (16 bits) and a daughter
of extensions. Thesxtensions method returns that’s the result of incrementing the daughter. If the
all the observed extensions of a character sequencigss gets incremented for a different daughter path,
which is useful for enumerating over all the nodes itthen it returns a two-daughter implementation. Of
the trie. course, both of these can happen, with a new daugh-
Global pruning is implemented, but was not necter that pushes counts beyond the byte range. This
essary for our scalability experiments. idtneces- strategy may be familiar to readers with experience
sary for compilation; we could not compile modelsin Prolog (O’Keefe, 1990) or Lisp (Norvig, 1991),
nearly as large as those kept online. Just the siméhere many standard algorithms are implemented
of the floating point numbers (two per node for esthis way.
timate and interpolation) lead to 8 bytes per node. A diagram of the implementations Béde is pro-
In just about every study every undertaken, includvided in Figure 4. At the top of the diagram is the
ing our informal ones, unpruned models have outiode interface itself. The other boxes all represent
performed pruned ones. Unfortunately, applicationgbstract classes, with the top classstractNode,
will typically not have a gigabyte of memory avail- forming an abstract adapter for most of the utility
able for models. The best performing models for anethods ifode (which were not listed in the inter-
given size are those trained on as much data avaf&ce).
able and pruned to the specified size. Our prun- The abstract subclagsrNode is used for nodes
ing is simply a minimum count approach, becauswith zero or more daughters. It requires its exten-
the other methods have not been shown to improwaons to return parallel arrays of daughters and char-
much on this baseline. acters and counts from which it implements all the
Finally, note that both the increment and pruneipdate methods at a generic level.
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abstract class TwoDtrNode

extends DtrNode {

final char mC1l; final Node mDtrl
final char mC2; final node mDtr2;

TwoDtrNode (char cl1, Node dtri,
char c2, Node dtr2,

mCl = c1; mDtrl = dtri;
mC2 = c2; mDtr2 = dtr2;
}
Node getDtr(char c) {
return ¢ == mC1
? mDaughteril
: (¢ == mC2
? mDaughter2
: null );

}
[1 chars() {

return new char[] { mC1, mC2 };

}

Node[] dtrs() {
return new Node[] { mDaughterl,
mDaughter?2 };

}

int numDtrs() { return 2; }

final class ThreeDtrNodeShort
extends ThreeDtrNode {

final short mCount;

ThreeDtrNodeShort (char c1, Node dtril,
char c2, Node dtr2,
char c3, Node dtr3,
long count) {

super(cl1,dtrl,c2,dtr2,c3,dtr3);
mCount = (short) count;

}

long count() { return mCount; }

Figure 6: Three Daughter Short Node

and will call constructors of the appropriate
size.  The increment method as defined in
AbstractDtrNode iS given in Figure 7. This
method increments all the suffixes of a string.

The first line just increments the local node if the
array slice is empty; this involves taking its charac-
ters, its daughters and calling the factory with one

} plus its count to generate a new node. This gener-
ates a new immutable node. If the first character in
Figure 5: Two Daughter Node Implementation the slice is an existing daughter, then the daughter is
incremented and the result is used to increment the
entire node. Note the assignmentdters [k] after
The subclasSerminalNode is used for nodes the increment; this is to deal with the immutability.
with no daughters. Its implementation is particuThe majority of the code is just dealing with the case
larly simple because the extension count, the nunyhere a new daughter needs to be inserted. Of spe-
ber of extensions and the count for any non-emptyial note here is the factory instance called on the
sequence starting at this node are zero. The nod@snaining slice; this will create a PAT node. This
with non-empty daughters are not much more comgppears prohibitively expensive, but we refactored to
plex. For instance, the two-daughter node abstragijs approach from a binary-tree based method with
class is shown in Figure 5. almost no noticeable hit in speed; most of the arrays
All daughter nodes come with four concrete im-stabilize after very few characters and the resizings
plementations, based on the size of storage allocatetibig arrays later on is quite rare. We even replaced
for counts:byte (8 bits), short (16 bits),int (32 the root node implementation which was formerly
bits), orlong (64 bits). The space savings from onlya map because it was not providing a measurable
allocating bytes or shorts is huge. These concrespeed boost.
implementations do nothing more than return their Once the daughter characters and daughters are
own counts as long values. For instance,dhert marshalled, the factory calls the appropriate con-
implementation of three-daughter nodes is shown igtructor based on the number of the character and
Figure 6. Note that because these nodes are not pwWiaughters. The factory then just calls the appropri-
lic, the factory can be guaranteed to only call thetely sized constructor as shown in Figure 8.
constructor with a count that can be cast to a short yn|ike other nodes, low count terminal nodes are

value and stored. stored in an array and reused. Thus if the result of
Increments are performed by the superclasan increment is within the cache bound, the stored
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Node increment(char[] cs,

int start, int end) {
// empty slice; incr this node
if (start == end)
return NodeFactory
.createNode(chars() ,dtrs(),
count ()+11);
char[] dtrCs = chars();
// search for dtr
int k = Arrays.binarySearch(dtrCs,
cs[start]);
Node[] dtrs = dtrs();
if (k >= 0) { // found dtr
dtrs[k] = dtrs[k]
.increment (cs,start+1,end);
return NodeFactory
.createNode (dtrCs,dtrs,
count ()+11);
}
// insert new dtr
char[] newCs = new char[dtrs.length+1];

static Node createNode(char c, Node dtr,
long n) {

if (n <= Byte.MAX_VALUE)

return new OneDtrNodeByte(c,dtr,n);
if (n <= Short.MAX_VALUE)

return new OneDtrNodeShort(c,dtr,n);
if (n <= Integer.MAX_VALUE)

return new OneDtrNodeInt(c,dtr,n);
return new OneDtrNodeLong(c,dtr,n);

}

Figure 8: One Daughter Factory Method

as an array. Like the generic daughter nodes, PAT
nodes contain implementations for byte, short, int
and long counters. They also contain constant im-
plementations for one, two and three counts. We
found in profiling that the majority of PAT nodes

Node[] newDtrs = new Node[dtrs.length+1]; a .
int i = 0; had counts below four. By providing constantimple-

for (; ;;&<dfcités -[}:Tngth ' y mentations, no memory at all is used for the counts
oy (T startl; (other than a single static component per class). Pat
newCs[i] = dtrCs[il; nodes themselves are actually more common that
) newbtrs[i] = dtrs[il; regular daughter nodes in high-order character tries,
newCs[i] = cs[start]; because most long contexts are deterministic. As
newDtrs[i] = NodeFactory n-gram order increases, so does the proportion of
'°reateN°de(°séS:?1ft+1’ PAT nodes. Implementing increments for PAT nodes
for (; i < dtrCs.length; ilij i is only done once in the abstract cla&stNode.
newCs[i+1] = dtrCs[il; Each PAT node implementation supplied an array in
newbtrs[i+1] = derslil; a standardized interface to the implementations in
PatNode. That array is created as needed and only
-createNode (newCs ,newDtrs, lives long enough to carry out the required increment
' count O+11); or lookup. Java’s new generational garbage collector
is fairly efficient at dealing with garbage collection
for short-lived objects such as the trie nodes.

}

return NodeFactory

Figure 7: Increment ilbstractDtrNode
5 Compilation

version is returned. Because terminal nodes are in@ur online models are tuned primarily for scalabil-
mutable, this does not cause problems with COHSiﬁy' and secondarily for speed of substring counts.
tency. In practice, terminal nodes are far and awagven the simplest model, Witten-Bell, requires for
the most common type of node, and the greatest sayach context length that exists, summing over exten-
ing in space came from carefully coding terminakjon counts and doing arithmetic including several
nodes. divisions and multiplications per order a logarithm
The abstract clas®atNode implements a so- at the end. Thus straightforward estimation from
called “Patricia” trie node, which has a single chainmodels is unsuitable for static, high throughput ap-
of descendants each of which has the same couptications. Instead, models may be compiled to a
There are four fixed-length implementations for théess compact but more efficient static representation.
one, two, three and four daughter case. For theseWe number trie nodes breadth-first in unicode or-
implementations, the daughter characters are storddr beginning from the root and use this indexing for
in member variables. For the array implementafour parallel arrays following (Whittaker and Raj,
tion, PatArrayNode, the daughter chain is stored2001). The main difference is that we have not
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char| int | float float | int is the context, and this is also not explicitly repre-
ldx | Ctx | C | Suf| logP | log(1-A) | Dtr sented. The remaining columns are explicitly repre-
0l n/al n/a | n/a n/a -0.63 1 sented. The third column is for the character. The
1 a 01| -2.60 041 6 fourth column is an integer backoff suffix pointer;
2 b 0| -3.89 0581 9 for instance, in the row with index 13, the context
3 c 0| -4.84 032 10 is “ab”, and the character is “r", meaning it repre-
4 d 01| -4.84 2032 11| sents“abr”in the trie. The suffix index is 9, which
5 r 0| -3.89 058 12| Isfor“br’, the suffix of “abr”. The fifth and sixth
6 al b 2251 058 13 columns are 32-bit floating point estimates, the fifth
7 al ¢ 3 -3.49 032 14| O©flog,P(rlab), and the sixth is empty because there
3 al d 41 349 032 15 is no context for “abr”, just an outcome. The value
9 bl r 5-1.40 058 16 of log,(1— A(ab)) is found in the row indexed 6,
0 cl a 11-159 032 17| andequalto-0.58. The seventh and final column
11 d| a 11-159 032 18| 'S theinteger index of the first daughter of a given
12 T a 11117 032 19 nocz!e. The value .of the daughter pointer fo_r the fol-
3 abl T 9077 al na !owmg noo_le provides an upper bound. For mstance,
121 acl a 10 -1-10 wal a in thfe row index 1 for the string “a”, th(_e daughter in-
T ad a 11 _1'10 a2 T/a dex is 6, and the next row’s daughter index is 9, thus
- the daughters of “a” fall between 6 and 8 inclusively
16| br| a 12| -0.67 na) na| _ these are “ab”, “ac” and “ad” respectively. Note
17] ca) d 8|-188 nfa| nia that the daughter characters are always in alphabeti-
18| da) b 6|-155 nfa| n/a|  cqorder, allowing for a binary search for daughters.
19| ra] ¢ 7]-1.88 n/a| nfa For n-gram estimators, we need to compute

logP(ch|Co---Ch_1). We start with the longest se-
Figure 9: Compiled Representation of 3-grams foﬁuenceck, ...,Cn_1 that exists in the trie. If binary
“abracadabra” search finds the outconmg among the daughters of
this node, we return its log probability estimate; this
happens in over 90 percent of estimates with rea-

coded to a fixech-gram length, costing us a bit of . .
. ) sonably sized training sets. If the outcome character
space in general, and also that we included contex . .

iS not found, we continue with shorter and shorter

suffix pointers, costing us more space but S‘rjwmgontexts, adding log interpolation values from the

lookups for all suffixes during smoothing. context nodes until we find the result or reach the
The arrays are (1) the character leading to thgniform estimate at the root, at which point we add

node, (2) the log estimate of the last character in thes estimate and return it. For instance, the estimate

path of characters leading to this node given the prey |og, P(r|ab) = —0.77 can be read directly off the

vious characters in the path, (3) the log of one Mirgyy, indexed 13 in Figure 9. But lodP(alab) =

nus the interpolation parameter for the context rép-0.58+ log, P(alb) = —0.58+ —0.58+log, P(a) =

resented by the full path of characters leading to thisg 58 0,58+ —2.60, requiring two interpolation
node, (4) the index of the first daughter of the nodeyeps,

and (5) index of the suffix of this node. Note thatthe - For jmplementation purposes, it is significant that
daughters of a given node will be contiguous and ifye keep track of where we backed off from. The
unicode order given the breadth-first nature of the ingy for “a”, where the final estimate was made, will
dexing, ranging from the daughter index of the nodge the starting point for lookup next time. This is
to the daughter index of the next node. the main property of the fast string algorithms — we
We show the full set of parallel arrays for trigramknow that the context “ba” does not exist, so we do
counts for the string “abracadabra” in Figure 9. The&ot need to go back to the root and start our search
first column is for the array index, and is not explic-all over again at the next character. The result is
itly represented. The second column, labeled “Ctx"a linear bound on lookup time because each back-
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off of n characters guarantees at leasteps to get data sets, including decompressing their zipped and
back to the same context length, thus there can't lmzipped forms and parsing their XML, SGML and
more backoff steps than characters input. The matokenized form. A handler is then implemented that
bottleneck in run time is memory bandwidth due taadds data to the online models and polls the model
cache misses. for results intermittently for generating graphs.

The log estimates can be compressed using as
much precision as needed (Whittaker and Raj Results
2001), or even reduced to integral values and integer

arithmetic used for computing log estimates. We us¥/e used a 1.4GB Java heap (unfortunately, the max-
floats and full characters for simplicity and speed. imum allowable with Java on 32-bit Intel hardware

without taking drastic measures), which allowed us
6 Corporaand Parsers to train 6-grams on up to 7 billion characters with
room to spare. Roughly, 8-grams ran out of mem-

Our first corpus is 7 billion characters from tNew ory at 1 billion characters, 12 grams at 100 million
York Timessection of the Linguistic Data Consor-characters, and 32 grams at 10 million characters.
tium’s Gigaword corpus. Only the body of docu-We did not experiment with pruning for this paper,
ments of type story were used. Paragraphs indihough our API supports both thresholded and pdi-
cated by XML markup were begun with a singlevisive scaling pruning. Training the counters de-
tab character. All newlines were converted to singleends heavily on the length nfgram, with 5-grams
whitepspaces, and all other data was left unmodiraining at 431,000 characters per second, 8-grams
fied. The data is problematic in at least two waysat 204,000 char/s, 12-grams at 88,000 char/s and 32-
First, the document set includes repeats of earligirams at 46,000 char/s, including online hyperpara-
documents. Language models provide a good wayeter estimation (using a $2000 PC running Win-
of filtering these repeated documents out, but we didows XP and Sun’s 1.4.2 JDK, with a 3.0GHz Pen-
not do so for our measurements because there weiem 4, 2GB of ECC memory at 800MHz, and two
few enough of them that it made little differencelOK SATA drives in RAID 0).
and we wanted to simplify other comparative eval- Qur primary results are displayed in Figure 11
uations. Second, the document set includes numegnd Figure 10, which plot sample cross-entropy
ical list data with formatting such as stock marketates against amount of text used to build the mod-
reports. Thelimesdata uses 87 ASCII characters. els for variousn-gram lengths. Sample cross en-

Our second corpus is the 5 billion charactersropy is simply the average log (base 2) probabil-
drawn from abstracts in the United States’ Nationaty estimate per character. All entropies are re-
Library of Medicine’s 2004 MEDLINE baseline ci- ported for the best hyperparameter settings through
tation set. Abstract truncation markers were resnline leave-one-out estimation for parameterized
moved. MEDLINE uses a larger character set of 16Witten-Bell smoothing. Each data point in the plot
characters, primarily extending ASCII with diacrit-uses the average entropy rate over a sample size
ics on names and Greek letters. of up to 10,000 for MEDLINE and 100,000 for

By comparison, (Banko and Brill, 2001) used onghe Times with the samples being drawn evenly
billion tokens for a disambiguation task, (Brown etover the data arriving since the last plot point.
al., 1991) used 583 million tokens for a languagé&or instance, the point plotted at 200,000 charac-
model task, and (Chen and Goodman, 1996) clevertgrs for MEDLINE uses a sample of every 10th
sampled from 250 million tokens to evaluate highereharacter between character 100,000 and 200,000
order models by only training on sequences used imhereas the sample at 2,000,000,000 characters
the held-out and test sets. uses every 100,000th character between characters

Our implementation is based a generic text parsd;000,000,000 and 2,000,000,000.
and text handler interface, much like a simplified Like the Tipster data used by (Chen and Good-
version of XML's SAX content handler and XML man, 1996), the immediately noticeable feature of
parser. A text parser is implemented for the variouthe plots is the jaggedness early on, including some
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Figure 11: MEDLINE Sample Cross-Entropy Rates

ridiculously low cross-entropy rates reported for thele characters provides quite a cross-entropy reduc-
Timesdata. This is largely due to low training tion. For later data points, samples are sparser and
data count, higm-gram models being very good thus less subject to variance.

at matching repeated passages coupled with the fact

that a 2000 word article repeated out of 10,000 sam- For applications other than cross—entropy ba_lke—
offs, 5-grams to 8-grams seem to provide the right
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compromise between accuracy and efficiency. standard error the square root of this, or 0.02. This

We were surprised that MEDLINE had loweriS in line with measurement variances found at the
n-gram entropy bounds than tiiémes especially tail end of the plots, but not at the beginnings.
given the occurrence of duplication within tienes ~ Most interestingly, it turned out that smoothing
data (MEDLINE does not contain duplicates in thénethod did not matter oneegrams were large, thus
baseline). The best MEDLINE operating point is inringing the results of (Banko and Brill, 2001) to
dicated in the figure, with a sample cross-entrop§€ar on those of (Chen and Goodman, 1996). The
rate of 1.36 for 12-grams trained on 100 millioncOmparison for 12-grams and then for the tail of
characters of data; 8-gram entropy is 1.435 at nearfjjore data for 8-grams in Figures 13 and 14. Fig-
1 billion characters. The best performance for thi'e¢ 14 shows the smoothing methods for 8-grams on
Times corpus was also for 12-grams at 100 mil-&n order of magnitude more data.
lion chqracters, but the sample cross-entropy WaSonclusions
1.49; with 8-gram sample cross-entropy as low as
1.570 at 1 billion characters. Although MEDLINE We have shown that it is possible to use object ori-
may be full of jargon and mixed-case alphanumeriented techniques to scale language model counts to
acronyms, the way in which they are used is highlyery high levels without pruning on relatively mod-
predictable given enough training data. Data in thest hardware. Even more space could be saved by
Timessuch as five and six digit stock reports, sportsinfolding characters to bytes (especially for token
scores, etc., seem to provide a challenge. models). Different smoothing models tend to con-
The per-character sample variances for 2-gram¥er9€ to each other after gigabytes of data, making
4-grams and 8-grams for MEDLINE are given inSMoothing much less critical.
Figure 12. We did not plot results for higher-order Full source with unit tests, javadoc, and applica-
n-grams, as their variance was almost identical tHOnS is available from the LingPipe web site:
that of 8-grams. Standard error is the square root of
variance, or about 2.0 in the range of interest. With
10,000 samples, variance should be 4/10,000, with

http://www.alias-i.com/lingpipe
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Abstract

This paper introduces xfst2fsa, a compiler
which translates grammars expressed in
the syntax of the XFST finite-state tool-
box to grammars in the language of the
FSA Utilities package. Compilation to
FSA facilitates the use of grammars de-
veloped with the proprietary XFST tool-
box on a publicly available platform. The
paper describes the non-trivial issues of
the compilation process, highlighting sev-
eral shortcomings of some published algo-
rithms, especially where replace rules are
concerned. The compiler augments FSA
with most of the operators supported by
XFST. Furthermore, it provides a means
for comparing the two systems on compa-
rable grammars. The paper presents the
results of such a comparison.

1 Introduction

Finite-state technology is widely considered to be
the appropriate means for describing the phonolog-
ical and morphological phenomena of natural lan-
guages since the pioneering works of Koskenniemi
(1983) and Kaplan and Kay (1994). Finite state
technology has some important advantages, making
it most appealing for implementing natural language
morphology. One can find it very hard, almost im-
possible, to build the full automaton or transducer
describing some morphological phenomena. This
difficulty arises from the fact that there are a great
number of morpho-phonological processes combin-
ing together to create the full language. However, it
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is usually very easy to build a finite state machine
to describe a specific morphological phenomenon.
The closure properties of regular languages make
it most convenient to implement each phenomenon
independently and combine them together. More-
over, finite state techniques have the advantage of
being efficient in their time and space complexity,
as the membership problem is solvable in time lin-
ear in the length of the input. Furthermore, there are
known algorithms for minimizing and determinizing
automata and some restricted kinds of transducers.
Several finite state toolboxes (software packages)
provide extended regular expression description lan-
guages and compilers of the expressions to finite
state devices, automata and transducers (Karttunen
et al., 1996; Beesley and Karttunen, 2003; Mohri,
1996; van Noord and Gerdemann, 2001a; van No-
ord and Gerdemann, 2001b). Such toolboxes typ-
ically include a language for extended regular ex-
pressions and a compiler from regular expressions
to finite-state devices (automata and transducers).
These toolboxes also include efficient implementa-
tions of several standard algorithms on finite state
machines, such as union, intersection, minimiza-
tion, determinization etc. More importantly, they
also implement special operators that are useful for
linguistic description, such as replacement (Kaplan
and Kay, 1994; Mohri and Sproat, 1996; Karttunen,
1997; Gerdemann and van Noord, 1999) or predi-
cates over alphabet symbols (van Noord and Gerde-
mann, 2001a; van Noord and Gerdemann, 2001b),
and even operators for particular linguistic theories
such as Optimality Theory (Karttunen, 1998; Gerde-
mann and van Noord, 2000). Unfortunately, there
are no standards for the syntax of extended regular
expression languages and switching from one tool-
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box to another is a non-trivial task.

This work focuses on two toolboxes, XFST
(Beesley and Karttunen, 2003) and FSA Utilities
(van Noord, 2000). Both are powerful tools for spec-
ifying and manipulating finite state machines (ac-
ceptors and transducers) using extended regular ex-
pression languages. In addition to the standard oper-
ators, XFST also provides advanced operators such
as replacement, markup, and restriction (Karttunen,
1995; Karttunen, 1996; Karttunen, 1997; Karttunen
and Kempe, 1995), and advanced methods such as
compile-replace and flag-diacritics. FSA, on the
other hand, supports weighted finite state machines
and provides visualization of finite state networks.
In addition, FSA is built over Prolog, allowing the
additional usage of Prolog predicates. A first signifi-
cant difference between the two packages is the wide
variety of operators that XFST provides in compar-
ison to FSA. However, FSA has the clear advantage
of being a free, open source package, whereas XFST
is proprietary.

This paper describes xfst2fsa, a compiler which
translates XFST grammars to grammars in the lan-
guage of the FSA Utilities package.! There is a
strong parallelism between the languages, but cer-
tain constructs are harder to translate and require
more innovation. In particular, all the replace op-
erators that XFST provides do not exist in FSA and
had to be re-implemented. In this work we relate
only to the core of the finite state calculus — naive
automata and transducers. We do not deal with ex-
tended features such as the weighted networks of
FSA or with advanced methods such as Prolog ca-
pabilities in FSA and compile replace and flag dia-
critics in XFST.

The contribution of this work is manifold. Our
main motivation is to facilitate the use of grammars
developed with XFST on publicly available systems.
Furthermore, this work gives a closer insight into the
theoretical algorithms which XFST is based on. We
show that the algorithms published in the literature
are incomplete and require refinement in order to be
correct for all inputs. Moreover, our compiler en-
riches FSA with implementations of several replace
rules, thereby scaling up the system and improving

IThe system and the source code are available for download
from http://cl.haifa.ac.il/projects/fstfsa/index.shtml
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its expressivity. Finally, this work offers an inves-
tigation of two similar, but different systems: the
compiler facilitates a comparison of the two systems
on very similar benchmarks.

2 The xfst2fsa compiler

Compilation of a given XFST grammar into an
equivalent FSA code is done in two main stages:
first, the XFST grammar is parsed, and a tree rep-
resenting its syntax is created. Then, by traversing
the tree, the equivalent FSA grammar is generated.

In order to parse XFST grammars, a specifica-
tion of the XFST syntax is required. Unfortunately,
we were unable to obtain a formal specification
and we resorted to reconstructing it from available
documentation (Beesley and Karttunen, 2003).This
turned out to be a minor inconvenience; a more ma-
jor obstacle was the semantics of XFST expressions,
especially those involving advanced operators such
as replace rules, markup and restriction. We exem-
plify in this section some of these issues.

XFST operators can be divided into three groups
with respect to their FSA equivalence: those which
have an equivalent operator in FSA, those which do
not but can be easily constructed from basic FSA op-
erators, and those whose constructions is more com-
plicated. In what follows we refer to operators of
the first two groups as basic operators. Figure 1 dis-
plays a comparison table of some basic operators in
XFST and FSA.2 For example, consider the XFST
operator $7A (“contains at most one”). This opera-
tor is not provided by FSA but can be constructed as
{$A - ignore([A,A],?*),7* — $A}. It is now
provided by FSA in our publicly available package
of extended FSA operators. The same holds for
XFST operators such as A./.B (internally ignore),
$.A (contains one) etc. As another example con-
sider the XFST operator ~ (n-ary concatenation). It
does not have an equivalent operator in FSA, but it
can be simply constructed in FSA by explicitly ex-
pressing the concatenation as many times as needed.
Thus, the XFST regular expression [a*|b~3] is
translated into the equivalent FSA regular expres-
sion {a*,[b,b,b]}. Similar techniques are used
for other basic XFST operators such as A~>n (more

2The complete list of XEST operators and the way they
where translated into FSA can be found in Appendix A.



than n concatenations of A), A~{n,k} (n to k con-
catenations of A) etc.

Another minor issue is the different operator
precedence in XFST and FSA. This problem was
solved by bracketing each translated operator in
XFST with ‘() to force the correct precedence.

Special care is needed in order to deal with XFST
operators of the third group, e.g., all the replace,
markup and restriction rules in XFST. These rules
do not have any equivalents in FSA, and hence the
only way to use them in FSA is to implement them
from scratch. This was done using the existing
documentation (Karttunen, 1995; Karttunen, 1996;
Karttunen, 1997; Karttunen and Kempe, 1995) on
the construction of these operators from the basic
ones. However, not all the operators are fully doc-
umented and in some cases some innovation was
needed. As an example, consider the XFST opera-
tor A@<-B (obligatory, lower to upper, left to right,
longest match replacement). To the best of our
knowledge, this operator is not documented. How-
ever, by Karttunen (1995), the operator A<-B (oblig-
atory, lower to upper replacement ) is defined as
[B->A] .i (where B->A is the obligatory, upper to
lower replacement of the language B by the lan-
guage A). We then concluded that A@<-B is con-
structed as [B@->A] .i (where [B@->A] is the oblig-
atory, upper to lower, left to right, longest match re-
placement of the language B by the language A) and
from Karttunen (1996) the construction of the oper-
ator B@->A is known.

For some of the documented operators, we found
that the published algorithms are erroneous in
some special cases. Consider the replace operator
A->B || L _ R (conditional replacement of the
language A by the language B, in the context of
L on the left and R on the right side, where both
contexts are on the upper side). In Karttunen (1997;
1995), a detailed description of the construction of
this operator is given. In addition, Karttunen (1997)
discusses some boundary cases, such as the case
in which the language A contains the empty string.
We discovered that there are some cases which are
not discussed as boundary ones in Karttunen (1997)
and for which the standard algorithm in Karttunen
(1997; 1995) does not produce the expected result
by the definition of the operator denotation. One
such case is a rule of the form A->B || _ ?, where
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A and B are some regular expressions denoting
languages. This rule states that any member of the
language A on the upper side is replaced by all
members of the language B on the lower side when
the upper side member is not followed by the end of
the string on which the rule operates. For example,
the rule a->b || _ 7 is expected to generate
the automaton of Figure 2. However, a direct
implementation of the algorithms of Karttunen
(1997; 1995) always yields a network accepting the
empty language, independently of the way A and B
are defined. Other ambiguous cases are discussed in
Vaillette (2004).

Figure 2: Desired interpretation of the regular ex-
pression a— > b || _?

Furthermore, in some cases XFST produces net-
works that are somewhat different from the ones
in the literature: the relations (as sets) are equal
but the resulting automata (as graphs) are not iso-
morphic. For example, consider the replace rule
a->b || ¢ _ d. This expression is compiled by
XFST to the automaton shown in Figure 3. Imple-
menting this rule from basic operators as described
in Karttunen (1997; 1995), results in the automaton
of Figure 4. Observe that in some cases multiple ac-
cepting paths are obtained. This is probably a result
of adding &-self-loops in order to deal correctly with
€ symbols, following Pereira and Riley (1997); the
multiple paths can then be removed using filters. We
assume that the same solution is adopted by XFST.
This solution requires direct access to the underly-
ing network, and cannot be applied at the level of
the regular expression language. Therefore, we did
not utilitize it in our implementation of replace rules.

To validate the construction of the compiler, one
would ideally want to check that the obtained FSA



XFST syntax FSA syntax Meaning

Ax Ax Kleene star

Al B {A,B} union

A& B A& B intersection

A -B A -B A minus B

A/B ignore(A,B) A ignoring B

$A $A containment

$7A {$A - ignore([A,A],?*) , 7 - $A} maximum one containment
AB [A,B] concatenation

A°n does not exist n-ary concatenation
A.x.B AxB crossproduct

A.o.B AoB composition

@) A" optionality

[1] @) precedence

R.i invert (R) or inverse(R) regular relation inverse

Figure 1: A comparison table of some simple classic operators in XFST and FSA

?,a,b,d

Figure 3: Automaton created from the regular ex-
pression a— > b || ¢ _d by XFST

networks are equivalent to the XFST ones from
which they were generated. Unfortunately, this is
only possible for very small networks, since XFST
does not allow to print its networks, when they are
significantly large. We could only test XFST net-
works and their FSA images over test strings to vali-
date the identity of the outputs. In addition to check-
ing each operator by itself for several instances, we
tested the compiler on a more comprehensive code,
namely HAMSAH (Yona and Wintner, 2005), which
was designed and implemented using XFST. We
successfully converted the entire network into FSA
with the compiler. Exhaustive tests produced the
same outputs for both networks.

103

Figure 4: Automaton created from the regular ex-
pression a— > b || ¢ _d by the published algorithm

3 Comparison of XFST and FSA

A byproduct of the compiler is a full implementa-
tion, in FSA, of a vast majority of XFST’s opera-
tors.> In addition to the contribution to FSA users,
this also facilitates an effective comparison between
the two toolboxes on similar benchmarks. We now
describe the results of such a comparison, focusing
on usability and performance.

3.1 Display of networks

FSA displays networks in two possible formats: as
text, by listing the network states and transitions,

3We implemented in FSA all the operators of XFST, except
parallel conditional replace rules and some direct replacement
and markup rules.



and through a graphical user interface. The GUI that
FSA employs is user friendly, allows many kinds
of manipulations of the networks and significantly
helps to the understanding of the networks, espe-
cially when they are small. The viewing parame-
ters can be scaled by the user, thus improving the
visualization possibilities. Moreover, networks can
be saved in many different formats including bi-
nary (for fast loading and saving), text (allowing in-
spection of the network without the necessity to use
FSA) and postscript (for printing). FSA also enables
generation of C, C++, Java and Prolog code, imple-
menting analysis with a network.

XFST, on the other hand, prints its networks only
in text format, and even this is supported for small
networks only. Networks in XFST can be saved
in binary format only, thus requiring the usage of
XFST in order to inspect the network. With respect
to visual display and ease of use, therefore, FSA has
clear benefits over XFST.

3.2 Performance

A true comparison of the two systems should com-
pare two different grammars, each designed specifi-
cally for one of the two toolboxes, yielding the same
comprehensive network. However, as such gram-
mars are not available, we compared the two tool-
boxes using a grammar designed and implemented
in XFST and its conversion into FSA. Again we used
HAMSAH (Yona and Wintner, 2005) for this pur-
pose. The Hebrew morphological analyzer is a large
XFST grammar: the complete network consists of
approximately 2 million states and 2.2 million arcs.
We also inspected two subnetworks: the Hebrew ad-
jectives network (approximately 100,000 states and
120,000 arcs) and the Hebrew nouns network (ap-
proximately 700,000 states and 950,000 arcs). Each
of the networks was created by composing a series
of rules over a large-scale lexicon. Since Hebrew
morphology is non-trivial, the final network is cre-
ated by composing many intermediate complex reg-
ular expressions (including many replace rules and
compositions). The grammars were compiled and
executed on a 64-bit computer with 16Gb of mem-
ory. The table in Figure 5 shows the differences
in compilation and analysis times and memory re-
quirements between the two toolboxes. XFST per-
formed immeasurably better than FSA. In particular,
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we were unable to use the complete FSA network for
analysis, compared to analyzing 70 words per sec-
ond with the full network in XFST. Another issue
that should be noticed is the difference in memory
requirements.

4 Conclusions

We presented a compiler which translates XFST
grammars to grammars in the language of the FSA
Utilities package. This work allows a closer look
into two of the most popular finite state toolboxes.
Although FSA has the advantage of being a pub-
licly available software, we discovered that it does
not scale up as well as XFST. However, for the non-
expert user or for teaching purposes, where more
modest networks are manipulated, FSA seems to be
more friendly, especially with regard to graphical
representation of networks. With our new imple-
mentation of replace rules in FSA, it seems that for
such uses FSA is better. However, for larger sys-
tems and when time performance is an issue, XFST
is preferable.

This work can be extended in several directions.
Not all XFST operators are implemented in FSA.
Some for lack of documentation and some simply
require more time for implementation. Thus, fur-
ther work can be done to construct more opera-
tors (see footnote 3). We believe that replace rules
still hide boundary cases which require special treat-
ment. More work is needed in order to locate such
cases. Furthermore, other finite state toolboxes ex-
ist (Mohri, 1996) which present different operators.
Extending the compiler to convert XFST grammars
into those formalisms will provide opportunities for
better comparison of different finite-state toolboxes.
On a different course, an fsa2xfst compiler can be
constructed. Such a compiler will enable a reverse
performance comparison, i.e. using a larger network
for FSA and making it operational in XFST. Notice
that in contrast to the xfst2fsa direction, this course
is rather trivial: FSA allows the user to save its net-
works in a readable format (listing the network states
and arcs). Although XFST is not capable of read-
ing any format but its own, Kleene (1954) presents a
simple algorithm for generating from a given FSA a
regular expression denoting it. Using this algorithm,
an XFST regular expression denoting the network



FSA XFST
Time Memory Time Memory

complete network 13h 43m ~11G 27m 41s ~3G
Compilation | nouns network 2h 29m 11m 4s

adjectives network 14m 56s 8m 21s

complete network, 350 words not possible 5s
Analysis nouns network, 120 nouns 1h 50m 0.17s

adjectives network, 50 adjectives | 2m 34s 0.17s

Figure 5: Times and memory requirements

can be generated. The only disadvantage of such an
approach is that the resulting XFST expression will
be most cumbersome.
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Appendix

A A comparison table of XFST and FSA operators

A.1 Symbols
‘ XFST syntax ‘ FSA syntax ‘ Meaning
a a single symbol a
9o or “*” escape(*) or ’*’ | escape literal symbol
abc abc multi-character symbol
? ? any symbol
Oor[Jor"" | [] epsilon symbol, the empty string
{abcd} [a,b,c,d] single character brace
A.2 Basic operators

‘ XFST syntax ‘ FSA syntax Meaning
Ax Ax Kleene star
A+ A+ iteration (Kleene plus)
A|B {A,B} union
A&B A&B intersection
A—B A—B A minus B
\A [~A] &? term complement
~A ~A complement
A/B ignore(A,B) A ignoring B
A./.B ignore(A,B) — {[B, 7], [?x,B]} A ignoring internally B
$A $A containment
$.A $A — ignore([A,A], 7%) one containment
$74 {$A — ignore([A,A], 7%), 7% —$A} maximum one containment
AB [A,B] concatenation
A’n n-ary concatenation
A™{n,k} n to k concatenations of A
A" >n more than n concatenations of A
A" <n less than n concatenations of A
A.x.B AxB crossproduct
A.0.B AoB composition
(A) A" optionality
a:b a:b symbol pair
[] O) order control
R.P.Q {R, (domain(Q) — domain(R)) o Q} | upper-side priority union
R.p.O {R,Q o (range(Q) — range(R))} lower-side priority union
R.—u.Q (domain(R) — domain(Q)) o R upper-side minus
R.—1.0Q R o (range(R) — range(Q)) lower-side minus
A<B ~ $[B,A] A before B
A>B ~ $[A,B] A after B
Ar reverse(A) reverse
RuorR.1 domain(R) upper language of the regular relation R
R.lorR.2 range(R) lower language of the regular relation R
R.i invert(R) or inverse(R) regular relation inverse
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A.3 Restriction
XFST restriction rules are not provided by FSA, nor did we implement them. Therefore, we only present
their syntax in XFST.

e A=>L_R

e A=>Li_R,Lh_Ry,...,.L,_R,

A.4 Replacement

XFST replace rules do not exist in FSA. We present implementation of most of them in FSA, based on
(Karttunen, 1995; Karttunen, 1996; Karttunen, 1997; Karttunen and Kempe, 1995). XFST replace rules can
be divided into 4 groups:

1. Unconditional replace rules (one rule with no context).
2. Unconditional parallel replace rules (several rules with no context that are performed at the same time).
3. Conditional replace rules (one rule and one condition).
4. Conditional parallel replace rules (several rules and/or several contexts).
A4.1 — > (obligatory, upper to lower replacement)
o XFST syntax: A— > B

Meaning: Unconditional replacement of the language A by the language B.

Construction: [[NO-A [A .x. B] |«* NO_ A] where NO_ A abbreviates ~ $[A —[]].

e XFST syntax: Aj— > By,...,A,— > B,

Meaning: Unconditional parallel replacement of the language A by the language B; and the language
A by the language B ... and the language A, by the language B,,.

Construction: [[ N R ]* N | where N denotes the language of strings that do not contain any A;:
N =~S[[A1] . [A]=[]]
and R stands for the relation that pairs every A; with the corresponding B;:

R= [ [Al .x.Bl] | | [An XBH]]

e XFST syntax: A— > B||L_R

Meaning: Conditional replacement of the language A by the language B. This is like the relation
A— > B except that any instance of A in the upper string corresponds to an instance of B in the lower
string only when it is preceded by an instance of L and followed by an instance of R. Other instances of
A in the upper string remain unchanged. A, B, L, and R must all denote simple languages, not relations.
The slant of the double bars indicates whether the precede/follow constraints refer to the instance of A
in the upper string or to its image in the lower string. In the || version, both contexts refer to the upper
string.

Construction: InsertBrackets .0. ConstrainBrackets .o. Le ftContext .0. RightContext .0. Replace .o.
RemoveBrackets where:

108



— Let < and > be two symbols not in X. The escape character % is used since < and > are saved
symbols in XFST.

— InsertBrackets =[] < — % < | % > ]
InserBrackets eliminates from the upper side language all context markers that appear on the lower
side.

— ConstrainBrackets = [~ $[% < % >]]
ConstrainBrackets denotes the language consisting of strings that do not contain <> anywhere.

— LeftContext = [~ [~ [...LEFT] [< ..]] & ~[[...LEFT] ~[<..]]]
LeftContext denotes the language in which any instance of < is immediately preceded by LEFT
and every LEFT is immediately followed by <, ignoring irrelevant brackets. [...LEFT| denotes
[[?7% L/[% < | % >]]—[?* % <] ], the language of all strings ending in L, ignoring all brackets
except for a final <. [< ...] denotes [% < /% > ?x], the language of strings beginning with <,
ignoring the other bracket.

- RightContext =~ [[... >] ~|[RIGHT...]| & ~[~[...>] [RIGHT...]]]
RightContext denotes the language in which any instance of > is immediately followed by RIGHT
and any RIGHT is immediately preceded by >, ignoring irrelevant brackets. [RIGHT...] denotes
[[R/[% < | % >] ™ ]—[% < ?«] ], the language of all strings beginning with R, ignoring all
brackets except for an initial >. [... >] denotes [?* % > /% <], the language of strings ending
with >, ignoring the other bracket.

— The definition of Replace divides into three cases:

1. If A does not contain the empty string (epsilon) then
Replace =% < Al[% < |%>] %> —> %< B/[% < |% >] % >]

This is the unconditional replacement of < A > by < B >, ignoring irrelevant brackets.
2. If A is the empty string (i.e., A = €) then

Replace =% > % < —> % < Bx* % >|
3. If A contains the empty string but is not equal to it (i.e., contains other strings too) then

Replace =

(o< A% <|%>]%> —> %< Bl[%<|%>%>],%> %< —> %< Bx %>

That is, the first two cases are performed in parallel.

— RemoveBrackets = [ % < | % > — > []]. RemoveBrackets denotes the relation that maps the
strings of the upper language to the same strings without any context markers.

e XFST syntax: A—>B//L_R

Meaning: Conditional replacement of the language A by the language B. This is like the relation
A— > B|| L _R except that the // variant requires the left context on the lower side of the replacement
and the right context on the upper side.

Construction: InsertBrackets .o. ConstrainBrackets .o. RightContext .0. Replace .0. LeftContext .o.
RemoveBrackets where InsertBrackets, ConstrainBrackets, RightContext, Replace, LeftContext and
RemoveBrackets are the same as above.

109



e XFST syntax: A—>B\\L_R

Meaning: Conditional replacement of the language A by the language B. This is like the relation
A— > B|| L _R except that the \\ variant requires the left context on the upper side of the replacement
and the right context on the lower side.

Construction: InsertBrackets .o. ConstrainBrackets .o. Le ftContext .0. Replace .o0. RightContext .o.
RemoveBrackets where InsertBrackets, ConstrainBrackets, RightContext, Replace, LeftContext and
RemoveBrackets are the same as above.

e XFST syntax: A—>B\/L_R

Meaning: Conditional replacement of the language A by the language B. This is like the relation
A— > B|| L _R except that in the \ / variant, both contexts refer to the lower string.

Construction: InsertBrackets .0. ConstrainBrackets .o. Replace .o. Le ftContext .o. RightContext .o.
RemoveBrackets where InsertBrackets, ConstrainBrackets, RightContext, Replace, LeftContext and
RemoveBrackets are the same as above.

The rest of the obligatory upper to lower replace rules are conditional parallel replace rules that where not
implemented. An example of such aruleis Ajj— > Bjy,...,A1n— > By || Lii-Ri1y- -+ s Lim- Rim-

A4.2 (- >) (optional, upper to lower replacement)
e XFST syntax: A(— >)B

Construction: [[?x [A .x. B] ]x ?x].

e XFST syntax: A;(— >)Bj,...,Ay(— >)Bx
Construction: [[ ?* R ]* 7% | where R stands for the relation that pairs every A; with the corresponding
Bi: R=[[A| x.Bi]| ... | [An x.By] ].

e XFST syntax: A(— >)B||L_R,A(—>)B//L_R,A(—>)B\\L_R,A(—>)B\/L_R

Construction: The same as the construction for the corresponding rules with the operator — > with
the difference that in the Replace stage, for each one of the three cases the obligatory upper to lower
replace operator — > is replaced by the optional upper to lower replace operator (— >).

The rest of the optional upper to lower replace rules are conditional parallel replace rules and were not
implemented.

A4.3 < — (obligatory, lower to upper replacement)
o XFST syntax: A < —B

Construction: [B— > A].i
o XFST syntax: A| < —By,..., A, < —B,
Construction: [ Bj— > Ay,...,By— > A, ].i
e XFST syntax: A< —B||L_R,A<—-B//L_R,A<—-B\\L_R,A<-B\/L_R

Construction: The same as the construction for the corresponding rules with the operator — > with
the difference that in the Replace stage, for each one of the three cases the obligatory upper to lower
replace operator — > is replaced by the operator < —.

The rest of the obligatory lower to upper replace rules are conditional parallel replace rules and were not
implemented.
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A.4.4 (< —) (optional, lower to upper replacement)
e XFST syntax: A(< —)B
Construction: [B(— >)A].i

e XFST syntax: A{(< —)B4i,...,A,(< —)B,
Construction: [ Bi(— >)Ay,...,B,(— >)A, ].i

e XFST syntax: A(< —)B||L_-R,A(< —)B//L_R,A(< —)B\\L_R,A(< —)B\/L_R

Construction: The same as the construction for the corresponding rules with the operator — > with
the difference that in the Replace stage, for each one of the three cases the obligatory upper to lower
replace operator — > is replaced by the operator (< —).

The rest of the optional lower to upper replace rules are conditional parallel replace rules and were not
implemented.

A4.5 < — > (obligatory, upper to lower, lower to upper replacement)
o XFST syntax: A< —>B

Construction: Let @ be a character not in X. We use the escape character % to precede @, since @ is
a reserved character in XFST. Thus, A < — > B is defined as

~ $[% @]
.0.
A—> %@
.0.
%@ < —B
0.
~ $[% @]

e XFST syntax: Aj < — > By,...,A, < —>B,

Construction: Let @1,...,@n be characters not in X. We use the escape character % to precede each
@i, since @ is a reserved character in XFST. Thus, A < — > B is defined as

~3$[%@1] ... | %@n]
.0.
Al —> %@L, ..., Ay —> %@n
.0.
%@1 <—By,..., %@n < — B,
.0.
~$[%@1 ] ... | %@n]

The rest of the obligatory upper to lower and lower to upper replace rules are conditional replace rules
and they were not implemented.
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A4.6 (< — >) (optional, upper to lower, lower to upper replacement)
e XFST syntax: A(< — >)B

Construction: Let @ be a character not in X. We use the escape character % to precede @, since @ is
a reserved character in XFST. Thus, A(< — >)B is defined as

~ $[% @]
A(- Z) %@
%@ (i ~)B

s

The rest of the optional upper to lower and lower to upper replace rules are conditional and parallel replace
rules and they were not implemented.

A4.7 @— > (obligatory, upper to lower, left to right, longest match replacement)

The following operations are the same as in section A.4.1, except that instead of — > occurs @ — >. As
— > represented an obligatory upper to lower replacement, @ — > represents an obligatory upper to lower
left to right longest match replacement. Instances of the language A on the upper side of the relation are
replaced selectively. The selection factors each upper language string uniquely into A and non-A substrings.
The factoring is based on a left-to-right and longest match regimen. The starting locations are selected from
left-to-right. If there are overlapping instances of A starting at the same location, only the longest one is
replaced by all strings of B.

o XFST syntax: A@— > B
Construction: InitialMatch .o. LeftToRight .0. LongestMatch .o. Replacement
Where:

— Let ", <, > be characters not in X£. We use the escape character % to precede them since they are
reserved characters in XFST.

— InitialMatch =
~S$[%" | % < | % >]

.0.
[]-> % ||_A

where [..] — > LOWER || LEFT_RIGHT is a version of empty string replacement that al-
lows only one application between any LEFT and RIGHT. The construction for [. .] — >
LOWER || LEFT_RIGHT is the same as for UPPER — > LOWER || LEFT _RIGHT except
that Replace = [% > % < — > % < LOWER % >].

— LeftToRight =
[~$[%"] %" :% < UPPER' 0:% >]]x ~ $[%"]

%" —> []
where UPPER' =[A/[%"] —[?% %]
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— LongestMatch =~ $[ % < [UPPER" & $[% >]]]
where UPPER" = A/[% < | % >] — [ 7% [% < | % >]]

— Replacement = % < ~$[% >| % > — > B

The rest of the obligatory upper to lower left to right longest match replace rules are conditional and
parallel replace rules and they were not implemented.
The following XFST operators were not implemented:

e @ > (obligatory, upper to lower, left to right, shortest match replacement)
e — > @ (obligatory, upper to lower, right to left, longest match replacement)
e > @ right (obligatory, upper to lower, right to left, shortest match replacement)

A.5 Markup

Markup rules take an input string and mark it by inserting some strings before and after it. XFST markup
rules do not exist in FSA. We present the implementation of most of them in FSA, based on Karttunen
(1996).

e XFST syntax: A—>L...R

Meaning: Markup. Instances of the language A on the upper side of the relation are selected for
markup. Each selected A string is marked by inserting all strings of L to its left and all strings of R to
its right. The selected A strings themselves remain unchanged, along with the non-A segments.

Construction: A — > LAR

o XFST syntax: A@—>L...R

Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under left-to-right, longest match regimen. Thus, the starting locations are selected from
left-to-right. If there are overlapping instances of A starting at the same location, only the longest one
is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its left
and all strings of S to its right. The selected A strings themselves remain unchanged, along with the
non-A segments.

Construction: InitialMatch .o. Le ftToRight .0. LongestMatch .o. Insrtion
Where:

— Let ", <, > be characters not in X£. We use the escape character % to precede them since they are
reserved characters in XFST.

— InitialMatch =
~S[%" | % < | %> ]

.0.
[]-> % ||_A

where [..] — > LOWER || LEFT_RIGHT is a version of empty string replacement that al-
lows only one application between any LEFT and RIGHT. The construction for [. .] — >
LOWER || LEFT_RIGHT is the same as for UPPER — > LOWER || LEFT _RIGHT except
that Replace = [% > % < — > % < LOWER % >].
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— LeftToRight =
[~$[%] [%": % < UPPER' 0:% >]]* ~ $[%"]

%" — > []

where UPPER' = [A][%"] — [?* %7 ]
- LongestMatch =~ $[ % < [UPPER" & $[% >]]]

where UPPER" = A/[% < |%>] — [7% [% < | % >]]
— Insrtion= %< —> L, %> —> R

The rest of the markup rules were not implemented since we could not obtain any documentation of their
constructions. These operators are:

e XFST syntax: A@ >L...R

Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under left-to-right, shortest match regimen. Thus, the starting locations are selected from
left-to-right. If there are overlapping instances of A starting at the same location, only the shortest one
is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its left
and all strings of S to its right. The selected A strings themselves remain unchanged, along with the
non-A segments.

e XFST syntax: A— > @L...R

Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under right-to-left, longest match regimen. Thus, the starting locations are selected from
right-to-left. If there are overlapping instances of A starting at the same location, only the longest one
is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its left
and all strings of S to its right. The selected A strings themselves remain unchanged, along with the
non-A segments.

e XFST syntax: A > @L...R

Meaning: Directed markup. Instances of the language A on the upper side of the relation are selected
for markup under right-to-left, shortest match regimen. Thus, the starting locations are selected from
right-to-left. If there are overlapping instances of A starting at the same location, only the shortest one
is replaced by all strings of B. Each selected A string is marked by inserting all strings of R to its left
and all strings of S to its right. The selected A strings themselves remain unchanged, along with the
non-A segments.

A.6 Boundary symbol for restriction and replacement

In the restriction, =>, and conditional replacement, — >,(— >),< —,(< =), < — >, (< = >),@— >, @ >
,— > @, > @ expressions we can use a special boundary marker, .#., to refer to the beginning or to the end
of a string. In the left context, the boundary marker signals the beginning of the string; in the right context
it means the end of the string.

Construction: We do not deal with all the cases where the boundary symbol .#. can be used. We only
deal with boundary cases contexts that are in one of the following forms (Le ftContext and RightContext are
assumed not to contain .#.):

o # LeftContext _ RightContext
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o [.#. LeftContext] _ RightContext

o [#.] LeftContext _ RightContext

[[-#.] LeftContext] _ RightContext

LeftContext _ RightContext .#.

LeftContext _ [RightContext #.]

LeftContext _ RightContext [.#.]

LeftContext _ [RightContext [.#.]]

#. LeftContext _RightContext 4.

[#. LeftContext] _ RightContext #.

e [#.] LeftContext _ RightContext .

o [[.#.] LeftContext] _RightContext .#.
o #. LeftContext _[RightContext #.]

o [.#. LeftContext] _ [RightContext #.]
o [#.] LeftContext _[RightContext .#.]
o [[.#.] LeftContext] _ [RightContext .#.]
e #. LeftContext _ RightContext [4#.]

o [.#. LeftContext] _ RightContext | #.]
o [#.] LeftContext _ RightContext [.#.]
e [[.#.] LeftContext] _RightContext [.#.]
o #. LeftContext _[RightContext [#.]]
o [#. LeftContext] _[RightContext [.#.]]
o [#.] LeftContext _[RightContext [.#.]]
o [[.#.] LeftContext] _ [RightContext [#.]]

As we do not deal with restriction rules we need to deal with boundary cases only in replace rules. The
replace rules were constructed from six stages: InsertBrackets, ConstrainBrackets, LeftContext, RightCon-
text, Replace and RemoveBrackets. In boundary cases where the left context is in the beginning of a string,
only the LeftContext stage is changed. The LeftContext stage was defined as

LeftContext = [~ [~ [...LEFT] [<..]] & ~[[...LEFT] ~[<..]]]

where [...LEFT] denoted
[[?7% L/[% < | % >]]—[?% % <]]
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and [< ...] denoted
(% < [% > 4]

The definition of LeftContext is not changed but the definition of [...LEFT] is changed into
[[L/[% < [ % >]]=[7% % <]]

In boundary cases where the right context is at the end of a string, only the RightContext stage is changed.
The RightContext stage was defined as

RightContext = [~ [[... >] ~ [RIGHT...]] & ~[~[...>] [RIGHT...]]]

where [RIGHT...] denoted
[[R/[% < | % >] %] —[% < 7] ]

and [... >] denoted
[7% % > % <]

The definition of RightContext is not changed but the definition of [RIGHT...] is changed into
[[R/[% < | % >]]=[% < 4]

In boundary cases where both the right context and the left context are at the end and in the beginning of
a string respectively, both the RightContext and the LeftContext stages are changed as described above.
The idea behind these changes is that the context part of replacement expression can be actually seen as
7% LEFT _RIGHT 7+ and by simply eliminating one of the ?* in one of the ends we can relate to a
boundary case. The definitions that were changed above did exactly that: eliminated the appropriate ?x for
each case. More complicated cases, for example a— > b || [.#. | a] - should be dealt by conditional parallel
replacement. For example, a— > b || [.#. | a] _, should be interpreted as

a—>bl|[#]-,,a=>b]|]d] -
Since we do not deal with conditional parallel replacement, we cannot deal with these cases.

A.7 Order of Precedence

A.7.1 XFST

The following list defines the order of precedence of all XFST operators. Operators of same precedence
are evaluated from left to right, except the prefix operators (~ \ $ $? $.) that are evaluated from right
to left. The list begins with the operators of highest precedence, i.e., with the most tightly binding ones.
Operators of same precedence are on the same line.

~ \$$S$

+ "1 2wm.d.d.r

/ .

concatenation

> <

| & —

=> —-> (—>) <—-(K) <> («=>) @—> @> —>@ >@
X. .0
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A.7.2 FSA
The following list defines the order of precedence in FSA:

2/

+ x 7

& —
0 X XX
I #

A.8 Advanced techniques

Both XFST and FSA have advanced techniques that do no exist in the other toolbox. For XFST these
techniques include Compile-Replace and Flag-Diacritics; for FSA these techniques include predicates and
weighted networks.
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