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Abstract

Decision rules that explicitly account for
non-probabilistic evaluation metrics in
machine translation typically require spe-
cial training, often to estimate parame-
ters in exponential models that govern the
search space and the selection of candi-
date translations. While the traditional
Maximum A Posteriori (MAP) decision
rule can be optimized as a piecewise lin-
ear function in a greedy search of the pa-
rameter space, the Minimum Bayes Risk
(MBR) decision rule is not well suited to
this technique, a condition that makes past
results difficult to compare. We present a
novel training approach for non-tractable
decision rules, allowing us to compare and
evaluate these and other decision rules on
a large scale translation task, taking ad-
vantage of the high dimensional parame-
ter space available to the phrase based
Pharaoh decoder. This comparison is
timely, and important, as decoders evolve
to represent more complex search space
decisions and are evaluated against in-
novative evaluation metrics of translation
quality.

1 Introduction

State of the art statistical machine translation takes
advantage of exponential models to incorporate a
large set of potentially overlapping features to se-
lect translations from a set of potential candidates.

As discussed in (Och, 2003), the direct translation
model represents the probability of target sentence
’English’ e = e1 . . . eI being the translation for a
source sentence ’French’f = f1 . . . fJ through an
exponential, or log-linearmodel

pλ(e|f) =
exp(

∑m
k=1 λk ∗ hk(e, f))∑

e′∈E exp(
∑m

k=1 λk ∗ hk(e′, f))
(1)

where e is a single candidate translation forf
from the set of all English translationsE, λ is the
parameter vector for the model, and eachhk is a
feature function ofe andf . In practice, we restrict
E to the setGen(f) which is a set of highly likely
translations discovered by a decoder (Vogel et al.,
2003). Selecting a translation from this model under
the Maximum A Posteriori (MAP) criteria yields

translλ(f) = arg max
e

pλ(e|f) . (2)

This decision rule is optimal under the zero-
one loss function, minimizing the Sentence Error
Rate (Mangu et al., 2000). Using the log-linear
form to modelpλ(e|f) gives us the flexibility to
introduce overlapping features that can represent
global context while decoding (searching the space
of candidate translations) and rescoring (ranking a
set of candidate translations before performing the
arg max operation), albeit at the cost of the tradi-
tional source-channel generative model of transla-
tion proposed in (Brown et al., 1993).

A significant impact of this paradigm shift, how-
ever, has been the movement to leverage the flex-
ibility of the exponential model to maximize per-
formance with respect to automatic evaluation met-
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rics. Each evaluation metric considers different as-
pects of translation quality, both at the sentence and
corpus level, often achieving high correlation to hu-
man evaluation (Doddington, 2002). It is clear that
the decision rule stated in (1) does not reflect the
choice of evaluation metric, and substantial work
has been done to correct this mismatch in crite-
ria. Approaches include integrating the metric into
the decision rule, and learningλ to optimize the
performance of the decision rule. In this paper
we will compare and evaluate several aspects of
these techniques, focusing on Minimum Error Rate
(MER) training (Och, 2003) and Minimum Bayes
Risk (MBR) decision rules, within a novel training
environment that isolates the impact of each compo-
nent of these methods.

2 Addressing Evaluation Metrics

We now describe competing strategies to address the
problem of modeling the evaluation metric within
the decoding and rescoring process, and introduce
our contribution towards training non-tractable error
surfaces. The methods discussed below make use
of Gen(f), the approximation to the complete can-
didate translation spaceE, referred to as ann-best
list. Details regardingn-best listgeneration from
decoder output can be found in (Ueffing et al., 2002).

2.1 Minimum Error Rate Training

The predominant approach to reconciling the mis-
match between the MAP decision rule and the eval-
uation metric has been to train the parametersλ of
the exponential model to correlate theMAP choice
with the maximum score as indicated by the evalu-
ation metric on a development set with known ref-
erences (Och, 2003). We differentiate between the
decision rule

translλ(f) = arg max
e∈Gen(f)

pλ(e|f) (3a)

and the training criterion

λ̂ = arg min
λ

Loss(translλ(~f),~r) (3b)

where theLoss function returns an evaluation re-
sult quantifying the difference between the English
candidate translationtranslλ(f) and its correspond-
ing referencer for a source sentencef . We indicate

that this loss function is operating on a sequence of
sentences with the vector notation. To avoid overfit-
ting, and since MT researchers are generally blessed
with an abundance of data, these sentences are from
a separate development set.

The optimization problem (3b) is hard since the
arg max of (3a) causes the error surface to change
in steps inRm, precluding the use of gradient based
optimization methods. Smoothed error counts can
be used to approximate thearg max operator, but the
resulting function still contains local minima. Grid-
based line search approaches like Powell’s algorithm
could be applied but we can expect difficultly when
choosing the appropriate grid size and starting pa-
rameters. In the following, we summarize the opti-
mization algorithm for the unsmoothed error counts
presented in (Och, 2003) and the implementation de-
tailed in (Venugopal and Vogel, 2005).

• RegardLoss(translλ(~f),~r) as defined in (3b)
as a function of the parameter vectorλ to
optimize and take thearg max to compute
translλ(~f) over the translationsGen(f) accord-
ing to then-bestlist generated with an initial
estimateλ0.

• The error surface defined byLoss (as a func-
tion of λ) is piecewise linear with respect to a
single model parameterλk, hence we can deter-
mine exactly where it would be useful (values
that change the result of thearg max) to evalu-
ateλk for a given sentence using a simple line
intersection method.

• Merge the list of useful evaluation points
for λk and evaluate the corpus level
Loss(translλ(~f),~r) at each one.

• Select the model parameter that represents the
lowestLoss ask varies, setλk and consider the
parameterλj for another dimensionj.

This training algorithm, referred to as minimum er-
ror rate (MER) training, is a greedy search in each
dimension ofλ, made efficient by realizing that
within each dimension, we can compute the points
at which changes inλ actually have an impact on
Loss. The appropriate considerations for termina-
tion and initial starting points relevant to any greedy
search procedure must be accounted for. From the
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nature of the training procedure and theMAP de-
cision rule, we can expect that the parameters se-
lected by MER training will strongly favor a few
translations in then-bestlist, namely for each source
sentence the one resulting in the best score, moving
most of the probability mass towards the translation
that it believes should be selected. This is due to the
decision rule, rather than the training procedure, as
we will see when we consider alternative decision
rules.

2.2 The Minimum Bayes Risk Decision Rule

The Minimum Bayes Risk Decision Rule as pro-
posed by (Mangu et al., 2000) for the Word Error
Rate Metric in speech recognition, and (Kumar and
Byrne, 2004) when applied to translation, changes
the decision rule in (2) to select the translation that
has the lowest expected lossE[Loss(e, r)], which
can be estimated by considering a weightedLoss
betweene and the elements of then-best list, the
approximation toE, as described in (Mangu et al.,
2000). The resulting decision rule is:

translλ(f) = arg min
e∈Gen(f)

∑
e′∈Gen(f)

Loss(e, e′)pλ(e′|f) .

(4)
(Kumar and Byrne, 2004) explicitly consider select-
ing both e anda, an alignment between the Eng-
lish and French sentences. Under a phrase based
translation model (Koehn et al., 2003; Marcu and
Wong, 2002), this distinction is important and will
be discussed in more detail. The representation of
the evaluation metric or theLoss function is in the
decision rule, rather than in the training criterion for
the exponential model. This criterion is hard to op-
timize for the same reason as the criterion in (3b):
the objective function is not continuous inλ. To
make things worse, it is more expensive to evalu-
ate the function at a givenλ, since the decision rule
involves a sum over all translations.

2.3 MBR and the Exponential Model

Previous work has reported the success of the MBR
decision rule with fixed parameters relating indepen-
dent underlying models, typically including only the
language model and the translation model as fea-
tures in the exponential model.

We extend the MBR approach by developing a

training method to optimize the parametersλ in the
exponential model as an explicit form for the condi-
tional distribution in equation (1). The training task
under the MBR criterion is

λ∗ = arg min
λ

Loss(translλ(~f),~r) (5a)

where

translλ(f) = arg min
e∈Gen(f)

∑
e′∈Gen(f)

Loss(e, e′)pλ(e′|f) .

(5b)
We begin with several observations about this opti-
mization criterion.

• The MAP optimalλ∗ are not the optimal para-
meters for this training criterion.

• We can expect the error surface of the MBR
training criterion to contain larger sections of
similar altitude, since the decision rule empha-
sizes consensus.

• The piecewise linearity observation made in
(Papineni et al., 2002) is no longer applicable
since we cannot move thelog operation into the
expected value.

3 Score Sampling

Motivated by the challenges that the MBR training
criterion presents, we present a training method that
is based on the assumption that the error surface is
locally non-smooth but consists of local regions of
similar Loss values. We would like to focus the
search within regions of the parameter space that re-
sult in low Loss values, simulating the effect that
the MER training process achieves when it deter-
mines the merged error boundaries across a set of
sentences.

Let Score(λ) be some function of
Loss(translλ(~f),~r) that is greater or equal
zero, decreases monotonically withLoss, and for
which

∫
(Score(λ) − minλ′ Score(λ′))dλ is finite;

e.g., 1 − Loss(translλ(~f),~r) for the word-error
rate (WER) loss and a bounded parameter space.
While sampling parameter vectorsλ and estimating
Loss in these points, we will constantly refine
our estimate of the error surface and thereby of
the Score function. The main idea in our score
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sampling algorithm is to make use of thisScore
estimate by constructing a probability distribution
over the parameter space that depends on theScore
estimate in the current iteration stepi and sample
the parameter vectorλi+1 for the next iteration from

that distribution. More precisely, let̂Sc
(i)

be the
estimate ofScore in iterationi (we will explain how
to obtain this estimate below). Then the probability
distribution from which we sample the parameter
vector to test in the next iteration is given by:

p(λ) =
Ŝc

(i)
(λ) − minλ′ Ŝc

(i)
(λ′)∫

(Ŝc
(i)

(λ) − minλ′ Ŝc
(i)

(λ′)) dλ
. (6)

This distribution produces a sequenceλ1, . . . , λn of
parameter vectors that are more concentrated in ar-
eas that result in a highScore. We can select the
value from this sequence that generates the highest
Score, just as in the MER training process.

The exact method of obtaining theScore estimate
Ŝc is crucial: If we are not careful enough and guess
too low values of̂Sc(λ) for parameter regions that
are still unknown to us, the resulting sampling dis-
tribution p might be zero in those regions and thus
potentially optimal parameters might never be sam-
pled. Rather than aiming for a consistent estimator
of Score (i.e., an estimator that converges toScore
when the sample size goes to infinity), we designŜc
with regard to yielding a suitable sampling distribu-
tion p.

Assume that the parameter space is bounded such
that mink ≤ λk ≤ maxk for each dimensionk,
We then define a set of pivotsP, forming a grid of
points inRm that are evenly spaced betweenmink

andmaxk for each dimensionk. Each pivot repre-
sents a region of the parameter space where we ex-
pect generally consistent values ofScore. We do not
restrict the values ofλm to be at these pivot points
as a grid search would do, rather we treat the pivots
as landmarks within the search space.

We approximate the distributionp(λ) with the
discrete distributionp(λ ∈ P), leaving the problem
of estimating|P| parameters. Initially, we setp to
be uniform, i.e.,p(0)(λ) = 1/|P|. For subsequent
iterations, we now need an estimate ofScore(λ) for
each pivotλ ∈ P in the discrete version of equation
(6) to obtain the new sampling distributionp. Each
iterationi proceeds as follows.

• Sample λ̃i from the discrete distribution
p(i−1)(λ ∈ P) obtained by the previous it-
eration.

• Sample the new parameter vectorλi by choos-

ing for eachk ∈ {1, . . . ,m}, λi
k := λ̃i

k + εk,
whereεk is sampled uniformly from the inter-
val (−dk/2, dk/2) and dk is the distance be-
tween neighboring pivot points along dimen-
sion k. Thus, λi is sampled from a region
around the sampled pivot.

• EvaluateScore(λi) and distribute this score to

obtain new estimateŝSc
(i)

(λ) for all pivotsλ ∈
P as described below.

• Use the updated estimateŝSc
(i)

to generate the
sampling distributionp(i) for the next iteration
according to

p(i)(λ) =
Ŝc

(i)
(λ) − minλ′ Ŝc

(i)
(λ′)∑

λ∈P(Ŝc
(i)

(λ) − minλ′ Ŝc
(i)

(λ′))
.

The scoreScore(λi) of the currently evaluated pa-
rameter vector does not only influence the score es-
timate at the pivot point of the respective region, but
the estimates at all pivot points. The closest piv-
ots are influenced most strongly. More precisely, for

each pivotλ ∈ P, Ŝc
(i)

(λ) is a weighted average
of Score(λ1), . . . , Score(λi), where the weights
w(i)(λ) are chosen according to

w(i)(λ) = infl(i)(λ) × corr(i)(λ) with

infl(i)(λ) = mvnpdf(λ, λi,Σ) and

corr(i)(λ) = 1/p(i−1)(λ) .

Here,mvnpdf(x, µ,Σ) denotes them-dimensional
multivariate-normal probability density function
with meanµ and covariance matrixΣ, evaluated
at point x. We chose the covariance matrixΣ =
diag(d2

1, . . . , d
2
m), where againdk is the distance be-

tween neighboring grid points along dimensionk.
The terminfl(i)(λ) quantifies the influence of the
evaluated pointλi on the pivotλ, while corr(i)(λ)
is a correction term for the bias introduced by hav-
ing sampledλi from p(i−1).
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Smoothing uncertain regions In the beginning of
the optimization process, there will be pivot regions
that have not yet been sampled from and for which
not even close-by regions have been sampled yet.
This will be reflected in the low sum of influence
termsinfl(1)(λ) + · · · + infl(i)(λ) of the respective
pivot pointsλ. It is therefore advisable to discount
some probability mass fromp(i) and distribute it
over pivots with low influence sums (reflecting low
confidence in the respective score estimates) accord-
ing to some smoothing procedure.

4 N-Best lists in Phrase Based Decoding

The methods described above make extensive use of
n-bestlists to approximate the search space of can-
didate translations. In phrase based decoding we of-
ten interpret the MAP decision rule to select the top
scoring path in the translation lattice. Selecting a
particular path means in fact selecting the pair〈e, s〉,
wheres is a segmentation of the the source sentence
f into phrases and alignments onto their translations
in e. Kumar and Byrne (2004) represent this deci-
sion explicitly, since theLoss metrics considered in
their work evaluate alignment information as well as
lexical (word) level output. When considering lexi-
cal scores as we do here, the decision rule minimiz-
ing 0/1 loss actually needs to take the sum over all
potential segmentations that can generate the same
word sequence. In practice, we only consider the
high probability segmentation decisions, namely the
ones that were found in then-bestlist. This gives
the0/1 losscriterion shown below.

translλ(f) = arg max
e

∑
s

pλ(e, s|f) (7)

The 0/1 losscriterion favors translations that are
supported by several segmentation decisions. In the
context of phrase-based translations, this is a useful
criterion, since a given lexical target word sequence
can be correctly segmented in several different ways,
all of which would be scored equally by an evalua-
tion metric that only considers the word sequence.

5 Experimental Framework

Our goal is to evaluate the impact of the three de-
cision rules discussed above on a large scale trans-
lation task that takes advantage of multidimensional

features in the exponential model. In this section
we describe the experimental framework used in this
evaluation.

5.1 Data Sets and Resources

We perform our analysis on the data provided by the
2005 ACL Workshop in Exploiting Parallel Texts for
Statistical Machine Translation, working with the
French-English Europarl corpus. This corpus con-
sists of 688031 sentence pairs, with approximately
156 million words on the French side, and 138 mil-
lion words on the English side. We use the data as
provided by the workshop and run lower casing as
our only preprocessing step. We use the 15.5 mil-
lion entry phrase translation table as provided for the
shared workshop task for the French-English data
set. Each translation pair has a set of 5 associated
phrase translation scores that represent the maxi-
mum likelihood estimate of the phrase as well as in-
ternal alignment probabilities. We also use the Eng-
lish language model as provided for the shared task.
Since each of these decision rules has its respective
training process, we split the workshop test set of
2000 sentences into a development and test set using
random splitting. We tried two decoders for trans-
lating these sets. The first system is the Pharaoh de-
coder provided by (Koehn et al., 2003) for the shared
data task. The Pharaoh decoder has support for mul-
tiple translation and language model scores as well
as simple phrase distortion and word length models.
The pruning and distortion limit parameters remain
the same as in the provided initialization scripts,
i.e., DistortionLimit = 4, BeamThreshold =
0.1, Stack = 100. For further information on
these parameter settings, confer (Koehn et al., 2003).
Pharaoh is interesting for our optimization task be-
cause its eight different models lead to a search
space with seven free parameters. Here, a princi-
pled optimization procedure is crucial. The second
decoder we tried is the CMU Statistical Translation
System (Vogel et al., 2003) augmented with the four
translation models provided by the Pharaoh system,
in the following called CMU-Pharaoh. This system
also leads to a search space with seven free parame-
ters.
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5.2 N-Best lists

As mentioned earlier, the model parametersλ play
a large role in the search space explored by a prun-
ing beam search decoder. These parameters affect
the histogram and beam pruning as well as the fu-
ture cost estimation used in the Pharaoh and CMU
decoders. The initial parameter file for Pharaoh pro-
vided by the workshop provided a very poor esti-
mate ofλ, resulting in an n-best list of limited po-
tential. To account for this condition, we ran Min-
imum Error Rate training on the development data
to determine scaling factors that can generate an-
best list with high quality translations. We realize
that this step biases then-bestlist towards the MAP
criteria, since its parameters will likely cause more
aggressive pruning. However, since we have cho-
sen a large N=1000, and retrain the MBR, MAP, and
0/1 loss parameters separately, we do not feel that
the bias has a strong impact on the evaluation.

5.3 Evaluation Metric

This paper focuses on the BLEU metric as presented
in (Papineni et al., 2002). The BLEU metric is de-
fined on a corpus level as follows.

Score(~e,~r) = BP (~e,~r) ∗ exp(
1
N

N∑
1

(log pn))

wherepn represent the precision ofn-grams sug-
gested in~e and BP is a brevity penalty measur-
ing the relative shortness of~e over the whole cor-
pus. To use the BLEU metric in the candidate pair-
wise loss calculation in (4), we need to make a de-
cision regarding cases where higher order n-grams
matches are not found between two candidates. Ku-
mar and Byrne (2004) suggest that if any n-grams
are not matched then the pairwise BLEU score is set
to zero. As an alternative we first estimate corpus-
wide n-gram counts on the development set. When
the pairwise counts are collected between sentences
pairs, they are added onto the baseline corpus counts
to and scored by BLEU. This scoring simulates the
process of scoring additional sentences after seeing
a whole corpus.

5.4 Training Environment

It is important to separate the impact of the decision
rule from the success of the training procedure. To

appropriately compare the MAP, 0/1 loss and MBR
decisions rules, they must all be trained with the
same training method, here we use the Score Sam-
pling training method described above. We also re-
port MAP scores using the MER training described
above to determine the impact of the training algo-
rithm for MAP. Note that the MER training approach
cannot be performed on the MBR decision rule, as
explained in Section 2.3. MER training is initialized
at random values ofλ and run (successive greedy
search over the parameters) until there is no change
in the error for three complete cycles through the pa-
rameter set. This process is repeated with new start-
ing parameters as well as permutations of the para-
meter search order to ensure that there is no bias in
the search towards a particular parameter. To im-
prove efficiency, pairwise scores are cached across
requests for the score at different values ofλ, and
for MBR only theE[Loss(e, r)] for the top twenty
hypotheses as ranked by the model are computed.

6 Results

The results in Table 1 compare the BLEU score
achieved by each training method on the develop-
ment and test data for both Pharaoh and CMU-
Pharaoh. Score-sampling training was run for 150
iterations to findλ for each decision rule. The MAP-
MER training was performed to evaluate the effect
of the greedy search method on the generalization
of the development set results. Each row represents
an alternative training method described in this pa-
per, while the test set columns indicate the criteria
used to select the final translation output~e. The
bold face scores are the scores for matching train-
ing and testing methods. The underlined score is
the highest test set score, achieved by MBR decod-
ing using the CMU-Pharaoh system trained for the
MBR decision rule with the score-sampling algo-
rithm. When comparing MER training for MAP-
decoding with score-sampling training for MAP-
decoding, score-sampling surprisingly outperforms
MER training for both Pharaoh and CMU-Pharaoh,
although MER training is specifically tailored to
the MAP metric. Note, however, that our score-
sampling algorithm has a considerably longer run-
ning time (several hours) than the MER algorithm
(several minutes). Interestingly, within MER train-
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training method Dev. set sc. test set sc. MAP test set sc. 0/1 loss test set sc. MBR
MAP MER (Pharaoh) 29.08 29.30 29.42 29.36

MAP score-sampl. (Pharaoh) 29.08 29.41 29.24 29.30
0/1 loss sc.-s. (Pharaoh) 29.08 29.16 29.28 29.30
MBR sc.-s. (Pharaoh) 29.00 29.11 29.08 29.17

MAP MER (CMU-Pharaoh) 28.80 29.02 29.41 29.60
MAP sc.-s. (CMU-Ph.) 29.10 29.85 29.75 29.55

0/1 loss sc.-s. (CMU-Ph.) 28.36 29.97 29.91 29.72
MBR sc.-s. (CMU-Ph.) 28.36 30.18 30.16 30.28

Table 1. Comparing BLEU scores generated by alternative training methods and decision rules

ing for Pharaoh, the 0/1 loss metric is the top per-
former; we believe the reason for this disparity be-
tween training and test methods is the impact of
phrasal consistency as a valuable measure within the
n-bestlist.

The relative performance of MBR score-sampling
w.r.t. MAP and 0/1-loss score sampling is quite dif-
ferent between Pharaoh and CMU-Pharaoh: While
MBR score-sampling performs worse than MAP
and 0/1-loss score sampling for Pharaoh, it yields the
best test scores across the board for CMU-Pharaoh.
A possible reason is that the n-best lists generated by
Pharaoh have a large percentage of lexically iden-
tical translations, differing only in their segmenta-
tions. As a result, the 1000-best lists generated by
Pharaoh contain only a small percentage of unique
translations, a condition that reduces the potential
of the Minimum Bayes Risk methods. The CMU
decoder, contrariwise, prunes away alternatives be-
low a certain score-threshold during decoding and
does not recover them when generating the n-best
list. The n-best lists of this system are therefore typi-
cally more diverse and in particular contain far more
unique translations.

7 Conclusions and Further Work

This work describes a general algorithm for the ef-
ficient optimization of error counts for an arbitrary
Loss function, allowing us to compare and evalu-
ate the impact of alternative decision rules for sta-
tistical machine translation. Our results suggest
the value and sensitivity of the translation process
to the Loss function at the decoding and reorder-
ing stages of the process. As phrase-based trans-
lation and reordering models begin to dominate

the state of the art in machine translation, it will
become increasingly important to understand the
nature and consistency ofn-best list training ap-
proaches. Our results are reported on a complete
package of translation tools and resources, allow-
ing the reader to easily recreate and build upon our
framework. Further research might lie in finding
efficient representations of Bayes Risk loss func-
tions within the decoding process (rather than just
using MBR to rescore n-best lists), as well as
analyses on different language pairs from the avail-
able Europarl data. We have shown score sam-
pling to be an effective training method to con-
duct these experiments and we hope to establish its
use in the changing landscape of automatic trans-
lation evaluation. The source code is available at:
www.cs.cmu.edu/˜zollmann/scoresampling/
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