
Proceedings of the ACL Workshop on Building and Using Parallel Texts, pages 1–8,
Ann Arbor, June 2005.c©Association for Computational Linguistics, 2005

Association-Based Bilingual Word Alignment

Robert C. Moore
Microsoft Research
One Microsoft Way

Redmond, WA 98052
bobmoore@microsoft.com

Abstract

Bilingual word alignment forms the foun-
dation of current work on statistical
machine translation. Standard word-
alignment methods involve the use of
probabilistic generative models that are
complex to implement and slow to train.
In this paper we show that it is possible
to approach the alignment accuracy of the
standard models using algorithms that are
much faster, and in some ways simpler,
based on basic word-association statistics.

1 Motivation

Bilingual word alignment is the first step of most
current approaches to statistical machine translation.
Although the best performing systems are “phrase-
based” (see, for instance, Och and Ney (2004) or
Koehn et al. (2003)), possible phrase translations
must first be extracted from word-aligned bilingual
text segments. The standard approach to word align-
ment makes use of five translation models defined
by Brown et al. (1993), sometimes augmented by
an HMM-based model or Och and Ney’s “Model
6” (Och and Ney, 2003). The best of these mod-
els can produce high accuracy alignments, at least
when trained on a large parallel corpus of fairly di-
rect translations in closely related languages.

There are a number of ways in which these stan-
dard models are less than ideal, however. The
higher-accuracy models are mathematically com-
plex, and also difficult to train, as they do not factor

in a way that permits a dynamic programming solu-
tion. It can thus take many hours of processing time
on current standard computers to train the models
and produce an alignment of a large parallel corpus.

In this paper, we take a different approach to
word alignment, based on the use of bilingual word-
association statistics rather than the generative prob-
abilistic framework that the IBM and HMM models
use. In the end we obtain alignment algorithms that
are much faster, and in some ways simpler, whose
accuracy comes surprisingly close to the established
probabilistic generative approach.

2 Data and Methodology for these
Experiments

The experiments reported here were carried out us-
ing data from the workshop on building and using
parallel texts held at HLT-NAACL 2003 (Mihalcea
and Pedersen, 2003). For the majority of our experi-
ments, we used a subset of the Canadian Hansards
bilingual corpus supplied for the workshop, com-
prising 500,000 English-French sentences pairs, in-
cluding 37 sentence pairs designated as “trial” data,
and 447 sentence pairs designated as test data. The
trial and test data have been manually aligned at
the word level, noting particular pairs of words ei-
ther as “sure” or “possible” alignments. As an
additional test, we evaluated our best alignment
method using the workshop corpus of approximately
49,000 English-Romanian sentences pairs from di-
verse sources, including 248 manually aligned sen-
tence pairs designated as test data.1

1For the English-French corpus, automatic sentence align-
ment of the training data was provided by Ulrich Germann,

1

We needed annotated development data to opti-
mize certain parameters of our algorithms, and we
were concerned that the small number of sentence
pairs designated as trial data would not be enough
for this purpose. We therefore randomly split each of
the English-French and English-Romanian test data
sets into two virtually equal subsets, by randomly
ordering the test data pairs, and assigning alternate
pairs from the random order to the two subsets. We
used one of these subsets as a development set for
parameter optimization, and held out the other for a
final test set.

We report the performance of various alignment
algorithms in terms of precision, recall, and align-
ment error rate (AER) as defined by Och and Ney
(2003):

recall =
|A ∩ S|
|S|

precision =
|A ∩ P |
|A|

AER = 1− |A ∩ P |+ |A ∩ S|
|A|+ |S|

In these definitions, S denotes the set of alignments
annotated as sure, P denotes the set of alignments
annotated possible or sure, and A denotes the set of
alignments produced by the method under test. Fol-
lowing standard practice in the field, we take AER,
which is derived from F-measure, as the primary
evaluation metric that we are attempting to optimize.

Our initial experiments involve algorithms that do
not consider the positions of words in the sentences.
Thus, they are incapable of distinguishing among
multiple instances of the same word type in a sen-
tence. We will say that these methods produce word
type alignments. We compare these algorithms on
the basis of the best possible alignment of word to-
kens given an alignment of word types. We go on
to consider various ways of choosing a word token
alignment for a given word type alignment, and all
our final evaluations are conducted on the basis of
the alignment of individual word tokens.

and the hand alignments of the words in the trial and test data
were created by Franz Och and Hermann Ney (Och and Ney,
2003). The manual word alignments for the English-Romanian
test data were created by Rada Mihalcea and Ted Pedersen.

3 The Log-Likelihood-Ratio Association
Measure

We base all our association-based word-alignment
methods on the log-likelihood-ratio (LLR) statis-
tic introduced to the NLP community by Dunning
(1993). We chose this statistic because it has previ-
ously been found to be effective for automatically
constructing translation lexicons (e.g., Melamed,
2000). We compute LLR scores using the follow-
ing formula presented by Moore (2004):

LLR(f, e) =
∑

f?∈{f,¬f}

∑

e?∈{e,¬e}
C(f?, e?) log

p(f?|e?)
p(f?)

In this formula f and e mean that the words whose
degree of association is being measured occur in the
respective target and source sentences of an aligned
sentence pair, ¬f and ¬e mean that the correspond-
ing words do not occur in the respective sentences,
f? and e? are variables ranging over these values,
and C(f?, e?) is the observed joint count for the val-
ues of f? and e?. The probabilities in the formula
refer to maximum likelihood estimates.

Since the LLR score for a pair of words is high
if the words have either a strong positive associ-
ation or a strong negative association, we discard
any negatively associated word pairs by requiring
that p(f, e) > p(f) · p(e). Initially, we computed
the LLR scores for all positively associated En-
glish/French word pairs in our 500K sentence pair
corpus. To reduce the memory requirements of our
algorithms we discarded any word pairs whose LLR
score was less than 1.0. This left us with 12,797,697
word pairs out of a total of 21,451,083 pairs that had
at least one co-occurrence.

4 One-to-One, Word Type Alignment
Methods

4.1 Method 1

The first set of association-based word-aligment
methods we consider permit only one-to-one align-
ments and do not take word position into account.
The simplest method we consider uses the LLR
scores to link words according to Melamed’s (2000)
“competitive linking algorithm” for aligning words
in a pair of sentences. Since competitive linking has

2

no way to distinguish one instance of a particular
word type from another, we operate with counts of
linked and unlinked instances of word types, with-
out trying to designate the particular instances the
counts refer to. This version of competitive linking
can be described as follows:

• Find the pair consisting of an English word type
and a French word type that have the highest
association score of any pair of words types that
both have remaining unlinked instances.

• Increase by 1 the count of linked occurrences
of this pair of word types, and decrease by 1
the count of unlinked instances of each of these
word types.

• Repeat until no more words can be linked.

We will refer to this version of the competitive link-
ing algorithm using LLR scores as Method 1. This
is the method that Melamed uses to generate an ini-
tial alignment that he refines by re-estimation in his
“Method A” (Melamed, 2000).

Method 1 can terminate either because one or
both sentences of the pair have no more unlinked
words, or because no association scores exist for the
remaining unlinked words. We can use this fact to
trade off recall for precision by discarding associa-
tion scores below a given threshold. Table 1 shows
the precision/recall trade-off for Method 1 on our de-
velopment set. Since Method 1 produces only word
type alignments, these recall and precision scores
are computed with respect to an oracle that makes
the best possible choice among multiple occurrences
of the same word type.2 The best (oracular) AER is
0.216, with recall of 0.840 and precision of 0.747,
occurring at an LLR threshold of 11.7.

4.2 Method 2

A disadvantage of Method 1 is that it makes align-
ment decisions for each sentence pair independently
of the decisions for the same words in other sentence
pairs. It turns out that we can improve alignment

2The oracle goes through the word type pairs in the same
order as the competitive linking algorithm, linking particular
instances of the word types. It prefers a pair that has a sure
alignment in the annotated test data to a pair that has a possible
alignment; and prefers a pair with a possible alignment to one
with no alignment.

Recall Precision Threshold
0.111 0.991 168368
0.239 0.923 71074
0.304 0.902 53286
0.400 0.838 26001
0.501 0.822 11306
0.600 0.788 4224
0.700 0.778 1141
0.800 0.765 124
0.848 0.732 1

Table 1: Recall/Precision Trade-Off for Method 1.

accuracy by biasing the alignment method towards
linking words in a given sentence that are also linked
in many other sentences. A simple way to do this
is to perform a second alignment based on the con-
ditional probability of a pair of words being linked
according to Method 1, given that they both occur in
a given sentence pair. We estimate this link proba-
bility LP as

LP (f, e) =
links1(f, e)
cooc(f, e)

where links1(f, e) is the number of times f and e
are linked according to Method 1, and cooc(f, e) is
the number of times f and e co-occur in aligned sen-
tences.3

We now define alignment Method 2 as follows:

• Count the number of links in the training cor-
pus for each pair of words linked in any sen-
tence pair by Method 1.

• Count the number of co-occurrences in the
training corpus for each pair of words linked
in any sentence pair by Method 1.

• Compute LP scores for each pair of words
linked in any sentence pair by Method 1.

• Align sentence pairs by competitive linking us-
ing LP scores.

3Melamed (1998) points out there are at least three ways to
count the number of co-ccurrences of f and e in a given sen-
tence pair if one or both of f and e have more than one occur-
rence. Based on preliminary explorations, we chose to count
the co-occurrences of f and e as the maximum of the number
of occurrences of f and the number of occurrences of e, if both
f and e occur; otherwise cooc(f, e) = 0.

3

Recall Precision Threshold
0.100 0.887 0.989
0.230 0.941 0.982
0.301 0.952 0.967
0.400 0.964 0.938
0.501 0.967 0.875
0.600 0.967 0.811
0.705 0.948 0.649
0.816 0.921 0.441
0.880 0.775 0.000

Table 2: Recall/Precision Trade-Off for Method 2.

Table 2 shows the precision/recall trade-off for
Method 2 on our development set. Again, an ora-
cle is used to choose among multiple occurrences
of the same word type. The best (oracular) AER is
0.126, with recall of 0.830 and precision of 0.913,
occurring at an LP threshold of 0.215.

4.3 Method 3

It is apparent that Method 2 performs much better
than Method 1 at any but the lowest recall levels.
However, it fails to display a monotonic relation-
ship between recall and precision as the score cut-
off threshold is tightened or loosened. This seems
to be due to the fact that the LP measure, unlike
LLR, does not discount estimates made on the basis
of little data. Thus a pair of words that has one co-
occurrence in the corpus, which is linked by Method
1, gets the same LP score of 1.0 as a pair of words
that have 100 co-occurrences in the corpus and are
linked by Method 1 every time they co-occur.

A simple method of compensating for this over-
confidence in rare events is to apply absolute dis-
counting. We will define the discounted link proba-
bility LPd similarly to LP , except that a fixed dis-
count d is subtracted from each link count:

LPd(f, e) =
links1(f, e)− d

cooc(f, e)

Method 3 is then identical to Method 2, except that
LPd is used in place of LP . We determined the op-
timal value of d for our development set to be ap-
proximately 0.9, using the optimal, oracular AER as
our objective function.

Table 3 shows the precision/recall trade-off for
Method 3 on our development set, with d = 0.9

Recall Precision Threshold
0.178 1.000 0.982
0.200 0.998 0.977
0.300 0.999 0.958
0.405 0.998 0.923
0.502 0.994 0.871
0.602 0.987 0.758
0.737 0.947 0.647
0.804 0.938 0.441
0.883 0.776 0.000

Table 3: Recall/Precision Trade-Off for Method 3.

and use of an oracle to choose among multiple oc-
currences of the same word type. The best (orac-
ular) AER is 0.119, with recall of 0.827 and pre-
cision of 0.929, occurring at an LPd threshold of
0.184. This is an improvement of 0.7% absolute
in AER, but perhaps as importantly, the monotonic
trade-off between precision and recall is essentially
restored. We can see in Table 3 that we can achieve
recall of 60% on this development set with precision
of 98.7%, and we can obtain even higher precision
by sacrificing recall slightly more. With Method 2,
96.7% was the highest precision that could be ob-
tained at any recall level measured.

5 Allowing Many-to-One Alignments

It appears from the results for Methods 2 and 3 on
the development set that reasonable alignment ac-
curacy may be achievable using association-based
techniques (pending a way of selecting the best word
token alignments for a given word type alignment).
However, we can never learn any many-to-one align-
ments with methods based on competitive linking, as
either we or Melamed have used it so far.

To address this issue, we introduce the notion of
bilingual word clusters and show how iterated appli-
cations of variations of Method 3 can learn many-to-
one mappings by building up clusters incrementally.
Consider the abstract data structure to which com-
petitive linking is applied as a tuple of bags (multi-
sets). In Methods 1–3, for each sentence pair, com-
petitive linking is applied to a tuple of a bag of
French words and a bag of English words. Sup-
pose we apply Method 3 with a high LPd cut-off
threshold so that we can be confident that almost all

4

the links we produce are correct, but many French
and English words remain unlinked. We can regard
this as producing for each sentence pair a tuple of
three bags: bags of the remaining unlinked English
and French words, plus a third bag of word clusters
consisting of the linked English and French words.
To produce more complex alignments, we can then
carry out an iteration of a generalized version of
Method 3, in which competitive linking connects re-
maining unlinked English and French words to each
other or to previously derived bilingual clusters.4

As just described, the approach does not work
very well, because it tends to build clusters too of-
ten when it should produce one-to-one alignments.
The problem seems to be that translation tends to
be nearly one-to-one, especially with closely re-
lated languages, and this bias is not reflected in the
method so far. To remedy this, we introduce two bi-
ases in favor of one-to-one alignments. First, we dis-
count the LLR scores between words and clusters,
so the competitive linking pass using these scores
must find a substantially stronger association for a
given word to a cluster than to any other unlinked
word before it will link the word to the cluster. Sec-
ond, we apply the same high LPd cut-off on word-
to-cluster links that we used in the first iteration
of Method 3 to generate word-to-word links. This
leaves many unlinked words, so we apply one more
iteration of yet another modified version of Method
3 in which competitive linking is allowed to link the
remaining unlinked words to other unlinked words,
but not to clusters. We refer to this sequence of three
iterations of variations of Method 3 as Method 4.

To evaluate alignments involving clusters accord-
ing Och and Ney’s method, we translate clusters
back into all possible word-to-word alignments con-
sistent with the cluster. We found the optimal value
on the development set for the LLR discount for
clusters to be about 2000, and the optimal value for
the LPd cut-off for the first two iterations of Method
3 to be about 0.7. With these parameter values, the
best (oracular) AER for Method 4 is 0.110, with re-
call of 0.845 and precision of 0.929, occurring at a
final LPd threshold of 0.188. This is an improve-

4In principle, the process can be further iterated to build up
clusters of arbitrary size, but at this stage we have not yet found
an effective way of deciding when a cluster should be expanded
beyond two-to-one or one-to-two.

ment of 0.9% absolute in AER over Method 3, re-
sulting from an improvement of 1.7% absolute in
recall, with virtually no change in precision.

6 Token Alignment Selection Methods

Finally, we turn to the problem of selecting the best
word token alignment for a given word type align-
ment, and more generally to the incorporation of
positional information into association-based word-
alignment. We consider three token alignment se-
lection methods, each of which can be combined
with any of the word type alignment methods we
have previously described. We will therefore refer
to these methods by letter rather than number, with
a complete word token alignment method being des-
ignated by a number/letter combination.

6.1 Method A

The simplest method for choosing a word token
alignment for a given word type alignment is to
make a random choice (without replacement) for
each word type in the alignment from among the to-
kens of that type. We refer to this as Method A.

6.2 Method B

In Method B, we find the word token alignment con-
sistent with a given word type alignment that is the
most nearly mononotonic. We decide this by defin-
ing the degree of nonmonotonicity of an alignment,
and minimizing that. If more than one word token
alignment has the lowest degree of nonmonotonic-
ity, we pick one of them arbitrarily.

To compute the nonmonotonicity of a word to-
ken alignment, we arbitrarily designate one of the
languages as the source and the other as the target.
We sort the word pairs in the alignment, primarily
by source word position, and secondarily by target
word position. We then iterate through the sorted
alignment, looking only at the target word positions.
The nonmonotonicity of the alignment is defined
as the sum of the absolute values of the backward
jumps in this sequence of target word positions.

For example, suppose we have the sorted align-
ment ((1,1)(2,4)(2,5)(3,2)). The sequence of target
word positions in this sorted alignment is (1,4,5,2).
This has only one backwards jump, which is of
size 3, so that is the nonmonotonicity value for this
alignment. For a complete or partial alignment, the

5

nonmonotonicity is clearly easy to compute, and
nonmonotonicity can never be decreased by adding
links to a partial alignment. The least nonmono-
tonic alignment is found by an incremental best-
first search over partial alignments kept in a priority
queue sorted by nonmonotonicity.

6.3 Method C

Method C is similiar to Method B, but it also uses
nonmonotonicity in deciding which word types to
align. In Method C, we modify the last pass of com-
petitive linking of the word type alignment method
to stop at a relatively high score threshold, and we
compute all minimally nonmonotonic word token
alignments for the resulting word type alignment.

We then continue the final competitive linking
pass applied to word tokens rather than types, but we
select only word token links that can be added to one
of the remaining word token alignments without in-
creasing its nonmonotonicity. Specifically, for each
remaining word type pair (in order of decreasing
score) we make repeated passes through all of the
word token alignments under consideration, adding
one link between previously unlinked instances of
the two word types to each alignment where it is
possible to do so without increasing nonmonotonic-
ity, until there are no longer unlinked instances of
both word types or no more links between the two
word types can be added to any alignment without
increasing its nonmonotonicity. At the end of each
pass, if some, but not all of the alignments have had a
link added, we discard the alignments that have not
had a link added; if no alignments have had a link
added, we go on to the next word type pair. This fi-
nal competitive linking pass continues until another,
lower score threshold is reached.

6.4 Comparison of Token Alignment Selection
Methods

Of these three methods, only C has additional free
parameters, which we jointly optimized on the de-
velopment set for each of the word type alignment
methods. All other parameters were left at their op-
timal values for the oracular choice of word token
alignment.

Table 4 shows the optimal AER on the develop-
ment set, for each combination of word type align-
ment method and token alignment selection method

Oracle A B C
1 0.216 0.307 0.255 0.243
2 0.126 0.210 0.147 0.109
3 0.119 0.208 0.138 0.103
4 0.110 0.196 0.130 0.098

Table 4: Development Set AER for all Methods.

that we have described. For comparison, the ora-
cle for each of the pure word type alignment meth-
ods is added to the table as a token alignment selec-
tion method. As we see from the table, Method 4
is the best word type alignment method for every
token alignment selection method, and Method C
is the best actual token alignment selection method
for every word type alignment method. Method C
even beats the token alignment selection oracle for
every word alignment type method except Method
1. This is possible because Method C incorporates
nonmonotonicity information into the selection of
linked word types, whereas the oracle is applied af-
ter all word type alignments have been chosen.

The best combined overall method is 4C. For this
combination, the optimal value on the development
set for the first score threshold of Method C was
about 0.65 and the optimal value of the second score
threshold of Method C was about 0.075.

7 Evaluation

We computed the recall, precision, and AER on the
held-out subset of the English-French data both for
our Method 4C (using parameter values optimized
on the development subset) and for IBM Model
4, computed using Och’s Giza++ software package
(Och and Ney, 2003) trained on the same data as
Method 4C. We used the default configuration file
included with the version of Giza++ that we used,
which resulted in five iterations of Model 1, fol-
lowed by five iterations of the HMM model, fol-
lowed by five iterations of Model 4. We trained and
evaluated the models in both directions, English-to-
French and French-to-English, as well as the union,
intersection, and what Och and Ney (2003) call the
“refined” combination of the two alignments. The
results are shown in Table 5. We applied the same
evaluation methodology to the English-Romanian
data, with the results shown in Table 6.

6

Alignment Recall Precision AER

Method 4C 0.879 0.929 0.094
E → F 0.870 0.890 0.118
F → E 0.876 0.907 0.106
Union 0.929 0.845 0.124
Intersection 0.817 0.981 0.097
Refined 0.908 0.929 0.079

Table 5: English-French Results.

Comparison of the AER for Method 4C and IBM
Model 4 shows that, in these experiments, only the
refined combination of both directions of the Model
4 alignments outperforms our method, and only on
the English-French data (and by a relatively small
amount: 16% relative reduction in error rate). Our
existing Perl implementation of Method 4C takes
about 3.5 hours for the 500K sentence pair data
set on a standard desk top computer. It took over
8 hours to train each direction of Model 4 using
Giza++ (which is written in C++). We believe that if
our method was ported to C++, our speed advantage
over Giza++ would be substantially greater. Previ-
ous experience porting algorithms of the same gen-
eral type as Method 4C from Perl to C++ has given
us speed ups of a factor of 10 or more.

Note that we were unable to optimize the many
options and free parameters of Giza++ on the de-
velopment data, as we did with the parameters of
Method 4C, which perhaps inhibits us from drawing
stronger conclusions from these experiments. How-
ever, it was simply impractical to do so, due the time
required to re-train the Giza++ models with new set-
tings. With Method 4C, on the other hand, most of
the time is spent either in computing initial corpus
statistics that are independent of the parameters set-
tings, or in performing the final corpus alignment
once the parameters settings have been optimized.
Of the five parameters Method 4C requires, changes
to three of them took less than one hour of retrain-
ing (on the English-French data – much less on the
English-Romanian data), and settings of the last two
need to be tested only on the small amount of anno-
tated development data, which took only a few sec-
onds. This made it possible to optimize the parame-
ters of Method 4C in a small fraction of the time that
would have been required for Giza++.

Alignment Recall Precision AER

Method 4C 0.580 0.881 0.301
E → R 0.545 0.759 0.365
R → E 0.549 0.741 0.370
Union 0.570 0.423 0.515
Intersection 0.180 0.901 0.820
Refined 0.584 0.759 0.328

Table 6: English-Romanian Results.

8 Related Work

The literature on measures of bilingual word asso-
ciation is too large to review thoroughly, but mostly
it concerns extracting bilingual lexicons rather than
word alignment. We discuss three previous research
efforts that seem particularly relevant here.

Gale and Church (1991) made what may be the
first application of word association to word align-
ment. Their method seems somewhat like our
Method 1B. They use a word association score di-
rectly, although they use the φ2 statistic instead of
LLR, and they consider forward jumps as well as
backward jumps in a probability model in place of
our nonmonotonicity measure. They report 61% re-
call at 95% precision on Canadian Hansards data.

Obviously, we are building directly on the work of
Melamed (2000), sharing his use of the LLR statis-
tic and adopting his competitive linking algorithm.
We diverge in other details, however. Moreover,
Melamed makes no provision for other than one-to-
one alignments, and he does not deal with the prob-
lem of turning a word type alignment into a word
token alignment. As Table 4 shows, this is crucial to
obtaining high accuracy alignments.

Finally, our work is similar to that of Cherry and
Lin (2003) in our use of the conditional probabil-
ity of a link given the co-occurrence of the linked
words. Cherry and Lin generalize this idea to in-
corporate additional features of the aligned sentence
pair into the conditioning information. The chief
difference between their work and ours, however, is
their dependence on having parses for the sentences
in one of the languages being aligned. They use this
to enforce a phrasal coherence constraint, which ba-
sically says that word alignments cannot cross con-
stituent boundaries. They report excellent alignment

7

accuracy using this approach, and one way of com-
paring our results to theirs is to say that we show it is
also possible to get good results (at least for English
and French) by using nonmonotonicity information
in place of constituency information.

9 Conclusions

The conventional wisdom in the statistical MT com-
munity has been that “heuristic” alignment meth-
ods based on word association statistics could not be
competitive with methods that have a “well-founded
mathematical theory that underlies their parame-
ter estimation” (Och and Ney, 2003, p. 37). Our
results seem to suggest that this is not the case.
While we would not claim to have demonstated that
association-based methods are superior to the es-
tablished approach, they certainly now appear to be
worth investigating further.

Moreover, our alignment method is faster than
standard models to train; potentially much faster if
it were re-implemented in a language like C++. Ef-
ficiency issues, especially in training, are often dis-
missed as unimportant, but one should consider sim-
ply the number of experiments that it is possible to
do in the course of system development. In our case,
for example, it was impractical to try to try to opti-
mize all the options and parameters of the Giza++
models in a reasonable amount of time, given the
computational resources at our disposal.

While the wealth of details regarding various
passes through the data in our best methods might
seem to undercut our claim of simplicity, it is impor-
tant to realize that each of our methods makes a fixed
number of passes, and each of those passes involves
a simple procedure of computing LLR scores, col-
lecting co-occurrence counts to estimate link proba-
bilities, or performing competitive linking; plus one
best first search for minimally nonmonotonic align-
ments. All these procedures are simple to under-
stand and straightforward to implement, in contrast
to some of the difficult mathematical and computa-
tional issues with the standard models.

References

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
Mathematics of Statistical Machine Translation:

Parameter Estimation. Computational Linguis-
tics, 19(2):263–311.

Colin Cherry and Dekang Lin. 2003. A Probability
Model to Improve Word Alignment. In Proceed-
ings of the 41st Meeting of the Association for
Computational Linguistics, pp. 88–95, Sapporo,
Japan.

Ted Dunning. 1993. Accurate Methods for the
Statistics of Surprise and Coincidence. Compu-
tational Linguistics, 19(1):61–74.

William A. Gale and Kenneth W. Church. 1991.
Identifying Word Correspondences in Parallel
Texts. In Proceedings of the Speech and Natural
Language Workshop, pp. 152–157, Pacific Grove,
California.

Philipp Koehn, Franz Joseph Och, and Daniel
Marcu. 2003. Statistical Phrase-Based Trans-
lation. In Proceedings of the Human Language
Technology Conference of the North American
Chapter of the Association for Computational
Linguistics (HLT-NAACL 2003), pp. 127–133,
Edmonton, Alberta, Canada.

I. Dan Melamed. 1998. Models of Co-occurrence.
University of Pennsylvania, IRCS Technical Re-
port #98-05.

I. Dan Melamed. 2000. Models of Transla-
tional Equivalence. Computational Linguistics,
26(2):221–249.

Rada Mihalcea and Ted Pedersen. 2003. An Evalu-
ation Exercise for Word Alignment. In Proceed-
ings of the HLT-NAACL 2003 Workshop, Building
and Using Parallel Texts: Data Driven Machine
Translation and Beyond, pp. 1–6, Edmonton, Al-
berta, Canada.

Robert C. Moore. 2004. On Log-Likelihood-Ratios
and the Significance of Rare Events. In Proceed-
ings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 333–
340, Barcelona, Spain.

Franz Joseph Och and Hermann Ney. 2003.
A Systematic Comparison of Various Statistical
Alignment Models. Computational Linguistics,
29(1):19–51.

8

