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Introduction

The ACL 2005 Workshop on Building and Using Parallel Texts: Data-Driven Machine Translation and
Beyond, took place on Wednesday, June 29 and Thursday, June 30 in Ann Arbor Michigan, immediately
following the 43rd Annual Meeting of the Association for Computational Linguistics.

This workshop represented a merger of two workshops that were originally proposed as independent
events. Joel Martin, Rada Mihalcea, and Ted Pedersen had proposed a workBludidiog and Using

Parallel Texts for Languages with Scarce Resouredsich was intended as a follow-up event to the
NAACL 2003 Workshop on Parallel Text that had been organized by Mihalcea and Pedersen. At the
same time, Philipp Koehn and Christof Monz had proposed a worksh&gioiting Parallel Texts for
Statistical Machine Translatigieaturing a shared task on Phrase Based Machine Translation.

Given the close relationship between the two proposed topics, the idea of a merger was quickly
embraced by all concerned. It was agreed that the workshop would have two tracks, one regarding
Parallel Texts for Languages with Scarce Resources (Track 1), and the other focused on Statistical
Machine Translation (Track 2).

Prior to the workshop, in addition to soliciting relevant papers for review and possible presentation,
the organizers of both tracks conducted shared tasks that brought together systems for an evaluation on
previously unseen data. Track 1 featured a Word Alignment shared task, where the object was to align
parallel text in one or more of the following langauge pairs: Inuktitut—English, Romanian—English,
and Hindi—English. Track 2 carried out a shared task on Phrase Based Statistical Machine Translation,
where eleven participating teams competed to build machine translation systems for French—English,
Spanish—English, German—English, and Finnish—English.

The results of the shared tasks were announced at the workshop, and these proceedings also include an
overview paper for each shared task that summarizes the results, as well as provides information about
the data used and any procedures that were followed in conducting or scoring the task. In addition,
there are short papers from each participating team for each shared task that describe their underlying
system in some detail.

Wednesday, June 29 was dedicated to Track 1. It featured an invited talk by Mike Maxwell of the
Linguistic Data Consortium, eight long paper presentations relevant to the topic of building and using
parallel texts for languages with scarce resources, six short paper presentations describing systems
that participated in the Word Alignment shared task (four additional short papers are included in the
proceedings), a shared task overview, and a panel discussion about lessons learned from the shared task.

Track 2 was featured on Thursday, June 30. It included an invited talk by Franz Josef Och of Google,
six long paper presentations, a shared task overview, and nine shared task system descriptions.

We would like to thank the members of the Program Committee for their timely reviews.

Philipp Koehn, Joel Martin, Rada Mihalcea, Christof Monz, and Ted Pedersen
Co-Organizers
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Association-Based Bilingual Word Alignment

Robert C. Moore
Microsoft Research
One Microsoft Way
Redmond, WA 98052
bobmoore@microsoft.com

Abstract

Bilingual word aignment forms the foun-
dation of current work on statistica
machine trandlation.  Standard word-
alignment methods involve the use of
probabilistic generative models that are
complex to implement and slow to train.
In this paper we show that it is possible
to approach the alignment accuracy of the
standard models using algorithms that are
much faster, and in some ways simpler,
based on basic word-association statistics.

1 Motivation

Bilingual word alignment is the first step of most
current approaches to statistical machine trandation.
Although the best performing systems are “phrase-
based” (see, for instance, Och and Ney (2004) or
Koehn et a. (2003)), possible phrase trandations
must first be extracted from word-aligned bilingual
text segments. The standard approach to word align-
ment makes use of five trandation models defined
by Brown et a. (1993), sometimes augmented by
an HMM-based model or Och and Ney’'s “Model
6" (Och and Ney, 2003). The best of these mod-
els can produce high accuracy alignments, at least
when trained on alarge paralel corpus of fairly di-
rect tranglations in closely related languages.

There are a number of ways in which these stan-
dard models are less than ideal, however. The
higher-accuracy models are mathematically com-
plex, and also difficult to train, as they do not factor

1

in away that permits a dynamic programming solu-
tion. It can thus take many hours of processing time
on current standard computers to train the models
and produce an alignment of alarge parallel corpus.

In this paper, we take a different approach to
word alignment, based on the use of bilingual word-
association statistics rather than the generative prob-
abilistic framework that the IBM and HMM models
use. In the end we obtain alignment algorithms that
are much faster, and in some ways simpler, whose
accuracy comes surprisingly close to the established
probabilistic generative approach.

2 Dataand Methodology for these
Experiments

The experiments reported here were carried out us-
ing data from the workshop on building and using
parald texts held at HLT-NAACL 2003 (Mihalcea
and Pedersen, 2003). For the magjority of our experi-
ments, we used a subset of the Canadian Hansards
bilingual corpus supplied for the workshop, com-
prising 500,000 English-French sentences pairs, in-
cluding 37 sentence pairs designated as “trial” data,
and 447 sentence pairs designated as test data. The
trial and test data have been manually aligned at
the word level, noting particular pairs of words ei-
ther as “sure” or “possible” aignments. As an
additional test, we evaluated our best alignment
method using the workshop corpus of approximately
49,000 English-Romanian sentences pairs from di-
verse sources, including 248 manually aigned sen-
tence pairs designated as test data!

For the English-French corpus, automatic sentence align-
ment of the training data was provided by Ulrich Germann,

Proceedings of the ACL Workshop on Building and Using Parallel Tesiges 1-8,
Ann Arbor, June 20050 Association for Computational Linguistics, 2005



We needed annotated development data to opti-
mize certain parameters of our algorithms, and we
were concerned that the small number of sentence
pairs designated as trial data would not be enough
for this purpose. Wetherefore randomly split each of
the English-French and English-Romanian test data
sets into two virtually equa subsets, by randomly
ordering the test data pairs, and assigning alternate
pairs from the random order to the two subsets. We
used one of these subsets as a development set for
parameter optimization, and held out the other for a
final test set.

We report the performance of various alignment
algorithms in terms of precision, recall, and align-
ment error rate (AER) as defined by Och and Ney
(2003):
|[ANS|

5]

recall =

|AN P
A

precision =

|ANP|+]ANS|

AER =1
Al + 5]

In these definitions, S denotes the set of alignments
annotated as sure, P denotes the set of alignments
annotated possible or sure, and A denotes the set of
alignments produced by the method under test. Fol-
lowing standard practice in the field, we take AER,
which is derived from F-measure, as the primary
eval uation metric that we are attempting to optimize.

Our initial experiments involve agorithms that do
not consider the positions of words in the sentences.
Thus, they are incapable of distinguishing among
multiple instances of the same word type in a sen-
tence. We will say that these methods produce word
type alignments. We compare these algorithms on
the basis of the best possible alignment of word to-
kens given an alignment of word types. We go on
to consider various ways of choosing a word token
alignment for a given word type alignment, and all
our final evaluations are conducted on the basis of
the alignment of individua word tokens.

and the hand alignments of the words in the trial and test data
were created by Franz Och and Hermann Ney (Och and Ney,
2003). The manual word alignments for the English-Romanian
test data were created by Rada Mihalcea and Ted Pedersen.

3 Thelog-Likelihood-Ratio Association
Measure

We base all our association-based word-alignment
methods on the log-likelihood-ratio (LLR) statis-
tic introduced to the NLP community by Dunning
(1993). We chose this statistic because it has previ-
ously been found to be effective for automatically
constructing trandation lexicons (e.g., Melamed,
2000). We compute LLR scores using the follow-
ing formula presented by Moore (2004):

LLR(f,e) =
> Y cunenog 2
Fre{f~f} ere{ee} p(f7?)

Inthisformula f and e mean that the words whose
degree of association is being measured occur in the
respective target and source sentences of an aligned
sentence pair, —f and —e mean that the correspond-
ing words do not occur in the respective sentences,
f7 and e? are variables ranging over these values,
and C(f7, e?) isthe observed joint count for the val-
ues of f? and e?. The probabilities in the formula
refer to maximum likelihood estimates.

Since the LLR score for a pair of words is high
if the words have either a strong positive associ-
ation or a strong negative association, we discard
any negatively associated word pairs by requiring
that p(f,e) > p(f) - p(e). Initialy, we computed
the LLR scores for all positively associated En-
glish/French word pairs in our 500K sentence pair
corpus. To reduce the memory requirements of our
algorithms we discarded any word pairswhose LLR
score was less than 1.0. Thisleft uswith 12,797,697
word pairs out of atotal of 21,451,083 pairs that had
at least one co-occurrence.

4 One-to-One, Word Type Alignment
Methods

4.1 Method 1

The first set of association-based word-aligment
methods we consider permit only one-to-one align-
ments and do not take word position into account.
The simplest method we consider uses the LLR
scores to link words according to Melamed's (2000)
“competitive linking algorithm” for aligning words
inapair of sentences. Since competitive linking has



no way to distinguish one instance of a particular
word type from another, we operate with counts of
linked and unlinked instances of word types, with-
out trying to designate the particular instances the
counts refer to. This version of competitive linking
can be described as follows:

e Findthe pair consisting of an English word type
and a French word type that have the highest
association score of any pair of words types that
both have remaining unlinked instances.

e Increase by 1 the count of linked occurrences
of this pair of word types, and decrease by 1
the count of unlinked instances of each of these
word types.

e Repeat until no more words can be linked.

We will refer to this version of the competitive link-
ing algorithm using L L R scores as Method 1. This
is the method that Melamed uses to generate an ini-
tial alignment that he refines by re-estimation in his
“Method A" (Melamed, 2000).

Method 1 can terminate either because one or
both sentences of the pair have no more unlinked
words, or because no association scores exist for the
remaining unlinked words. We can use this fact to
trade off recall for precision by discarding associa-
tion scores below a given threshold. Table 1 shows
the precision/recall trade-off for Method 1 on our de-
velopment set. Since Method 1 produces only word
type aignments, these recall and precision scores
are computed with respect to an oracle that makes
the best possible choice among multiple occurrences
of the same word type? The best (oracular) AER is
0.216, with recall of 0.840 and precision of 0.747,
occurring at an L LR threshold of 11.7.

4.2 Method 2

A disadvantage of Method 1 is that it makes align-
ment decisions for each sentence pair independently
of the decisions for the same words in other sentence
pairs. It turns out that we can improve aignment

2The oracle goes through the word type pairs in the same
order as the competitive linking algorithm, linking particular
instances of the word types. It prefers a pair that has a sure
alignment in the annotated test datato a pair that has a possible
alignment; and prefers a pair with a possible alignment to one
with no alignment.

Recall | Precision | Threshold
0.111 0.991 168368
0.239 0.923 71074
0.304 0.902 53286
0.400 0.838 26001
0.501 0.822 11306
0.600 0.788 4224
0.700 0.778 1141
0.800 0.765 124
0.848 0.732 1

Table 1; Recall/Precision Trade-Off for Method 1.

accuracy by biasing the alignment method towards
linking words in a given sentence that are also linked
in many other sentences. A simple way to do this
is to perform a second alignment based on the con-
ditional probability of a pair of words being linked
according to Method 1, given that they both occur in
a given sentence pair. We estimate this link proba-
bility LP as

_ linksi(f,e)
LP(f.e) = cooc(f,e)

where links1(f,e) is the number of times f and e
are linked according to Method 1, and cooc(f,e) is
the number of times f and e co-occur in aigned sen-
tences.

We now define alignment Method 2 as follows:

e Count the number of links in the training cor-
pus for each pair of words linked in any sen-
tence pair by Method 1.

e Count the number of co-occurrences in the
training corpus for each pair of words linked
in any sentence pair by Method 1.

e Compute LP scores for each pair of words
linked in any sentence pair by Method 1.

e Align sentence pairs by competitive linking us-
ing LP scores.

3Melamed (1998) points out there are at |east three ways to
count the number of co-ccurrences of f and e in a given sen-
tence pair if one or both of f and e have more than one occur-
rence. Based on preliminary explorations, we chose to count
the co-occurrences of f and e as the maximum of the number
of occurrences of f and the number of occurrences of e, if both
f and e occur; otherwise cooc(f, e) = 0.



Recall | Precision | Threshold
0.100 0.887 0.989
0.230 0.941 0.982
0.301 0.952 0.967
0.400 0.964 0.938
0.501 0.967 0.875
0.600 0.967 0.811
0.705 0.948 0.649
0.816 0.921 0.441
0.880 0.775 0.000

Table 2; Recall/Precision Trade-Off for Method 2.

Table 2 shows the precision/recall trade-off for
Method 2 on our development set. Again, an ora
cle is used to choose among multiple occurrences
of the same word type. The best (oracular) AER is
0.126, with recall of 0.830 and precision of 0.913,
occurring at an L P threshold of 0.215.

4.3 Method 3

It is apparent that Method 2 performs much better
than Method 1 at any but the lowest recal levels.
However, it fails to display a monotonic relation-
ship between recall and precision as the score cut-
off threshold is tightened or loosened. This seems
to be due to the fact that the L P measure, unlike
LLR, does not discount estimates made on the basis
of little data. Thus a pair of words that has one co-
occurrence in the corpus, which islinked by Method
1, gets the same L P score of 1.0 as a pair of words
that have 100 co-occurrences in the corpus and are
linked by Method 1 every time they co-occur.

A simple method of compensating for this over-
confidence in rare events is to apply absolute dis-
counting. We will define the discounted link proba-
bility LP; similarly to LP, except that a fixed dis-
count d is subtracted from each link count:

_ linksy(f.e) —d
LPy(f,e) = cooc(f,e)

Method 3 is then identical to Method 2, except that
LP;isusedin place of LP. We determined the op-
timal value of d for our development set to be ap-
proximately 0.9, using the optimal, oracular AER as
our objective function.

Table 3 shows the precision/recall trade-off for
Method 3 on our development set, with d = 0.9
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Recall | Precision | Threshold
0.178 1.000 0.982
0.200 0.998 0.977
0.300 0.999 0.958
0.405 0.998 0.923
0.502 0.994 0.871
0.602 0.987 0.758
0.737 0.947 0.647
0.804 0.938 0.441
0.883 0.776 0.000

Table 3; Recall/Precision Trade-Off for Method 3.

and use of an oracle to choose among multiple oc-
currences of the same word type. The best (orac-
ular) AER is 0.119, with recall of 0.827 and pre-
cision of 0.929, occurring at an LP; threshold of
0.184. This is an improvement of 0.7% absolute
in AER, but perhaps as importantly, the monotonic
trade-off between precision and recal is essentially
restored. We can see in Table 3 that we can achieve
recall of 60% on this development set with precision
of 98.7%, and we can obtain even higher precision
by sacrificing recall slightly more. With Method 2,
96.7% was the highest precision that could be ob-
tained at any recall level measured.

5 Allowing Many-to-One Alignments

It appears from the results for Methods 2 and 3 on
the development set that reasonable alignment ac-
curacy may be achievable using association-based
techniques (pending away of selecting the best word
token alignments for a given word type alignment).
However, we can never learn any many-to-one aign-
ments with methods based on competitive linking, as
either we or Melamed have used it so far.

To address this issue, we introduce the notion of
bilingual word clusters and show how iterated appli-
cations of variations of Method 3 can learn many-to-
one mappings by building up clusters incrementally.
Consider the abstract data structure to which com-
petitive linking is applied as a tuple of bags (multi-
sets). In Methods 1-3, for each sentence pair, com-
petitive linking is applied to a tuple of a bag of
French words and a bag of English words. Sup-
pose we apply Method 3 with a high LF; cut-off
threshold so that we can be confident that almost all



the links we produce are correct, but many French
and English words remain unlinked. We can regard
this as producing for each sentence pair a tuple of
three bags: bags of the remaining unlinked English
and French words, plus athird bag of word clusters
consisting of the linked English and French words.
To produce more complex alignments, we can then
carry out an iteration of a generalized version of
Method 3, in which competitive linking connects re-
maining unlinked English and French words to each
other or to previously derived bilingual clusters?
As just described, the approach does not work
very well, because it tends to build clusters too of-
ten when it should produce one-to-one alignments.
The problem seems to be that trandation tends to
be nearly one-to-one, especialy with closely re-
lated languages, and this bias is not reflected in the
method so far. To remedy this, we introduce two bi-
asesinfavor of one-to-one alignments. First, wedis-
count the LL R scores between words and clusters,
so the competitive linking pass using these scores
must find a substantially stronger association for a
given word to a cluster than to any other unlinked
word before it will link the word to the cluster. Sec-
ond, we apply the same high L P; cut-off on word-
to-cluster links that we used in the first iteration
of Method 3 to generate word-to-word links. This
leaves many unlinked words, so we apply one more
iteration of yet another modified version of Method
3 inwhich competitive linking is allowed to link the
remaining unlinked words to other unlinked words,
but not to clusters. Werefer to this sequence of three
iterations of variations of Method 3 as Method 4.
To evaluate alignments involving clusters accord-
ing Och and Ney’'s method, we trandate clusters
back into all possible word-to-word alignments con-
sistent with the cluster. We found the optimal value
on the development set for the LLR discount for
clusters to be about 2000, and the optimal value for
the L P; cut-off for the first two iterations of Method
3 to be about 0.7. With these parameter values, the
best (oracular) AER for Method 4 is 0.110, with re-
call of 0.845 and precision of 0.929, occurring at a
final LP; threshold of 0.188. This is an improve-

“In principle, the process can be further iterated to build up
clusters of arbitrary size, but at this stage we have not yet found
an effective way of deciding when a cluster should be expanded
beyond two-to-one or one-to-two.

ment of 0.9% absolute in AER over Method 3, re-
sulting from an improvement of 1.7% absolute in
recall, with virtually no change in precision.

6 Token Alignment Selection M ethods

Finally, we turn to the problem of selecting the best
word token alignment for a given word type align-
ment, and more generally to the incorporation of
positional information into association-based word-
alignment. We consider three token alignment se-
lection methods, each of which can be combined
with any of the word type alignment methods we
have previously described. We will therefore refer
to these methods by letter rather than number, with
acomplete word token alignment method being des-
ignated by a number/letter combination.

6.1 Method A

The simplest method for choosing a word token
alignment for a given word type alignment is to
make a random choice (without replacement) for
each word type in the alignment from among the to-
kens of that type. We refer to this as Method A.

6.2 Method B

In Method B, we find the word token alignment con-
sistent with a given word type alignment that is the
most nearly mononotonic. We decide this by defin-
ing the degree of nonmonotonicity of an alignment,
and minimizing that. 1f more than one word token
alignment has the lowest degree of nonmonotonic-
ity, we pick one of them arbitrarily.

To compute the nonmonotonicity of a word to-
ken aignment, we arbitrarily designate one of the
languages as the source and the other as the target.
We sort the word pairs in the alignment, primarily
by source word position, and secondarily by target
word position. We then iterate through the sorted
alignment, looking only at the target word positions.
The nonmonotonicity of the aignment is defined
as the sum of the absolute values of the backward
jumpsin this sequence of target word positions.

For example, suppose we have the sorted align-
ment ((1,1)(2,4)(2,5)(3,2)). The sequence of target
word positions in this sorted alignment is (1,4,5,2).
This has only one backwards jump, which is of
size 3, so that is the nonmonotonicity value for this
alignment. For a complete or partial alignment, the



nonmonotonicity is clearly easy to compute, and
nonmonotonicity can never be decreased by adding
links to a partial alignment. The least nonmono-
tonic alignment is found by an incremental best-
first search over partia alignments kept in a priority
gueue sorted by nonmonotonicity.

6.3 Method C

Method C is smiliar to Method B, but it also uses
nonmonotonicity in deciding which word types to
aign. In Method C, we modify the last pass of com-
petitive linking of the word type alignment method
to stop at a relatively high score threshold, and we
compute al minimally nonmonotonic word token
alignments for the resulting word type alignment.

We then continue the final competitive linking
pass applied to word tokens rather than types, but we
select only word token linksthat can be added to one
of the remaining word token alignments without in-
creasing its nonmonotonicity. Specifically, for each
remaining word type pair (in order of decreasing
score) we make repeated passes through all of the
word token alignments under consideration, adding
one link between previously unlinked instances of
the two word types to each alignment where it is
possible to do so without increasing nonmonotonic-
ity, until there are no longer unlinked instances of
both word types or no more links between the two
word types can be added to any alignment without
increasing its nonmonotonicity. At the end of each
pass, if some, but not al of the alignments have had a
link added, we discard the alignments that have not
had a link added; if no alignments have had a link
added, we go on to the next word type pair. This fi-
nal competitive linking pass continues until another,
lower score threshold is reached.

6.4 Comparison of Token Alignment Selection
Methods

Of these three methods, only C has additiona free
parameters, which we jointly optimized on the de-
velopment set for each of the word type alignment
methods. All other parameters were left at their op-
timal values for the oracular choice of word token
alignment.

Table 4 shows the optimal AER on the develop-
ment set, for each combination of word type align-
ment method and token alignment selection method

Oracle| A B C
1| 0.216 | 0.307 | 0.255 | 0.243
2| 0126 | 0.210 | 0.147 | 0.109
3| 0.119 | 0.208 | 0.138 | 0.103
4| 0.110 | 0.196 | 0.130 | 0.098

Table 4. Development Set AER for all Methods.

that we have described. For comparison, the ora
cle for each of the pure word type alignment meth-
ods is added to the table as a token alignment selec-
tion method. As we see from the table, Method 4
is the best word type alignment method for every
token alignment selection method, and Method C
is the best actual token alignment selection method
for every word type aignment method. Method C
even beats the token aignment selection oracle for
every word alignment type method except Method
1. Thisis possible because Method C incorporates
nonmonotonicity information into the selection of
linked word types, whereas the oracle is applied af-
ter al word type aignments have been chosen.

The best combined overall method is 4C. For this
combination, the optimal value on the development
set for the first score threshold of Method C was
about 0.65 and the optimal value of the second score
threshold of Method C was about 0.075.

7 Evaluation

We computed the recall, precision, and AER on the
held-out subset of the English-French data both for
our Method 4C (using parameter values optimized
on the development subset) and for IBM Model
4, computed using Och’'s Giza++ software package
(Och and Ney, 2003) trained on the same data as
Method 4C. We used the default configuration file
included with the version of Giza++ that we used,
which resulted in five iterations of Model 1, fol-
lowed by five iterations of the HMM model, fol-
lowed by five iterations of Model 4. We trained and
evaluated the models in both directions, English-to-
French and French-to-English, as well as the union,
intersection, and what Och and Ney (2003) call the
“refined” combination of the two alignments. The
results are shown in Table 5. We applied the same
evaluation methodology to the English-Romanian
data, with the results shown in Table 6.



| Alignment | Recall | Precision | AER |

Method 4C | 0.879 0.929 | 0.094
E—-F 0.870 0.890 | 0.118
F—E 0.876 0.907 0.106
Union 0.929 0.845 | 0.124
Intersection | 0.817 0.981 0.097
Refined 0.908 0.929 0.079

Table 5: English-French Resullts.

Comparison of the AER for Method 4C and IBM
Model 4 shows that, in these experiments, only the
refined combination of both directions of the Model
4 alignments outperforms our method, and only on
the English-French data (and by a relatively small
amount: 16% relative reduction in error rate). Our
existing Perl implementation of Method 4C takes
about 3.5 hours for the 500K sentence pair data
set on a standard desk top computer. It took over
8 hours to train each direction of Model 4 using
Gizat+ (which iswritten in C++). We believe that if
our method was ported to C++, our speed advantage
over Gizat++ would be substantially grester. Previ-
ous experience porting algorithms of the same gen-
era type as Method 4C from Perl to C++ has given
us speed ups of afactor of 10 or more.

Note that we were unable to optimize the many
options and free parameters of Giza++ on the de-
velopment data, as we did with the parameters of
Method 4C, which perhaps inhibits us from drawing
stronger conclusions from these experiments. How-
ever, it was simply impractical to do so, duethetime
required to re-train the Giza++ models with new set-
tings. With Method 4C, on the other hand, most of
the time is spent either in computing initial corpus
statistics that are independent of the parameters set-
tings, or in performing the final corpus aignment
once the parameters settings have been optimized.
Of the five parameters Method 4C requires, changes
to three of them took less than one hour of retrain-
ing (on the English-French data — much less on the
English-Romanian data), and settings of the last two
need to be tested only on the small amount of anno-
tated development data, which took only afew sec-
onds. This made it possible to optimize the parame-
ters of Method 4C in asmall fraction of the time that
would have been required for Giza++.

| Alignment | Recall | Precision | AER |

Method 4C | 0.580 0.881 | 0.301
E—-R 0.545 0.759 | 0.365
R—E 0.549 0.741 | 0.370
Union 0.570 0.423 | 0.515
Intersection | 0.180 0.901 0.820
Refined 0.584 0.759 0.328

Table 6: English-Romanian Results.

8 Reated Work

The literature on measures of bilingual word asso-
ciation is too large to review thoroughly, but mostly
it concerns extracting bilingual lexicons rather than
word alignment. We discuss three previous research
efforts that seem particularly relevant here.

Gae and Church (1991) made what may be the
first application of word association to word align-
ment. Their method seems somewhat like our
Method 1B. They use a word association score di-
rectly, although they use the ¢ statistic instead of
LLR, and they consider forward jumps as well as
backward jumps in a probability model in place of
our honmonotonicity measure. They report 61% re-
call at 95% precision on Canadian Hansards data.

Obviously, we are building directly on the work of
Melamed (2000), sharing his use of the LL R statis-
tic and adopting his competitive linking agorithm.
We diverge in other details, however. Moreover,
Melamed makes no provision for other than one-to-
one alignments, and he does not deal with the prob-
lem of turning a word type alignment into a word
token alignment. As Table 4 shows, thisis crucial to
obtaining high accuracy alignments.

Finally, our work is similar to that of Cherry and
Lin (2003) in our use of the conditional probabil-
ity of alink given the co-occurrence of the linked
words. Cherry and Lin generalize this idea to in-
corporate additional features of the aligned sentence
pair into the conditioning information. The chief
difference between their work and ours, however, is
their dependence on having parses for the sentences
in one of the languages being aligned. They use this
to enforce aphrasal coherence constraint, which ba-
sically says that word alignments cannot cross con-
stituent boundaries. They report excellent alignment



accuracy using this approach, and one way of com-
paring our resultsto theirsisto say that we show itis
also possible to get good results (at least for English
and French) by using nonmonotonicity information
in place of constituency information.

9 Conclusions

The conventional wisdom in the statistical MT com-
munity has been that “heuristic’ aignment meth-
ods based on word association statistics could not be
competitive with methods that have a*well-founded
mathematical theory that underlies their parame-
ter estimation” (Och and Ney, 2003, p. 37). Our
results seem to suggest that this is not the case.
While we would not claim to have demonstated that
association-based methods are superior to the es-
tablished approach, they certainly now appear to be
worth investigating further.

Moreover, our aignment method is faster than
standard models to train; potentially much faster if
it were re-implemented in alanguage like C++. Ef-
ficiency issues, especialy in training, are often dis-
missed as unimportant, but one should consider sim-
ply the number of experiments that it is possible to
do in the course of system development. In our case,
for example, it was impractical to try to try to opti-
mize al the options and parameters of the Gizat++
models in a reasonable amount of time, given the
computational resources at our disposal.

While the wealth of details regarding various
passes through the data in our best methods might
seem to undercut our claim of simplicity, itisimpor-
tant to realize that each of our methods makes afixed
number of passes, and each of those passes involves
a simple procedure of computing L LR scores, col-
lecting co-occurrence counts to estimate link proba-
bilities, or performing competitive linking; plus one
best first search for minimally nonmonotonic align-
ments. All these procedures are simple to under-
stand and straightforward to implement, in contrast
to some of the difficult mathematical and computa-
tional issues with the standard models.

References

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
Mathematics of Statistical Machine Trandation:

Parameter Estimation.
tics, 19(2):263-311.

Colin Cherry and Dekang Lin. 2003. A Probability
Model to Improve Word Alignment. In Proceed-
ings of the 41st Meeting of the Association for
Computational Linguistics, pp. 88-95, Sapporo,

Japan.

Ted Dunning. 1993. Accurate Methods for the
Statistics of Surprise and Coincidence. Compu-
tational Linguistics, 19(1):61-74.

William A. Gale and Kenneth W. Church. 1991.
Identifying Word Correspondences in Parallel
Texts. In Proceedings of the Soeech and Natural
Language Workshop, pp. 152-157, Pacific Grove,
Cdlifornia

Computational Linguis-

Philipp Koehn, Franz Joseph Och, and Daniel
Marcu. 2003. Statistica Phrase-Based Trans-
lation. In Proceedings of the Human Language
Technology Conference of the North American
Chapter of the Association for Computational
Linguistics (HLT-NAACL 2003), pp. 127-133,
Edmonton, Alberta, Canada.

I. Dan Melamed. 1998. Models of Co-occurrence.
University of Pennsylvania, IRCS Technical Re-
port #98-05.

I. Dan Melamed. 2000. Models of Tranda
tional Equivalence. Computational Linguistics,
26(2):221-249.

Rada Mihalcea and Ted Pedersen. 2003. An Evalu-
ation Exercise for Word Alignment. In Proceed-
ings of the HLT-NAACL 2003 Workshop, Building
and Using Parallel Texts: Data Driven Machine
Transglation and Beyond, pp. 1-6, Edmonton, Al-
berta, Canada.

Robert C. Moore. 2004. On Log-Likelihood-Ratios
and the Significance of Rare Events. In Proceed-
ings of the 2004 Conference on Empirical Meth-
ods in Natural Language Processing, pp. 333—
340, Barcelona, Spain.

Franz Joseph Och and Hermann Ney.  2003.
A Systematic Comparison of Various Statistical
Alignment Models. Computational Linguistics,
29(1):19-51.



Cross language Text Categorization by acquiring
Multilingual Domain Models from Comparable Corpora

Alfio Gliozzo and Carlo Strapparava
ITC-Irst

via Sommarive, I-38050, Trento, ITALY
{gliozzo, strappa}l@itc.it

Abstract

In a multilingual scenario, the classical
monolingual text categorization problem
can be reformulated as a cross language
TC task, in which we have to cope with
two or more languages (e.g. English and
Italian). 1In this setting, the system is
trained using labeled examples in a source
language (e.g. English), and it classifies
documents in a different target language
(e.g. Italian).

In this paper we propose a novel ap-
proach to solve the cross language text
categorization problem based on acquir-
ing Multilingual Domain Models from
comparable corpora in a totally unsuper-
vised way and without using any external
knowledge source (e.g. bilingual dictio-
naries). These Multilingual Domain Mod-
els are exploited to define a generalized
similarity function (i.e. a kernel function)
among documents in different languages,
which is used inside a Support Vector Ma-
chines classification framework. The re-
sults show that our approach is a feasi-
ble and cheap solution that largely outper-
forms a baseline.

1 Introduction

Text categorization (TC) is the task of assigning cat-
egory labels to documents. Categories are usually
defined according to a variety of topics (e.g. SPORT,
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PoLITICS, etc.) and, even if a large amount of
hand tagged texts is required, the state-of-the-art su-
pervised learning techniques represent a viable and
well-performing solution for monolingual catego-
rization problems.

On the other hand in the worldwide scenario of
the web age, multilinguality is a crucial issue to deal
with and to investigate, leading us to reformulate
most of the classical NLP problems. In particular,
monolingual Text Categorization can be reformu-
lated as a cross language TC task, in which we have
to cope with two or more languages (e.g. English
and Italian). In this setting, the system is trained
using labeled examples in a source language (e.g.
English), and it classifies documents in a different
target language (e.g. Italian).

In this paper we propose a novel approach to solve
the cross language text categorization problem based
on acquiring Multilingual Domain Models (MDM)
from comparable corpora in an unsupervised way.
A MDM is a set of clusters formed by terms in dif-
ferent languages. While in the monolingual settings
semantic domains are clusters of related terms that
co-occur in texts regarding similar topics (Gliozzo et
al., 2004), in the multilingual settings such clusters
are composed by terms in different languages ex-
pressing concepts in the same semantic field. Thus,
the basic relation modeled by a MDM is the domain
similarity among terms in different languages. Our
claim is that such a relation is sufficient to capture
relevant aspects of topic similarity that can be prof-
itably used for TC purposes.

The paper is organized as follows. After a brief
discussion about comparable corpora, we introduce

Proceedings of the ACL Workshop on Building and Using Parallel Tesiges 9-16,
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a multilingual Vector Space Model, in which docu-
ments in different languages can be represented and
then compared. In Section 4 we define the MDMs
and we present a totally unsupervised technique
to acquire them from comparable corpora. This
methodology does not require any external knowl-
edge source (e.g. bilingual dictionaries) and it is
based on Latent Semantic Analysis (LSA) (Deer-
wester et al., 1990). MDMs are then exploited to
define a Multilingual Domain Kernel, a generalized
similarity function among documents in different
languages that exploits a MDM (see Section 5). The
Multilingual Domain Kernel is used inside a Sup-
port Vector Machines (SVM) classification frame-
work for TC (Joachims, 2002). In Section 6 we will
evaluate our technique in a Cross Language catego-
rization task. The results show that our approach is
a feasible and cheap solution, largely outperforming
a baseline. Conclusions and future works are finally
reported in Section 7.

2 Comparable Corpora

Comparable corpora are collections of texts in dif-
ferent languages regarding similar topics (e.g. a col-
lection of news published by agencies in the same
period). More restrictive requirements are expected
for parallel corpora (i.e. corpora composed by texts
which are mutual translations), while the class of
the multilingual corpora (i.e. collection of texts ex-
pressed in different languages without any addi-
tional requirement) is the more general. Obviously
parallel corpora are also comparable, while compa-
rable corpora are also multilingual.

In a more precise way, let L = {L' L% ... L'}
be a set of languages, let T% = {t},t},... t! } be a
collection of texts expressed in the language Lie L,
and let ¢(¢7,t%) be a function that returns 1 if ¢ is
the translation of tgl and O otherwise. A multilingual
corpus is the collection of texts defined by 7" =
\U; T". If the function v exists for every text t! € T™*
and for every language L7, and is known, then the
corpus is parallel and aligned at document level.

For the purpose of this paper it is enough to as-
sume that two corpora are comparable, i.e. they are
composed by documents about the same topics and
produced in the same period (e.g. possibly from dif-
ferent news agencies), and it is not known if a func-
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tion 1) exists, even if in principle it could exist and
return 1 for a strict subset of document pairs.

There exist many interesting works about us-
ing parallel corpora for multilingual applications
(Melamed, 2001), such as Machine Translation,
Cross language Information Retrieval (Littman et
al., 1998), lexical acquisition, and so on.

However it is not always easy to find or build par-
allel corpora. This is the main reason because the
weaker notion of comparable corpora is a matter re-
cent interest in the field of Computational Linguis-
tics (Gaussier et al., 2004).

The texts inside comparable corpora, being about
the same topics (i.e. about the same semantic do-
mains), should refer to the same concepts by using
various expressions in different languages. On the
other hand, most of the proper nouns, relevant enti-
ties and words that are not yet lexicalized in the lan-
guage, are expressed by using their original terms.
As a consequence the same entities will be denoted
with the same words in different languages, allow-
ing to automatically detect couples of translation
pairs just by looking at the word shape (Koehn and
Knight, 2002). Our hypothesis is that comparable
corpora contain a large amount of such words, just
because texts, referring to the same topics in differ-
ent languages, will often adopt the same terms to
denote the same entities'.

However, the simple presence of these shared
words is not enough to get significant results in TC
tasks. As we will see, we need to exploit these com-
mon words to induce a second-order similarity for
the other words in the lexicons.

3 The Multilingual Vector Space Model

Let T = {t1,t2,...,t,} be a corpus, and V' =
{w1,ws, ..., wi} be its vocabulary. In the mono-
lingual settings, the Vector Space Model (VSM) is a
k-dimensional space R”, in which the text tyeT
is represented by means of the vector t; such that
the 2! component of t; is the frequency of w in ¢;.
The similarity among two texts in the VSM is then
estimated by computing the cosine of their vectors
in the VSM.

!According to our assumption, a possible additional crite-
rion to decide whether two corpora are comparable is to esti-
mate the percentage of terms in the intersection of their vocab-
ularies.



Unfortunately, such a model cannot be adopted in
the multilingual settings, because the VSMs of dif-
ferent languages are mainly disjoint, and the similar-
ity between two texts in different languages would
always turn out zero. This situation is represented
in Figure 1, in which both the left-bottom and the
rigth-upper regions of the matrix are totally filled by
Zeros.

A first attempt to solve this problem is to ex-
ploit the information provided by external knowl-
edge sources, such as bilingual dictionaries, to col-
lapse all the rows representing translation pairs. In
this setting, the similarity among texts in different
languages could be estimated by exploiting the clas-
sical VSM just described. However, the main dis-
advantage of this approach to estimate inter-lingual
text similarity is that it strongly relies on the avail-
ability of a multilingual lexical resource containing
a list of translation pairs. For languages with scarce
resources a bilingual dictionary could be not eas-
ily available. Secondly, an important requirement
of such a resource is its coverage (i.e. the amount
of possible translation pairs that are actually con-
tained in it). Finally, another problem is that am-
biguos terms could be translated in different ways,
leading to collapse together rows describing terms
with very different meanings.

On the other hand, the assumption of corpora
comparability seen in Section 2, implies the pres-
ence of a number of common words, represented by
the central rows of the matrix in Figure 1.

As we will show in Section 6, this model is rather
poor because of its sparseness. In the next section,
we will show how to use such words as seeds to in-
duce a Multilingual Domain VSM, in which second
order relations among terms and documents in dif-
ferent languages are considered to improve the sim-
ilarity estimation.

4 Multilingual Domain Models

A MDM is a multilingual extension of the concept
of Domain Model. In the literature, Domain Mod-
els have been introduced to represent ambiguity and
variability (Gliozzo et al., 2004) and successfully
exploited in many NLP applications, such us Word
Sense Disambiguation (Strapparava et al., 2004),
Text Categorization and Term Categorization.
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A Domain Model is composed by soft clusters of
terms. Each cluster represents a semantic domain,
i.e. a set of terms that often co-occur in texts hav-
ing similar topics. Such clusters identifies groups of
words belonging to the same semantic field, and thus
highly paradigmatically related. MDMs are Domain
Models containing terms in more than one language.

A MDM is represented by a matrix D, contain-
ing the degree of association among terms in all the
languages and domains, as illustrated in Table 1.

| MEDICINE COMPUTER_SCIENCE
HIV! 1 0
AIDSe/t 1 0
virus®/t 0.5 0.5
hospital® 1 0
laptop® 0 1
Microsoft/? 0 1
clinica’ 1 0

Table 1: Example of Domain Matrix. w® denotes
English terms, w’ Italian terms and w®/* the com-
mon terms to both languages.

MDMs can be used to describe lexical ambiguity,
variability and inter-lingual domain relations. Lexi-
cal ambiguity is represented by associating one term
to more than one domain, while variability is rep-
resented by associating different terms to the same
domain. For example the term virus is associated
to both the domain COMPUTER_SCIENCE and the
domain MEDICINE while the domain MEDICINE is
associated to both the terms AIDS and HIV. Inter-
lingual domain relations are captured by placing dif-
ferent terms of different languages in the same se-
mantic field (as for example HIV®/i AIDSe¢/:,
hospital®, and clinica®’). Most of the named enti-
ties, such as Microsoft and HIV are expressed using
the same string in both languages.

When similarity among texts in different lan-
guages has to be estimated, the information con-
tained in the MDM is crucial. For example the two
sentences “I went to the hospital to make an HIV
check” and “leri ho fatto il test dell’AIDS in clin-
ica” (lit. yesterday I did the AIDS test in a clinic)
are very highly related, even if they share no to-
kens. Having an “a priori” knowledge about the
inter-lingual domain similarity among AIDS, HIV,
hospital and clinica is then a useful information to



English documents  [ralian documents
di dp ne1 dn | di dy - dyy diy
wi 0 1 0 110 0
English w3 1 1 1 010
Lexicon
........................ 0
wp_1 | 01 0 0 0
wy, 0 1 0 0 0
commonw; wy" | 0 0 0|0 O 1 0
wy 0 0 0 1 1 1
Italian ws | 0 1 1 0 1
Lexicon
0 |
w1 010 1 0 1
Wy 0 0]0 1 1 0
Figure 1: Multilingual term-by-document matrix

recognize inter-lingual topic similarity. Obviously
this relation is less restrictive than a stronger associ-
ation among translation pair. In this paper we will
show that such a representation is sufficient for TC
puposes, and easier to acquire.

In the rest of this section we will provide a formal
definition of the concept of MDM, and we define
some similarity metrics that exploit it.

Formally, let V'
cabulary of the corpus 7" composed by document
expressed in the language L‘, let V* = J, V* be
the set of all the terms in all the languages, and
let £* = |V*| be the cardinality of this set. Let
D = {D1, D, ..., Dy} be a set of domains. A DM
is fully defined by a k* x d domain matrix D rep-
resenting in each cell d; , the domain relevance of
the " term of V* with respect to the domain D,.
The domain matrix D is used to define a function
D : R¥ — R4, that maps the document vectors t;-
expressed into the multilingual classical VSM, into

{wi, w), ..., w } be the vo-

the vectors t? in the multilingual domain VSM. The
function D is defined by?

’In (Wong et al., 1985) the formula 1 is used to define a
Generalized Vector Space Model, of which the Domain VSM is
a particular instance.
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D(f;) = ;;(T"PFD) =1/ (1)

where I'PF is a diagonal matrix such that z;”? F=

IDF(w!), t; is represented as a row vector, and
IDF (w}) is the Inverse Document Frequency of w!
evaluated in the corpus 7".

The matrix D can be determined for example us-
ing hand-made lexical resources, such as WORD-
NET DOMAINS (Magnini and Cavaglia, 2000). In
the present work we followed the way to acquire
D automatically from corpora, exploiting the tech-
nique described below.

4.1 Automatic Acquisition of Multilingual
Domain Models

In this work we propose the use of Latent Seman-
tic Analysis (LSA) (Deerwester et al., 1990) to in-
duce a MDM from comparable corpora. LSA is an
unsupervised technique for estimating the similar-
ity among texts and terms in a large corpus. In the
monolingual settings LSA is performed by means
of a Singular Value Decomposition (SVD) of the
term-by-document matrix T describing the corpus.
SVD decomposes the term-by-document matrix T
into three matrixes T ~ VX, U7 where Iy is the
diagonal k x k matrix containing the highest k' < k



eigenvalues of T, and all the remaining elements are
set to 0. The parameter &’ is the dimensionality of
the Domain VSM and can be fixed in advance (i.e.
K = a).

In the literature (Littman et al., 1998) LSA has
been used in multilingual settings to define a mul-
tilingual space in which texts in different languages
can be represented and compared. In that work LSA
strongly relied on the availability of aligned parallel
corpora: documents in all the languages are repre-
sented in a term-by-document matrix (see Figure 1)
and then the columns corresponding to sets of trans-
lated documents are collapsed (i.e. they are substi-
tuted by their sum) before starting the LSA process.
The effect of this step is to merge the subspaces (i.e.
the right and the left sectors of the matrix in Figure
1) in which the documents have been originally rep-
resented.

In this paper we propose a variation of this strat-
egy, performing a multilingual LSA in the case in
which an aligned parallel corpus is not available.

It exploits the presence of common words among
different languages in the term-by-document matrix.
The SVD process has the effect of creating a LSA
space in which documents in both languages are rep-
resented. Of course, the higher the number of com-
mon words, the more information will be provided
to the SVD algorithm to find common LSA dimen-
sion for the two languages. The resulting LSA di-
mensions can be perceived as multilingual clusters
of terms and document. LSA can then be used to
define a Multilingual Domain Matrix Dy,ga .

Disa =INVV/Z

where IN is a diagonal matrix such that 1}\1 =
— L w) is the i row of the matrix V /Ty,

(w] wh)
10771

(@)

Thus Drsa® can be exploited to estimate simi-
larity among texts expressed in different languages
(see Section 5).

3When Di.sa is substituted in Equation 1 the Domain VSM
is equivalent to a Latent Semantic Space (Deerwester et al.,
1990). The only difference in our formulation is that the vectors
representing the terms in the Domain VSM are normalized by
the matrix IN, and then rescaled, according to their IDF value,
by matrix I'®F . Note the analogy with the 1f idf term weighting
schema, widely adopted in Information Retrieval.
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4.2 Similarity in the multilingual domain space

As an example of the second-order similarity pro-
vided by this approach, we can see in Table 2 the five
most similar terms to the lemma bank. The similar-
ity among terms is calculated by cosine among the
rows in the matrix Dyga, acquired from the data
set used in our experiments (see Section 6.2). It is
worth noting that the Italian lemma banca (i.e. bank
in English) has a high similarity score to the English
lemma bank. While this is not enough to have a pre-
cise term translation, it is sufficient to capture rele-
vant aspects of topic similarity in a cross-language
text categorization task.

| Lemma#Pos _ Similarity Score  Language |
banking#n 0.96 Eng
creditiin 0.90 Eng
amro#n 0.89 Eng
unicredito#n 0.85 Ita
bancai#tn 0.83 Ita

Table 2: Terms with high similarity to the English
lemma bank#n, in the Multilingual Domain Model

5 The Multilingual Domain Kernel

Kernel Methods are the state-of-the-art supervised
framework for learning, and they have been success-
fully adopted to approach the TC task (Joachims,
2002).

The basic idea behind kernel methods is to em-
bed the data into a suitable feature space F via a
mapping function ¢ : X — F, and then to use a
linear algorithm for discovering nonlinear patterns.
Kernel methods allow us to build a modular system,
as the kernel function acts as an interface between
the data and the learning algorithm. Thus the ker-
nel function becomes the only domain specific mod-
ule of the system, while the learning algorithm is a
general purpose component. Potentially any kernel
function can work with any kernel-based algorithm,
as for example Support Vector Machines (SVMs).

During the learning phase SVMs assign a weight
Ai > 0 to any example x; € X. All the labeled
instances x; such that A; > 0 are called Support
Vectors. Support Vectors lie close to the best sepa-
rating hyper-plane between positive and negative ex-
amples. New examples are then assigned to the class



of the closest support vectors, according to equation
3.

n
fl) =D MK (z,2) + Ao (3)
i=1

The kernel function K (z;,z) returns the simi-
larity between two instances in the input space X,
and can be designed just by taking care that some
formal requirements are satisfied, as described in
(Scholkopf and Smola, 2001).

In this section we define the Multilingual Domain
Kernel, and we apply it to a cross language TC task.
This kernel can be exploited to estimate the topic
similarity among two texts expressed in different
languages by taking into account the external knowl-
edge provided by a MDM. It defines an explicit map-
ping D : R¥ — R* from the Multilingual VSM
into the Multilingual Domain VSM. The Multilin-
gual Domain Kernel is specified by

(D(t:), D(t;))
VD), D)) (D(t:), D(t:))

where D is the Domain Mapping defined in equa-
tion 1. Thus the Multilingual Domain Kernel re-
quires Multilingual Domain Matrix D, in particular
Disa that can be acquired from comparable cor-
pora, as explained in Section 4.1.

To evaluate the Multilingual Domain Kernel we
compared it to a baseline kernel function, namely the
bag_of-words kernel, that simply estimates the topic
similarity in the Multilingual VSM, as described in
Section 3. The BoW kernel is a particular case of
the Domain Kernel, in which D = I, and I is the
identity matrix.

Kp(ti,t;) = “4)

6 Evaluation

In this section we present the data set (two compara-
ble English and Italian corpora) used in the evalua-
tion, and we show the results of the Cross Language
TC tasks. In particular we tried both to train the
system on the English data set and classify Italian
documents and to train using Italian and classify the
English test set. We compare the learning curves of
the Multilingual Domain Kernel with the standard
BoW kernel, which is considered as a baseline for
this task.
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6.1 Implementation details

As a supervised learning device, we used the SVM
implementation described in (Joachims, 1999). The
Multilingual Domain Kernel is implemented by
defining an explicit feature mapping as explained
above, and by normalizing each vector. All the ex-
periments have been performed with the standard
SVM parameter settings.

We acquired a Multilingual Domain Model by
performing the Singular Value Decomposition pro-
cess on the term-by-document matrices representing
the merged training partitions (i.e. English and Ital-
ian), and we considered only the first 400 dimen-

sions®.

6.2 Data set description

We used a news corpus kindly put at our dis-
posal by ADNKRONOS, an important Italian news
provider.  The corpus consists of 32,354 Ital-
ian and 27,821 English news partitioned by
ADNKRONOS in a number of four fixed cate-
gories: Quality of_Life, Made_in_Italy,
Tourism, Culture_and_-School. The corpus
is comparable, in the sense stated in Section 2, i.e.
they covered the same topics and the same period of
time. Some news are translated in the other language
(but no alignment indication is given), some others
are present only in the English set, and some others
only in the Italian. The average length of the news
is about 300 words. We randomly split both the En-
glish and Italian part into 75% training and 25% test
(see Table 3). In both the data sets we postagged the
texts and we considered only the noun, verb, adjec-
tive, and adverb parts of speech, representing them
by vectors containing the frequencies of each lemma
with its part of speech.

6.3 Monolingual Results

Before going to a cross-language TC task, we con-
ducted two tests of classical monolingual TC by
training and testing the system on Italian and En-
glish documents separately. For these tests we used
the SVM with the BoW kernel. Figures 2 and 3 re-
port the results.

*To perform the SVD operation we used LIBSVDC
http://tedlab.mit.edu/~dr/SVDLIBC/.



English Italian
Categories Training  Test Total | Training  Test Total
Quality of_Life 5759 1989 7748 5781 1901 7682
Made_in_Italy 5711 1864 7575 6111 2068 8179
Tourism 5731 1857 7588 6090 2015 8105
Culture_and_School 3665 1245 4910 6284 2104 8388
Total 20866 6955 27821 24266 8088 32354

Table 3: Number of documents in the data set partitions
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Figure 2: Learning curves for the English part of the
corpus
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Figure 3: Learning curves for the Italian part of the
corpus

6.4 A Cross Language Text Categorization task

As far as the cross language TC task is concerned,
we tried the two possible options: we trained on the
English part and we classified the Italian part, and
we trained on the Italian and classified on the En-
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Figure 4: Cross-language (training on Italian, test on
English) learning curves
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Figure 5: Cross-language (training on English, test
on Italian) learning curves

glish part. The Multilingual Domain Model was ac-
quired running the SVD only on the joint (English
and Italian) training parts.

Table 4 reports the vocabulary dimensions of the
English and Italian training partitions, the vocabu-



| | #lemmata |

English training 22,704
Italian training 26,404
English + Italian 43,384
common lemmata 5,724

Table 4: Number of lemmata in the training parts of
the corpus

lary of the merged training, and how many com-
mon lemmata are present (about 14% of the total).
Among the common lemmata, 97% are nouns and
most of them are proper nouns. Thus the initial term-
by-document matrix is a 43,384 x 45,132 matrix,
while the Dy,ga matrix is 43,384 x 400. For this
task we consider as a baseline the BoW kernel.

The results are reported in Figures 4 and 5. An-
alyzing the learning curves, it is worth noting that
when the quantity of training increases, the per-
formance becomes better and better for the Multi-
lingual Domain Kernel, suggesting that with more
available training it could be possible to go closer to
typical monolingual TC results.

7 Conclusion

In this paper we proposed a solution to cross lan-
guage Text Categorization based on acquiring Mul-
tilingual Domain Models from comparable corpora
in a totally unsupervised way and without using any
external knowledge source (e.g. bilingual dictionar-
ies). These Multilingual Domain Models are ex-
ploited to define a generalized similarity function
(i.e. a kernel function) among documents in differ-
ent languages, which is used inside a Support Vec-
tor Machines classification framework. The basis of
the similarity function exploits the presence of com-
mon words to induce a second-order similarity for
the other words in the lexicons. The results have
shown that this technique is sufficient to capture rel-
evant aspects of topic similarity in cross-language
TC tasks, obtaining substantial improvements over
a simple baseline. As future work we will investi-
gate the performance of this approach to more than
two languages TC task, and a possible generaliza-
tion of the assumption about equality of the common
words.
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Abstract

We present an Earley-style dynamic pro-
gramming algorithm for parsing sentence
pairs from a parallel corpus simultane-
ously, building up two phrase structure
trees and a correspondence mapping be-
tween the nodes. The intended use of
the algorithm is in bootstrapping gram-
mars for less studied languages by using
implicit grammatical information in par-
allel corpora. Therefore, we presuppose a
given (statistical) word alignment under-
lying in the synchronous parsing task; this
leads to a significant reduction of the pars-
ing complexity. The theoretical complex-
ity results are corroborated by a quantita-
tive evaluation in which we ran an imple-
mentation of the algorithm on a suite of
test sentences from the Europarl parallel
corpus.

1 Introduction

The technical results presented in this paper® are
motivated by the following considerations: It is con-
ceivable to use sentence pairs from a parallel corpus
(along with the tentative word correspondences from
a statistical word alignment) as training data for a
grammar induction approach. The goal is to induce
monolingual grammars for the languages under con-
sideration; but the implicit information about syn-
tactic structure gathered from typical patterns in the
alignment goes beyond what can be obtained from
unlabeled monolingual data. Consider for instance
the sentence pair from the Europarl corpus (Koehn,
2002) in fig. 1 (shown with a hand-labeled word
alignment): distributional patterns over this and sim-
ilar sentences may show that in English, the subject

1This work was in part supported by the German Research

Foundation DFG in the context of the author’s Emmy Noether
research group at Saarland University.
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(the word block “the situation™) is in a fixed struc-
tural position, whereas in German, it can appear in
various positions; similarly, the finite verb in Ger-
man (here: stellt) systematically appears in second
position in main clauses. In a way, the translation
of sentences into other natural languages serves as
an approximation of a (much more costly) manual
structural or semantic annotation — one might speak
of automatic indirect supervision in learning. The
technique will be most useful for low-resource lan-
guages and languages for which there is no funding
for treebanking activities. The only requirement will
be that a parallel corpus exist for the language under
consideration and one or more other languages.?
Induction of grammars from parallel corpora is
rarely viewed as a promising task in its own right;
in work that has addressed the issue directly (Wu,
1997; Melamed, 2003; Melamed, 2004), the syn-
chronous grammar is mainly viewed as instrumental
in the process of improving the translation model in
a noisy channel approach to statistical MT.2 In the
present paper, we provide an important prerequisite
for parallel corpus-based grammar induction work:
an efficient algorithm for synchronous parsing of
sentence pairs, given a word alignment. This work
represents a second pilot study (after (Kuhn, 2004))
for the longer-term PTOLEMAIOS project at Saar-
land University* with the goal of learning linguis-
tic grammars from parallel corpora (compare (Kuhn,
2005)). The grammars should be robust and assign a

2In the present paper we use examples from English/German
for illustration, but the approach is of course independent of the
language pair under consideration.

30f course, there is related work (e.g., (Hwa et al., 2002; Lu
etal., 2002)) using aligned parallel corpora in order to “project”
bracketings or dependency structures from English to another
language and exploit them for training a parser for the other
language. But note the conceptual difference: the “parse projec-
tion” approach departs from a given monolingual parser, with a
particular style of analysis, whereas our project will explore to
what extent it may help to design the grammar topology specifi-
cally for the parallel corpus case. This means that the emerging
English parser may be different from all existing ones.

“http://www.coli.uni-saarland.de/“jonask/PTOLEMAIOS/

Proceedings of the ACL Workshop on Building and Using Parallel Tesiges 17-24,
Ann Arbor, June 20050 Association for Computational Linguistics, 2005



Heute  stellt sich die Lage

The  situation now  however

jedoch vollig anders  dar

is radically  different

Figure 1: Word-aligned German/English sentence pair from the Europarl corpus

predicate-argument-modifier (or dependency) struc-
ture to sentences, such that they can be applied in
the context of multilingual information extraction or
question answering.

2 Synchronous grammars

For the purpose of grammar induction from parallel
corpora, we assume a fairly straightforward exten-
sion of context-free grammars to the synchronous
grammar case (compare the transduction grammars
of (Lewis Il and Stearns, 1968)): Firstly, the termi-
nal and non-terminal categories are pairs of sym-
bols, one for each language; as a special case, one
of the two symbols can be NiL for material realized
in only one of the languages. Secondly, the linear
sequence of daughter categories that is specified in
the rules can differ for the two languages; therefore,
an explicit numerical ranking is used for the linear
precedence in each language. We use a compact
rule notation with a numerical ranking for the lin-
ear precedence in each language. The general form
of a grammar rule for the case of two parallel lan-
guages is No/MQ — Nltil/Mltjl e Nka/Mk]ka
where N;, M; are NIL or a terminal or nonterminal
symbol for language L, and Lo, respectively, and
1;, 7; are natural numbers for the rank of the phrase
in the sequence for L; and Ly respectively (for NIL
categories a special rank 0 is assumed).® Since linear
ordering of daughters in both languages is explic-
itly encoded by the rank indices, the specification
sequence in the rule is irrelevant from a declarative
point of view. To facilitate parsing we assume a nor-
mal form in which the right-hand side is ordered by
the rank in L1, with the exception that the categories
that are NIL in L; come last. If there are several such

SNote that in the probabilistic variants of these grammars,
we will typically expect that any ordering of the right-hand side
symbols is possible (but that the probability will of course vary
— in a maximum entropy or log-linear model, the probability
will be estimated based on a variety of learning features). This
means that in parsing, the right-hand side categories will be ac-

cepted as they come in, and the relevant probability parameters
are looked up accordingly.
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NIL categories in the same rule, they are viewed as
unordered with respect to each other.®

Fig. 2 illustrates our simple synchronous gram-
mar formalism with some rules of a sample grammar
and their application on a German/English sentence
pair. Derivation with a synchronous grammar gives
rise to a multitree, which combines classical phrase
structure trees for the languages involved and also
encodes the phrase level correspondence across the
languages. Note that the two monolingual trees in
fig. 2 for German and English are just two ways of
unfolding the common underlying multitree.

Note that the simple formalism goes along with
the continuity assumption that every complete con-
stituent is continuous in both languages. Various re-
cent studies in the field of syntax-based Statistical
MT have shown that such an assumption is problem-
atic when based on typical treebank-style analyses.
As (Melamed, 2003) discusses for instance, in the
context of binary branching structures even simple
examples like the English/French pair a gift for you
from France < un cadeau de France pour vouz [a
gift from France for you] lead to discontinuity of a
“synchronous phrase” in one of the two languages.
(Gildea, 2003) and (Galley et al., 2004) discuss dif-
ferent ways of generalizing the tree-level crosslin-
guistic correspondence relation, so it is not confined
to single tree nodes, thereby avoiding a continuity
assumption. We believe that in order to obtain full
coverage on real parallel corpora, some mechanism
along these lines will be required.

However, if the typical rich phrase structure anal-
yses (with fairly detailed fine structure) are replaced
by flat, multiply branching analyses, most of the
highly frequent problematic cases are resolved.” In

®This detail will be relevant for the parsing inference rule
(5) below.

"Compare the systematic study for English-French align-
ments by (Fox, 2002), who compared (i) treebank-parser style
analyses, (ii) a variant with flattened VPs, and (iii) dependency
structures. The degree of cross-linguistic phrasal cohesion in-
creases from (i) to (iii). With flat clausal trees, we will come
close to dependency structures with respect to cohesion.



Synchronous grammar rules:

SIS — NP:1/NP:2 Vfin:2/Vfin:3 Adv:3/Adv:1
NP:4/PP:5 Vinf:5/Vinf.4

NP/NP — Pron:1/Pron:1

NP/PP — Det:1/Det:2 N:2/N:4 NIL:0/P:1 NIL:0/Adj:3

Pron/Pron — wir:l/we:1l
Vfin/Vfin — missen:1/must:1
deshalb:1/s0:1

German tree:

S
- T
NP  Vfin Adv NP Vinf
| —
Pnon Det N

| |
Wir missen deshalb die Agrarpolitik prifen

AdviAdv  — we must therefore the agr. policy examine
NIL/P — NIL:O/at:1
Det/Det — die:1/the:1 Eng“sh tree:
NIL/Adj  — NiL:O/agricultural:1 S
N/N — Agrarpolitik:1/policy:1 - -
VinfiVinf —  priifen:1/look:1 Adv. NP Vfin Vinf PP
‘ Pron ‘ ﬁ’ D‘et Adj N
So V\‘/e must look at the agricdltural policy
Multitree:
SIS
NP:l{NP:Z Vfin:2/Vfin:3 Adv:3/Adv:1 NP:4/PP:5 Vinf:5/Vinf:4
Pron:l{Pron:l ‘ ‘ N|L:9/P:1 Det:l{Det:Z NIL:0/Adj:3 N:2{N:4
Wir/we missen/must  deshalb/so NIL/at die/the  NiL/agricultural Agrarpolitik/policy priifen/look

Figure 2: Sample rules and analysis for a synchronous grammar

the flat representation that we assume, a clause is
represented in a single subtree of depth 1, with all
verbal elements and the argument/adjunct phrases
(NPs or PPs) as immediate daughters of the clause
node. Similarly, argument/adjunct phrases are flat
internally. Such a flat representation is justified
both from the point of view of linguistic learning
and from the point of view of grammar application:
(i) Language-specific principles of syntactic struc-
ture (e.g., the strong configurationality of English),
which are normally captured linguistically by the
richer phrase structure, are available to be induced
in learning as systematic patterns in the relative or-
dering of the elements of a clause. (ii) The predicate-
argument-modifier structure relevant for application
of the grammars, e.g., in information extraction can
be directly read off the flat clausal representation.

It is a hypothesis of our longer-term project that
a word alignment-based consensus structure which
works with flat representations and under the con-
tinuity assumption is a very effective starting point
for learning the basic language-specific constraints
required for a syntactic grammar. Linguistic phe-
nomena that fall outside what can be captured in this
confined framework (in particular unbounded de-
pendencies spanning more than one clause and dis-
continuous argument phrases) will then be learned
in a later bootstrapping step that provides a richer
set of operations. We are aware of a number of open
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practical questions, e.g.: Will the fact that real paral-
lel corpora often contain rather free translations un-
dermine our idea of using the consensus structure
for learning basic syntactic constraints? Statistical
alignments are imperfect — can the constraints im-
posed by the word alignment be relaxed accordingly
without sacrificing tractability and the effect of indi-
rect supervision?®

3 Alignment-guided synchronous parsing

Our dynamic programming algorithm can be de-
scribed as a variant of standard Earley-style chart
parsing (Earley, 1970) and generation (Shieber,
1988; Kay, 1996). The chart is a data structure
which stores all sub-analyses that cover part of the
input string (in parsing) or meaning representation
(in generation). Memoizing such partial results has
the standard advantage of dynamic programming
techniques — it helps one to avoid unnecessary re-
computation of partial results. The chart structure
for context-free parsing is also exploited directly in
dynamic programming algorithms for probabilistic
context-free grammars (PCFGs): (i) the inside (or
outside) algorithm for summing over the probabil-
ities for every possible analysis of a given string,
(ii) the Viterbi algorithm for determining the most
likely analysis of a given string, and (iii) the in-

8Ultimately, bootstrapping of not only the grammars, but
also of the word alignment should be applied.



side/outside algorithm for re-estimating the param-
eters of the PCFG in an Expectation-Maximization
approach (i.e., for iterative training of a PCFG on
unlabeled data). This aspect is important for the in-
tended later application of our parsing algorithm in
a grammar induction context.

A convenient way of describing Earley-style pars-
ing is by inference rules. For instance, the central
completion step in Earley parsing can be described
by the rule®

(1)

(X —aeYBij) (Y —velk])
(X —>aYe 3 [ik])

Synchronous parsing. The input in synchronous
parsing is not a one-dimensional string, but a pair of
sentences, i.e., a two-dimensional array of possible
word pairs (or a multidimensional array if we are
looking at a multilingual corpus), as illustrated in
fig. 3.

policy .
agricultural
the °
at
look .
must .
we °
So °
o I 2 B K 5 6

Wir| missen| deshalb | die| Agrar-| priifen
politik

&
- L1

Figure 3: Synchronous parsing: two-dimensional in-
put (with word alignment marked)

The natural way of generalizing context-free pars-
ing to synchronous grammars is thus to control the
inference rules by string indices in both dimensions.
Graphically speaking, parsing amounts to identify-
ing rectangular crosslinguistic constituents — by as-
sembling smaller rectangles that will together cover
the full string spans in both dimensions (compare
(Wu, 1997; Melamed, 2003)). For instance in fig. 4,
the NP/NP rectangle [i1, j1, jo, k2] can be combined
with the Vinf/Vinf rectangle [jy, k1,42, jo] (assum-
ing there is an appropriate rule in the grammar).

°A chart item is specified through a position (e) in a pro-
duction and a string span ([l1,12]). (X — «a e YS,[i,j])
means that between string position ¢ and j, the beginning of
an X phrase has been found, covering «, but still missing Y S.

Chart items for which the dot is at the end of a production (like
(Y — ~e,[4, k])) are called passive items, the others active.
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k2
her NP/NP
J2
interview Vinf/Vinf
i2
i1 g1 k1
sie interviewen

Figure 4: Completion in two-dimensional chart:
parsing part of Can | interview her?/Kann ich sie
interviewen?

More generally, we get the inference rules (2) and
(3) (one for the case of parallel sequencing, one for
crossed order across languages).

(2) (X1/X2 — a e Yiri/Yars B,[i1, )1, 12, ja]),
(Y1/Y2 — v o, [j1, k1, j2, k2])
<X1/X2 — och:rl/Yz:rg [ ] ﬂ, [i17k1,i27k2]>

@) (X1/X2— a e Yir/Yars B, [i1, j1, j2, k2]),
<Y1/)/2 — e, [j17k17i27j2]>
<X1/X2 — Y1:7'1/Y2:7'2 L] ﬂ, [il, k1,i2, ktg])

Since each inference rule contains six free vari-
ables over string positions (i1, j1, k1, 92, j2, ko), We
get a parsing complexity of order O(n5) for unlexi-
calized grammars (where n is the number of words
in the longer of the two strings from language L; and
Lo) (Wu, 1997; Melamed, 2003). For large-scale
learning experiments this may be problematic, es-
pecially when one moves to lexicalized grammars,
which involve an additional factor of n*.1°

As a further issue, we observe that the inference
rules are insufficient for multiply branching rules,
in which partial constituents may be discontinuous
in one dimension (only complete constituents need
to be continuous in both dimensions). For instance,
by parsing the first two words of the German string
in fig. 1 (Heute stellt), we should get a partial chart
item for a sentence, but the English correspondents
for the two words (now and is) are discontinuous, so
we couldn’t apply rule (2) or (3).

Correspondence-guided parsing. As an alterna-
tive to the standard “rectangular indexing” approach

19The assumption here (following (Melamed, 2003)) is that
lexicalization is not considered as just affecting the grammar
constant, but that in parsing, every terminal symbol has to be
considered as the potential head of every phrase of which it is
a part. Melamed demonstrates: If the number of different cat-
egory symbols is taken into consideration as [, we get O(1*n®)
for unlexicalized grammars, and O(15n'°) for lexicalized gram-
mars; however there are some possible optimizations.



to synchronous parsing we propose a conceptually
very simple asymmetric approach. As we will show
in sec. 4 and 5, this algorithm is both theoretically
and practically efficient when applied to sentence
pairs for which a word alignment has previously
been determined. The approach is asymmetric in
that one of the languages is viewed as the “master
language”, i.e., indexing in parsing is mainly based
on this language (the “primary index” is the string
span in L; as in monolingual parsing). The other
language contributes a secondary index, which is
mainly used to guide parsing in the master language
— i.e., certain options are eliminated. The choice of
the master language is in principle arbitrary, but for
efficiency considerations it is better to pick the one
that has more words without a correspondent.

A way of visualizing correspondence-guided
parsing is that standard Earley parsing is applied to
L., with primary indexing by string position; as the
chart items are assembled, the synchronous gram-
mar and the information from the word alignment
is used to check whether the string in Ly could be
generated (essentially using chart-based generation
techniques; cf. (Shieber, 1988; Neumann, 1998)).
The index for chart items consists of two compo-
nents: the string span in L and a bit vector for the
words in Ly which are covered. For instance, based
on fig. 3, the noun compound Agrarpolitik corre-
sponding to agricultural policy in English will have
the index ([4, 5],[0,0,0,0,0,0, 1,1]) (assuming for
illustrative purposes that German is the master lan-
guage in this case).

The completion step in correspondence-guided
parsing can be formulated as the following single in-
ference rule:!

(4) (X1/X2 — a e Yiri/Yors B,([t,7], V),
(Y1/Y2 — v o, ([j, k], w))
<X1/X2 — Q Y1:7‘1/Y2:7‘2 [ ] ﬂ, <[Z, k], u))
where
0  Jj#k
(i) OR(v,w)=u;
(iii)  w is continuous (i.e., it contains maximally
one subsequence of 1’s).

Condition (iii) excludes discontinuity in passive
chart items, i.e., complete constituents; active items

\We use the bold-faced variables v, w, u for bit vectors; the
function oR performs bitwise disjunction on the vectors (e.g.,
or([0,1,1,0,0],[0,0,1,0,1]) = [0, 1, 1,0, 1]).
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(i.e., partial constituents) may well contain discon-
tinuities. The success condition for parsing a string
with NV words in L; is that a chart item with index
([0, N],1) has been found for the start category pair
of the grammar.

Words in Lo with no correspondent in Ly (let’s
call them “L;-NiL”s for short), for example the
words at and agricultural in fig. 3,12 can in princi-
ple appear between any two words of L. Therefore
they are represented with a “variable” empty L;-
string span like for instance in ([4,1], 0,0, 1,0, 0]).
At first blush, such L;{-NILS seem to introduce an
extreme amount of non-determinism into the algo-
rithm. Note however that due to the continuity as-
sumption for complete constituents, the distribution
of the L{-NILS is constrained by the other words in
L. This is exploited by the following inference rule,
which is the only way of integrating L-NILS into the
chart:

(5) (X1/X2 — aeNILO/Yare B, {[i,4], V)
(NIL/Ya — ~ o, {[5.4], W)
(X1/X2 — aNIL:0/ Yoz o 3, ([¢, 4], u))
where
(i)  w is adjacent to v (i.e., unioning vectors w
and v does not lead to more 0-separated 1-
sequences than v contains already);
(i) or(v,w)=u.

The rule has the effect of finalizing a cross-
linguistic constituent (i.e., rectangle in the two-
dimensional array) after all the parts that have corre-
spondents in both languages have been found. 13

4 Complexity

We assume that the two-dimensional chart is ini-
tialized with the correspondences following from a
word alignment. Hence, for each terminal that is
non-empty in Ly, both components of the index are
known. When two items with known secondary in-
dices are combined with rule (4), the new secondary

21t is conceivable that a word alignment would list agricul-
tural as an additional correspondent for Agrarpolitik; but we
use the given alignment for illustrative purposes.

BFor instance, the L;-NiLs in fig. 3 — NiL/at and
NiL/agricultural — have to be added to incomplete NP/PP
constituent in the L;-string span from 3 to 5, consist-
ing of the Det/Det die/the and the N/N Agrarpolitik/policy.
With two applications of rule (5), the two L;-NILS can be
added. Note that the conditions are met, and that as a re-
sult, we will have a continuous NP/PP constituent with index
([3,5],[0,0,0,0,1,1,1,1]), which can be used as a passive
item Y1 /Y> in rule (4).



index can be determined by bitwise disjunction of
the bit vectors. This operation is linear in the length
of the Lo-string (which is of the same order as the
length of the L;-string) and has a very small con-
stant factor.”* Since parsing with a simple, non-
lexicalized context-free grammar has a time com-
plexity of O(n?®) (due to the three free variables
for string positions in the completion rule), we get
O(n*) for synchronous parsing of sentence pairs
without any L;-NILS. Note that words from L; with-
out a correspondent in Lo (which we would have to
call Lo-NiLs) do not add to the complexity, so the
language with more correspondent-less words can
be selected as L.

For the average complexity of correspondence-
guided parsing of sentence pairs without L1-NILS we
note an advantage over monolingual parsing: cer-
tain hypotheses for complete constituents that would
have to be considered when parsing only L4, are ex-
cluded because the secondary index reveals a dis-
continuity. An example from fig. 3 would be the se-
guence missen deshalb, which is adjacent in Ly, but
doesn’t go through as a continuous rectangle when
L, is taken into consideration (hence it cannot be
used as a passive item in rule (4)).

The complexity of correspondence-guided pars-
ing is certainly increased by the presence of Li-
NILS, since with them the secondary index can no
longer be uniquely determined. However, with the
adjacency condition ((i) in rule (5)), the number of
possible variants in the secondary index is a func-
tion of the number of Li-NiLs. Let us say there are
m Li-NILS, i.e., the bit vectors contain m elements
that we have to flip from 0 to 1 to obtain the final bit
vector. In each application of rule (5) we pick a vec-
tor v, with a variable for the leftmost and rightmost
L;-NIL element (since this is not fully determined
by the primary index). By the adjacency condition,

1Note that the operation does not have to be repeated when
the completion rule is applied on additional pairs of items with
identical indices. This means that the extra time complexity fac-
tor of n doesn’t go along with an additional factor of the gram-
mar constant (which we are otherwise ignoring in the present
considerations). In practical terms this means that changes in
the size of the grammar are much more noticable than moving
from monolingual parsing to alignment-guided parsing.

An additional advantage is that in an Expectation Maximiza-
tion approach to grammar induction (with a fixed word align-
ment), the bit vectors have to be computed only in the first iter-
ation of parsing the training corpus, later iterations are cubic.
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either the leftmost or rightmost marks the boundary
for adding the additional L;-NIL element NIL/Y5 —
hence we need only one new variable for the newly
shifted boundary among the L{-NiILS. So, in addition
to the n* expense of parsing non-nil words, we get
an expense of m? for parsing the L;-NiLs, and we
conclude that for unlexicalized synchronous pars-
ing, guided by an initial word alignment the com-
plexity class is O(n*m?) (where n is the total num-
ber of words appearing in L, and m is the number
of words appearing in Lo, without a correspondent
in Ly). Recall that the complexity for standard syn-
chronous parsing is O(n").

Since typically the number of correspondent-less
words is significantly lower than the total number of
words (at least for one of the two languages), these
results are encouraging for medium-to-large-scale
grammar learning experiments using a synchronous
parsing algorithm.

5 Empirical Evaluation

In order to validate the theoretical complexity results
empirically, we implemented the algorithm and ran
it on sentence pairs from the Europarl parallel cor-
pus. At the present stage, we are interested in quan-
titative results on parsing time, rather than qualita-
tive results of parsing accuracy (for which a more
extensive training of the rule parameters would be
required).

Implementation. We did a prototype implementa-
tion of the correspondence-guided parsing algorithm
in SWI Prolog.’> Chart items are asserted to the
knowledge base and efficiently retrieved using in-
dexing by a hash function. Besides chart construc-
tion, the Viterbi algorithm for selecting the most
probable analysis has been implemented, but for the
current quantitative results only chart construction
was relevant.

Sample grammar extraction. The initial prob-
ablistic grammar for our experiments was ex-
tracted from a small “multitree bank” of 140 Ger-
man/English sentence pairs (short examples from
the Europarl corpus). The multitree bank was an-
notated using the MMAX2 tool?® and a specially

Bhttp:/iwww.swi-prolog.org — The advantage of using Pro-
log is that it is very easy to experiment with various conditions
on the inference rules in parsing.

Bhttp://mmax.eml-research.de



tailored annotation scheme for flat correspondence
structures as described in sec. 2. A German and En-
glish part-of-speech tagger was used to determine
word categories; they were mapped to a reduced cat-
egory set and projected to the syntactic constituents.

To obtain parameters for a probabilistic grammar,
we used maximum likelihood estimation from the
small corpus, based on a rather simplistic genera-
tive model,1” which for each local subtree decides
(i) what categories will be the two heads, (ii) how
many daughters there will be, and for each non-
head sister (iii) whether it will be a nonterminal or
a terminal (and in that case, what category pair),
and (iv) in which position relative to the head to
place it in both languages. In order to obtain a
realistically-sized grammar, we applied smoothing
to all parameters; so effectively, every sequence of
terminals/nonterminals of arbitrary length was pos-
sible in parsing.

Parsing sentences without NIL words

0.6 =& Monolingual parsing L1
—-CGSP

parsing time [sec]

4 5 6 7 8 9 10
number of words (in L1)

Figure 5: Comparison of synchronous parsing with
and without exploiting constraints from L,

Results. To validate empirically that the pro-
posed correspondence-guided synchronous parsing
approach (CGSP) can effectively exploit L, as a
guide, thereby reducing the search space of L;
parses that have to be considered, we first ran a
comparison on sentences without L;-Ni1Ls. The re-
sults (average parsing time for Viterbi parsing with
the sample grammar) are shown in fig. 5.2 The
parser we call “monolingual” cannot exploit any

TFor our learning experiments we intend to use a Maximum
Entropy/log-linear model with more features.

8The experiments were run on a 1.4GHz Pentium M proces-
sor.
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alignment-induced restrictions from L,.*® Note that
CGSP takes clearly less time.

Comparison wrt. # NIL words

A

A3 L1-NILs,
CGSP

= % -2 L1-NILs,
CGSP

O~ 1L1-NIL,
CGSP

parsing time [sec]

—&—no L1-NILs,
CGSP

—#&—monolingual
parsing (L1)

number of words (in L1)

Figure 6: Synchronous parsing with a growing num-
ber of L{-NILS

Fig. 6 shows our comparative results for parsing
performance on sentences that do contain L;-NILS.
Here too, the theoretical results are corroborated that
with a limited number of L;-NiLs, the CGSP is still
efficient.

The average chart size (in terms of the number of
entries) for sentences of length 8 (in L;) was 212
for CGSP (and 80 for “monolingual” parsing). The
following comparison shows the effect of Li-NiLsS
(note that the values for 4 and more L{-NILS are
based on only one or two cases):

(6) Chart size for sentences of length 8 (in L)

Number of{0| 1 [ 2 | 3 4 5 6
Li-NILS

Avg. num-[77[121[175[256(330) | (435)][(849)
ber of chart

items

We also simulated a synchronous parser which
does not take advantage of a given word alignment
(by providing an alignment link between any pair
of words, plus the option that any word could be a
NULL word). For sentences of length 5, this parser
took an average time of 22.3 seconds (largely inde-
pendent of the presence/absence of L;-NiLs).2°

¥The “monolingual” parser used in this comparison parses
two identical copies of the same string synchronously, with a
strictly linear alignment.

While our simulation may be significantly slower than a di-
rect implementation of the algorithm (especially when some of
the optimizations discussed in (Melamed, 2003) are taken into
account), the fact that it is orders of magnitude slower does in-



Finally, we also ran an experiment in which the
continuity condition (condition (iii) in rule (4)) was
deactivated, i.e., complete constituents were allowed
to be discontinuous in one of the languages. The re-
sults in (7) underscore the importance of this condi-
tion — leaving it out leads to a tremendous increase
in parsing time.

(7) Average parsing time in seconds with and with-
out continuity condition

Sentence length (with no Ly-| 4 5 6
NILS)

Avg. parsing time with CGSP
(incl. continuity condition)
Avg. parsing time without the
continuity condition

0.005]0.012{0.026

0.035]0.178|1.025

6 Conclusion

We proposed a conceptually simple, yet efficient al-
gorithm for synchronous parsing in a context where
a word alignment can be assumed as given — for in-
stance in a bootstrapping learning scenario. One of
the two languages in synchronous parsing acts as the
master language, providing the primary string span
index, which is used as in classical Earley parsing.
The second language contributes a bit vector as a
secondary index, inspired by work on chart gener-
ation. Continuity assumptions make it possible to
constrain the search space significantly, to the point
that synchronous parsing for sentence pairs with few
“NuLL words” (which lack correspondents) may be
faster than standard monolingual parsing. We dis-
cussed the complexity both theoretically and pro-
vided a quantitative evaluation based on a prototype
implementation.

The study we presented is part of the longer-term
PTOLEMAIOS project. The next step is to apply
the synchronous parsing algorithm with probabilis-
tic synchronous grammars in grammar induction ex-
periments on parallel corpora.
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Abstract

In this paper, a variant of a spectral clus-
tering algorithm is proposed for bilingual
word clustering. The proposed algorithm
generates the two sets of clusters for both
languages efficiently with high seman-
tic correlation within monolingual clus-
ters, and high translation quality across
the clusters between two languages. Each
cluster level translation is considered as
a bilingual concept, which generalizes
words in bilingual clusters. This scheme
improves the robustness for statistical ma-
chine translation models. Two HMM-
based translation models are tested to use
these bilingual clusters. Improved per-
plexity, word alignment accuracy, and
translation quality are observed in our ex-
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1999) showed improvements on perplexity of bilin-
gual corpus, and word translation accuracy using a
template-based translation model. Both approaches
are optimizing the maximum likelihood of parallel
corpus, in which a data point is a sentence pair: an
English sentence and its translation in another lan-
guage such as French. These algorithms are es-
sentially the same as monolingual word clusterings
(Kneser and Ney, 1993)—an iterative local search.
In each iteration, a two-level loop over every possi-
ble word-cluster assignment is tested for better like-
lihood change. This kind of approach has two draw-
backs: first it is easily to get stuck in local op-
tima; second, the clustering of English and the other
language are basically two separated optimization
processes, and cluster-level translation is modelled
loosely. These drawbacks make their approaches
generally not very effective in improving translation
models.

periments.
In this paper, we propose a variant of the spec-

tral clustering algorithm (Ng et al., 2001) for bilin-
gual word clustering. Given parallel corpus, first, the
Statistical natural language processing usually sufvord’s bilingual context is used directly as features
fers from the sparse data problem. Comparing tofor instance, each English word is represented by
the available monolingual data, we have much lests bilingual word translation candidates. Second,
training data especially for statistical machine trandatent eigenstructure analysis is carried out in this
lation (SMT). For example, in language modellingpilingual feature space, which leads to clusters of
there are more than 1.7 billion words corpora availwords with similar translations. Essentially an affin-
able: English Gigaword by (Graff, 2003). Howeverjty matrix is computed using these cross-lingual fea-
for machine translation tasks, there are typically legsires. It is then decomposed into two sub-spaces,
than 10 million words of training data. which are meaningful for translation tasks: the left
Bilingual word clustering is a process of form-subspace corresponds to the representation of words
ing corresponding word clusters suitable for main English vocabulary, and the right sub-space cor-
chine translation. Previous work from (Wang et al.responds to words in French. Each eigenvector is
1996) showed improvements in perplexity-oriented¢onsidered as one bilingual concept, and the bilin-
measures using mixture-based translation lexicagual clusters are considered to be its realizations in
(Brown et al.,, 1993). A later study by (Och,two languages. Finally, a general K-means cluster-

1 Introduction
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ing algorithm is used to find out word clusters in thevhereP(a;|a;_1) is the transition probability. This
two sub-spaces. model captures the assumption that words close in
The remainder of the paper is structured as fokhe source sentence are aligned to words close in
lows: in section 2, concepts of translation modelthe target sentence. An additional pseudo word of
are introduced together with two extended HMMs{NULL” is used as the beginning of English sen-
in section 3, our proposed bilingual word clustertence for HMM to start with. The (Och and Ney,
ing algorithm is explained in detail, and the relatec003) model includes other refinements such as spe-
works are analyzed; in section 4, evaluation metricgial treatment of a jump to a Null word, and a uni-
are defined and the experimental results are givefgrm smoothing prior. The HMM with these refine-

in section 5, the discussions and conclusions. ments is used as our baseline. Motivated by the work
in both (Och and Ney, 2000) and (Toutanova et al.,
2 Statistical Machine Translation 2002), we propose the two following simplest ver-

. sions of extended HMMs to utilize bilingual word
The task of translation is to translate one Semen%‘i’usters

in some source languadeinto a target language.
For example, given a French sentence witlvords 2.2  Extensions to HMM with word clusters
J _
denoted gy = fifs...fs, an SMT system auto- | 4o te the cluster mappirg — F(f;), which
matically translates it into an English sentence with _ . .
I assigns French worfj; to its cluster IDF; = F(f;).
I words denoted by; = ejes...e;. The SMT sys- . . ) )
) . ; .. Similarly E maps English wore; to its cluster ID
tem first proposes multiple English hypotheses in its .
of E; = E(e;). In this paper, we assume each word
model space. Among all the hypotheses, the systebm

. . ” elongs to one cluster only.
selects the one with the highest conditional proba-~,, . 9 . y
o ) ) . i With bilingual word clusters, we can extend the
bility according to Bayes'’s decision rule:

HMM model in Eqgn. 1 in the following two ways:
N I pJ T\ Iy ol
€1 = arg{ge?;axP(eﬂfl ) = ari?;ax]?(fl le1) P(ey), P(fl‘]\e{) _ Za{ H}‘]=1 P(fjleaj)'

(1) P(aj|aj*17E(eaj71)vF(fjfl))a
where P(f/|e!) is called translation model and 3)
P(el) is calledlanguage model The translation wWhereE(e,; ,) and F(f;—1) are non overlapping
model is the key component, which is the focus iword clusters E,; ., F;—1)for English and French

this paper. respectively.
Another explicit way of utilizing bilingual word
2.1 HMM-based Translation Model clusters can be considered as a two-stream HMM as

HMM is one of the effective translation models (Vo-1OllOWS:

gel et al., 1996), which is easily scalable to VeryP(fi’,F{\e{,E{)
large training corpus.

To model word-to-word translation, we introduce
the mappingi — a;, which assigns a French word
fj in position j to a English worde; in position
i = a; denoted as,;. Each French word; is

Yo7 T2y P(fjlea,) P(F}|Ea,) Plajla;—1).

4)
This model introduces the translation of bilingual
word clusters directly as an extra factor to Eqn. 2.
. . Intuitively, the role of this factor is to boost the trans-
an observation, and it is generated by a HMM Stat%tion probabilities for words sharing the same con-

d.e.fmeq.ase[af’%]’ where the alignment; for po- cept. This is a more expressive model because it
S't'o’? J1S c_onS|dered to have a dgpendency on thr%odels both word and the cluster level translation
g(ej\gﬁ::daggrmgxé_‘l' Thus the first-order HMM equivalence. Also, compared with the model in Eqn.
) 3, this model is easier to train, as it uses a two-
J dimension table instead of a four-dimension table.
P(filef) = > T] P(filea,)P(ajlaj—1), (2) ~ However, we do notwant thi8(F}|E,,) to dom-
J =1 inate the HMM transition structure, and the obser-
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vation probability ofP( f;|e,,) during the EM itera- is a class of its own. There exists efficient leave-one-
tions. Thus a uniform prioP(F;) = 1/|F|isintro-  out style algorithm (Kneser and Ney, 1993), which
duced as a smoothing factor f&Y F}| £, ): can automatically determine the number of clusters.
For the bilingual partP(f{lel, F,E), we can
P(Fj|Eq;) = AP(Fj|E,;) + (1 = \)P(F;), (5) slightly modify the same algorithm as in (Kneser
and Ney, 1993). Given the word alignmefit{ }
where |F| is the total number of word clusters in betweenf; ande! collected from the Viterbi path

French (we use the same number of clusters for bofh MM-based translation model. we can infeas
languages).A can be chosen to get optimal perfor,)ows:

mance on a development set. In our case, we fix it to

be 0.5 in all our experiments. F = argmaxP(f]|e!,F,E)
{F}

3 Bilingual Word Clustering

J
= P(F:|E, \P(f;|F;). (8
In bilingual word clustering, the task is to build word arg{?}laXH (F1Ee ) P(S51E)- - (8)

clusters- andE to form partitions of the vocabular-

ies of the two languages respectively. The two pa©verall, this bilingual word clustering algorithm is
titions for the vocabularies df andE are aimed to essentially a two-step approach. In the first step,
be suitable for machine translation in the sense thainferred by optimizing the monolingual likelihood
the cluster/partition level translation equivalence isf English data, and secondkyis inferred by op-
reliable and focused to handle data sparseness; tivizing the bilingual part without changing. In
translation model using these clusters explains thhis way, the algorithm is easy to implement without
parallel corpug (f{, el)} better in terms of perplex- much change from the monolingual correspondent.

J=1

ity or joint likelihood. This approach was shown to give the best results
_ - in (Och, 1999). We use it as our baseline to compare
3.1 From Monolingual to Bilingual with.

To infer bilingual word clusters ofF, E), one can

optimize the joint probability of the parallel corpusg'2 Bilingual Word Spectral Clustering

{( 1Ja 6{)} using the clusters as follows: Instead of using word alignment to bridge the par-
allel sentence pair, and optimize the likelihood in

(F.E) = argmaxP(f{,e!|F, E) two separate steps, we develop an alignment-free al-
(F,E) gorithm using a variant of spectral clustering algo-
= argmax P(el|E)P(f{|el, F,E)(6) rithm. The goal is to build high cluster-level trans-
(F,E) lation quality suitable for translation modelling, and

E 6 tes th timizati into t at the same time maintain high intra-cluster similar-
qn. © separates Ihe oplimization process into W|?y , and low inter-cluster similarity for monolingual

parts: the monolingual part f&, and the bilingual clusters

part for F given fixedE. The monolingual part is '

considered as a prior probabilif§te! |E), andE can 3.2.1 Notations

be inferred using corpus bigram statistics in the fol- \we define the vocabulary as the French vo-
lowing equation: cabulary with a size ofVr|; Vg as the English vo-
cabulary with size ofVg|. A co-occurrence matrix
Cyr,g) is built with |Vz| rows and|Vg| columns;
each element represents the co-occurrence counts of
! he corresponding French wofdand English word
— argmax [[ P(BEi1)Plei|By). (7) _
(B} e;. In this way, each French word forms a row vec-
tor with a dimension ofVz|, and each dimensional-
We need to fix the number of clusters beforehandty is a co-occurring English word. The elements in
otherwise the optimum is reached when each wortthe vector are the co-occurrence counts. We can also

E = argmaxP(c!|E)
{E}
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view each column as a vector for English word, and e Compute the eigen structure of the normalized
we’ll have similar interpretations as above. matrix A g, and find thek largest eigen vectors:
3.2.2  Algorithm v1, V2, ..., Ug; Similarly, find thek largest eigen

i ) o ) vectors ofAp: uy,us, ..., Ug;
With Cr gy, we can infer two affinity matrixes

as follows: e Stack thek eigenvectors ofvy,ve, ..., v in
An — (T the columns ofyz, and stack the eigenvectors

E = C{EE}C{FE} u1, Us, ..., ug in the columns folz; Normalize

Ap = Cip, E}C{TR B} rows of bothYz andYF to have unit lengthYy

whereAg is an|Vg| x |Vg| affinity matrix for En- 's size ofViz| x k andYp is size off Ve[ x k;

glish words, with rows and columns representing e Treat each row oF as a point inR!V=1**  and
English words and each element the inner product cluster them intaX English word clusters us-
between two English words column vectors. Corre-  ing K-means. Treat each row bf- as a pointin
spondingly,Ar is an affinity matrix of sizdVg| x RIVFIxE “and cluster them inté& French word
|V | for French words with similar definitions. Both clusters.
Ag and Ap aresymmetricand non-negative Now
we can compute the eigenstructure for bdth and
Apr. In fact, the eigen vectors of the two are corre-
spondingly the right and left sub-spaces of the orig-
inal co-occurrence matrix of’;r zy respectively.  HereAp and Ay are affinity matrixes of pair-wise
This can be computed using singular value deconmner products between the monolingual words. The
position (SVD):Cyp, gy = USVT, Ap = VS?VT,  more similar the two words, the larger the value.
andAp = US?UT, whereU is the left sub-space, In our implementations, we did not apply a kernel
andV the right sub-space of the co-occurrence méunction like the algorithm in (Ng et al., 2001). But
trix Cyr - S is a diagonal matrix, with the singular the kernel function such as the exponential func-
values ranked from large to small along the diagonation mentioned above can be applied here to control
Obviously, the left sub-spadé is the eigenstructure how rapidly the similarity falls, using some carefully
for Ap; the right sub-spac¥ is the eigenstructure chosen scaling parameter.
for Ag. . .

By choosing the tog( singular values (the square3'2'3 Related Clustering Algorithms
root of the eigen values for bothy and Ar), the Thg abovg algorithm is very close'to the va}riants
sub-spaces will be reduced @y, x andViy, | pf a big fam_|ly of the spectra_l clustering algorl_thm_s
respectively. Based on these subspaces, we can cdfyfoduced in (Meila and Shi, 2000) and studied in
out K-means or other clustering algorithms to in{Ng etal., 2001). Spectral clustering refers to a class

fer word clusters for both languages. Our algorithn?f techniques which rely on the eigenstructure of
goes as follows: a similarity matrix to partition points into disjoint

clusters with high intra-cluster similarity and low

e Initialize  bilingual ~ co-occurrence  matrix jnter-cluster similarity. It's shown to be computing
C(r,py With rows representing French Words’thek-way normalized cuti — trYTD-3 AD-3Y
and columns English words.Cj; s the €o- ¢4 5y matrixy” € RM*N. A is the affinity matrix,

occurrence raw counts of French woffand 54y~ in our algorithm corresponds to the subspaces
English worde;; of U and V.

e Form the affinity matrixds = C{TFE}C{F,E} Experimentally, it has been observed that using

andAp = C{TEE}C{F,E}- Kernels can also be MOT€ €igenvectors a_nd directly computing-avay
partitioning usually gives better performance. In our

applied here such a4 = exp( implementations, we used the top 500 eigen vectors
for English words. Setflg,; = 0andAr;; =0, to construct the subspacesiéfandV” for K-means
and normalize each row to be unit length; clustering.

e Finally, assign original wora; to cluster Fy
if row i of the matrix Yz is clustered asvy;
similar assignments are for French words.

C{F’E}C?F,E})
)
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3.2.4 K-means alignment between the parallel sentences. Practi-

The K-means here can be considered as a po&§@lly, we can use word alignment as used in (Och,
processing step in our proposed bilingual word clust999). Given an initial word alignment inferred by
tering. For initial centroids, we first compute theHMM, the counts are collected from the aligned
centerof the whole data set. The farthest centroigvord pair. If the counts are L-1 normalized, then
from the center is then chosen to be the first initiadin® co-occurrence matrix is essentially the bilingual
centroid; and after that, the other K-1 centroids ar@/ord-to-word translation lexicon such &% fj|eq, ).

. H 7
chosen one by one to well separate all the previold/€ can remove very small entrieB(f|e) < 1e™"),
chosen centroids. so that the matrix of’( - 17y is more sparse for eigen-

The stopping criterion is: if the maximal Ch(,jmgestructure computation. The proposed algorithm is

of the clusters’ centroids is less than the threshold §R€n carried out to generate the bilingual word clus-

1e-3 between two iterations, the clustering algorithrf£rs for both English and Chinese.
then stops. Figure 1 shows the ranked Eigen values for the

co-occurrence matrix af'y . gy .
4 Experiments

Eigen values of affinity matrices
35 T T

To test our algorithm, we applied it to the TIDES T [5 @ oo e o itvor e
Chinese-English small data track evaluation test se

After preprocessing, such as English tokenizatior
Chinese word segmentation, and parallel sentenc
splitting, there are in total 4172 parallel sentence N
pairs for training. We manually labeled word align-
ments for 627 test sentence pairs randomly sampleé |}

from the dry-run test data in 2001, which has four | |
human translations for each Chinese sentence. T ——
preprocessing for the test data is different from the
above, as it is designed for humans to label wor
alignments correctly by removing ambiguities from L
tokenization and word segmentationas muchaspo °~ % Twcgenvawe
sible. The data statistics are shown in Table 1.

n Values
N

Figure 1: Top-1000 Eigen Values of Co-occurrence

English| Chinese|  Matrix
Sent. Pairs 4172
Train | Words 133598 105331 It is clear, that using the initial HMM word align-
Voc Size 8359 | 7984 ment for co-occurrence matrix makes a difference.
Sent. Pairs 627 The top Eigen value using word alignment in piot
Test | Words 25500 | 19726 (the deep blue curve) is 3.1946. The two plateaus
Voc Size 4084 | 4827 indicate how many top eigen vectors to choose to
Unseen Voc Size 1278 | 1888 reduce the feature space. The first one indicates that
Alignment Links 14769 K is in the range of 50 to 120, and the second plateau

indicates K is in the range of 500 to 800. Ptotis
inferred from the raw co-occurrence counts with the
top eigen value of 2.7148. There is no clear plateau,
o ] which indicates that the feature space is less struc-
4.1 Building Co-occurrence Matrix tured than the one built with initial word alignment.
Bilingual word co-occurrence counts are collected We find 500 top eigen vectors are good enough
from the training data for constructing the matrixfor bilingual clustering in terms of efficiency and ef-
of Cr,gy). Raw counts are collected without wordfectiveness.

Table 1: Training and Test data statistics
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4.2 Clustering Results ing within a cluster. The cluster of bil2;Eelates

Clusters built via the two described methods arf® the concept of “wine” in English. The mono-
compared. The first methdil1 is the two-step op- lingual word clustering tends to scatter those words

timization approach: first optimizing the monolin-into several big noisy clusters. This cluster also has a

gual clusters for target language (English), and aflood translational corres_pondent in bil2-@ Chi-
terwards optimizing clusters for the source languag&®Se- The clusters of bil2;Eand bil2-G are also
(Chinese). The second methbil? is our proposed correlated very well. We not_lced that thg Chlne_:se
algorithm to compute the eigenstructure of the cotlUSters are slightly more noisy than their English
occurrence matrix, which builds the left and righC0rresponding ones. This comes from the noise in
subspaces, and finds clusters in such spaces. 2%}? parallel corpus, and sometimes from ambiguities
500 eigen vectors are used to construct these sufj-the word segmentation in the preprocessing steps.
spaces. For both methods, 1000 clusters are inferred!© Measure the quality of the bilingual clusters,
for English and Chinese respectively. The numbel/® can use the following two kind of metrics:

of clusters is chosen in a way that the final word
alignment accuracy was optimal. Table 2 provides
the clustering examples using the two algorithms.

e Averagee-mirror (Wang et al., 1996): The-
mirror of a classE; is the set of clusters in
Chinese which have a translation probability

settings cluster examples greater thare. In our casee is 0.05, the same
mono-E entirely,mainly,merely value used in (Och, 1999).
MONo-6 10th,13th,T4th,16th,17th,18th,19th
____20th,21s1,23rd,24th,26th ___ e Perplexity: The perplexity is defined as pro-
mono-E | drink,anglophobia,carota,giant,gymnasium i | to th tive | likelihood of th
bil1-Cs i, R, W, I, PR, R, OK portional {o the negative log likelinood ot the
bil2-E, alcoholic cognac distilled drink HMM model Viterbi alignment path for each
,__scotch spirits whiskey _ sentence pair. We use the bilingual word clus-
bil2-C, :%{%@%g%é’ %ﬁ ff E&m ters in two extended HMM models, and mea-
AR, y M —., B, e, AR bE .
: evrec harmony luxury people sedan sedans sure the perplexities of the unseen test data af-
b|I2-E2 . . .. . .
tour tourism tourist toward travel ter seven forward-backward training iterations.
SEN LA ELnE E =il o7 e .
bilz-C, | /AR ST, PR, S, The two perplexities are defined d&P1 =
BRAT, ki, A AR, A J
exp(— Zj:l Og(P(fj|6aj)P(aj|aj*1’Eaj—l’
- A _ —1yJ
Table 2: Bilingual Cluster Examples Fj_1))/J) andPP2 = exp(—J " }_7_; log(

P(fj|eaj)P(aj|aj*1)P(Fj*1|.E1ajf1))) for the
The monolingual word clusters often contain  tWo extended HMM models in Eqn 3 and 4.

words with similar syntax functions. This hap-

pens with esp. frequent words (eg. monp4nd Both metrics measure the extent to which the trans-

mono-B). The algorithm tends to put rare Wordslatlon probability is spread out. The smaller the bet-

such as “carota, anglophobia” into a very big clustetrer' 'The following ta'ble summarizes the results on
(eg. mono-g). In addition, the words within these e-mirror and perplexity using different methods on

X - he unseen .
monolingual clusters rarely share similar translat- e unseen test data

. . “ algorithms | e-mirror [ HMM-1 Perp | HMM-2 Perp
tions such_ as the typical cluster of Week,_ month, baseline - 171780

year”. This indicates that the corresponding Chi- bill 3.97 1810.55 352.28
nese clusters inferred by optimizing Eqn. 7 are not __ bil2 2.54 1610.86 343.64

close in terms of translational similarity. Overall, theThe baseline uses no word clusters. bill and bil2
method of bil1 does not give us a good translationare defined as above. It is clear that our proposed
correspondence between clusters of two languagesethod gives overall lower perplexity: 1611 from
The English cluster of monosEand its best aligned the baseline of 1717 using the extended HMM-1.
candidate of bil1-G are not well correlated either. If we use HMM-2, the perplexity goes down even
Our proposed bilingual cluster algorithm bil2more using bilingual clusters: 352.28 using bill, and
generates the clusters with stronger semantic mea3¥3.64 using bil2. As stated, the four-dimensional
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table of P(aj]aj_l, E(eajfl), F(fj_1)) is eaSin e-mirror over different settings
subject to overfitting, and usually gives worse per- *e .
. A ————— el I i
plexities. _o3 e )
Averagee-mirror for the two-step bilingual clus- é 281
tering algorithm is 3.97, and for spectral cluster- b 15
. . . . E —#—BIL2: Co-occur raw counts
ing algorithm is 2.54. This means our proposed al- 05 Igltii?m%:g‘é‘;ﬁ?ﬁ?z;’{i’c??ﬂ”“w°“"a"g”t
gorithm generates more focused clusters of transla- OQ NN
tional equivalence. Figure 2 shows the histogram for T RE S LSS S
the cluster pair§F;, E;), of which the cluster level number of clusters
translation probabilitied®(F;|E;) € [0.05,1]. The _ _ o _
interval[0.05, 1] is divided into 10 bins, with first bin Figure 3:e-mirror with different settings
[0.05,0.1], and 9 bins dividgs.1, 1] equally. The
percentage for clusters pairs with( F;| E;) falling o
in each bin is drawn. methods. The baseline is the standard HMM trans-
lation model defined in Egn. 2; the HMML1 is de-
Histogram of (F.E) pairs with P(FIE) > 0.05 fined in Eqn 3, and HMM2 is defined in Eqn 4. The

algorithm is applying our proposed bilingual word
clustering algorithm to infer 1000 clusters for both
languages. As expected, Figure 4 shows that using

F-measure of word alignment

45.00%

005 01 02 03 04 05 06 07 08 09

44.00% -
Ten bins for P(F|E) ranging from [0.05, 1.0] 43.00%
o 43
§ 42.00% A
£ 41.00% —e—Baseline HMM ||

Figure 2: Histogram of cluster pai($;, F;) L 40.00% / = Extended HMM-1|__|
’ / —a—Extended HMM-2
39.00% {
. . 38.00% T T T T T T
Our algorithm generates much better aligned clus- t 2 3 4 5 6 7

HMM Viterbi Iterations

ter pairs than the two-step optimization algorithm.
There are 120 cluster pairs aligned withF; | E;) >
0.9 using clusters from our algorithm, while there
are only 8 such cluster pairs using the two-step ap-
proach. Figure 3 compares thenirror at different Word clusters is helpful for word alignment. HMM2
numbers of clusters using the two approaches. Og@ives the best performance in terms of F-measure of
algorithm has a much bettermirror than the two- Word alignment. One quarter of the words in the test
step approach over different number of clusters. Vocabulary are unseen as shown in Table 1. These
Overall, the extended HMM-2 is better thanunseen words related alignment links (4778 out of
HMM-1 in terms of perplexity, and is easier to train.14769) will be left unaligned by translation models.
Thus the oracle (best possible) recall we could get
4.3 Applications in Word Alignment is 67.65%. Our standard t-test showed that signifi-
We also applied our bilingual word clustering in acant interval is 0.82% at the 95% confidence level.
word alignment setting. The training data is thelhe improvement at the last iteration of HMM is
TIDES small data track. The word alignments arénarginally significant.
manually labeled for 627 sentences sampled from
the dryrun test data in 2001. In this manually4'
aligned data, we include one-to-one, one-to-man@ur pilot word alignment on unseen data showed
and many-to-many word alignments. Figure 4 sumimprovements. However, we find it more effective
marizes the word alignment accuracy for differenin our phrase extraction, in which three key scores

Figure 4: Word Alignment Over lterations

4 Applications in Phrase-based Translations
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Abstract

In this paper, we present an approach
to automatically revealing phonological

correspondences within historically re-

lated languages. We create two bilingual
pronunciation dictionaries for the lan-

guage pairs German-Dutch and German-
English. The data is used for automat-
ically learning phonological similarities

between the two language pairs via EM-
based clustering. We apply our models
to predict from a phonological German

word the phonemes of a Dutch and an
English cognate. The similarity scores
show that German and Dutch phonemes
are more similar than German and En-
glish phonemes, which supplies statistical
evidence of the common knowledge that
German is more closely related to Dutch
than to English. We assess our approach
gualitatively, finding meaningful classes

caused by historical sound changes. The

classes can be used for language learning.

Introduction

from other language families: the learner’'s native
language provides a valuable resource which can be
used in learning the new language. Although En-
glish also belongs to the West Germanic languages,
German and Dutch share more lexical entries with a
common root than German and English.

The knowledge about language similarities on the
lexical level is exploited in various fields. In ma-
chine translation, some approaches search for sim-
ilar words (cognates) which are used to align par-
allel texts (e.g., Simard etal. (1992)). The word
triple Text-tekst-text([tEksf in German, Dutch
and English) can be easily recognized as a cog-
nate; recognizindPfeffer-peper-peppei{pfE| [f@r]-
[pe][p@n)-[pE|[p@r*]), however, requires more
knowledge about sound changes within the lan-
guages. The algorithms developed for machine
translation search for similarities on the ortho-
graphic level, whereas some approaches to com-
parative and synchronic linguistics put their fo-
cus on similarities of phonological sequences.
Covington (1996), for instance, suggests different
algorithms to align the phonetic representation of
words of historical languages. Kondrak (2000)
presents an algorithm to align phonetic sequences
by computing the similarities of these words.
Nerbonne and Heeringa (1997) use phonetic tran-

German and Dutch are languages that exhibit a widgriptions to measure the phonetic distance between
range of similarities. Beside similar syntactic feadifferent dialects. The above mentioned approaches
tures like word order and verb subcategorizatiopresuppose either parallel texts of different lan-
frames, the languages share phonological featurgaages for machine translation or manually com-
which are due to historical sound changes. Thegsled lists of transcribed cognates/words for analyz-
similarities are one reason why it is easier to learn img synchronic or diachronic word pairs. Unfortu-
closely historically related language than languagesately, transcribed bilingual data are scarce and it

33

Proceedings of the ACL Workshop on Building and Using Parallel Tesiges 33—40,
Ann Arbor, June 20050 Association for Computational Linguistics, 2005



is labor-intensive to collect these kind of corporawhether a bilingual phoneme pair is a possible sound
Thus, we aim at exploiting electronic pronunciatiorcorrespondence.  Another interesting generative
dictionaries to overcome the lack of data. model can be found in Knight and Graehl (1998).
In our approach, we automatically generate datéhey train weighted finite-state transducers with the
as input to an unsupervised training regime anBM algorithm which are applied to automatically
with the aim of automatically learning similar struc-transliterating Japanese words - originated from En-
tures from these data using Expectation Maximizaglish - back to English. In our approach, we aim at
tion (EM) based clustering. Although the generatiomliscovering similar correspondences between bilin-
of our data introduces some noise, we expect thgual data represented in the classes. The classes can
our method is able to automatically learn meaningfube used to assess how likely a bilingual sound corre-
sound correspondences from a large amount of datpondence is.
Our main assumption is that certain German/Dutch _
and German/English phoneme pairs from related Generation of two parallel Corpora

stems occur more often and hence will appear in thg thjs section, we describe the resources used for
same class with a higher probability than pairs not iy ¢justering algorithm. We take advantage of two
related stems. \We assume that the historical Souggh.jine bilingual orthographic dictionariésnd the
changes are hidden information in the classes.  monolingual pronunciation dictionaries (Baayen et
The paper is organized as foIIpWSZ Section %| 1993) incELEX to automatically build two bilin-
presents related research. In Section 3, we descrlggm pronunciation dictionaries.
the creation of our bilingual pronunciation dictionar- | 3 first step, we extract from the German-Dutch
ies. The outcome is used as input to the algorithigrthographic dictionary 72,037 word pairs and from
for_autorpaﬂcall_y deriving phon_ologlcal classes deghe German-English dictionary 155,317. Figures 1
scribed in Section 4. In Section 5, we apply Ouhng 2 (1st table) display a fragment of the extracted
classes to a transcribed cognate list and measure m?nographic word pairs. Note that we only allow

similarity between the two language pairs. A qualipne possible translation, namely the first one.
tative evaluation is presented in Section 6, where we |4 5 next step, we automatically look up the pro-

interpret our best models. In Sections 7 and 8, Wgynciation of the German, Dutch and English words
discuss our results and draw some final conclusiong, tne monolingual part oEELEX. A word pair is
considered for further analysis if the pronunciation
of both words is found irCELEX. For instance, the

Some approaches to revealing sound correspofifst half of the word paiHausflur-huisgangcor-
dences require clean data whereas other methods ¢itpr) does occur in the German part©fLEX but
deal with noisy input. Cahill and Tiberius (2002)the second half is not contained within the Dutch
use a manually compiled cognate list of Dutchpart. Thus, this word pair is discarded. However, the
Eng“sh and German Cognates and extract Crosw.ordsHaUS-hUiS'hOUSQre found in all three mono-
linguistic phoneme correspondences. The resultingual pronunciation dictionaries and are used for
contain the counts of a certain German phonenférther analysis. Note that the transcription and syl-
and their possible English and Dutch counterpartéabification of the words are defined @ELEX.

The method presented in Kondrak (2003), however, The resultis a list of 44,415 transcribed German-
can deal with noisy bilingual word lists. He gener-Dutch word pairs and a list of 63,297 transcribed
ates sound correspondences of various Algonqui&perman-English word pairs. Figures 1 and 2 (2nd
languages. His algorithm considers them as posdable) show the result of the look-up procedure.
ble candidates if their likelihood scores lie above &0r instance[’haug®-["hUls] is the transcription of
certain minimum-strength threshold. The candidatddaus-huisin the German-Dutch dictionary, while
are evaluated against manually compiled sound €Or- 2. /geatch.de/niederlande/buch.htm

respondences. The algorithm is able to judgettp:/branchenportal-deutschland.aus-stade.de/englisch-
deutsch.html

http://www.itri.brighton.ac.uk/projects/metaphon/ 3A syllable is transcribed within bracketsyllablg).

2 Previous Research
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Orthographic lexicon Transcribed lexicon Bilingual pronunciation dictionary] Onsets Nuclei Codas

Hauser  huizen rhoylz@]  [hUI][z@) ['hoy] z@1 (hU1][z@)] oy Ul | NOP NOP

h h
Haus huis ["haug ["hUls] ["haug ["hUls] z z @ @ r NOP
Hausflur  huisgang| = ["haug [flu:r] huisgang = - - = h h au Ul s s
Haut huid ["hauf ["hult] ["hauf] ["hult] h h au Ul t t
Hautarzt  huidarts [haui["a:rtsf]  [hUId][Arts] [hauf["a:rtsf] [hUId][Arts] h h au Ul t d
NOP  NOP a A rtst rts

Figure 1. Creation of th&erman-Dutch input: from the orthographic lexicon - the automatically tran-
scribed lexicon - the bilingual dictionary - to the final bilingual onset, nucleus and coda lists ( left to right)

Orthographic Texicon Transcribed lexicon Bilingual pronunciation dictionary] Onsets Nuclei Codas
Hauser houses ["hOy][z@1 ["hau]|zlz] ["hOy][z@1 ["hau](zlz] h h Oy auU || NOP NOP
Haus house ["haug [haUg ["haug [haUg z z @ | r z
Hausflur corridor = ["haug[flu:r] ’kO][rl][dO:rx] | = - - = | h h au au s s
Haut skin ["hauf] [skin] ["hauf] [skin] h sk au | t n
Hautarzt  dermatologist] [haui["a:rtsf]  [d3][m@]["tO]-
-(@][dZlsf

Figure 2: Creation of th&erman-English input: from the orthographic lexicon - the automatically tran-
scribed lexicon - the bilingual dictionary - to the final bilingual onset, nucleus and coda lists ( left to right)

["haug-[haUs is the transcription oHaus-houseén ing step, each word pair consists of the same number
the German-English part. of onsets, nuclei and codas.

The final step is to extract a list of German-Dutch
nd German-English phoneme pairs. Itis easy to ex-
act the bilingual onset, nucleus and coda pairs from

e transcribed word pairs (fourth table of Figures 1

We aim at revealing phonological relationships
between German-Dutch and German-English word
pairs on the phonemic level, hence, we need som

. . , t
thing similar to an alignment procedure on the syl- ) )
d g P y nd 2). For instance, we extract the onset ffair

lable level. Thus, we first extract only those wor H th | . UIl and the cod
pairs which contain the same number of syllable .]’t e nucleus paau-[Ul) and the coda pals}-[

The underlying assumption is that words with a his- o' the German-Dutch word pajthaug-["hUIs].

torically related stem often preserve their syIIabIéN 't.h t he 2d1e3<ir2|b§d meth%d, V\(]e Ozti"; (;‘go?mGthe re-
structure. The only exception is that we do not usg'aining <1, erman-Dutch an ' erman-

all inflectional paradigms of verbs to gain more datgngIISh words, 59,819 German-Dutch and .35’847
because they are often a reason for uneven syllab?eerm"’m'EngIISh onset, nucleus and coda pairs.
numbers (e.g., the past tense German suffix /tet&/
is in Dutch /te/ or /de/). Hautarzt-huidartswould

be chosen both made up of two syllables; howh this section, we describe the unsupervised clus-
ever, Hautarzt-dermatologistvill be dismissed as tering method used for clustering of phonological
the German word consists of two syllables whereasits. Three- and five-dimensional EM-based clus-
the English word comprises five syllables. Figures fering has been applied to monolingual phonologi-
and 2 (3rd table) show the remaining items after thisal data (Miller et al., 2000) and two-dimensional
filtering process. We split each syllable within theclustering to syntax (Rooth et al.,, 1999). In our
bilingual word lists into onset, nucleus and codaapproach, we apply two-dimensional clustering to
All consonants to the left of the vowel are considreveal classes of bilingual sound correspondences.
ered the onset. The consonants to the right of thEhe method is well-known but the application of
vowel represent the coda. Empty onsets and codpsobabilistic clustering to bilingual phonological
are replaced by the worllOP)|. After this process- data allows a new view on bilingual phonological

Phonological Clustering
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processes. We choose EM-based clustering as &6 and 30) and 20 steps of re-estimation. Our train-
need a technique which provides probabilities tang regime yields 1,200 onset, 1,200 coda and 1,000
deal with noise in the training data. The two maimucleus models.

parts of EM-based clustering are (i) the induction

of a smooth probability model over the data, and (ii#-2 Experiments with German-English data

the automatic discovery of class structure in the datgy,, training material is slightly smaller for German-
We aim to derive a probability distributiop(y) on  English than for German-Dutch. We derive 35,847
bilingual phonological unitg from a large sample gnset, nucleus and coda pairs for training. The re-
(p(c) denotes the class probability(ysource|c) IS duced training set is due to the structure of words
the probability of a phoneme of the source languagghich is less similar for German-English words than
given class:, andp(yzarget|c) is the probability of a  for German-Dutch words leading to words with un-

phoneme of the target language given clgss equal syllable numbers. We used the same training
regime as in Section 4.1, yielding the same number
p(y) = ZP(C) : p(ysou'rcelc) : p(ytarget‘c) Of mOde|S

ceC
5 Similarity scores of the syllable parts

The re-estimation formulas are given in (Rooth e{[Ne

al., 1999) and our training regime dealing with the a.pply our models to a translation task. The_mam
idea is to take a German phoneme and to predict the
free parameters (e.g. the number|dfof classes)

. . . - ost probable Dutch and English counterpart.
is described in Sections 4.1 and 4.2. The output g? Stp N gits Unterp

: . . . Hence, we extract 808 German-Dutch and 738
our clustering algorithm are classes with their clasa

. . erman-English cognate pairs from a cognate
number, class probability and a list of class member . . .
: . - atabasg consisting of 836 entries. As for the train-
with their probabilities.

ing data, we extract those pairs that consist of the
[_ches? 006 | ‘ same number of syllables because our current mod-
ts 0144 LoooTee els are restricted to sound correspondences and do

o not allow the deletion of syllables. We split our cor-

The above table comes from our German-Dutch ex5,5 into two parts by putting the words with an even
periments and shows Class # 2 with its probability ofne number in the development database and the

6.9%, the German onsets in the left column (€9., \yords with an uneven line number in the gold stan-
appears in this class with the probability of 63.3%q41q database. The development set and the gold
[ts] with 14.4% and[s| with 5.5%) and the Dutch giangard corpus consist of 404 transcribed words for
onsets in the right columrt{ appears in this class e German to Dutch translation task and of 369
with the probability of 76.4% an¢tl] with 12.8%).  {ranscribed words for the German to English trans-
The examples presented in this paper are fragmentgion task.

of the full classes showing only those units with the 1.4 a5k is then to predict the translation of Ger-

highest probabilities. man onsets to Dutch onsets taken from German-
Dutch cognate pairs, e.g. the models should predict
from the German wordurch([dUrx]) (through), the
We use the 59,819 onset, nucleus and coda pafesitch worddoor ([do:n). If the phoneme correspon-
as training material for our unsupervised trainingdence/d]:[d], is predicted, the similarity score of the
Unsupervised methods require the variation of apnset model increases. The nucleus score increases
free parameters to search for the optimal modeif the nucleus model predictd)]:[o:] and the coda
There are three different parameters which have gsore increases if the coda model prediess:[r].
be varied: the initial start parameters, the numbéie assess all our onset, nucleus and coda models
of classes and the number of re-estimation steps—; , _ . :

. . . We did not experiment with 30 classes for nucleus pairs as
Thus, we experiment with 10 different start parameere are fewer nucleus types than onset or coda types
eters, 6 different numbers of classes (5, 10, 15, 20, ®http://www.itri.brighton.ac.uk/projects/metaphon/

4.1 Experiments with German-Dutch data
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German to Dutch German to English .
Onset | Nucleus| Coda || Onset| Nucleus| Coda Proto C"e'mam
80.7% | 50.7% | 52.2% || 69.6% | 17.1% | 28.7% .

Table 1: Similarity scores for syllable parts of cog- West Cermanic
nates indicating that German is closer related to
Dutch than to English.

Old Dutch X Old High German
before~ 1150 Old English before 1050
| 450~ 1100

|
Middle Dutch o Middle High German
1150~ 1500 Middle English 1050~ 1350

by measuring the most probable phoneme translas, ., 1066~ 1500

\
Modern Dutch | Early/Modern German

tions of the cognates from our development set. Wetso-present  Earyltodem Saglish 1350~ 1650

choose the models with the highest onset, nucleus 1700 - present

and coda scores. Only the models with the highedtigure 3: Family tree of West Germanic languages
scores (for onset, nucleus and coda prediction) are
applied to the gold standard to avoid tuning to th%
development set. Using this procedure shows how

our models perform on new data. We apply our scoiy, this section, we interpret our classes by manu-

ing procedure to both language pairs. ally identifying classes that show typical similari-

Table 1 shows the results of our best models IOges between the two language pairs. Sometimes, the

measuring the onset, nucleus and coda translati Hisses reflect sound changes in historically related

scores on our gold standard. The results point Oa{ems. Our data is synchronic, and thus it is not pos-

that the prediction of the onset is easier than predic?—Ible to directly identify in our classes which sound

ing the nucleus or the coda. We achieve an onsgpan_ges took place (Modern German (_G)’ Modern
similarity score of 80.7% for the German to DutchEngIISh (E) and Modern Dutch (NL) did not de-
task and 69.6% for the German to English task. AI‘-’eIOp from each other but from a common ances-
though the set of possible nuclei is smaller than thi")- However, we will try to connect the data to an-
set of onsets and codas, the prediction of the nuclgpnt Ianguages such as Old High German (OHG),
is much harder. The nucleus similarity score de'yl!ddIe High German (MHG), Old English (OE),
creases to 50.7% and to 17.1% for German-Eniné}qIddle . _(MNL)’ Old Dutch (ONL), Proto or
respectively. Codas seem to be slightly easier to pr(\a(\-/eSt Germa_mc (PG, WG). I.\Iqturally,. we can only
dict than nuclei leading to a coda similarity score off® Pack in history as far as it is possible according
52.20% for German-Dutch and to 28.7% for Germant-o the information provided by the following litera-
English. ture: For Dutch, we use de Vries (1997) and the on-
line version of Philippa et al. (2004), for English, an
The comparison of the similarity scores from theetymological dictionary (Harper, 2001) and for Ger-
translation tasks of the two language pairs indicateg®an, Burch etal. (1998). We find that certain his-
that predicting the phonological correspondencgsric sound changes took place regularly, and thus,
from German to Dutch is much easier than fronthe results of these changes can be rediscovered in
German to English. These results supply statistic@ur synchronic classes. Figure 3 shows the historic
evidence that German is historically more closely rerelationship between the three languages. A poten-
lated to Dutch than to English. We do not believdial learner of a related language does not have to
that the difference in the similarity scores are due tbe aware of the historic links between languages but
the different size of the training corpora but rathehe/she can implicitly exploit the similarities such as
to their closer relatedness. Revealing phonologicéhe ones discovered in the classes.
relationships between languages is possible simply The relationship of words from different lan-
because the noisy training data comprise enough rguages can be caused by different processes: some
lated words to learn from them the similar structuravords are simply borrowed from another language
of the languages on the syllable-part level. and adapted to a new languageapagei-papegaai

1650 - present

Evaluation: Interpretation of the Classes
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class25  0.012 |

(parrot) is borrowed from Arabic and adapted to — —

- S 0.172 0.162
German gnd Dutch phonetlt_:s, where the /_g/ Is pro Srooar oo 0162
nounced in German as a voiced velar plosive and in 0122 0087

0.090 t 0.058
Dutch as an unvoiced velar fricative. : -
Class # 25 represents a class where the Dutch onsets
Other language changes are due to phonology;

. . fe more complex than the onsets in German. From
g the Olq Engllsh. wo_r@nus} (PG: muHs) was the Old High German worddf (E: sheep) the onset
subject to diphthongization and changedntouse

: : - /scl is assimilated in Modern German[&) whereas
(ImaUg) in Modern English. A similar process the Dutch onsefsx preserves the complex conso-

took place in German and Dutch, where the Samr?ant cluster from the West Germanic waskiepan
word changed to the German wolaus (MHG: (E: sheep, MNL: scaep)

mis) and to the Dutch wordhuis (MNL: muus).
On the synchronic level, we finhu and [aU] in

6.1.2 Nucleus classes

the same class of a German-English model {aud [ cass4 0054 ] )
and[Ul] in a German-Dutch model. There are also o 0260 o o721

U 0.112

Y 0079 o 0101857

au 0.072

other phonological processes which apply to the nu-

Fle" such as monophthonglzatlon, ralsmg, Iower\-Ne find in Class # 4 a lowering process. The Ger-
ing, backing and fronting. Gther phonological IO man short high back vowel /U/ can be often trans-
cesses can be observed in conjunction with CONSP=. 4 to the Dutch low back vowel /O/. The un-
nants, such as assimilation, dissimilation, deletio '

and insertion. Some of the above mentioned phon H_erlying processes are that the Dutch vowel is some-
) P Imes lowered from /i/ to /O/; e.g., the Dutch word

logical processes are the underlying processes of tggzond(E: healthy, MNL: ghesont, WG: gezwind)
subsequent described classes.

comes from the West Germanic wogegzwind In
Modern German, the same word changedeasund
(OHG: gisunt).

6.1 German-Dutch classes

According to our similarity scores presented in Secs.1.3 Coda classes
tion 5, the best onset model comprises 30 classes, l

class14  0.027 | |

the nucleus model 25 classes and the coda model 30 mo 0 Mo 0%
classes. We manually search for classes, which show NoP - 0.0% e
interesting sound correspondences. mst 0042 m__ 0058

Class # 14 represents codas where plural and infini-
tive suffixes /en/, as iMenschen-mense{ic: hu-
mans) orlaufen-lopen(E: to run), are reduced to a

6.1.1 Onset classes

l

class 20

0.016

[

p_ 0747
pf  0.094
r 0027
x 0025
f 0021

P
X

0.902
0.022

Schwa[@] in Dutch and thus appear in this class
with an empty coddNOP]. It also shows that cer-
tain German codas are assimilated by the alveolar

sounds /d/ and /s/ from the original bilabjed] to an
law which states that a West Germai¢ is often  podem) or inBeser(E: broom, MHG: lésem, OHG:
realized as gf] in German. The underlying phono- pesamo). In Dutch, the wordsodem(E: ground,
logical process is that sounds are inserted in a caiiNL: bodem, Greek: putham), andbezem(E:

man wordsphat (E: path) andphert (E: horse, L:

paraveeredus) became the affricaef] in Modern

[ class23  0.010 ] |

0476 o 0521
German. In contrast to German, Dutch preserved st 007e2 N oom
the simple onsets from the original word form, as st gﬁg% w00
i S| .
in paard (E: horse, MNL: peert) angad (E: path, t 00z s
rtst A .
MNL.: pat). k0021 & oot
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Class # 23 comprises complex German codas whialiphthongization in English usually applies to open
are less complex in Dutch. In the German wordyllables with the nucleus /o/, as shown in class # 8.
Arzt (E: doctor, MHG: arat), the complex codgst

emerges. However in Modern Dutchrts came
from MNL arst or arsate(Latin: archater). We can Class # 6 displays the present participle suffix /end/,
also find the rule that German codst of a 2nd which is realized in English as /ing/ (OE: -ende), as
person singular form of a verb are reducedNg in  in backend-baking

6.2.3 Coda classes

Dutch as inbringst-brengt(E: bring). [ cass6  0.056 | ]
nt 0.707 N 0.846
. N 0.075 NOP 0.072
6.2 German-English classes It 0058 nt 0041
. . NOP 0.049 v 0.009
The best German-English models contain 30 onset mt___ 0047 s 0.008

classes, 20 nucleus classes, and 10 coda class?s.
Our German-English models are noisier than the

German-Dutch ones, which again points at th&/e automatically generated two bilingual phono-
closer relation between the German and Dutch lexegical corpora. The data is classified by using
icon. However, when we analyze the 30 onan EM-based clustering algorithm which is new in
set classes, we find meaningful processes as ftirat respect that this method is applied to bilin-

Discussion

German-Dutch. gual onset, nucleus and coda corpora. The method
provides a probability model over bilingual sylla-
6.2.1 Onlsetcgslifse?m I ble parts which is exploited to measure the similar-
Lo ity between the language pairs German-Dutch and
2 oou ¢ osds German-English. The method is able to generalize
v oo o from the data and reduces the noise introduced by
sgr 0005 the automatic generation process. Highly probable

sound correspondences appear in very likely classes
Class # 23 shows that a complex German ofS@f  \yith 4 high probability whereas unlikely sound cor-
preserves the consonant cluster, asprechen(E:  respondences receive lower probabilities.
to speak, OHG: sprehhan, PG: sprekanan). Modem o, annroach differs from other approaches either
English, however, deleted the /r/ fsp, as inspeak i, the method used or in the different linguistic task.
(OE: sprecan). Another regularity can be found: the, 5l and Tiberius (2002) is based on mere counts
pglato-glveolaﬂS] in the German O_HSQSH IS T€- " of phoneme correspondences; Kondrak (2003) gen-
alized in English as the alveols] in [sp. Both g 4tes Algonquian phoneme correspondences which
the German wordpinnenand the English worépin - 516 nossible according to his translation models:
come fromspinnan(OHG, OE). Kondrak (2004) measures if two words are possi-
L chee® O0%1 | ‘ ble cognates; and Knight and Graehl (1998) focus
s g':[l);g ‘ on the back-transliteration of Japanese words to En-
§Iish. Thus, we regard our approach as a thematic
complement and not as an overlap to former ap-

s 0.617
z 0.143

Class # 3 displays the rule that in many loan word
the onset /c/ is realized in German[tg and in En-

glish as[s] in Akzent-accenfl_atin: accentus). proaches. .
The presented approach depends on the available
6.2.2 Nucleus classes resources. That means that we can only learn those
- phoneme correspondences which are represented in
v 0123 @ oz the bilingual data. Thus, metathesis which applies to
A 00 w0048 onsets and codas can not be directly observed as the

In some loan words, we find that an original /u/ or /okyllable parts are modeled separately. In the Dutch
becomes in German the long vowet| and in En- word borst (ONL: bructe), the /r/ shifted from the
glish the diphthond@U)], as inSofa-sofa(Arabic:  onset to the coda whereas in English and German
suffah) or inFoto-photo(Latin: Phosphorus). The (breast-Brus}, it remained in the onset. We are also
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Abstract

In this work, we examine the quality of
several statistical machine translation sys-
tems constructed on a small amount of
parallel Serbian-English text. The main
bilingual parallel corpus consists of about
3k sentences and 20k running words from
an unrestricted domain. The translation
systems are built on the full corpus as well
as on a reduced corpus containing only
200 parallel sentences. A small set of
about 350 short phrases from the web is
used as additional bilingual knowledge. In
addition, we investigate the use of mono-
lingual morpho-syntactic knowledge i.e.
base forms and POS tags.
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get language. Usually, the performance of a trans-
lation system strongly depends on the size of the
available training corpus. However, acquisition of
a large high-quality bilingual parallel text for the de-
sired domain and language pair requires lot of time
and effort, and, for many language pairs, is even not
possible. Besides, small corpora have certain advan-
tages - the acquisition does not require too much
effort and also manual creation and correction are
possible. Therefore there is an increasing number of
publications dealing with limited amounts of bilin-
gual data (Al-Onaizan et al., 2000; Nie3en and Ney,
2004).

For the Serbian language, as a rather minor and
not widely studied language, there are not many
language resources available, especially not parallel
texts. On the other side, investigations on this lan-
guage may be quite useful since the majority of prin-

i ciples can be extended to the wider group of Slavic
Slanguages (e.g. Czech, Polish, Russian, etc.).

to translate a source language sequefice. ., f;
into a target language sequenge. .., ey by max-
imising the conditional probability’r (e | f{). This In this work, we exploit small Serbian-English
probability can be factorised into the translatiorparallel texts as a bilingual knowledge source for
model probability P(f;|el) which describes the statistical machine translation. In addition, we in-
correspondence between the words in the source anektigate the possibilities for improving the trans-
the target sequence, and the language model protiation quality using morpho-syntactic information
bility P(e{) which describes well-formedness of thein the source language. Some preliminary transla-
produced target sequence. These two probabilitig®n results on this language pair have been reported
can be modelled independently of each other. Fan (Popovt et al., 2004; Popo@iand Ney, 2004),
detailed descriptions of SMT models see for exanbut no systematic investigation has been done so far.
ple (Brown et al., 1993; Och and Ney, 2003). This work presents several translation systems cre-

Translation probabilities are learnt from a bilin-ated with different amounts and types of training
gual parallel text corpus and language model probalata and gives a detailed description of the language
bilities are learnt from a monolingual text in the tarresources used.
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2 Language Resources 2.2.1 Assimil Language Course

2.1 Language Characteristics The electronic form of Assimil language course

Serbian, as a Slavic language, has a very rich inflegontains about 3k sentences and 25k running words
tional morphology for all open word classes. Ther®f various types of conversations and descriptions as
are six distinct cases affecting not only commonvell as a few short newspaper articles. Detailed cor-
nouns but also proper nouns as well as pronoung{S statistics can be seen in Table 1. Since the do-
adjectives and some numbers. Some nouns and daain of the corpus is basically not restricted, the vo-
jectives have two distinct plural forms depending oabulary size is relatively large. Due to the rich mor-
the number (if it is larger than four or not). Therephology, the vocabulary for Serbian is almost two
are also three genders for the nouns, pronouns, dimes larger than for English. The average sentence
jectives and some numbers leading to differences b&ngth for Serbian is about 8.5 words per sentence,
tween the cases and also between the verb particip@d for English about 9.5. This difference is mainly
for past tense and passive voice. caused by the lack of articles and omission of some
As for verbs, person and many tenses are egubject pronouns in Serbian .

pressed by the suffix, and the subject pronoun (€.9. The development and test set (500 sentences) are
|, we, it) is often omitted (similarly as in Spanish andrandomly extracted from the original corpus and the

Italian). In addition, negation of three quite Impor-rest is used for training (referred to as 2.6k).

tant verbs, “biti” (to be, auxiliary verb for past tense, _ _ o

conditional and passive voice), “imati” (to have) and In order.to' mvestlgaf[e the scenario WI'['h .extremely
“hteti” (to want, auxiliary verb for the future tense), SCarce training material, a reduced training corpus

is done by adding the negative particle to the verb d&eferred to as 200) has been created by random ex-
a prefix. traction of 200 sentences from the original training

As for syntax, Serbian has a quite free word or$°"PUS:

der, and there are no articles, neither indefinite nor The morpho-syntactic annotation of the En-
definite. glish part of the corpus has been done by the con-

All these characteristics indicate that morphostraint grammar parser ENGCG for morphological
syntactic knowledge might be very useful for staand syntactic analysis of English language. For each
tistical machine translation involving Serbian lanword, this tool provides its base form and sequence
guage, especially when only scarce amounts of pasf morpho-syntactic tags.

allel text are available. For the Serbian corpus, to our knowlegde there

is no available tool for automatic annotation of this
language. Therefore, the base forms have been in-
Finding high-quality bilingual or multilingual paral- troduced manually and the POS tags have been pro-
lel corpora involving Serbian language is a difficultvided partly manually and partly automatically us-
task. For example, there are several web-sites withg a statistical maximum-entropy based POS tagger
the news in both Serbian and English (some of thesimilar to the one described in (Ratnaparkhi, 1996).
in other languages as well), but these texts are onhirst, the 200 sentences of the reduced training cor-
comparable and not parallel at all. To our knowlpus have been annotated completely manually. Then
edge, the only currently available Serbian-Englisthe first 500 sentences of the rest of the training cor-
parallel text suitable for statistical machine transpus have been tagged automatically and the errors
lation is a manually created electronic version ohave been manually corrected. Afterwards, the POS
the Assimil language course which has been usadgger has been trained on the extended corpus (700
for some preliminary experiments in (Popoet al., sentences), the next 500 sentences of the rest are an-
2004; Popow and Ney, 2004). We have used thisotated, and the procedure has been repeated until
corpus for systematical investigations described ithe annotation has been finished for the complete
this work. corpus.

2.2 Parallel Corpora
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Table 1: Statistics of the Serbian-English Assimil corpus

] \ Serbian | English \
Training: original \ base forms| original \ no article
full corpus Sentences 2632 2632
(2.6Kk) Running Words + Punct 22227 24808 23308
Average Sentence Length 8.4 9.5 8.8
Vocabulary Size 4546 2605 2645 2642
Singletons 2728 1253 1211
reduced corpus Sentences 200 200
(200) Running Words + Punct 1666 1878 1761
Average Sentence Length 8.3 10.4 8.8
Vocabulary Size 778 596 603 600
Singletons 618 417 395
Dev+Test Sentences 500 500
Running Words + Punct. 4161 4657 4362
Average Sentence Length 8.3 9.3 8.7
Vocabulary Size 1457 1030 1055 1052
Running OOVs - 2.6k 12.1% 5.2% 4.8%
Running OOVs - 200 34.5% 27.6% 21.4%
OO0OVs - 2.6k 32.7% 19.5% 19.7%
OO0Vs - 200 76.2% 66.0% 66.8%
External Test Sentences 22 22
Running Words + Punct. 395 446 412
Average Sentence Length 18.0 20.3 18.7
Vocabulary Size 213 176 202 199
Running OOVs - 2.6k 44.3% 35.4% 32.1% | 34.7%
Running OQVs - 200 53.7% 44.6% 43.7% | 47.3%
OO0Vs - 2.6k 61.5% 45.4% 44.0% | 44.7%
OO0Vs - 200 74.6% 63.1% 63.9% | 64.8%

Table 2: Statistics of the Serbian-English short phrases

] \ Serbian [ English |
Phrases original | base forms|| original | no article
Entries 351 351 351 351
Running Words + Punct. 617 617 730 700
Average Entry Length 1.8 1.8 2.1 2.0
Vocabulary Size 335 303 315 312
Singletons 239 209 209 208
New Running 2.6k 20.6% 14.4% 11.8% | 11.8%
Words 200 50.6% 41.3% 36.7% | 37.8%
New Vocabulary 2.6k 30.1% 22.1% 21.6% | 21.2%
Words 200 70.7% 63.0% 63.2% | 63.1%
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2.2.2 Short Phrases 3.1 Transformations of the Serbian Text

The short phrases used as an additional bilingugl1.1 Base Forms
knowledge source in our exper.iments have been COI-Serbian full forms of the words usually contain
lected from the web and c_ontaln' about 350 Standa{ formation which is not relevant for translation into
words and short expressions with an average entE/nglish Therefore, we propose conversion of all
length of 1.8 words for Serbian and 2 words for Ens ' '

Serbian words in their base forms. Although for

i 0
glish. Table 2 shows that about 30% of words fromsome other inflected languages like German and

the phrase vocabulary are not present in the orig Spanish this method did not yield any translation

nal Serbian corpus and about 70% of those words . . . -
. . Improvement, we still considered it as promising be-

are not contained in the reduced corpus. For the o . . :
cause the number of Serbian inflections is consider-

English language those numbers are smaller, abOl’Bly higher than in the other two languages. Table 1

0 Te Tl 0
20% for the original corpus angl 69 % _for the red_uce@hows that this transformation significantly reduces
one. These percentages are indicating that this pay-

. e Serbian vocabulary size so that it becomes com-
allel text, although very scarce, might be an usefu .
- . . parable to the English one.
additional training material.

The phrases have also been morpho-syntacticaly1 2 Treatment of Verbs

annotated in the same way as the main corpus. Inflections of Serbian verbs might contain rel-

2.2.3 External Test evant information about the person, which is es-

In addition to the standard development and te@€cially important when the pronoun is omitted.
set described in Section 2.2.1, we also tested odferefore, we apply an additional treatment of the
translation systems on a short external parallel teXeros. Whereas all other word classes are still re-
collected from the BBC News web-site containflaced only by their base forms, for each verb a part
ing 22 sentences about relations between USA ai the POS tag referring to the person is taken and
Ukraine after the revolution. As can be seen in Talhe verb is converted into a sequence of this tag and
ble 1, this text contains very large portion of outts base form. For the three verbs described in Sec-
of-vocabulary words (almost two thirds of Serbiarfion 2.1, the separation of the negative particle is also
words and almost half of English words are not see@pplied: each negative full form is transformed into
in the training corpus), and has an average sententl® sequence of the POS tag, negative particle and

length about two times larger than the training corbase form. The detailed statistics of this corpus is
puUS. not reported since there are no significant changes,

only the number of running words and average sen-
3 Transformations in the Source Language tence length increase thus becoming closer to the

Standard SMT systems usually regard only fuIYalues of the English corpus.

forms of the words, so that t.ranslation pf full forms.3.2 Transformations of the English Text
which have not been seen in the training corpus is _ _
not possible even if the base form has been seeh2-1 Removing Articles
Since the inflectional morphology of the Serbian Since the articles are one of the most frequent
language is very rich, as described in Section 2.1, weord classes in English, but on the other side there
investigate the use of the base forms instead of tlae no arcticles at all in Serbian, we propose remov-
full forms to overcome this problem for the transla-ing the articles from the English corpus for trans-
tion into English. We propose two types of transdation into Serbian. Each English word which has
formations of the Serbian corpus: conversion of thbeen detected as an article by means of its POS tag
full forms into the base forms and additional treathas been removed from the corpus. In Table 1, it
ment of the verbs. can be seen that this method significantly reduces
For the other translation direction, we propose rethe number of running words and the average sen-
moving the articles in the English part of the corpusence length of the English corpus thus becoming
as the Serbian language does not have any. comparable to the values of the Serbian corpus.
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4 Translation Experiments and Results 4.2.1 Translation from Serbian into English

_ _ Error rates for the translation from Serbian into
4.1 Experimental Settings English are shown in Table 3 and some examples

In order to systematically investigate the impact o?_re _shown in Table 6,' It can be seen that there is a
the bilingual training corpus size and the effect ignificant decrease in all error rates when the full

of the morpho-syntactic information on the trans!o'™MS are replaced with their base forms. Since the

lation quality, the translation systems were traine&edundant information contained in the inflection is

on the full training corpus (2.6k) and on the re_removed, the system can better capture the relevant

duced training corpus (200), both with and With_im‘ormation and is capable of producing correct or

out short phrases. The translation is performed i?pproximatively correct translations even for unseen
both directions, i.e. from Serbian to English an ull forms of the words (marked by “UNKNOWN

other way round. For the Serbian to English trand the baseline result example). The treatment of the

lation systems, three versions of the Serbian corplY‘salr:bS ylerlldsfgome adldltllonal |mpr?v_en_1rert1)t|s.6_
have been used: original (baseline), base forms only rom the first translation example in Table 6 it can

(sr-base) and base forms with additional treatmerite S€€N how the problem of some out-of-vocabulary

of the verbs (sbase+v-pos). For the translation into!VOrds can be overcomed W'th the use of the bgse
rms. The second and third example are showing

Serbian, the systems were trained on two versions[ﬁ q £ 1h b he third
the English corpus: original (baseline) and withouf'® @dvantages of the verb treatment, the third one

articles (enno-article). illustrates the effect of separating the negative parti-

. . . . cle.
The baseline translgtlon sy_stem is the Alignment Reduction of the training corpus to only 200 sen-
Templates system W.'th scaling factors (Och angences (about 8% of the original corpus) leads to a
Ney, 2002). Word alignments are produced using

GIZA++ toolkit without trisati och and ss of error rates of about 45% relative. However,
OOIKIL without symmetrisa lon (Och an the degradation is not higher than 35% if phrases and
Ney, 2003). Preprocessing of the source data h

Horpho-syntactic information are available in addi-
been done before the training of the system, ther P y

¢ dificati £ the traini q H fion to the reduced corpus.
ore moditications ot fhe training and Search pro- . ;s of the phrases can improve the transla-

cedure were not necessary for the translation of tt'{%n quality to some extent, especially for the sys-
transformed source language corpora.

tems with the reduced training corpus, but these im-

Although the development set has been used [goyements are less remarkable than those obtained
optimise the scaling factors, results obtained for thigy, replacing words with the base forms.

set do not differ from those for the test set. There- 1pq pest system with the complete corpus as well

fore only the joint error rates (Development+Testys the best one with the reduced corpus use the

are reported. phrases and the transformed Serbian corpus where
As for the external test set, results for this text arene verb treatment has been applied.

reported only for the full corpus systems, since for ) o )

the reduced corpus the error rates are higher but tAe?-2  Translation from English into Serbian

effects of using phrases and morpho-syntactic infor- Table 4 shows results for the translation from En-

mation are basically the same. glish into Serbian. As expected, all error rates are

higher than for the other translation direction. Trans-

lation into the morphologically richer language al-

ways has poorer quality because it is difficult to find

The evaluation metrics used in our experimentthe correct inflection.

are WER (Word Error Rate), PER (Position- The performance of the reduced corpus is de-

independent word Error Rate) and BLEU (BiLin-graded for about 40% relative for the baseline sys-

gual Evaluation Understudy) (Papineni et al., 2002}Yem and for about 30% when the phrases are used

Since BLEU is an accuracy measure, we use Bnd the transformation of the English corpus has

BLEU as an error measure. been applied.

4.2 Translation Results
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Table 3: Translation error rates [%] for Serbiaknglish

Serbian— English Development+Test
Training Corpus| Method WER | PER| 1-BLEU
2.6k baseline 456 | 39.6| 70.0
2.6k sr_.base 435 | 38.2 68.9
2.6k sr.base+v-pos| 42.5 | 35.3| 66.2
2.6k+phrases | baseline 46.0 | 39.6| 69.5
2.6k+phrases | srbase 44,6 | 39.1 70.2
2.6k+phrases | srbase+v-pos| 42.1 | 35.3| 66.0
200 baseline 66.5 | 61.1 91.6
200 sr_.base 63.2 | 58.2| 90.3
200 sr.base+v-pos| 63.3 | 56.2 88.5
200+phrases baseline 65.2 | 59.5 90.2
200+phrases | srbase 62.3 | 56.9| 87.7
200+phrases sr.base+v-pos| 61.3 | 53.2 86.2

Table 4: Translation error rates [%)] for EnglistSerbian

English— Serbian Development+Test
Training Corpus| Method WER | PER| 1-BLEU
2.6k baseline 53.1 | 46.9 78.6
2.6k enno-article|| 52.6 | 47.2| 79.4
2.6k+phrases | baseline 52.5 | 46.5 76.6
2.6k+phrases | enno-article| 52.3 | 47.0| 79.6
200 baseline 73.6 | 68.0| 93.0
200 enno-article|| 71.5 | 66.5 93.4
200+phrases baseline 717 | 66.7| 92.3
200+phrases enno-article|| 67.9 | 62.9| 92.1

Table 5: Translation error rates [%] for the external test

Serbian— English External Test
Training Corpus| Method WER | PER | 1-BLEU
2.6k baseline 72.2 | 64.8 92.2
2.6k srbbase 66.8 | 61.4| 86.9
2.6k sr_base+v-pos| 67.5 | 61.4 88.3
2.6k+phrases | baseline 71.3 | 63.9 91.9
2.6k+phrases | srbase 67.0 | 61.2| 88.4

2.6k+phrases | srbase+v-pos| 69.7 | 61.2 89.8

English— Serbian

2.6k baseline 85.3 | 77.0 96.4
2.6k en.no-article 77.5 | 69.9 95.8
2.6k+phrases | baseline 84.1 | 74.9 95.2

2.6k+phrases | enno-article | 77.7 | 70.1| 94.8
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The importance of the phrases seems to be largerorphology of Serbian language are taken into ac-
for this translation direction. Removing the Englishcount. With the baseline system, we obtained about
articles does not have the significant role for thd5% WER for translation into English and about
translation systems with full corpus, but for the re53% for translation into Serbian.
duced corpus it has basically the same effect as theWe have systematically investigated the impact of
use of phrases. The best system with the reducéuk corpus size on translation quality, as well as the
corpus has been built with the use of phrases arichportance of additional bilingual knowledge in the
removal of the articles. form of short phrases. In addition, we have shown

Table 7 shows some examples of the translaticimat morpho-syntactic information is a valuable lan-
into Serbian with and without English articles. Al-guage resource for translation of this language pair.
though these effects are not directly obvious, it can Depending on the availability of resources and
be seen that removing of the redundant informatiotools, we plan to examine parallel texts with other
enables better learning of the relevant informatiotanguages, and also to do further investigations on
so that system is better capable of producing sematiis language pair. We believe that more refined use
tically correct output. The first example illustratesof the morpho-syntactic information can yield better
an syntactically incorrect output with the wrong in-results (for example the hierarchical lexicon model
flection of the verb (Eitam” means “I read”). The proposed in (NieRen and Ney, 2001)). We also be-
output of the system without articles is still not comdieve that the use of the conventional dictionaries
pletely correct, but the semantic is completely preeould improve the Serbian-English translation.
served. The second example illustrates an output
produced by the baseline system which is neithdiCknowledgement

syntactically nor semantically correct ("you have krpis work was partly funded by the Deutsche

drink”). The output of the new system still has anzqrschungsgemeinschaft (DFG) under the project

error in the verb, informal form of “you” instead of «gatistical Methods for Written Language Transla-
the formal one, but nevertheless both the syntax afg (Ne572/5).

semantics are correct.

4.2.3 Translation of the External Text
Translation results for thexternal testcan be i . .
Y. Al-Onaizan, U. Germann, U. Hermjakob, K. Knight,

seen in Table 5. As expected, the high Qumber of P. Koehn, D. Marcu, and K. Yamada. 2000. Translat-
out-of-vocabulary words results in very high error jng with scarce resources. Mational Conference on
rates. Certain improvement is achieved with the Artificial Intelligence (AAAL)

phrases, but the most significant improvements alt-?eter F. Brown, Stephen A. Della Pietra, Vincent J.

yielded by th_e use_of Serbian base forms _and '€~ Della Pietra, and Robert L. Mercer. 1993. The mathe-
moval of English articles. Verb treatment in this case matics of statistical machine translation: Parameter es-

does not outperform the base forms system, prob- timation. Computational Linguistics19(2):263-311.

ably beca.luse there are not so many different Ve@onja NieBen and Hermann Ney. 2001. Toward hi-
forms as in the other corpus, and only a small num- erarchical models for statistical machine translation
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Table 6: Examples of Serbian—English translations with and without transformations

to je suvishe skupo . = to biti suvishe skup . = to SG3 biti suvishe skup .
base forms verb treatment
| Sr— En (baseline) 1 Sr— En U Sr"— En
it is it is it is
too UNKNOWSBkupo . too expensive . too expensive .
on ne igra . = on ne igrati . = on ne SG3 igrati .
base forms verb treatment
| Sr— En (baseline) 1 Sr— En U Sr'— En
he he does not . he do not play . he does not play .
da , ali nemam = da , ali nemati = da , ai SG1 ne imati
mnogo vremena . base forms mnogo vreme . verb treatment mnogo vreme .
| Sr— En (baseline) 1 Sr— En U Sr"— En
yes , but | have yes , but not yes , but | have not got
much time . much time . much time .

Table 7: Examples of English—Serbian translations with and without transformations

you should not = you should not

read in bed . remove articles read in bed .

| En— Sr (baseline) JEn — Sr reference translation:

treba ne ne bi trebalo ne bi trebalo
Citam u krevet . Citate u krevet . da Citate u krevetu .
have a drink . = have drink .
remove articles

| En— Sr (baseline) JEn — Sr reference translation:
imate pijem . uzmi ne Sto za pi ce . uzmite ne 5to za pi ce .
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Abstract

This paper presents an original approach
to part-of-speech tagging of fine-grained
features (such as case, aspect, and adjec-
tive person/number) in languages such as
English where these properties are gener-
ally not morphologically marked.

The goals of such rich lexical tagging
in English are to provide additional fea-
tures for word alignment models in bilin-
gual corpora (for statistical machine trans-
lation), and to provide an information
source for part-of-speech tagger induction
in new languages via tag projection across
bilingual corpora.

First, we present a classifier-combination
approach to tagging English bitext with
very fine-grained part-of-speech tags nec-
essary for annotating morphologically
richer languages such as Czech and
French, combining the extracted fea-
tures of three major English parsers,
and achieve fine-grained-tag-level syntac-
tic analysis accuracy higher than any indi-
vidual parser.

Second, we present experimental results
for the cross-language projection of part-
of-speech taggers in Czech and French via
word-aligned bitext, achieving success-
ful fine-grained part-of-speech tagging of
these languages without any Czech or
French training data of any kind.
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1 Introduction

Most prior research in part-of-speech (POS) tag-
ging has focused on supervised learning over a
tagset such as the Penn Treebank tagset for En-
glish, which is restricted to features that are mor-
phologically distinguished in the focus language.
Thus the only verb person/number distinction made
in the Brown Corpus/Penn Treebank tagset is VBZ
(3rd-person-singular-present), with no correspond-
ing person/number distinction in other tenses. Sim-
ilarly, adjectives in English POS tagsets typically
have no distinctions for person, number or case be-
cause such properties have no morphological surface
distinction, although they do for many other lan-
guages.

This essential limitation of the Brown/Penn POS
subtag inventory to morphologically realized dis-
tinctions in English dramatically simplifies the prob-
lem by reducing the tag entropy per surface form
(the adjective tall has only one POS tag (JJ) rather
than numerous singular, plural, nominative, ac-
cusative, etc. variants), increasing both the stand-
alone effectiveness of lexical prior models and word-
suffix models for part-of-speech tagging.

However, for many multilingual applications, in-
cluding feature-based word alignment in bilingual
corpora and machine translation into morphologi-
cally richer languages, it is helpful to extract finer-
grained lexical analyses on the English side that
more closely parallel the morphologically realized
tagset of the second (source or target) language.

In particular, prior work on translingual part-of-
speech tagger projection via parallel bilingual cor-
pora (e.g. Yarowsky et al., 2001) has been limited
to inducing part-of-speech taggers in second lan-
guages (such as French or Czech) that only assign
tags at the granularity of their source language (i.e.
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the Penn Treebank-granularity distinctions from En-
glish). The much richer English tagsets achieved
here can allow these tagger projection techniques to
transfer richer tag distinctions (such as case and verb
person/number) that are important to the full analy-
sis of these languages, using only bilingual corpora
with the morphologically impoverished English.

For quickly retargetable machine translation, the
primary focus of effort is overcoming the extreme
scarcity of resources for the low density source lan-
guage. Sparsity of conditioning events for a transla-
tion model can be greatly reduced by the availabil-
ity of automatic source-language analysis. In this
research we attempt to induce models for the au-
tomatic analysis of morphological features such as
case, tense, number, and polarity in both the source
and target languages with this end in mind.

2 Prior Work

2.1 Fine-grained part-of-speech tagging

Most prior work in fine-grained part-of-speech tag-
ging has been limited to languages such as Czech
(e.g. Hajic¢ and Hladka, 1998) or French (e.g. Fos-
ter etc.) where finer-grained tagset distinctions are
morphologically marked and hence natural for the
language. In support of supervised tagger learn-
ing of these languages, fine-trained tagset inven-
tories have been developed by the teams above
at Charles University (Czech) and Université de
Montréal (French). The tagset developed by Haji¢
forms the basis of the distinctions used in this paper.

The other major approach to fine-grained tagging
involves using tree-based tags that capture grammat-
ical structure. Bangalore and Joshi (1999) have uti-
lized “supertags” based on tree-structures of various
complexity in the tree-adjoining grammar model.
Using such tags, Brants (2000) has achieved the au-
tomated tagging of a syntactic-structure-based set of
grammatical function tags including phrase-chunk
and syntactic-role modifiers trained in supervised
mode from a treebank of German.

2.2 Classifier combination for part-of-speech
tagging

There has been broad work in classifier combination

at the tag-level for supervised POS tagging mod-

els. For example, Marquez and Rodriguez (1998)

have performed voting over an ensemble of decision

tree and HMM-based taggers for supervised En-
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glish tagging. Murata et al. (2001) have combined
neural networks, support vector machines, decision
lists and transformation-based-learning approaches
for Thai part-of-speech tagging. In each of these
cases, annotated corpora containing the full tagset
granularity are required for supervision.

Henderson and Brill (1999) have approached
parsing through classifier combination, using bag-
ging and boosting for the performance-weighted
voting over the parse-trees from three anonymous
statistical phrase-structure-based parsers. However,
as their switching and voting models assumed equiv-
alent phrase-structure conventions for merger com-
patibility, it is not clear how a dependency parsing
model or other divergent syntactic models could be
integrated into this framework. In contrast, the ap-
proach presented below can readily combine syntac-
tic analyses from highly diverse parse structure mod-
els by first projecting out all syntactic analyses onto
a common fine-grained lexical tag inventory.

2.3 Projection-based Bootstrapping

Yarowsky et al. (2001) performed early work in the
cross-lingual projection of part-of-speech tag anno-
tations from English to French and Czech, by way of
word-aligned parallel bilingual corpora. They also
used noise-robust supervised training techniques to
train stand-alone French and Czech POS taggers
based on these projected tags. Their projected
tagsets, however, were limited to those distinctions
captured in the English Penn treebank inventory,
and hence failed to make many of the finer grained
distinctions traditionally assumed for French and
Czech POS tagging, such as verb person, number,
and polarity and noun/adjective case.

Probst (2003) pursued a similar methodology for
the purposes of tag projection, using a somewhat
expanded tagset inventory (e.g. including adjec-
tive number but not case), and focusing on target-
language monolingual modeling using morpheme
analysis. Cucerzan and Yarowsky (2003) addressed
the problem of grammatical gender projection via
the use of small seed sets based on natural gender.
Another distinct body of work addresses the prob-
lem of parser bootstrapping based on syntactic de-
pendency projection (e.g. Hwa et al. 2002), often
using approaches based in synchronous parsing (e.g.
Smith and Smith, 2004).



‘ Word ‘ Core H Prsn ‘ Num. ‘ Case ‘ Tnd ‘ Pol. ‘ Voi. ‘ | || VB | J1J | NN | Range |
POS Asp.
The DT 3 PL. Now. Person ® ® ® 17273
books NN 3 PL. NOM. Number ° ° ° SINGULAR
were VB 3 PL. PAST + AcT.
provoking VB 3 PL. PAsT- + ACT. PLURAL
PROG. Case L] [ NOMINATIVE
'augmef 'Iw 3 S. AcC. ACCUSATIVE
wi
their DT 3 PL. ‘WITH’ GENITIVE
curious Ny 3 PL. “WITH’ PREPOSITION-“IN’
titles NN 3 PL. TWITH’ PREPOSITION-‘OF’
Figure 1: Example of fine-grained English POS tags Degree . POSITIVE
COMPARATIVE
‘ Word ‘ Core H Prsn ‘ Num. ‘ Case ‘ Tnd ‘ Pol. ‘ Voice ‘ SUPERLATIVE
. F.;OTS —— — A, Tense . PAST
es L. M.
livres NN 3 PL. NoMm. PRESENT
provoquaient | VB 3 PL. PAST- ¥ AcT. FUTURE
PROGR. i
des DT 3 PL. Acc. Perfectl\_/lw he /-
rires NN 3 PL. Acc. Progressivity . +/-
avec ||3NT 5 5 _ Polarity . +/-
— N P Voice . ACTIVE / PASSIVE
curieux 2 3 PL. ‘WITH'

Figure 2: Example of fined-grained POS tags pro-
jected onto a French translation

3 Tagsets

We use Penn treebank-style part-of-speech tags as
a substrate for further enrichment (for all of the ex-
periments described here, text was first tagged us-
ing the fnTBL part-of-speech tagger (Ngai and Flo-
rian, 2001)). Each Penn tag is mapped to a core
part-of-speech tag, which determines the set of fine-
grained tags further applicable to each word. The
fine-grained tags applicable to nouns, verbs, and ad-
jective are shown in Table 1. This paper concentrates
on these most important core parts-of-speech.

The example English sentence in Figure 1 illus-
trates several key points about our tagset. Some of
the information we are interested in is already ex-
pressed by the Penn-style tags — the NN titlesis plu-
ral; the VBD wereis in the past tense. For these, our
goal is simply to make these facts explicit.

On the other hand, curious could also be meaning-
fully said to be semantically plural, and most impor-
tantly for us, the corresponding word in a translation
of this sentence into many other languages would
be morphologically plural. Similarly, the head verb
provoking is also semantically in the past tense, and
is likely to be translated to a past-tense form in many
languages, even though in this example the actual
tense marking is on were. We expect the ‘past-
ness’ of the action to be much more stable cross-
linguistically, than the particular division of labor
between the head word and the auxiliary. By prop-
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Table 1: The fine-grained POS inventory used for
English

agating these features from where they are explicit
to where they are not, we hope to make information
more directly available for projection. Another im-
portant class of information we would like to make
available concerns syntactic relations, which many
languages mark with morphological case. This is an
issue that involves deep, complex, and ambiguous
mappings, which we are not yet prepared to treat in
their fullness. For now, we observe that curious and
titles are both dominated by with.

Because of intent to mark whatever information
is recoverable, some of our tags require some in-
terpretation. For example, English has little or no
morphological realization of syntactic case, but the
essential information of case, relationship of a noun
with its governor, is recoverable from contextual
information, so we defined it in these terms. To
avoid loss of information, we chose to remain ag-
nostic about deeper analyses, such as the identifi-
cation of theta roles or predicate-argument relation-
ships, and restricted ourselves to a direct represen-
tation of surface relationships. We identified sub-
jects, direct and indirect objects, non-heads of noun
compounds, possessives, and temporal adjuncts, and
created a distinct tag for the objects of each distinct
preposition.

Our ideal would be to have as expansive and de-
tailed a tagset as possible, a ‘quasi-universal’ tagset
which could cover whatever set of distinctions might
be relevant for any language onto which we might



[ Feature |
Noun Number

Ant ecedent — CONSEQUENT |

NN — SINGULAR
NNS — PLURAL
VBD — PAST
(will|shall) RB* VB— FUTURE

Verb Tense

Figure 3: Examples of locally recoverable features

project our analysis. A completely universal tagset
would require that the morphological distinctions
made by the world’s languages come from a limited
pool of possibilities, based on non-arbitrary seman-
tic distinctions, and further would require that the
relevant semantic information be recoverable from
English text. The tagset we are using now is shaped
in part by exceptions to these conditions. For ex-
ample, we have put off implementing tagging of
gender given the notoriously arbitrary and inconsis-
tent assignment of grammatical gender across lan-
guages (although Cucerzan and Yarowsky (2003)
were able to show success on projection-based anal-
ysis of grammatical gender as well).

In the end, we have settled on a set of distinc-
tions very similar to those realized by the morpho-
logically richer of the European languages, with the
noticeable absence of gender. Table 1 describes the
features we chose on this basis (definiteness and
mood features were developed for English but not
projected to French or Czech, and are not treated in
this paper).

4 Methods - English Tagging

The features we tagged vary widely in their degree
of morphological versus syntactic marking, and the
difficulty of their monolingual English detection.
For some, tagging is simply a matter of explicitly
separating information contained in the Penn part-
of-speech tags, while others can be tagged to a high
degree of accuracy with simple heuristics based on
local word and part-of-speech tag patterns. These
include number for nouns and adjectives, person
(trivially) for nouns, degree for adjectives, polarity,
voice, and aspect (perfectivity and progressivity) for
verbs, as well as tense for some verbs. Figure 3
shows example rules for some of these easier cases.

The more difficult features are those whose de-
tection requires some degree of syntactic analysis.
These include case, which summarizes the relation
of each noun with its governor, and the agreement-
based features: we define person, number, and case
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for attributive adjectives by agreement with their
head nouns, number and person for verbs and predi-
cate adjectives by agreement with their subjects, and
tense for some verbs by agreement with their in-
flected auxiliaries.

We investigated four individual approaches for
the syntax-features — a regular-expression-based
quasi-parser, a system based on Dekang Lin’s Mini-
Par (Lin, 1993), a system based on the Collins parser
(Collins, 1999), and one based on the CMU Link
Grammar Parser (Sleator and Temperley, 1993),
as well as a family of voting-based combination
schemes.

4.1 Regular-expression Quasi-parser

The regular-expression “‘quasi-parser’ takes a direct
approach, using several dozen heuristics based on
regular-expression-like patterns over words, Penn
part-of-speech tags, and the output of the fnTBL
noun chunker. Use of the noun chunker fa-
cilitates identification of noun/dependent relation-
ships within chunks, and extends the range of pat-
terns identifying noun/governor relationships across
chunks.

The output of the quasi-parser consists of two
parts: a case tag for each noun in a sentence, and
a set of agreement links across which other features
are then spread. We call this a direct approach be-
cause the links are defined operationally, directly in-
dicating the spreading action, rather than represent-
ing any deeper syntactic analysis.

In the diagram of the example sentence below, an
arrow from one word to another indicates that the
former takes features from the latter. The example
also shows the context patterns by which the nouns
in the sentence receive case.

+<<<<<+ +>5>55555>55555>5>+

+>>>>+ +<<<<<<K <+ I +>>5>>5>>+

<The books> were provoking |aughter with <their curious titles>

[ Word |
laughter
titles
books

4.2 MiniPar and the CMU Link Grammar
Parser

For MiniPar, the Collins parser, and the CMU
link grammar parser, we developed for each a set
of minimal-complexity heuristics to transform the
parser output into the specific conceptions of depen-
dency and case we had developed for the first pass.

Cont ext Pattern — CASE TAG |

VB (genitive-NP)* e — ACCUSATIVE

with (genitive-NP)* e — PREP-WITH
default - NOMINATIVE




MiniPar produces a labeled dependency graph,
which yields a straightforward extraction of the in-
formation needed for this task. Case tagging is a
simple matter of mapping the set of dependency la-
bels to our case inventory. Our agreement links
are almost a subset of MiniPar’s dependencies (with
some special treatment of subject/auxiliary/main-
verb triads, as shown in the example sentence).

The figure below presents MiniPar’s raw output
for the example sentence, along with some exam-
ple dependency-label/case-tag rules. The agreement
links extracted from the dependency graph are iden-
tical (in this case) to those produced by the regular-
expression quasi-parser.

nod pconp-n

+ <L HLLLLLLLL L L L L L L L L L L L+

| | |

s | | gen |
+>>5555555555>5>+ | | +>>5555555555>5>+

| | | | | |

det | be | obj | | | mod |
+>>>+ +5>5>5>55>5>+<<LL <<+ | | +>>>>5>>+
[ | | | | | | |

- | . | | | ! _

The books were provoking laughter with their curious titles

[ Word | Dependency Label — CASETAG |

books S — NOMINATIVE
laughter obj — ACCUSATIVE
titles pconp-n: w t h — PREP-WITH

The output of the CMU link grammar parser has
properties similar to MiniPar, and thus tag extraction
was handled in a similar fashion.

4.3 Collins Parser

The Collins Parser produces a Penn-Treebank-style
constituency tree, with head labels. Although we
could have used the head-labels to operate on the
dependency graph as with MiniPar, we chose to con-
centrate on addressing the weakest point of our pre-
vious systems, the identification of case. Our algo-
rithm traces the path from each noun to the root of
the tree, stopping at the first node which we judged
to reliably indicate case.

We did not directly extract any further informa-
tion from the Collins parser output. Instead, the
remainder of the system is identical to the regular-
expression quasi-parser. However, because the sys-
tem uses nominative case to identify verb sub-
jects, we did expect to see some improvements in
agreement-based features as well.
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NPB VP
/\
The books
were VP
provoking NPB PP
|
laughter
with NPB
their curious titles
[ Word | Path to Root — CASETAG |

books NPB: S — NOMINATIVE
laughter NPB: VP: VP: VP: S — ACCUSATIVE
titles NPB: PP(with): VP: VP: S— PREP-WITH

4.4 Parser Combination

The fine-grained taggers based on the four partic-
ipating parsers exhibited significant differences in
their strengths and weaknesses, suggesting poten-
tial benefit from combining them. Lacking tag-level
numerical scores and development data for weight-
training, we restricted ourselves to simple voting
mechanisms. We chose to do all of the combinations
at the end of the process, voting separately on tags
for specific features of specific words. Without tag-
level probabilities from the one-best parser outputs,
we were still able to use the combination protocols
to achieve a coarse-grained confidence measure.

We compared a series of seven combination pro-
tocols of increasing leniency to investigate preci-
sion/recall tradeoffs. The strictest, ‘4:0’, produces
an output only when there are four votes for the fa-
vored tag, and no votes for any other. Analogously,
protocols *3:0’, ‘2:0” and “1:0” also allow no dissent,
but allow progressively more abstentions. Continu-
ing the sequence, protocol ‘2:1’ proposes a tag as
long as there is a clear majority, ‘2:2 as long as sup-
porters are not outhumbered by dissenters, and 1.3’
whenever possible. To break ties in the latter two
protocols, we favored first the CMU Link Parser,
then Collins, then MiniPar, then Regexp. (Lacking
sufficient labeled data for fine-tuning, we ordered
them arbitrarily.)

5 Evaluation of English POS Tagging

Before we began the development of our taggers, we
created standard tagging guidelines, and hand anno-
tated a 3013-word segment of the English side of the
Canadian Hansards, to be used for evaluation.



‘ Core

Feature

H MiniPar ‘ Regexp ‘ Collins ‘ CMU Link ‘ 1:3 ‘

POS
num 86.8 87.7 87.7 87.9 88.4
case 65.1 745 76.4 79.2 80.6
Y deg 100 100 100 100 100
‘French’ 86.8 87.7 87.7 87.9 884
‘ Czech’ 57.9 64.3 67.1 68.1 70.5
num 99.7 99.7 99.7 99.7 99.7
NN case 65.9 748 778 773 80.0
‘French’ 99.7 99.7 99.7 99.7 99.7
‘ Czech’ 65.0 74.8 77.8 77.2 79.9
num 772 64.8 65.5 66.8 78.1
tns 772 66.8 67.1 67.1 76.3
prsn 88.0 75.0 743 734 86.5
VB pol 96.3 96.6 96.6 96.6 96.6
voice 88.0 88.0 88.0 88.0 88.0
‘French’ 61.8 613 61.0 61.3 67.5
‘ Czech’ 61.3 61.1 60.8 61.1 67.1
overall “French’ 82.6 825 82.4 83.2 85.2
‘ Czech’ 62.5 67.8 69.4 70.5 733

Table 2: English tagging forced-choice accuracy

Core Feature Mini Regexp Collins CMU 2:0 1.0 1.2
POS Par Link
M 791 813 813 822 | 812 | 838 | 839
] case 721 79.2 830 789 | 781 | 791 | 842
deg 100 100 100 100 | 100 | 100 | 100
‘Crech 67.6 72.2 76.0 743 | 704 | 734 | 779
num 99.7 99.7 99.7 997 | 99.7 | 997 | 997
NN case 68.5 755 78.6 779 | 726 | 725 | 781
Crech 68.1 75.2 78.3 77 | 22 | 721 | 718
ns 780 65 8.7 680 | 687 | 783 | 783
num 72.7 61.3 61.2 613 | 611 | 761 | 771
prsn 77.2 66.5 654 639 | 640 | 783 | 790
VB pol 9.3 96.6 9.6 %5 | 965 | 965 | 966
voice 88.0 88.0 88.0 880 | 880 | 880 | 880
‘Frenchy 61.7 50.7 50.2 501 | 506 | 648 | 656
‘Crech 61.1 50.5 499 498 | 504 | 645 | 652
al "Frend 819 787 785 785 | 836 | 789 | 839
‘Crech 65.4 66.0 67.8 69.3 | 689 | 635 | 729
Table 3: English tagging F-measure
Noun Case
95 T T T T
9 Consensus ~~~® """ -
85 1.3 2:2 B
— 80 ° “\‘\ 21 b
g 75 ® Callins® e 7
g 70 ReIEXP  cmuLink ]
65 o ..1:02:0
60 [ MiniPar Tw-e30 7
55 040
50 1 1 1 1 1
70 75 80 85 90 95 100
Precision

Figure 4: Precision versus Recall — Noun case
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Figure 5: Precision versus Recall — Verb number
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Table 2 shows system accuracy on test data in
a forced-choice evaluation, where abstentions were
replaced by the most common tag for the each situa-
tion (the combination system is that one biased most
heavily towards recall.)

In addition to the individual features, we also list
‘pseudo-French’ and ‘pseudo-Czech’. These rep-
resent exact-match accuracies for composite fea-
tures comprising those features typically realized in
French or Czech POS taggers. For example, pseudo-
Czech verb accuracy of 67.1% indicates that for
67.1% of verb instances, the Czech-realized features
of number, tense, perfectivity, progressivity, polar-
ity, and voice were all correct. These give an indica-
tion of the quality of the starting point for crosslin-
gual bootstrapping to the respective languages.

Besides the forced-choice scenario, we were also
interested in the effect of allowing abstentions for
low-confidence cases. Table 3 shows the F-measure
of precision and recall for the individual systems, as
well as a range of combination systems. Figures 4
and 5 show (for two example features) the clear pre-
cision/recall tradeoff. Performance of the consensus
systems is higher than the individual parser-based
taggers at all levels of tag precision or recall.

Unfortunately, because MiniPar does its own inte-
grated tokenization and part-of-speech tagging, we
found that a significant portion of the errors seemed
to stem from discrepancies where MiniPar disagreed
on the segmentation or the core part-of-speech of the
words in question.

6 Cross-lingual POS Tag Projection and
Bootstrapping

Our cross-lingual POS tag projection process is sim-
ilar to Yarowsky et al. (2001). It begins by perform-
ing a statistical sentence and word alignment of the
bilingual corpora (described below), and then trans-
fers both the coarse- and fine-grained tags achieved
from classifier combination on the English side via
the higher confidence word alignments (based on the
intersection of the 1-best word alignments induced
from French to English and English to French. The
projected tags then serve as noisy monolingual train-
ing data in the source language.

There are several notable differences and exten-
sions: The first major difference is that the projected
fine-grained tag set is much more detailed, including
such additional properties as noun case, adjective



case and number, and verb person, number, voice,
and polarity. Because these span the subtag features
normally assumed for Czech and French part-of-
speech taggers, the projection work presented here
for the first time shows the translingual projection
and induction of full-granularity Czech and French
taggers, rather than the much less complete and
coarser-grained prior projection work.

The other major differences are in the method
of target-language monolingual tagger generaliza-
tion from the projected tags. We pursue a combi-
nation of trie-based lexical prior models and local-
agreement-based context models. The lexical prior
trie model, as illustrated in Figure 6 for noun num-
ber, shows how the hierarchically-smoothed lexical
prior conditioned on variable length suffixes can as-
sign noun number probabilities to both previously
seen words (with full-word-length suffixes stored)
and to new words in test data, based on backoff to
partially matching suffixes.

The context models are based on exploiting agree-
ment phenomena of the fine-grained tag features in
local context. P(subtag|context) for each word
token is a distance-weighted linear interpolation of
the posterior tag distributions assigned to its neigh-
bors by the trie-based lexical-prior model. Finally
P(subtag|word) is an equally-weighted linear inter-
polation of the P(subtag|affix) trie model probabil-
ity and P(subtag|context) context-agreement prob-
ability. Table 4 contrasts the performance of these
two models in isolation and combination.

All of these models condition their probabilities
first on the core part-of-speech of a word. We used
the methods of Yarowsky et al. (2001) to develop
a core part-of-speech tagger for French, based only
on the projected core tags, and used this as a basis
for fine-grained tags. We also ran experiments iso-
lating the question of fine-grained tagging, assuming
as input externally supplied core tags from the gold-
standard data. Table 4 shows results under both of
these assumptions.

For French, the training data was 15 million
words from the Canadian Hansards. Word align-
ments were produced using GIZA++ (Och and Ney,
2000) set to produce a maximum of one English
word link for each French word (i.e., a French-to-
English model). The test data was 111,000 words of
text from the Laboratoire de Recherche Appliquée
en Linguistique Informatique at the Université de
Montréal, annotated with person, number, and tense.
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[ Suffix ]| Pr(PLURAL]suffix) | Pr(SINGULAR[suffix) |

none 325 67.5
-S 66.5 335
-is 35.3 64.7
-ais 16.2 83.8

Figure 6: Example smoothed suffix trie probabilities
for French noun number

Several factors contributed to a fairly successful
set of results. The quality of the alignments is sub-
jectively very good; the morphological system of
French is relatively simple, and is a good match for
our suffix tries; Perhaps most importantly, the map-
pings between the English and the French tagsets
were for the most part simple and consistent. The
most prominent exception is verb tense.

For Czech, the training and testing data were from
the Reader’s Digest corpus. We used the first 63,000
words for testing, and the remaining 551,000 for
training, ignoring the translations of the test data and
the gold-standard tags on the training data.

It should be noted that the baseline (most likely
tag) performance is actually a supervised model us-
ing the target language monolingual goldstandard
data frequencies. The other results based on translin-
gual projection have no knowledge of the true most
likely tag, and hence occasionally underperform this
supervised “baseline”. Finally, one of the major rea-
sons for lower Czech performance is the currently
very poor quality of the bilingual word alignments.
However, using these diverse POS subtags as fea-
tures offers the potential for substantially improved
word alignment for morphologically rich languages,
one of the central downstream benefits of this re-
search.

7 Conclusion

We have demonstrated the feasibility of automati-
cally annotating English text with morphosyntactic
information at a much finer POS tag granularity than
in the standard Brown/Penn tagset, but at a POS de-
tail appropriate for tagging morphologically richer
language such as Czech or French. This is accom-
plished by using a classifier combination strategy to
integrate the analyses of four independent parsers,
achieving a consensus tagging with higher accuracy
than the best component parser.

Furthermore, we have demonstrated that the re-
sulting fine-grained POS tags can be successfully



Feature Engl. Baseline | Trie | Vic. | Comb.
Comb.
French (using correct core POS)
JJ-num 1:.0 67.0 97.6 | 98.0 98.2
2:0 67.0 97.6 | 98.0 98.2
NN-num 1.0 71.2 943 | 94.7 94.6
2:0 71.2 94.3 | 94.7 94.6
VB-num 1:0 53.4 91.9 | 732 90.2
2:0 53.4 73.1 | 72.7 73.2
VB-prsn 1:0 88.0 76.9 | 78.7 7.7
2:0 88.0 929 | 93.0 93.4
VB-tns 1:0 47.6 86.2 | 71.7 73.9
2:0 47.6 54,7 | 51.9 53.8
VB- 1:.0 26.8 48.1 | 434 | 471
exact 2:0 26.8 50.0 | 46.9 49.2
overall- 1:0 56.2 79.7 | 785 79.6
exact 2:0 56.2 80.3 | 79.6 80.3
French (induced core POS)
JJ-num 1:.0 65.1 87.1 1 89.0 88.3
2:0 65.1 87.1 | 89.1 88.5
NN-num 1.0 66.6 875 | 87.8 87.9
2:0 66.6 875 | 87.8 87.9
VB-num 1.0 53.0 86.4 | 79.5 84.9
2:0 53.0 71.2 | 70.6 71.4
VB-prsn 1: 75.1 67.4 | 69.7 68.4
2:0 75.1 80.4 | 80.8 81.1
VB-tns 1:.0 433 65.1 | 62.0 64.2
2:0 43.3 49.0 | 46.3 48.2
VB-exact 1.0 241 439 | 40.2 43.0
2:0 24.1 453 | 42.2 44.6
overall- 1:0 52.6 733 | 725 734
exact 2:0 52.6 73.7 | 73.1 73.9
Czech (using correct core POS)
JJ-num 1.0 28.0 46.4 | 445 451
2:0 28.0 47.0 | 44.6 46.0
JJ-case 1:0 7.1 40.2 | 42.0 40.9
2:0 7.1 379 | 414 40.2
JJ-deg 1.0 89.2 85.6 | 86.8 86.6
2:0 89.2 85.6 | 86.8 86.6
JJ-exact 1.0 6.9 206 | 19.1 194
2:0 6.9 209 | 20.0 20.5
NN-num 1:.0 52.2 71.1 | 69.6 70.7
2:0 52.2 71.1 | 69.4 70.8
NN-case 1.0 535 395 [ 39.2 39.6
2:0 53.5 39.2 | 386 39.1
NN-exact 1.0 23.7 295 | 28.7 29.4
2:0 23.7 29.7 | 28.6 29.4
VB-num 1:0 57.0 716 | 69.1 70.7
2:0 57.0 71.2 | 69.7 71.4
VB-prsn 1.0 55.1 65.9 | 64.9 65.4
2:0 55.1 65.3 | 64.3 64.9
VB-voice 1.0 97.3 93.2 [ 93.9 934
2:0 97.3 93.2 | 93.9 93.4
VB-pol 1:.0 911 93.8 | 89.9 92.1
2:0 91.1 93.8 | 89.9 92.1
VB-exact 1.0 9.9 152 | 146 14.8
2:0 9.9 145 | 143 14.7
overall- 1:0 15.7 226 | 21.8 22.2
exact 2:0 15.7 225 | 21.7 22.3

Table 4: Accuracy of induced fine-grained tag-
gers, by core part-of-speech, feature, underlying en-
glish tagger combination (eng-comb.), and french
tagging method (most likely tag — basdline, sug
fix trie (prefix trie for Czech verb polarity) — trig,
vicinity voting — vic., or trie/vicinity combination —
comb.)

projected to additional languages such as French and
Czech, generating stand-alone taggers capturing the
salient fine-grained POS subtag distinctions appro-
priate for these languages, including features such
as adjective number and case that are not morpho-
logically marked in the original English.
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Abstract

In this paper we describe an alignment
system that aligns English-Hindi texts
at the sentence and word level in
parallel corpora. We describe a simple
sentence length approach to sentence
alignment and a hybrid, multi-feature
approach to perform word alignment.
We use regression techniques in order
to learn parameters which characterise
the relationship between the lengths of
two sentences in parallel text. We use
a  multi-feature  approach  with
dictionary lookup as a primary
technique and other methods such as
local word grouping, transliteration
similarity (edit-distance) and a nearest
aligned neighbours approach to deal
with many-to-many word alignment.
Our experiments are based on the
EMILLE (Enabling Minority Language
Engineering) corpus. We obtained
99.09% accuracy for many-to-many
sentence alignment and 77% precision
and 67.79% recall for many-to-many
word alignment.

1 Introduction

Text alignment is not only used for the tasks such
as bilingual lexicography or machine translation
but also in other language processing applications
such as multilingual information retrieval and word
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sense disambiguation. ~ Whilst resources like
bilingual dictionaries and parallel grammars help
to improve Machine Translation (MT) quality, text
alignment, by aligning two texts at various levels
(i.e. documents, sections, paragraphs, sentences
and words), helps in the creation of such lexical
resources (Manning & Schiitze, 2003).

In this paper, we describe a system that aligns
English-Hindi texts at the sentence and word level.
Our system is motivated by the desire to develop
for the research community an alignment system
for the English and Hindi languages. Building on
this, alignment results can be used in the creation
of other Hindi language processing resources (e.g.
part-of-speech taggers). We present a simple
sentence length approach to align English-Hindi
sentences and a hybrid approach with local word
grouping and dictionary lookup as the primary
techniques to align words.

2 Sentence Alignment

Sentence alignment techniques vary from simple
character-length or word-length techniques to more
sophisticated techniques which involve lexical
constraints and correlations or even cognates (Wu
2000). Examples of such alignment techniques are
Brown et al. (1991), Kay and Roscheisen (1993),
Warwick et al. (1989), and the “align” programme
by Gale and Church (1993).

2.1 Length-based methods

Length-based approaches are computationally
better, while lexical methods are more resource

Proceedings of the ACL Workshop on Building and Using Parallel Texiges 5764,
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hungry. Brown et al. (1991) and Gale and Church
(1993) are amongst the most cited works in text
alignment work. Purely length-based techniques
have no concern with word identity or meaning
and as such are considered knowledge-poor
approaches. The method used by Brown et al.
(1991) measures sentence length in number of
words. Their approach is based on matching
sentences with the nearest length. Gale and Church
(1993) used a similar algorithm, but measured
sentence length in number of characters. Their
method performed well on the Union Bank of
Switzerland (UBS) corpus giving a 2% error rate
for 1:1 alignment.

2.2 Lexical methods

Moving towards knowledge-rich methods, lexical
information can be vital in cases where a string
with the same length appears in two languages.
Kay and Roscheisen (1993) tried lexical methods
for sentence alignment. In their algorithm, they
consider the most reliable pair of source and target
sentences, i.e. those that contain many possible
lexical correspondences. They achieved 96%
coverage on Scientific American articles after four
passes of the algorithm. Other examples of lexical
methods are Warwick et al. (1989), Mayers et al.
(1998), Chen (1993) and Haruno and Yamazaki
(1996).

Warwick et al. (1989) calculate the probability of
word pairings on the basis of frequency of source
word and the number of possible translations
appearing in target segments. They suggest using
a bilingual dictionary to build word-pairs. Mayers
et al. (1998) propose a method that is based on a
machine readable dictionary. Since bilingual
dictionaries contain base forms, they pre-process
the text to find the base form for each word. They
tried this method in an English-Japanese alignment
system and got accuracy of about 89.5% for 1-to-1
and 42.9% for 2-to-1 sentence alignments. Chen
(1993) constructs a simple word-to-word
translation model and then takes the alignment that
maximizes the likelihood of generating the corpus
given the translation model. Haruno and Yamazaki
(1996) use a POS tagger for source and target
languages and use an online dictionary to find
matching word pairs. Haruno and Yamazaki
(1996) pointed out that though dictionaries cannot
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capture context dependent keywords in the corpus,
they can be very useful to obtain information about
words that appear only once in the corpus. Lexical
methods for sentence alignment may also result in
partial word alignment. Given that lexical methods
can be computationally expensive, our idea was to
try a simple length-based approach similar to that
of Brown et al. (1991) for sentence alignment and
then use lexical methods to align words within
aligned sentences.

2.3 Algorithm

We use English-Hindi parallel data from the
EMILLE corpus for our experiments. EMILLE is
a 63 Million word electronic corpus of South Asian
languages, especially those spoken as minority
languages in UK. It has around 120,000 words of
parallel data in each of English, Hindi, Urdu,
Punjabi, Bengali, Gujarati, Sinhala and Tamil
(Baker et al., 2004).

T=[1:1,1:2 13,21, 31]
foreachte T
!
Obtain minimurmn (mind and masimum (masx)
length differences in number of waords, normalized
to percentages for alignment pairs of type t

¥
For all pre-aligned sentence pairs
of alignment type t, use
the following relation and count the
nurmber af correctly aligned pairs

|H - 1E] <§ * [H]
H; = Hindi sentence(s) in i pair
E, = English sentence(s) in i pair

¥
[ §=5 +0.01 |

no

Retms the value § that yielded
Fnaximum nurnber of correctly
aligned sentences of type t

Figure 2.1 Sentence Alignment Parameter

Learning algorithm



Table 2.1 Rules for the Sentence Alignment Algorithm

Rule It Hindi:English Alignment
H1 lhil - (le;l + lej1) < 0.17 * Iyl 1-To-2
H2 lhil - (lejl + lejl + lejol ) <0.17 * Ihyl 1-To-3
El lejl - (Thil + Thiyl ) < 0.17 * le;l 2-To-1
E2 lejl - ( Thil + Thil + Thiol ) <0.14 * lejl 3-To-1
Default (lejl=1hil) II (Rule HI and E1 Fails) 1-To-1

Examining the data, we observe that it is possible
to align one English sentence with one or more
Hindi sentences or vice-versa. In the method
described below, sentence length is calculated in
number of words. We define our task as that of
learning rules that characterise the relationship
between the lengths of two sentences in parallel
texts. We used 60 manually aligned paragraphs
from the EMILLE corpus, each with an average of
3 sentences, as a dataset for our learning task.
Initially we derived minimum and maximum
length differences in percentages for each of the
one-to-one, one-to-two and one-to-three parallel
sentence pairs. Later we used these values as input
to our algorithm to learn new rules that maximize
the probability of aligning sentences.

Learning: Let T =[1:1, 1:2, 1:3, 2:1, 3:1], a set of
possible alignment types between the English and
Hindi sentences. For each alignment type t € T,
minimum and maximum length differences in
number of words, normalized to percentages, can
be described as min, and max; For each alignment
type t € T, a constant parameter O, where J, €
[min; , min, + 0.01, min, + 0.02, ..., max, | was
learned using an algorithm described in figure 2.1.
d; is a value that describes the length relationship
between the sentences of a pair of type t. For
example, given a pair of one Hindi and two
English sentences and a value J,, where t = 1:2, it
is possible to check if these sentences can be
aligned with each other. Suppose for a given pair
of parallel sentences that consist of h; (Hindi
sentence at i position) and e; and ej; (English
sentences at j™ and j+1™ positions), let Ihy, le;l and
lej,| be the lengths of Hindi and English sentences.
h; ej and e, are said to have 1:2 alignment if [hyl -
(lejl + lejql) < 0.17 * Ihyl, ie. the difference
between the length of the Hindi sentence and the
length of the two consecutive English sentences is
less than (8=, = 0.17) times the length of the
Hindi sentence. Table 2.1 lists rules for different
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possible alignments. Before we decide on the final
alignment, we check each possibility of one Hindi
sentence being aligned with one, two or three
consecutive English sentences and vice-versa. We
use rules H1 and H2 to check the possibility of one
Hindi sentence being aligned with two or three
consecutive English sentences. Similarly, rules E1
and E2 are used to check the possibility of one
English sentence being aligned with two or three
consecutive Hindi sentences. If none of the rules
from H1, H2, E1 and E2 return true, we consider
the default alignment (1-To-1) between the English
and Hindi sentences. We give preference to the
higher alignment over the possible lower
alignments, i.e. given 1-To-2 and 1-To-3 possible
alignment mappings, we consider 1-To-3 mapping.
We tested our algorithm on parallel texts with total
of 3441 English-Hindi sentence pairs and obtained
an accuracy of 99.09%; i.e., the correctly aligned
pairs were 3410.

3 Word Alignment

Extending sentence alignment to word alignment is
a process of locating corresponding word pairs in
two languages. In some cases, a word is not
translated, or is translated by several words. A
word can also be a part of an expression that is
translated as a whole, and therefore the entire
expression must be translated as a whole (Manning
& Schiitze, 2003). We present a hybrid method for
many-to-many word alignment. Hindi is a partial
free order language where the order of word
groups in a Hindi sentence is not fixed, but the
order of words within groups is fixed (Ray et al.,
2003). According to Ray et al. (2003), fixed order
word group extraction is essential for decreasing
the load on the free word order parser. The word
alignment algorithm takes as input a pair of aligned
sentences and groups words in sentences of both
languages. We have observed a few facts about
the Hindi language. For example, there are no



articles in Hindi (Bal Anand, 2001). Since there
are no articles in Hindi, articles are aligned to null.

3.1 Local word grouping

A separate group is created for each token in the
English text. Every English word has one property
associated with it: the lemma of the word. This is
necessary because a dictionary lookup approach is
at the heart of our word alignment algorithm.
Verbs are used in different inflected forms in
different sentences. For a verb, it is common not
to find all inflected forms listed in a dictionary, i.e.
most dictionaries contain verbs only in their base
forms. Therefore we use a morphological analyzer
to find the lemma of each English word.

Word groups in Hindi are created using two
resources: a Hindi gazetteer list that contains a
large set of named entities (NE) and a rule file that
contains more than 250 rules. The gazetteer list is
available as a part of Hindi Gazetteer Processing
Resource in GATE (Maynard et al., 2003). For
each rule in the rule file, it contains the following
information:

1. Hindi Regular Expression (RE) for a word
or phrase. This must match one or more
words in the Hindi sentence.

2. Group name or a part-of-speech category.
Expected English word(s) (EEW) that this
Hindi word group may align to.

4. Expected Number of English words (NW)

that the Hindi group may align to.

5. In case a group of one or more English
words aligns with a group of one or more
Hindi words, information about the key
words (KW) in both groups. Key words
must match each other in order to align
English-Hindi groups.

6. A rule to convert the Hindi word into its
base form (BF).

Rules in the rule file identify verbs, postpositions,
noun phrases and also a set of words, whose
translation is expected to occur in the same order
as the English words in the English sentence. The
local word grouping algorithm considers one rule
at a time and tries to match the regular expression
in the Hindi sentence. If the expression is
matched, a separate group for each found pattern is
created. When a Hindi group is created, based on
its pattern type, one of the following categories is

e
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assigned to that group:

proper-noun | city job-title location

country number | day-unit date-unit
month-unit verb auxiliary pronoun
post-position | other

These rules have been obtained mainly through
consulting Hindi grammar material (Bal Anand,
2001 and Ta, 2002) and by observing the EMILLE
corpus. For example, consider the following rules:

No RE Cat EEW NW | KW BF

1 qraq num fifty two | 2

2 ()+ =T verb 1

3 | ()T verb 1 1,9 =41
4 | ()+FFE prep | for()+ | 2 1-2

5 EELEER] other | different | 1

i) “TgT“, “TZ ,”“TEL” are used to indicate the progressive tense. They
can be seen as analogous to the English (-ing) ending.

i) “F a1, and “d” are used as verb endings to indicate the habitual
tense. They must agree with subject number and gender.

iii) “r s a past tense conjunction of the verb “ZI9T”.

In the first rule, if we find a word “aTa=" (bavan)

in Hindi, we mark it as a “Number” and search for
the English string with two words that is equal to
the expected string “fifty two”. In the second rule,

we locate a string where the second word is “Tgr”

(raha). “1” in the fifth column specifies that the first

word is the keyword. We use the dictionary to
locate the word in the English sentence that
matches with the key word. If the English word is

located, we align “(.)+ ¥gr” with the English word
found. In the third rule, if we find a Hindi string
with two words where the first word ends with “

(te) and the second word is “J {the), we group them
as a verb. As specified in the sixth column, we
replace the characters “T *with “AT” (na) to convert

the first word into its base form (e.g. ‘“ITd 7gaate)
into ‘“STTAT” (gaana)). In the fourth rule, we align “X

F fora” with “For X, where “For” = “&F o3, As
specified in the fifth column, we align the first
word in Hindi with the second word in English. In
the final example, we group two words that are
identical to each other. For example: "< T 7"
(alag alag) which means “different” in English.

Such bigrams are used to stress the importance of a
word/activity in a sentence.
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Figure 3.1 Dictionary Lookup Approach

example, in rule 3 and 4 if the word ends with
either of T, & or ot followed by (PH), it is assumed

that the word is a verb. The formula for finding
the lemma of any Hindi verb is: infinitive = root

verb + ‘“Ar’. Sometimes it is possible to predict
the corresponding English translation. For
example, for the postposition ‘% |THA”, one is

likely to find the preposition “in front of” in the
English sentence. We store this information as an
expected English word(s) in Hindi Word Groups
(HWGs) and search for it in the English sentence.
In the case of rules 4 and 5, though the HWG
contains more than one word, only one is the actual
verb (key word) that is expected to be available in
a dictionary. We specify the index of this key
word in the HWG, so as to consider only the word
at the specified index to compare with key word in
English word group. If they match, the full HWG
is aligned to the word in English sentence.

3.2 Alignment Algorithm

After applying the local word grouping rules to the
Hindi sentence(s), based on their categories of
HWGs, we use four methods to process and align

HWGs with their respective English Word Groups.

1. Dictionary lookup approach (DL)
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2. Transliteration similarity approach (TS)
3. Expected English words approach (EEW)
4. Nearest aligned neighbour approach

Whilst the verbs and other groups are processed
with DL approach, HWGs with categories such as
proper nouns, city, job-title, location, and country
are processed with TS approach. HWGs such as
number, day-unit, date-unit, month-unit, auxiliary,
pronoun and postpositions, where the expected
English words are specified, are processed with
EEW approach. Sometimes the combination of
DL and TS is also used to identify the proper
alignment. At the end, nearest aligned neighbour
approach is used to align the unaligned HWGs.

Dictionary Lookup

The corpus we used in our experiments is encoded
in Unicode and therefore the word matching
process requires dictionary entries to be in Unicode
encoding. The only English-Hindi dictionary we
found is called, ‘“shabdakoSha” and is freely
available from (WWW2). In this dictionary, the
ITRANS transliteration system is followed, i.e.
Hindi entries are not written in the Devanagari
script, but in the Roman script. This dictionary has
around 15,000 English words, each with an
average of 4 relevant Hindi words. Following
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Figure 3.2 Nearest Aligned Neighbours Approach

ITRANS conventions, a parser was developed to
convert all these entries into Unicode. Given a set
of English and Hindi words, the algorithm
presented in figure 3.1 is executed to search for the
best translation among the English words.

Transliteration Similarity

A transliteration system maintains a consistent
correspondence between the alphabets of two
languages, irrespective of sound (Manning &
Schiitze, 2003). Given two words, each from a
different language, we define “transliteration
similarity” as the measure of likeness between
them. This could exist due to the word in one
language being inherited or adopted by the other
language, or because the word is a proper noun.
Named entities such as city, job-title, location,
country and proper nouns, all recognized by the
local word grouping algorithm are compared using
a transliteration similarity approach. This likeness
is counted using a table that lists letter
correspondences between the alphabets of two
languages. For the English and Hindi languages, it
is possible to come up with a table that defines
letter correspondence between the alphabets of two
languages. For example,

A>3, B>, Bh> ¥, Ch-> 4,
D> T, Dh > 4 andsoon...

A bidirectional mapping is established between
each character in the English and Hindi alphabets.
When DL is not able to find any specific English
word in dictionary, this approach is used to find the
transliteration similarity between the unaligned
words. Sometimes because the words in a Hindi
sentence are not spelled correctly, when DL issues
a query to dictionary, none of the Hindi words
appearing in a Hindi sentence match with the
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words returned from dictionary. We use a
dynamic programming algorithm “edit-distance” to
calculate  similarity between these words
(WWW3).  According to WWW3, “The edit
distance of two strings, sl and s2, is defined as the
minimum number of point mutations required to
change sl into s2, where a point mutation is one
of: change a letter, insert a letter or delete a
letter.” The lower the distance, the greater the
similarity. From our experiments of 100 proper
noun pairs, we found that if the similarity is greater
than 75%, the words can be reliably aligned with
each other. We consider a pair with the highest

similarity. E.g.: Aswani = gamt. Here we

remove vowels in both strings, except those that
appear at the start of words. After the removal of
vowels from the English and Hindi texts, the

resulting text would be: Aswn - Haq. The

Hindi text is then converted into English text using
the transliteration table: Aswn - Aswn. The two
texts are then compared using an “edit-distance”
algorithm.

Expected English word(s)

For HWGs which are categorised as numbers, job-
titles or postpositions, it is possible to specify the
expected English word or words that can be found
in the parallel English text. The algorithm retrieves
expected English word(s) from the HWGs and tries
to locate them in the English sentence. This
approach can be useful to locate one or more
English words that align with one or more Hindi

words. For example, the number “aaTer®” whose
equivalent translation in English is “forty two” has
two words in English, and the postposition “&

TaT=”, whose equivalent translation in English is

“in front of”’, has three words in English. These
are examples of many-to-many word alignment.



Nearest Aligned Neighbours

At the end of the first three stages of the word
alignment process, many words remain unaligned.
Here we introduce a new approach, called the
“Nearest Aligned Neighbours approach”. In
certain cases, words in English-Hindi phrases
follow a similar order. The Nearest Aligned
Neighbours approach works on this principle and
aligns one or more words with one of the English
words. A local word grouping algorithm, explained
in section 3.1, groups such phrases and tags them
as “group”. Considering one HWG at a time, we
find the nearest Hindi word that is already aligned
with one or more English word(s). We assume that
the words in English-Hindi phrases follow a
similar order and align the rest words in that group
accordingly. An example of alignment using the
Nearest Aligned Neighbours approach is given in
Figure 3.2. Word H4 is already aligned with ES,
and H3, HS5, H6 and H7 are yet to be aligned. The
local word grouping algorithm has tagged a
sequence of H4, HS, H6 and H7 as a single group.
At the same time, H6 and H7 are also grouped as a
single group. The algorithm searches for the
aligned Hindi word, which, in this case, is H4 and
aligns H5 with E6 and the group of H6 and H7
with E7.

4 Results

<EnglishSentence=-A fair deal and prosperity go hand in hand
<HindiSentence=T® 3ol Tigr i Tafg @r-T1T woad ¥ 1<
<EnglishWord=>A</EnglishWard=

<HindiVord =< Hindivordz

<Englishword=fair</EnglishWord:

<Hindit ord ==& HindiWords
<Englishword>deal</Englishiord=
<Hindiword>alar/Hindiword
<Englishword>and=</English¥ord:

<Hindivword 3= Hindiword=>
<EnglishWord>prosperity</English\word=

<Hindiv ord>wqhg-</Hindiword:

<Englishword>hand in hand</EnglishWoaord=>

<HindiwWord>8ry "</HindiWord:
<EnglishWord>go</EnglishWord=

<Hindiword>ded $</Hindiwaords

Figure 4.1 Word Alignment Results

We performed manual evaluation of our word
alignment algorithm on a set of parallel data
aligned at the sentence level. The parallel texts
consist of 3954 English and 5361 Hindi words
taken from the EMILLE Corpus. We calculate our
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results in terms of the number of aligned English
word groups. The precision is calculated as the
ratio of the number of correctly aligned English
word groups to the total number of English word
groups aligned by the system, and recall is
calculated as the ratio of the number of correctly
aligned English word groups to the total number of
English word groups created by the system. We
obtained 77% precision and 67.79% recall for
many-to-many word alignment. Figure 4.1 shows
an example of the word alignment results.

5 Future works

It would be useful to evaluate separate stages (i.e.
DL, TS, EEW and Nearest Aligned Neighbours
approach) in the word alignment algorithm
separately. We aim to do this as part of a failure
analysis of the algorithm in future. We also aim to
improve our alignment results by using Part-of-
Speech information for the English texts. We aim
to implement or use local word grouping rules for
the English text and improve our existing word
grouping rules for the Hindi texts. The Nearest
Aligned Neighbours approach suggests possible
alignments, but we are trying to integrate some
statistical ranking algorithms in order to suggest
more reliable pairs of alignment. Yarowsky et al.
(2001) introduced a new method for developing a
Part-of-Speech tagger by projecting tags across
aligned corpora. They used this technique to
supply data for a supervised learning technique to
acquire a French part-of-speech tagger. We aim to
use our English-Hindi word alignment results to
bootstrap a Part-of-Speech tagger for the Hindi
language.
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Word Alignment for Languages with Scar ce Resour ces
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Abstract

This paper presents the task definition,
resources, participating systems, and
comparative results for the shared task
on word alignment, which was organized
as part of the ACL 2005 Workshop on
Building and Using Parallel Texts. The
shared task included English—Inuktitut,
Romanian-English, and English-Hindi
sub-tasks, and drew the participation of ten
teams from around the world with a total of
50 systems.

1 Defining a Word Alignment Shared Task

The task of word alignment consists of finding cor-
respondences between words and phrases in parallel
texts. Assuming a sentence aligned bilingual corpus
in languages L1 and L2, the task of a word alignment
system is to indicate which word token in the corpus
of language L1 corresponds to which word token in
the corpus of language L2.

This year’s shared task follows on the success of
the previous word alignment evaluation that was or-
ganized during the HLT/NAACL 2003 workshop on
”Building and Using Parallel Texts: Data Driven Ma-
chine Translation and Beyond” (Mihalcea and Ped-
ersen, 2003). However, the current edition is dis-
tinct in that it has a focus on languages with scarce
resources. Participating teams were provided with
training and test data for three language pairs, ac-
counting for different levels of data scarceness: (1)
English—Inuktitut (2 million words training data),
(2) Romanian-English (1 million words), and (3)
English-Hindi (60,000 words).
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Similar to the previous word alignment evaluation
and with the Machine Translation evaluation exercises
organized by NIST, two different subtasks were de-
fined: (1) Limited resources, where systems were al-
lowed to use only the resources provided. (2) Un-
limited resources, where systems were allowed to use
any resources in addition to those provided. Such re-
sources had to be explicitly mentioned in the system
description.

Test data were released one week prior to the dead-
line for result submissions. Participating teams were
asked to produce word alignments, following a com-
mon format as specified below, and submit their out-
put by a certain deadline. Results were returned to
each team within three days of submission.

1.1  Word Alignment Output Format

The word alignment result files had to include one line
for each word-to-word alignment. Additionally, they
had to follow the format specified in Figure 1. Note
that the S|P and confidence fields overlap in their
meaning. The intent of having both fields available
was to enable participating teams to draw their own
line on what they considered to be a Sure or Probable
alignment. Both these fields were optional, with some
standard values assigned by default.

1.1.1 A Running Word Alignment Example

Consider the following two aligned sentences:
[English] <s snum=18> They had gone . </s>
[French] <s snum=18> IIs étaient allés . </s>

A correct word alignment for this sentence is:

1811
18 2 2
18 3 3
18 4 4
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sentence_no position_L1 position_L2 [S|P] [confidence]

where:

o sentence_no represents the id of the sentence within the
test file. Sentences in the test data already have an id as-
signed. (see the examples below)

o position_L1 represents the position of the token that is
aligned from the text in language L1; the first token in each
sentence is token 1. (not 0)

o position_L2 represents the position of the token that is
aligned from the text in language L2; again, the first token
is token 1.

o S|P can be either S or P, representing a Sure or Probable
alignment. All alignments that are tagged as S are also con-
sidered to be part of the P alignments set (that is, all align-
ments that are considered ”Sure” alignments are also part of
the ”"Probable” alignments set). If the S|P field is missing, a
value of S will be assumed by default.

o confidence is a real number, in the range (0-1] (1 meaning
highly confident, 0 meaning not confident); this field is op-
tional, and by default confidence number of 1 was assumed.

Figure 1: Word Alignment file format

stating that: all the word alignments pertain to sen-
tence 18, the English token 1 They aligns with the
French token 1 Ils, the English token 2 had aligns with
the French token 2 étaient, and so on. Note that punc-
tuation is also aligned (English token 4 aligned with
French token 4), and counts toward the final evalua-
tion figures.

Alternatively, systems could also provide an S|P
marker and/or a confidence score, as shown in the fol-
lowing example:

18111
182 2P
18 33 S
1844S1

0.7

with missing S|P fields considered by default S, and
missing confidence scores considered by default 1.
1.2 Annotation Guide for Word Alignments

The word alignment annotation guidelines are similar
to those used in the 2003 evaluation.

1. All items separated by a white space are consid-
ered to be a word (or token), and therefore have
to be aligned (punctuation included).

2. Omissions in translation use the NULL token,
i.e. token with id 0.

3. Phrasal correspondences produce multiple word-
to-word alignments.
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2 Resources

The shared task included three different language
pairs, accounting for different language and data
characteristics. Specifically, the three subtasks ad-
dressed the alignment of words in English—Inuktitut,
Romanian—-English, and English—Hindi parallel texts.
For each language pair, training data were provided to
participants. Systems relying only on these resources
were considered part of the Limited Resources sub-
task. Systems making use of any additional resources
(e.g. bilingual dictionaries, additional parallel cor-
pora, and others) were classified under the Unlimited
Resources category.

2.1 Training Data

Three sets of training data were made available. All
data sets were sentence-aligned, and pre-processed
(i.e. tokenized and lower-cased), with identical pre-
processing procedures used for training, trial, and test
data.

English-Inuktitut. A collection of sentence-
aligned English—Inuktitut parallel texts from the
Legislative Assembly of Nunavut (Martin et al.,
2003). This collection consists of approximately
2 million Inuktitut tokens (1.6 million words) and
4 million English tokens (3.4 million words). The
Inuktitut data was originally encoded in Unicode
representing a syllabics orthography (ganiujaagpait),
but was transliterated to an ASCII encoding of the
standardized roman orthography (galiujaagpait) for
this evaluation.

Romanian-English. A set of Romanian-English
parallel texts, consisting of about 1 million Romanian
words, and about the same number of English words.
This is the same training data set as used in the 2003
word alignment evaluation (Mihalcea and Pedersen,
2003). The data consists of:

e Parallel texts collected from the Web using a
semi-supervised approach. The URLs format
for pages containing potential parallel transla-
tions were manually identified (mainly from the
archives of Romanian newspapers). Next, texts
were automatically downloaded and sentence
aligned. A manual verification of the alignment
was also performed. These data collection pro-
cess resulted in a corpus of about 850,000 Roma-
nian words, and about 900,000 English words.



e Orwell’s 1984, aligned within the MULTEXT-
EAST project (Erjavec et al., 1997), with about
130,000 Romanian words, and a similar number
of English words.

e The Romanian Constitution, for about 13,000
Romanian words and 13,000 English words.

English-Hindi. A collection of sentence aligned
English-Hindi parallel texts, from the Emille project
(Baker et al., 2004), consisting of approximately En-
glish 60,000 words and about 70,000 Hindi words.
The Hindi data was encoded in Unicode Devangari
script, and used the UTF-8 encoding. The English—
Hindi data were provided by Niraj Aswani and Robert
Gaizauskas from University of Sheffield (Aswani and
Gaizauskas, 2005b).

2.2 Trial Data

Three sets of trial data were made available at the
same time training data became available. Trial sets
consisted of sentence aligned texts, provided together
with manually determined word alignments. The
main purpose of these data was to enable participants
to better understand the format required for the word
alignment result files. For some systems, the trial data
has also played the role of a validation data set used
for system parameter tuning. Trial sets consisted of
25 English—Inuktitut and English—Hindi aligned sen-
tences, and a larger set of 248 Romanian—-English
aligned sentences (the same as the test data used in
the 2003 word alignment evaluation).

2.3 Test Data

A total of 75 English—Inuktitut, 90 English—Hindi,
and 200 Romanian-English aligned sentences were
released one week prior to the deadline. Participants
were required to run their word alignment systems on
one or more of these data sets, and submit word align-
ments. Teams were allowed to submit an unlimited
number of results sets for each language pair.

2.3.1 Gold Standard Word Aligned Data

The gold standard for the three language pair align-
ments were produced using slightly different align-
ment procedures.

For English—Inuktitut, annotators were instructed to
align Inuktitut words or phrases with English phrases.
Their goal was to identify the smallest phrases that
permit one-to-one alignments between English and
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Inuktitut. These phrase alignments were converted
into word-to-word alignments in the following man-
ner. If the aligned English and Inuktitut phrases
each consisted of a single word, that word pair was
assigned a Sure alignment. Otherwise, all possi-
ble word-pairs for the aligned English and Inuktitut
phrases were assigned a Probable alignment. Dis-
agreements between the two annotators were decided
by discussion.

For Romanian-English and English-Hindi, anno-
tators were instructed to assign an alignment to all
words, with specific instructions as to when to as-
sign a NULL alignment. Annotators were not asked
to assign a Sure or Probable label. Instead, we had an
arbitration phase, where a third annotator judged the
cases where the first two annotators disagreed. Since
an inter-annotator agreement was reached for all word
alignments, the final resulting alignments were con-
sidered to be Sure alignments.

3 Evaluation Measures

Evaluations were performed with respect to four dif-
ferent measures. Three of them — precision, recall,
and F-measure — represent traditional measures in In-
formation Retrieval, and were also frequently used
in previous word alignment literature. The fourth
measure was originally introduced by (Och and Ney,
2000), and proposes the notion of quality of word
alignment.

Given an alignment A, and a gold standard align-
ment G, each such alignment set eventually consist-
ing of two sets Ags, Ap, and Gs, Gp corresponding
to Sure and Probable alignments, the following mea-
sures are defined (where 7' is the alignment type, and
can be set to either S or P).

_ |AT N GT|

Pr = A7 1)
ol

r= ©)
AER=1- 147 mﬁi" j; Né;m Grl (4

Each word alignment submission was evaluated in
terms of the above measures. Given numerous (con-
structive) debates held during the previous word align-
ment evaluation, which questioned the informative-
ness of the NULL alignment evaluations, we decided



| Team | System name | Description |
Carnegie Mellon University SPA (Brown et al., 2005)
Information Sciences Institute / USC ISI (Fraser and Marcu, 2005)
Johns Hopkins University JHU (Schafer and Drabek, 2005)
Microsoft Research MSR (Moore, 2005)
Romanian Academy Institute of Artificial Intelligence | TREQ-AL, MEBA, COWAL | (Tufis et al., 2005)
University of Maryland / UMIACS UMIACS (Lopez and Resnik, 2005)
University of Sheffield Sheffield (Aswani and Gaizauskas, 2005a)
University of Montreal JAPA, NUKTI (Langlais et al., 2005)
University of Sao Paulo, University of Alicante LIHLA (Caseli et al., 2005)
University Jaume | MAR (Vilar, 2005)

Table 1: Teams participating in the word alignment shared task

to evaluate only no-NULL alignments, and thus the
NULL alignments were removed from both submis-
sions and gold standard data. We conducted there-
fore 7 evaluations for each submission file: AER,
Sure/Probable Precision, Sure/Probable Recall, and
Sure/Probable F-measure, all of them measured on
no-NULL alignments.

4 Participating Systems

Ten teams from around the world participated in the
word alignment shared task. Table 1 lists the names
of the participating systems, the corresponding insti-
tutions, and references to papers in this volume that
provide detailed descriptions of the systems and addi-
tional analysis of their results.

Seven teams participated in the Romanian—-English
subtask, four teams participated in the English—
Inuktitut subtask, and two teams participated in the
English-Hindi subtask. There were no restrictions
placed on the number of submissions each team could
make. This resulted in a total of 50 submissions
from the ten teams, where 37 sets of results were
submitted for the Romanian-English subtask, 10 for
the English—Inuktitut subtask, and 3 for the English—
Hindi subtask. Of the 50 total submissions, there were
45 in the Limited resources subtask, and 5 in the Un-
limited resources subtask. Tables 2, 4 and 6 show all
of the submissions for each team in the three subtasks,
and provide a brief description of their approaches.

Results for all participating systems, including pre-
cision, recall, F-measure, and alignment error rate are
listed in Tables 3, 5 and 7. Ranked results for all sys-
tems are plotted in Figures 2, 3 and 4. In the graphs,
systems are ordered based on their AER scores. Sys-
tem names are preceded by a marker to indicate the
system type: L stands for Limited Resources, and U
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stands for Unlimited Resources.

While each participating system was unique, there
were a few unifying themes. Several teams had ap-
proaches that relied (to varying degrees) on an IBM
model of statistical machine translation (Brown et al.,
1993), with different improvements brought by dif-
ferent teams, consisting of new submodels, improve-
ments in the HMM model, model combination for
optimal alignment, etc. Se-veral teams used sym-
metrization metrics, as introduced in (Och and Ney,
2003) (union, intersection, refined), most of the times
applied on the alignments produced for the two di-
rections source—target and target-source, but also as
a way to combine different word alignment systems.
Significant improvements with respect to baseline
word alignment systems were observed when the vo-
cabulary was reduced using simple stemming tech-
niques, which seems to be a particularly effective
technique given the data sparseness problems associ-
ated with the relatively small amounts of training data.

In the unlimited resources subtask, systems made
use of bilingual dictionaries, human—contributed word
alignments, or syntactic constraints derived from a de-
pendency parse tree applied on the English side of the
corpus.

When only small amounts of parallel corpora were
available (i.e. the English-Hindi subtask), the use
of additional resources resulted in absolute improve-
ments of up to 20% as compared to the case when
the word alignment systems were based exclusively
on the parallel texts. Interestingly, this was not the
case for the language pairs that had larger training
corpora (i.e. Romanian—English, English—Inuktitut),
where the limited resources systems seemed to lead
to comparable or sometime even better results than
those that relied on unlimited resources. This suggests



that the use of additional resources does not seem to
contribute to improvements in word alignment quality
when enough parallel corpora are available, but they
can make a big difference when only small amounts
of parallel texts are available.

Finally, in a comparison across language pairs, the
best results are obtained in the English—Inuktitut task,
followed by Romanian-English, and by English—
Hindi, which corresponds to the ordering of the sizes
of the training data sets. This is not surprising since,
like many other NLP tasks, word alignment seems to
highly benefit from large amounts of training data, and
thus better results are obtained when larger training
data sets are available.

5 Conclusion

A shared task on word alignment was organized as
part of the ACL 2005 Workshop on Building and
Using Parallel Texts. The focus of the task was
on languages with scarce resources, with evalua-
tions of alignments for three different language pairs:
English—Inuktitut, English-Hindi, and Romanian-
English. The task drew the participation of ten teams
from around the world, with a total of 50 systems.
In this paper, we presented the task definition, re-
sources involved, and shortly described the partici-
pating systems. Comparative evaluations of results
led to insights regarding the development of word
alignment algorithms for languages with scarce re-
sources, with performance evaluations of (1) various
algorithms, (2) different amounts of training data, and
(3) different additional resources. Data and evalua-
tion software used in this exercise are available online
at http://www.cs.unt.edu/ rada/wpt05.
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System | Resources | Description

JHU.AER.Emphasis.| Limited A word alignment system optimized for the characteristics of English—Inuktitut,
exploiting cross-lingual affinities at sublexical level and regular patterns of
transliteration. The system is based on classifier combination, performed under an
AER target evaluation metric.

JHU.AER.Emphasis.Il | Limited Same as JHU.AER.Emphasis., but with a different minimum required votes for
classifier combination.

JHU.F-meas.Emphasis | Limited Same as JHU.AER.Emphasis.|, with classifier combination performed under an
F-measure target evaluation metric.

JHU.AER.F-meas.AER | Limited Same as JHU.AER.Emphasis.|, with a dual emphasis on AER and F-measure.

DualEmphasis

JHU.Recall.Emphasis Limited Same as JHU.AER.Emphasis.l, with an emphasis on recall.

LIHLA Limited A word alignment tool based on language-independent heuristics. Starts with
two bilingual probabilistic lexicons (source-target and target-source) generated
by NATools (http://natura.di.uminho.pt/natura/natura/), which are combined with
some language-independent heuristics that try to find the best alignment.

| UMIACS.limited | Limited [ A system using IBM Model 4 with improvements brought in the HMM model. |

UMontreal NUKTI Limited A system based on computation of log-likelihood ratios between all Inuktitut
substrings and English words. Alignment with a greedy strategy trying to
optimize this association score.

UMontreal.Japa-cart Limited A system based on alignment with a sentence aligner where Inuktitut and English
words are considered to be sentences. In case a n-m alignment is produced, its
cartesian product is output as the final alignment.

UMontreal.Japa-nukti Limited Same as UMontreal.Japa-cart except for the treatment of the n-m pairs

(n,m > 1). Instead of generating the cartesian product, this method uses
the NUKT]I approach to figure out which words should be aligned.

Table 2: Short description for English-Inuktitut systems

System

[ Ps | Rs | Fs | Pr | Rp | Fp | AER

Limited Resources

JHU.AER.Emphasis.lI
JHU.AER.Emphasis.|

UMIACS.limited
LIHLA

UMontreal.nukti
JHU.Recall.Emphasis
UMontreal.Japa-nukti
UMontreal.Japa-cart

JHU.F-measure.Emphasis

JHU.F-measure.AER.DualEmphasis | 19.71% | 92.15% | 32.47% | 84.38% | 58.62% | 69.18% | 14.25%

34.19% | 76.79% | 47.32% | 96.66% | 32.35% | 48.37% | 9.46%
28.15% | 82.25% | 41.95% | 90.65% | 39.35% | 54.88% | 11.49%

49.86% | 62.80% | 55.59% | 89.16% | 16.68% | 28.11% | 22.51%
46.55% | 73.72% | 57.07% | 79.53% | 18.71% | 30.30% | 22.72%
13.06% | 91.81% | 22.87% | 70.67% | 73.78% | 72.19% | 26.70%
12.24% | 86.01% | 21.43% | 63.09% | 65.87% | 64.45% | 34.06%
10.68% | 93.86% | 19.18% | 62.63% | 81.74% | 70.92% | 34.18%
9.62% | 67.58% | 16.84% | 51.34% | 53.60% | 52.44% | 46.64%
0.00% | 0.00% | 0.00% | 26.17% | 74.49% | 38.73% | 71.27%

Table 3: Results for English—Inuktitut
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| System | Resources | Description

CMU.SPA Limited A tool based on Symmetric Probabilistic Alignment (SPA), which maximizes

contiguous bi-directional translation probabilities of words in a selected source-language
n-gram and every possible target-language n-gram. Probabilities are derived
from a pair of probabilistic lexicons (source-to-target and target-to-source).
Only contiguous target-language n-grams are considered as possible alignments.

CMU.SPA Limited Same as CMU.SPA.contiguous, but both contiguous and non-contiguous target-

non-contiguous language n-grams are considered as possible alignments

CMU.SPA Unlimited | Same as CMU.SPA.contiguous, but the probabilistic dictionaries were modified

human-augmented with word and phrasal translations extracted from a human alignment of 204
sentences in the training corpus.

IS.RUN1 Limited A baseline word-based system using IBM Model 4 as implemented in Giza++.
Different subruns include the two separate direction En—-Ro, Ro—En, as well as
the “union”, “intersection”, and “refined” symmetrization metrics, as defined in
(Och and Ney, 2003)

ISI.RUN2 Limited Same as ISI.RUNL, but uses stems of size 4 (instead of words) for both English
and Romanian.

IS.RUN4 Limited A system using IBM Model 4 and a new submodel based on the intersection of
two starting alignments. The submodels are grouped into a log-linear model, with
optimal weights found through a search algorithm.

ISL.LRUN5S Limited Same as ISI.RUN4, but with 5 additional submodels, using translation tables for
En-Ro, Ro-En, backoff fertility, zero or non-zero fertility English word penalty

UJaume.MAR Limited A new alignment model based on a recursive approach. Due to its high compu-
tational cost, heuristics have been used to split training and test data in
smaller chunks.

USaoPaulo.LIHLA | Limited A word alignment tool based on language-independent heuristics. Starts with
two bilingual probabilistic lexicons (source-target and target-source) generated
by NATools (http://natura.di.uminho.pt/natura/natura/), which are combined with
some language-independent heuristics that try to find the best alignment.

MSR.word-align Limited A system based on competitive linking, first by log-likelihood-ratio association
score, then by probability of link given joint occurrence; constrained by measuring
monontonicity of alignment, and augmented with 1-2 and 2-1 alignments also
derived by competitive linking.

RACAIL.MEBA-V1 | Limited A system based on GIZA++, with a translation model constructed using seven
major parameters that control the contribution of various heuristics (cognates,
relative distance, fertility, displacement, etc.)

RACAI.MEBA-V2 | Limited Same as RACAI.MEBA-V1, but with a different set of parameters.

RACAI.TREQ-AL | Unlimited | Same as RACAI.MEBA-V1, but with an additional resource consisting of a
translation dictionary extracted from the alignment of the Romanian and
English WordNet.

RACAI.COWAL Unlimited | A combination (union) of RACAI.MEBA and RACAIL.TREQ-AL.

UMIACS.limited Limited A system using IBM Model 4 with improvements brought in the HMM model.

UMIACS.unlimited | Unlimited | Same as UMIACS.limited, but also integrating a distortion model based on

a dependency parse built on the English side of the parallel corpus.

Table 4: Short description for Romanian—English systems
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System | Ps | Rg ‘ Fg | Pp Rp | Fp | AER
Limited Resources
ISI.Run5.vocab.grow 87.90% | 63.08% | 73.45% | 87.90% | 63.08% | 73.45% | 26.55%
ISI.Run3.vocab.grow 87.93% | 62.98% | 73.40% | 87.93% | 62.98% | 73.40% | 26.60%
IS1.Run4.vocab.grow 88.31% | 62.75% | 73.37% | 88.31% | 62.75% | 73.37% | 26.63%
ISI.Run2.vocab.grow 81.84% | 66.28% | 73.25% | 81.84% | 66.28% | 73.25% | 26.75%
ISI.Run5.simple.union 81.78% | 65.35% | 72.64% | 81.78% | 65.35% | 72.64% | 27.36%
ISI.Run5.simple.normal 87.09% | 61.93% | 72.39% | 87.09% | 61.93% | 72.39% | 27.61%
ISI.Run4.simple.union 81.85% | 64.69% | 72.27% | 81.85% | 64.69% | 72.27% | 27.73%
ISI.Run5.simple.inverse 86.96% | 61.75% | 72.22% | 86.96% | 61.75% | 72.22% | 27.78%
I1SI.Run3.simple.normal 87.11% | 61.63% | 72.19% | 87.11% | 61.63% | 72.19% | 27.81%
I1SI.Run3.simple.union 81.00% | 65.05% | 72.15% | 81.00% | 65.05% | 72.15% | 27.85%
I1SI.Run4.simple.normal 87.20% | 61.34% | 72.02% | 87.20% | 61.34% | 72.02% | 27.98%
ISI.Run5.simple.intersect 93.77% | 58.33% | 71.93% | 93.77% | 58.33% | 71.93% | 28.07%
ISI.Run3.simple.intersect 93.92% | 57.96% | 71.68% | 93.92% | 57.96% | 71.68% | 28.32%
ISI.Run3.simple.inverse 86.12% | 61.37% | 71.67% | 86.12% | 61.37% | 71.67% | 28.33%
ISI.Run4.simple.inverse 87.33% | 60.78% | 71.67% | 87.33% | 60.78% | 71.67% | 28.33%
ISI.Run4.simple.intersect 94.29% | 57.42% | 71.38% | 94.29% | 57.42% | 71.38% | 28.62%
ISI.Run2.simple.inverse 81.32% | 63.32% | 71.20% | 81.32% | 63.32% | 71.20% | 28.80%
ISI.Run2.simple.union 70.46% | 71.31% | 70.88% | 70.46% | 71.31% | 70.88% | 29.12%
RACAI MEBA-V1 83.21% | 60.54% | 70.09% | 83.21% | 60.54% | 70.09% | 29.91%
ISI.Run2.simple.intersect 94.08% | 55.22% | 69.59% | 94.08% | 55.22% | 69.59% | 30.41%
ISI.Run2.simple.normal 77.04% | 63.20% | 69.44% | 77.04% | 63.20% | 69.44% | 30.56%
RACAI MEBA-V2 77.90% | 61.85% | 68.96% | 77.90% | 61.85% | 68.96% | 31.04%
ISI.Runl.simple.grow 75.82% | 62.23% | 68.35% | 75.82% | 62.23% | 68.35% | 31.65%
UMIACS.limited 73.77% | 61.69% | 67.19% | 73.77% | 61.69% | 67.19% | 32.81%
ISI.Runl.simple.inverse 72.70% | 57.34% | 64.11% | 72.70% | 57.34% | 64.11% | 35.89%
ISI.Runl.simple.union 59.96% | 68.85% | 64.10% | 59.96% | 68.85% | 64.10% | 35.90%
MSR.word-align 79.54% | 53.13% | 63.70% | 79.54% | 53.13% | 63.70% | 36.30%
CMU.SPA .contiguous 64.96% | 61.34% | 63.10% | 64.96% | 61.34% | 63.10% | 36.90%
CMU.SPA.noncontiguous 64.91% | 61.34% | 63.07% | 64.91% | 61.34% | 63.07% | 36.93%
ISI.Runl.simple.normal 67.41% | 56.81% | 61.66% | 67.41% | 56.81% | 61.66% | 38.34%
ISI.Runl.simple.intersect 93.75% | 45.30% | 61.09% | 93.75% | 45.30% | 61.09% | 38.91%
UJaume.MAR 54.04% | 64.65% | 58.87% | 54.04% | 64.65% | 58.87% | 41.13%
USaoPaulo.LIHLA 57.68% | 53.51% | 55.51% | 57.68% | 53.51% | 55.51% | 44.49%
Unlimited Resources

RACAI.COWAL 71.24% | 76.77% | 73.90% | 71.24% | 76.77% | 73.90% | 26.10%
RACAILTREQ-AL 82.08% | 60.62% | 69.74% | 82.08% | 60.62% | 69.74% | 30.26%
UMIACS.unlimited 72.41% | 62.15% | 66.89% | 72.41% | 62.15% | 66.89% | 33.11%
CMU.SPA .human-augmented | 64.60% | 60.54% | 62.50% | 64.60% | 60.54% | 62.50% | 37.50%

Table 5: Results for Romanian-English
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| System

| Resources | Description

USheffield

Unlimited

A multi-feature approach for many-to-many word alignment. Prior to word
alignment, a pattern-based local word grouping is performed for both English and
Hindi. Various methods such as dictionary lookup, transliteration similarity,
expected English word(s) and nearest aligned neighbors are used.

UMIACS.limited Limited

A system using IBM Model 4 with improvements brought in the HMM model.

UMIACS.unlimited | Unlimited

Same as UMIACS.limited, but also integrating a distortion model based on
a dependency parse built on the English side of the parallel corpus.

Table 6: Short description for English-Hindi systems

System | Pg ‘ Rg Fg | Pp | Rp ‘ Fp | AER
Limited Resources

UMIACS.limited | 42.90% \ 56.00% | 48.58% | 42.90% | 56.00% \ 48.58% | 51.42%
Unlimited Resources

USheffield 77.03% | 60.68% | 67.88% | 77.03% | 60.68% | 67.88% | 32.12%

UMIACS.unlimited

43.65% | 56.14% | 49.12% | 43.65% | 56.14% | 49.12% | 50.88%

Table 7: Results for English-Hindi
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Figure 2: Ranked results for Romanian-English data
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Abstract

Machine Translation (MT) as well as
other bilingual applications strongly
rely on word alignment. Efficient align-
ment technigues have been proposed
but are mainly evaluated on pairs of

2 JAPA: Word Alignment as a Sentence
Alignment Task

To adjust our systems, the organizers made avail-
able to the participants a set of 25 pairs of sen-
tences where words had been manually aligned.
A fast inspection of this material reveals that in

most of the cases, the alignment produced are

languages where the notion of word
is mostly clear. We concentrated our
effort on the English-Inuktitut word
alignment shared task and report on
two approaches we implemented and a
combination of both.

monotonic and involveceptsof n adjacent En-
glish words aligned to a single Inuktitut word.

Many sentence alignment techniques strongly
rely on the monotonic nature of the inherent align-
ment. Therefore, we conducted a first experi-
ment using an in-house sentence alignment pro-
gram called dpA that we developed within the
framework of the Arcade evaluation campaign
(Langlais et al., 1998). The implementation de-
tails of this aligner can be found in (Langlais,
Word alignment is an important step in exploiting 1997), but in a few words,APa aligns pairs of
parallel corpora. When efficient techniques havesentences by first grossly aligning their words
been proposed (Brown et al., 1993; Och and Neyymaking use of either cognate-like tokens, or a
2003), they have been mostly evaluated on "safespecified bilingual dictionary). A second pass
pairs of languages where the notion of word isaligns the sentences in a way simil&w the algo-
rather clear. rithm described by Gale and Church (1993), but

We devoted two weeks to the intriguing taskwhere the search space is constrained to be close
of aligning at the word level pairs of sentencesto the one delimited by the word alignment. This
of English and Inuktitut. We experimented with technique happened to be among the most accu-
two different approaches. For the first one, we rerate of the ones tested during the Arcade exercise.
lied on an in-house sentence alignment program To adapt APA to our needs, we only did two
(JaPA) where English and Inuktitut tokens were things. First, we considered single sentences as
considered as sentences. The second approagbcuments, and tokens as sentences (we define
we propose takes advantage of associations cona-token as a sequence of characters delimited by
puted between any English word and roughlyany

subsequence of Inuktitut characters seen in the 'Inour case, the score we seek to globally maximize by
dynamic programming is not only taking into account the

tralnlng corpus. We also investigated the Comb"length criteria described in (Gale and Church, 1993) but also
nation of both approaches. a cognate-based one similar to (Simard et al., 1992).
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1-1 0.406| 4-1 0.092| 4-2 0.015 We extended this line of work in order to achieve
2-1 0.172| 5-1 0.038| 5-2 0.011 word alignment.

3-1 0.123] 7-1 0.027| 3-2 0.011

3.1 Association Score

Table 1: The 9 most frequent English-Inuktitut o martin et al. (2003) pointed out, the strong ag-
patterns observed on the development set. A t0t@|ytinative nature of Inuktitut makes it necessary
of 24 different patterns have been observed. (4 consider subunits of Inuktitut tokens. This is

reflected by the large proportion of token types

) ) . . and hapax words observed on the Inuktitut side
white space). Second, since in its default settlng(,)f the training corpus, compared to the ratios ob-

JAPA on_Iy considers-m senten_ce-apgn_ment Pat- served on the English side (see table 3).
terns withn,m € [0, 2], we provided it with a new

pattern distribution we computed from the devel- \ Inutktitut % \ English %
opment corpus (see Table 1). It is interesting t0 igkens! 2 153034 3992208

note that although English and Inuktitut have very types 417407 19.4 27127 068
different word systems, the length ratio (in char- hapax | 337798 80.9 8792 324
acters) of the two sides of thERAIN corpus is
1.05. Table 3: Ratios of token types and happax words

Each pair of documents (sentences) were thein the TRAIN corpus.
aligned separately withapa. 1-n andn-1

alignments identified byAPA where output with- The main idea presented in (Martin et al., 2003)
out further processing. Since the word alignmenis to compute an association score between any
format of the shared task do not account directlyEnglish word seen in the training corpus and all
for n-m alignments ig,m > 1) we generated the the Inuktitut substrings of those tokens that were
cartesian product of the two sets of words for allseen in the same region. In our case, we com-
thesen-m alignments produced by8A. puted a likelihood ratio score (Dunning, 1993) for
The performance of this approach is reportedall pairs of English tokens and Inuktitut substrings
in Table 2. Clearly, the precision is poor. This of length ranging from 3 to 10 characters. A max-
is partly explained by the cartesian product we reimum of 25000 associations were kept for each
sorted to whem-m alignments were produced by English word (the top ranked ones).
JaPA. We provide in section 4 a way of improving  To reduce the computation load, we used a suf-

upon this scenario. fix tree structure and computed the association
scores only for the English words belonging to the

Prec. Rec. F-meas. AER test corpus we had to align. We also filtered out

2234 7817 3475  74.59 Inuktitut substrings we observed less than three

times in the training corpus. Altogether, it takes

about one hour for a good desktop computer to

produce the association scores for one hundred

English words.

3 NukTI: Word and Substring We normalize the association scores such that
Alignment for each English word, we have a distribution of

likely Inuktitut substringss: >, pur(sle) = 1.

Table 2: Performance of the8a alignment tech-
nique on thebev corpus.

Matrtin et al. (2003) documented a study in build-
ing and using an English-Inuktitut bitext. They 3.2 Word Alignment Strategy

described a sentence alignment technique tunedur approach for aligning an Inuktitut sentence
for the specificity of the Inuktitut language, and of K tokensIX with an English sentence af

described as well a technique for acquiring cortokensEY (whereK < N)? consists of finding
respondent pairs of English tokens and Inuktitut—; ) )
As a matter of fact, the number of Inuktitut words in

substrings. The mOt'Vat'on' beh"_]d their work W_asthe test corpus is always less than or equal to the number of
to populate a glossary with reliable such pairsEnglish tokens for any sentence pair.
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K — 1 cutting pointscc(, k1) (cx € [I, N —1])  search space. We first computed a split of the En-
on the English side. A frontier; delimits adja- glish sentence int& adjacent regiong!* by vir-
cent English wordiﬂ(‘;’;ﬁrl that are translation of tually drawing a diagonal line we would observe
the single Inuktitut word. With the convention if a character in one language was producing a
thatcy = 0, cxk = N andci_1 < ¢, we can for- constant number of characters in the other one.
mulate our alignment problem as seeking the besAn initial word alignment was then found by sim-
word alignmentd = A(I{|E{) by maximizing:  ply tracking this diagonal at the word granularity

level.
K Having this split in hand (line 1 of Table 4), we
A = argmax H PR EcF 4 1)™ x p(dy)™? move each cutting point around its initial value
o k=1 starting from the leftmost cutting point and going

) (1_) rightward. Once a locally optimal cutting point
wheredy, = c; —ci—1 is the number of English ¢ heen found (that is, maximizing the score of

words associated tf;; p(dy) is the prior proba- o ation 1), we proceed to the next one directly
bility that d;, English words are aligned to a single  its right.
Inuktitut word, which we computed directly from
Table 1; andv; andas are two weighting coeffi- 3.4 Results
cients.

We tried the following two approximations to
computep(Ix|EcF  ,1). The second one led to
better results.

We report in Table 4 the performance of different
variants we tried as measured on the development
set. We used these performances to select the best
configuration we eventually submitted.
Ck

max,—. _,+1 p(Ik‘EJ) i

p(Ik|ECC,’j_1+1) ~ . or varlant. Prec. Rec. F-m. AER
jeen 11 PUEIEj) start (diag) | 51.7 53.66 52.66 49.54

. _ greedy (word)| 61.6 63.94 62.75 35.93
We c_an|dered sever.al ways qf computing the greedy (best) | 63.5 6592 64.69 34.21
probability that an Inuktitut token is the transla-

tion of an English oner; the best one we found Table 4. Performance of severalukTi align-
being: ment techniques measured on tiev corpus.

P(I|E) = > Apur(s|E) + (1 — N)pipma(s| E)
sel

It is interesting to note that the starting point

L . of the greedy search (line 1) does better than our
where the summation is carried over all sub-_ . S
. first approach. However, moving from this ini-
stringss of I of 3 characters or moreyy;,.(s|E) : . . :
. . oo . tial split clearly improves the performance (line
is the normalized log-likelihood ratio score de- .
. . . 3). Among the greedy variants we tested, we no-
scribed above angd;;,.2(s|E) is the probability . . .
: : ticed that putting much of the weight on the
obtained from an IBM model 2 we trained after .
. . - IBM model 2 yielded the best results. We also no-
the Inuktitut side of the training corpus was seg-

mented using a recursive procedure optimizing atllced thalp(dy) in equation 1 did not helm was

R o Close to zero). A character-based model might
frequency-based criterion\ is a weighting coef- .
ficient have been more appropriate to the case.

We tried to directly embed a model trained4 combination of JAPA and NUKTI
on whole (unsegmented) Inuktitut tokens, but no-
ticed a degradation in performance (line 2 of Ta-One important weakness of our first approach lies

ble 4). in the cartesian product we generate whanal
produces an-m (n,m > 1) alignment. Thus,
3.3 A Greedy Search Strategy we tried a third approach: we applyudTi on

Due to its combinatorial nature, the maximiza-any n-m alignment APA produces as if this ini-

tion of equation 1 was barely tractable. There-ial alignment were in fact two (small) sentences

fore we adopted a greedy strategy to reduce th# align,n- andmword long respectively. We can
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therefore avoid the cartesian product and select Ouridea of redefining word alignment as a sen-
word alignments more discerningly. As can betence alignment task did not work well; but at the
seen in Table 5, this combination improved oversame time, we adapted poorlgrh to this task.
JaPA alone, while being worse thanuXTi alone.  In particular, APA does not benefit here from all
the potential of the underlying cognate system be-
5 Results cause of the scarcity of these cognates in very

. . . small sequences (words).
We submitted 3 variants to the organizers. The If we had to work on this task again, we would

performances for each method are gathered in T consider the use of a morphological analyzer. Un-
ble 5. The order of merit of each approach wa b g yzer

Sfortunately, it is only after the submission dead-

consistent with the performance wg measured Oﬂne that we learned of the existence of such a tool
theDEV corpus, the best method being theRri for Inuktitu®

one. Curiously, we did not try to propose &Byre
alignment but did receive a credit for it for two of Acknowledgement

the variants we submitted.
We are grateful to Alexandre Patry who turned

variant | T. | Prec. Rec. F-m. AER  the Jpaaligner into a nicely written and efficient

JAPA P [26.17 7449 3873 71.27 C++program.

JaPA+ | S | 9.62 67.58 16.84
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Abstract

This paper presents a set of techniques for bitext word align-
ment, optimized for a language pair with the characteristics of
Inuktitut-English. The resulting systems exploit cross-lingual
affinities at the sublexical level of syllables and substrings, as
well as regular patterns of transliteration and the tendency to-
wards monotonicity of alignment. Our most successful systems
were based on classifier combination, and we found different
combination methods performed best under the target evalua-
tion metrics of F-measure and alignment error rate.

1 Introduction

Conventional word-alignment methods have been suc-
cessful at treating many language pairs, but may be lim-
ited in their ability to generalize beyond the Western Eu-
ropean language pairs for which they were originally
developed, to pairs which exhibit more complex diver-
gences in word order, morphology and lexical granular-
ity. Our approach to Inuktitut-English alignment was to
carefully consider the data in identifying difficulties par-
ticular to Inuktitut-English as well as possible simplify-
ing assumptions. We used these observations to construct
a novel weighted finite-state transducer alignment model
as well as a specialized transliteration model. We com-
bined these customized systems with 3 systems based
on IBM Model 4 alignments under several methods of
classifier combination. These combination strategies al-
lowed us to produce multiple submissions targeted at the
distinct evaluation measures via a precision/recall trade-
off.

2 Special Characteristics of the

Inuktitut-English Alignment Problem
Guided by the discussion of Inuktitut in Mallon (1999),
we examined the Nunavut Hansards training and hand-
labeled trial data sets in order to identify special chal-
lenges and exploitable characteristics of the Inuktitut-
English word alignment problem. We were able to iden-
tify three: (1) Importance of sublexical Inuktitut units;
(2) 1-to-N Inuktitut-to-English alignment cardinality; (3)
Monotonicity of alignments.

2.1 Typesand Tokens

Inuktitut has an extremely productive agglutinative mor-
phology, and an orthographic word may combine very
many individual morphemes. As a result, in Inuktitut-
English bitext we observe Inuktitut sentences with many
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fewer word tokens than the corresponding English sen-
tences; the ratio of English to Inuktitut tokens in the
training corpus is 1.85." This suggests the importance of
looking below the Inuktitut word level when computing
lexical translation probabilities (or alignment affinities).
To reinforce the point, consider that the ratio of training
corpus types to tokens is 0.007 for English, and 0.194 for
Inuktitut. In developing a customized word alignment
solution for Inuktitut-English, a major goal was to han-
dle the huge number of Inuktitut word types seen only
once in the training corpus (337798 compared to 8792
for English), without demanding the development of a
morphological analyzer.

2.2 Alignment

Considering English words in English sentence order,
4.7% of their alignments to Inuktitut were found to be
retrograde; that is, involving a decrease in Inuktitut word
position with respect to the previous English word’s
aligned Inuktitut position. Since this method of counting
retrograde alignments would assign a low count to mass
movements of large contiguous chunks, we also mea-
sured the number of inverted alignments over all pairs
of English word positions. That is, the sum

ST S T S e (e Diaer(en (1if i1 > ia)
was computed over all Inuktitut alignment sets I (e, x),
for e the English sentence and z the English word po-
sition. Dividing this sum by the obvious denominator
(replacing (1 if 43 > i2) with (1) in the sum) yielded a
value of 1.6% inverted alignments.

Table 1 shows a histogram of alignment cardinalities
for both English and Inuktitut. Ninety-four percent of
English word tokens, and ninety-nine percent of those
having a non-null alignment, align to exactly one Inuk-
titut word. In development of a specialized word aligner
for this language pair (Section 3), we made use of the
observed reliability of these two properties, monotonic-
ity and 1-to-N cardinality.

3 Alignment by Weighted Finite-State

Transducer Composition
We designed a specialized alignment system to handle
the above-mentioned special characteristics of Inuktitut-

I'Though this ratio increases to 2.21 when considering only longer
sentences (20 or more English words), ignoring common short, formu-
laic sentence pairs such as| (Hudson Bay ) | (sanikiluaq) |.
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% Words Having Specified Alignment Cardinality
NULL 1 2 3 415|6 7
English 5194 | <1 <1 0100 0
Inuktitut 3143 | 20 14 10|53 2

Table 1: Alignment cardinalities for English-Inuktitut word
alignment, computed over the trial data.

English alignment. Our weighted finite-state transducer
(WFST) alignment model, illustrated in Figure 1, struc-
turally enforces monotonicity and 1-to-N cardinality, and
exploits sublexical information by incorporating associ-
ation scores between English words and Inuktitut word
substrings, based on co-occurrence in aligned sentences.
For each English word, an association score was com-
puted not only with each Inuktitut word, but also with
each Inuktitut character string of length ranging from
2 to 10 characters. This is similar to the technique de-
scribed in Martin et al. (2003) as part of their construc-
tion of a bilingual glossary from English-Inuktitut bi-
text. However, our goal is different and we keep all the
English-Inuktitut associations, rather than selecting only
the “best” ones using a greedy method, as do they. Addi-
tionally, before extracting all substrings from each Inuk-
titut word, we added a special character to the word’s
beginning and end (e.g., makkuttut — _makkuttut_), in
order to exploit any preferences for word-initial or -final
placement.

The heuristic association score chosen was
p(word.|word;) x p(word;|word,.), computed over all
the aligned sentence pairs. We have in the past observed
this to be a useful indicator of word association, and it
has the nice property of being in the range (0,1].

The WEST aligner is a composition of 4 transduc-
ers.> The structure of the entire WFST composition en-
forces monotonicity, Inuktitut-to-English 1-N cardinal-
ity, and Inuktitut word fertilities ranging between 1 and
7. This model was implemented using the ATT finite-
state toolkit (Mohri et al., 1997). In Figure 1, [1] is
a linear transducer mapping each English position in a
particular English test sentence to the word at that posi-
tion. It is constructed so as to force each English word
to participate in exactly 1 alignment. [2] is a single-state
transducer mapping English word to Inuktitut substrings
(or full words) with weights derived from the association
scores.? [3] is a transducer mapping Inuktitut substrings
(and full words) to their position in the Inuktitut test sen-
tence. Its construction allows a single Inuktitut position
to correspond to multiple English positions, while en-
forcing monotonicity. [4] is a transducer regulating the
allowed “fertility” values of Inuktitut words; each Inuk-
titut word is permitted a fertility of between 1 and 7. The
fertility values are assigned the probabilities correspond-
ing to observed relative frequencies in the trial data, and

2Bracketed numbers in the following discussion refer to the compo-
nent transducers as illustrated in Figure 1.
3Transducers [2] and [4] are shared across all sentence decodings.
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in regards to elders and youth i want to make general comments

AR )4

pijjutigillugu innatugait anma makkuttut ugausi gakainnarumajunga

O OO0 O 0O O O Oy

elders/_inna (0.90)
elders/_innat (1.09)
general/_ugausi (4.54)
and/_amma (.49)

and/_am (.54)

youth/_makku (1.10)
youth/_makkuttut_ (3.89)
regards/_pijjutigillugu_ (3.49)

and/_amm (.49) regards/_pijjuti (2.98) [ 2]
J;] jut/ N nnal2 _an.1/3 _ma.<ku/4 akainnar/5
illug/L atugal2 —amm/3  kkutt/4 sjungals
_pijjutigillugu_/1 _innatugait /2 _amma /3 _makkuttut /4 _uqausigakainnarumajunga /5
o_ .0 .0 .0 _.O_ .
<epsilon> <epsilon> <epsilon> <epsilon> <epsilon> [ 3]
Cepsilon> L
(0.82) <epsilon>
/— 0o/ o ilon> ©082) /Z‘ ,
on>
Sepsilon> / *
O <epsilon> <epsilon>
156 /\ /\ €ps st
56 o @] @] N\ (L56) o /‘ YaYe <epsilon> :
<epsilon> /\ /\ /\ <epsilon>| | <epsilon> /
(9 O7 10 O O @9 O /‘\ 1) /\ o /\\ O~ <epsilon>

[4]

Figure 1: WFST alignment system in composition order, in-
stantiated for an example sentence from the development (trial)
data. To save space, only a representative portion of each ma-
chine is drawn. Transition weights are costs in the tropical
(min,+) semiring, derived from negative logs of probabilities
and association scores. Nonzero costs are indicated in paren-
theses.

are not conditioned on the identity of the Inuktitut word.

4 English-Inuktitut Trandliteration

Although in this corpus English and Inuktitut are both
written in Roman characters, English names are signifi-
cantly transformed when rendered in Inuktitut text. Con-
sider the following English/Inuktitut pairs from the train-
ing corpus: Chartrand/saaturaan, Chretien/kurittian
and the set of training corpus-attested Inuktitut render-
ings of Williams, Campbell, and M cL ean shown in Ta-
ble 2(A) (which does not include variations containing
the common -mut lexeme, meaning “to [a person]” (Mal-
lon, 1999)).

Clearly, not only does the English-to-Inuktitut trans-
formation radically change the name string, it does so
in a nondeterministic way which appears to be influ-
enced not only by the phonological preferences of Inuk-
titut but also by differing pronunciations of the name in
question and possibly by differing conventions of trans-
lators (note, for example, maklain versus mikliin for
McL ean).

We trained a probabilistic finite-state transducer
(FST) to identify English-Inuktitut transliterated pairs
in aligned sentences. Training string pairs were ac-
quired from the training bitext in the following manner.
Whenever single instances of corresponding honorifics
were found in a sentence pair — these included the cor-
respondences (Ms , mis); (Mrs , missa/missis); (Mr ,



@A) ®3)
Williams McL ean Kk sh
ailiams makalain k -42 s 72
uialims makkalain q -62
uilialums maklaain w
uiliam maklain b u  -5.8
uiliammas | maklainn p 43 v -6.1
uiliams maklait v 50
uilians makli [o]
uliams maklii z a -4.2
viliams makliik j 52 | aa -46
makliin s -58 | uw -49
Campbéll | maklin u 5.1
kaampu malain ch
kaampul matliin s -5.6 u
kaamvul miklain k -68 | uw -55
kamvul mikliin u -5.6
miklin a -62

Table 2: (A) Training-corpus-attested renderings of Williams,
Campbell, and McLean. (B) Top learned Inuktitut substi-
tutions and their log probabilities for several English (shown
underlined) orthographic characters (and character sequences).
Where top substitutions for English characters are shown, none
equal or better were omitted.

mista/mistu) — the immediately following capitalized En-
glish words (up to 2) were extracted and the same num-
ber of Inuktitut words were extracted to be used as train-
ing pairs. Thus, given the appearance in aligned sen-
tences of “Mr. Quirke” and “mista kuak”, the training
pair (Quirke,kuak) would be extracted. Common dis-
tractions such as “Mr Speaker” were filtered out. In or-
der to focus on the native English name problem (Inuk-
titut name rendering into English is much less noisy) the
English extractions were required to have appeared in a
large, news-corpus-derived English wordlist. This pro-
cedure resulted in a conservative, high-quality list of 434
unique name pairs. The probabilistic FST model we se-
lected was that of a memoryless (single-state) transducer
representing a joint distribution over character substitu-
tions, English insertions, and Inuktitut insertions. This
model is identical to that presented in Ristad and Yianilos
(1997). Prior to training, common English digraphs (e.g.,
“th” and “sh”) were mapped to unique single characters,
as were doubled consonants. Inuktitut “ng” and common
two-vowel sequences were also mapped to unique single
characters to elicit higher-quality results from the memo-
ryless transduction model employed. Some results of the
transducer training are displayed in Table 2(B). Proba-
bilistic FST weight training was accomplished using the
Dyna modeling language and DynaMITE parameter op-
timization toolkit (Eisner et al, 2004). The translitera-
tion modeling described here differs from such previous
transliteration work as Stalls and Knight (1998) in that
there is no explicit modeling of pronunciation, only a di-
rect transduction between written forms.

In applying transliteration on trial/test data, the
following criteria were used to select English words for
transliteration: (1) Word is capitalized (2) Word is not in
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the exclusion list.* For the top-ranked transliteration of
the English word present in the Inuktitut sentence, all
occurrences of that word in that sentence are marked as
aligned to the English word.

We have yet to evaluate English-Inuktitut translitera-
tion in isolation on a large test set. However, accuracy
on the workshop trial data was 4/4 hypotheses correct,
and on test data 2/6 correct. Of the 4 incorrect test
hypotheses, 2 were mistakes in identifying the correct
transliteration, and 2 mistakes resulted from attempting
to transliterate an English word such as “Councillors”
which should not be transliterated. Even with a rela-
tively low accuracy, the transliteration model, which is
used only as an individual voter in combination systems,
is unlikely to vote for the incorrect choice of another sys-
tem. Its purpose under system combination is to push a
good alignment link hypothesis up to the required vote
threshold.’

5 1BM Modd 4 Alignments

As a baseline and contributor to our combination sys-
tems, we ran GIZA++ (Och and Ney, 2000), to produce
alignments based on IBM Model 4. The IBM align-
ment models are asymmetric, requiring that one lan-
guage be idenitifed as the “e” language, whose words
are allowed many links each, and the other as the “f” lan-
guage, whose words are allowed at most one link each.
Although the observed alignment cardinalities naturally
suggest identifying Inuktitut as the “e” language and En-
glish as the “f” language, we ran both directions for com-
pleteness.

As a crude first attempt to capture sublexical corre-
spondences in the absence of a method for morpheme
segmentation, we developed a rough syllable segmenter
(spending approximately 2 person-hours), ran GIZA++
to produce alignments treating the syllables as words,
and chose, for each English word, the Inuktitut word or
words the largest number of whose syllables were linked
to it.

In the nomenclature of our results tables, giza++ syl-
labized refers to the latter system, giza++ E(1)-1(N) rep-
resents GIZA++ run with English as the “e” language,
and giza++ E(N)-1(1) sets English as the “f”” language.
6 System Performance and Combination

Methods
We observed the 4 main systems (3 GIZA++ variants and
WEST) to have significantly different performance pro-
files in terms of precision and recall. Consistently, WEST

4Exclusion list was compiled as follows: (a) capitalized words in
2000 randomly selected English training sentences were examined,
Words such as Clerk, Federation, and Fisheries, which are frequently
capitalized but should not be transliterated, were put into the exclusion
list; in addition, any word with frequency > 50 in the training corpus
was excluded, on the rationale that common-enough words would have
well-estimated translation probabilities already. 50 may seem like a
high threshold until one considers the high variability of the transliter-
ation process as demonstrated in Table 2(A).

SRefer to Section 6 for detailed descriptions of voting.



SYSTEM | p| R] FJ|AER]H/TI

Individual system performance Trial Data

gizat++ E(1)-I(N) 63.4 | 266 | 375 | 329 0.42

giza++ E(N)-I(1) 682 | 59.4 | 635 | 286 0.87

giza++ syllabized 83.6 | 445 | 58.1 | 183 0.53

WEST 703 | 72.7 | 715 | 27.8 1.03

Combination system performance Trial Data

F/AER Emphasis 854 | 635 | 729 | 123 0.74

AER Emphasis (1) | 92.6 | 442 | 59.9 8.8 0.48

AER Emphasis (2) | 95.1 | 38.0 | 543 9.5 0.40

F Emphasis 748 | 77.6 | 76.2 | 21.9 1.04

Recall Emphasis 66.9 | 82.1 | 73.8 | 28.9 1.23

Individual system performance Test Data

gizat++ E(1)-I(N) 497 [ 186 | 27.0 | 452 037

giza++ E(N)-1(1) 64.6 | 562 | 60.1 | 32.7 0.87

giza++ syllabized 849 | 440 | 579 | 156 0.52

WEST 654 | 68.3 | 66.8 | 33.7 1.04

(submitted) Combination system performance Test Data

F/AER Emphasis | 84.4 | 58.6 | 69.2 | 14.3 0.69

AER Emphasis(1) | 90.7 | 39.4 | 549 | 11.5 0.43

AEREmphasis(2) | 96.7 | 323 | 484 | 95 0.33

F Emphasis 70.7 | 73.8 | 72.2 | 26.7 1.04

Recall Emphasis 62.6 | 81.7 | 70.1 | 34.2 1.31

Table 3: System performance evaluated on trial and test data.
The precision, recall and F-measure cited are the unlabeled
version (“probable,” in the nomenclature of this shared task).
The gold standard truth for trial data contained 710 alignments.
The test gold standard included 1972 alignments. The column
|H|/|T| lists ratio of hypothesis set size to truth set size for each
system.

won out on F-measure while giza++ syllabized attained
better alignment error rate (AER). Refer to Table 3 for
details of performance on trial and test data.

We investigated a number of system combination
methods, three of which were finally selected for use
in submitted systems. There were two basic methods of
combination: per-link voting and per-English-word vot-
ing.® In per-link voting, an alignment link is included if
it is proposed by at least a certain number of the partic-
ipating individual systems. In per-English-word voting,
the best outgoing link is chosen for each English word
(the link which is supported by the greatest number of in-
dividual systems). Any ties are broken using the WFST
system choice. A high-recall variant of per-English-word
voting was included in which ties at vote-count 1 (in-
dicating a low-confidence decision) are not broken, but
rather all systems’ choices are submitted as hypotheses.

The transliteration model described in Section 4 was
included as a voter in each combination system, though it
made few hypotheses (6 on the test data). Composition of
the submitted systems was as follows: F/AER Empha-

6Combination methods we elected not to submit included voting
with trained weights and various stacked classifiers. The reasoning was
that with such a small development data set — 25 sentences — it was
unsafe to put faith in any but the simplest of classifier combination
schemes.
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Sis - per-link voting with decision criterion >= 2 votes,
over all 5 described systems (WEST, 3 GIZA++ vari-
ants, transliteration). AER Emphasis () per-link voting,
>= 2 votes, over all systems except giza++ E(N)-I(1).
AER Emphasis (I1) per-link voting, >= 3 votes, over
all systems. F Emphasis per-English-word voting, over
all systems, using WEST as tiebreaker. Recall Empha-
sisper-English-word voting, over all systems, high-recall
variant.

We elected to submit these systems because each
tailors to a distinct evaluation criterion (as suggested
by the naming convention). Experiments on trial data
convinced us that minimizing AER and maximizing F-
measure in a single system would be difficult. Mini-
mizing AER required such high-precision results that the
tradeoff in recall greatly lowered F-measure. It is inter-
esting to note that system combination does provide a
convenient means for adjusting alignment precision and
recall to suit the requirements of the problem or evalua-
tion standard at hand.

7 Conclusions

We have presented several individual and combined sys-
tems for word alignment of Inuktitut-English bitext. The
most successful individual systems were those targeted
to the specific characteristics of the language pair. The
combined systems generally outperformed the individual
systems, and different combination methods were able to
optimize for performance under different evaluation met-
rics. In particular, per-English-word voting performed
well on F-measure, while per-link voting performed well
on AER.

Acknowledgements. Many thanks to Eric Goldlust, David
Smith, and Noah Smith for help in using the Dyna language.
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Abstract

We introduce improvements to statistical word
alignment based on the Hidden Markov
Model. One improvement incorporates syntac-
tic knowledge. Results on the workshop data
show that alignment performance exceeds that
of a state-of-the art system based on more com-
plex models, resulting in over a 5.5% absolute
reduction in error on Romanian-English.

1 Introduction

The most widely used alignment model is IBM Model 4
(Brown et al., 1993). In empirical evaluations it has out-
performed the other IBM Models and a Hidden Markov
Model (HMM) (Och and Ney, 2003). It was the basis
for a system that performed very well in a comparison
of several alignment systems (Dejean et al., 2003; Mihal-
cea and Pedersen, 2003). Implementations are also freely
available (Al-Onaizan et al., 1999; Och and Ney, 2003).

The IBM Model 4 search space cannot be efficiently
enumerated; therefore it cannot be trained directly using
Expectation Maximization (EM). In practice, a sequence
of simpler models such as IBM Model 1 and ah HMM
Model are used to generate initial parameter estimates
and to enumerate a partial search space which can be ex-
panded using hill-climbing heuristics. IBM Model 4 pa-
rameters are then estimated over this partial search space
as an approximation to EM (Brown et al., 1993; Och and
Ney, 2003). This approach yields good results, but it has
been observed that the IBM Model 4 performance is only
slightly better than that of the underlying HMM Model
used in this bootstrapping process (Och and Ney, 2003).
This is illustrated in Figure 1.

Based on this observation, we hypothesize that imple-
mentations of IBM Model 4 derive most of their per-
formance benefits from the underlying HMM Model.
Furthermore, owing to the simplicity of HMM Models,
we believe that they are more conducive to study and
improvement than more complex models such as IBM
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Model 4. We illustrate this point by introducing modifi-
cations to the HMM model which improve performance.

7
65
6
55
AER 5
45 ' -

35

Model 1 HMM

Training Iterations

Figure 1: The improvement in Alignment Error Rate
(AER) is shown for both P(f|e) and P(e|f) alignments on
the Romanian-English development set over several iter-
ations of the IBM Model 1 — HMM — IBM Model 4
training sequence.

2 HMMsand Word Alignment

The objective of word alignment is to discover the word-
to-word translational correspondences in a bilingual cor-
pus of S sentence pairs, which we denote {(f(9,e(9) :s €
[1,S]}. Each sentence pair (f,e) = (fM,e)') consists of
a sentence f in one language and its translation e in the
other, with lengths M and N, respectively. By convention
we refer to e as the English sentence and f as the French
sentence. Correspondences in a sentence are represented
by a set of links between words. A link (fj,e;) denotes a
correspondence between the ith word e; of e and the jth
word fj of f.

Many alignment models arise from the conditional dis-
tribution P(f|e). We can decompose this by introducing
the hidden alignment variable a = a}!. Each element of
a takes on a value in the range [1,N]. The value of a;
determines a link between the ith French word f; and
the a;jth English word e5,. This representation introduces
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an asymmetry into the model because it constrains each
French word to correspond to exactly one English word,
while each English word is permitted to correspond to an
arbitrary number of French words. Although the result-
ing set of links may still be relatively accurate, we can
symmetrize by combining it with the set produced by ap-
plying the complementary model P(e|f) to the same data
(Och and Ney, 2000b). Making a few independence as-
sumptions we arrive at the decomposition in Equation 1.

M
P(f,ale) = ﬂd(ai lai-1) -t(filea) o)

We refer to d(a;j|aj—1) as the distortion model and t(fi|ea)
as the translation model. Conveniently, Equation 1 is in
the form of an HMM, so we can apply standard algo-
rithms for HMM parameter estimation and maximization.
This approach was proposed in Vogel et al. (1996) and
subsequently improved (Och and Ney, 2000a; Toutanova
et al., 2002).

2.1 TheTreeDistortion Model

Equation 1 is adequate in practice, but we can improve
it. Numerous parameterizations have been proposed for
the distortion model. In our surface distortion model, it
depends only on the distance aj — a;_1 and an automati-
cally determined word class C(eg_,) as shown in Equa-
tion 2. It is similar to (Och and Ney, 2000a). The word
class C(e5_,) is assigned using an unsupervised approach
(Och, 1999).

d(ailai-1) = p(ailai —ai-1,C(eq_,)) )

The surface distortion model can capture local move-
ment but it cannot capture movement of structures or the
behavior of long-distance dependencies across transla-
tions. The intuitive appeal of capturing richer informa-
tion has inspired numerous alignment models (Wu, 1995;
Yamada and Knight, 2001; Cherry and Lin, 2003). How-
ever, we would like to retain the simplicity and good per-
formance of the HMM Model.

We introduce a distortion model which depends on the
tree distance (e, ex) = (w,X,y) between each pair of En-
glish words e;j and ex. Given a dependency parse of e%
w and x represent the respective number of dependency
links separating e; and e from their closest common an-
cestor node in the parse tree. 2 The final elementy = {1

1we ignore the sentence length probability p(M|N), which
is not relevant to word alignment. We also omit discussion
of HMM start and stop probabilities, and normalization of
t(files ), although we find in practice that attention to these de-
tails can be beneficial.

2The tree distance could easily be adapted to work with
phrase-structure parses or tree-adjoining parses instead of de-
pendency parses.
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T(l1,very,) =(1,2,0)

T(very,,lh) =1(2,1,1)

m\ r(ll,dgublm) =(1,0,0)
( (1,1,1)

1 very2 muchg doubts thats| (thats,1;) =

Figure 2: Example of tree distances in a sentence from
the Romanian-English development set.

if i > k; 0 otherwise} is simply a binary indicator of the
linear relationship of the words within the surface string.
Tree distance is illustrated in Figure 2.

In our tree distortion model, we condition on the tree
distance and the part of speech T (ej_1), giving us Equa-
tion 3.

d(ailai-1) = p(ai,|t(ea,€a 1), T (€a_y)) 3)

Since both the surface distortion and tree distortion
models represent p(aj|ai—1), we can combine them using
linear interpolation as in Equation 4.

d(ai|ai,1) =
Ac(en () T(es ) P(ailT(6a € 1), T(€a 1)) +  (4)
(1=Ac(ey ,).T(ex ,))P(ai[ai —ai-1,C(eq_,))

The Ac 1 parameters can be initialized from a uniform
distribution and trained with the other parameters using
EM. In principle, any number of alternative distortion
models could be combined with this framework.

2.2 Improving Initialization

Our HMM produces reasonable results if we draw our
initial parameter estimates from a uniform distribution.
However, we can do better. We estimate the initial
translation probability t(fj|ej) from the smoothed log-
likelihood ratio LLR(e;, fj)® computed over sentence
cooccurrences. Since this method works well, we apply
LLR(ej, fj) in a single reestimation step shown in Equa-
tion 5.

LLR(f|e)® +n
Se LLR(fle/)®2+n-|V|

In reestimation LLR( f|e) is computed from the expected
counts of f and e produced by the EM algorithm. This is
similar to Moore (2004); as in that work, |V | = 100,000,
and @1, @, and n are estimated on development data.

We can also use an improved initial estimate for distor-
tion. Consider a simple distortion model p(aj|ai —aj_1).
We expect this distribution to have a maximum near
P(ai|0) because we know that words tend to retain their
locality across translation. Rather than wait for this to
occur, we use an initial estimate for the distortion model
given in Equation 6.

t(fle) =

®)



[ corpus [ n oo | @ | a ] symmetrization [n e[ g [al]
English-Inuktitut || 174 [ 1.0 | 1.75 [ -1.5 N 54110 ]175]-15
Romanian-English || 574 [ 1.5 | 1.0 | -2.5 || refined (Och and Ney, 2000b) || 5% | 1.5 | 1.0 | -2.5

English-Hindi 1% 115] 30 | -25 U 12110 ] 10 | -1.0

Table 1: Training parameters for the workshop data (see Section 2.2). Parameters n, @1, ¢, and a were used in the

initialization of P(f|e) model, while n=%, @, @ %, and o~ were used in the initialization of the P(e|f) model.

corpus type HMM limited (Eq. 2) || HMM unlimited (Eq. 4) IBM Model 4
P | R [AER| P | R | AER P | R [AER
P(fle) || .4962 | .6894 | .4513 - - - 4211 | .6519 | .5162
English-Inuktitut P(elf) || .5789 | .8635 | .3856 - - - 5971 | .8089 | .3749
N .8916 | .6280 | .2251 - - - .8682 | .5700 | .2801
P(fle) || .5079 | .4769 | .5081 || .5057 | .4748 .5102 5219 | .4223 | .5332
English-Hindi P(e|f) || .5566 | .4429 | .5067 || .5566 | .4429 .5067 5652 | .3939 | .5358
U 4408 | .5649 | .5084 || .4365 | .5614 | .5088 4543 | 5401 | .5065
P(fle) || .6876 | .6233 | .3461 || .6876 | .6233 | .3461 .6828 | .5414 | .3961
Romanian-English | P(e|f) || .7168 | .6217 | .3341 || .7155 | .6205 | .3354 || .7520 | .5496 | .3649
refined || .7377 | .6169 | .3281 || .7241 | .6215 | .3311 | .7620 | .5134 | .3865

Table 2: Results on the workshop data. The systems highlighted in bold are the ones that were used in the shared task.
For each corpus, the last row shown represents the results that were actually submitted. Note that for English-Hindi,
our self-reported results in the unlimited task are slightly lower than the original results submitted for the workshop,

which contained an error.

ifaj £a_1.
ifaj=aj_1.
(6)
We choose Z to normalize the distribution. We must
optimize a on a development set. This distribution has
a maximum when |a; —aj_1| € {—1,0,1}. Although we
could reasonably choose any of these three values as the
maximum for the initial estimate, we found in develop-
ment that the maximum of the surface distortion distribu-
tion varied with C(e4—1), although it was always in the
range [—1,2].

lai—ai-1/%/Z,a <0

d(ai|ai,l) = { l/Z

2.3 DoesNULL Matter in Asymmetric Alignment?

Och and Ney (2000a) introduce a NULL-alignment ca-
pability to the HMM alignment model. This allows any
word f; to link to a special NULL word — by conven-
tion denoted eg — instead of one of the words e’i‘. A link
(fj,eo) indicates that f; does not correspond to any word
in e. This improved alignment performance in the ab-
sence of symmetrization, presumably because it allows
the model to be conservative when evidence for an align-
ment is lacking.

We hypothesize that NULL alignment is unnecessary
for asymmetric alignment models when we symmetrize
using intersection-based methods (Och and Ney, 2000b).
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The intuition is simple: if we don’t permit NULL align-
ments, then we expect to produce a high-recall, low-
precision alignment; the intersection of two such align-
ments should mainly improve precision, resulting in a
high-recall, high-precision alignment. If we allow NULL
alignments, we may be able produce a high-precision,
low-recall asymmetric alignment, but symmetrization by
intersection will not improve recall.

3 Resultswith the Workshop Data

In our experiments, the dependency parse and parts of
speech are produced by minipar (Lin, 1998). This parser
has been used in a much different alignment model
(Cherry and Lin, 2003). Since we only had parses for
English, we did not use tree distortion in the application
of P(e|f), needed for symmetrization.

The parameter settings that we used in aligning the
workshop data are presented in Table 1. Although our
prior work with English and French indicated that in-
tersection was the best method for symmetrization, we
found in development that this varied depending on the
characteristics of the corpus and the type of annotation
(in particular, whether the annotation set included proba-
ble alignments). The results are summarized in Table 2.
It shows results with our HMM model using both Equa-
tions 2 and 4 as our distortion model, which represent



the unlimited and limited resource tracks, respectively.
It also includes a comparison with IBM Model 4, for
which we use a training sequence of IBM Model 1 (5
iterations), HMM (6 iterations), and IBM Model 4 (5 it-
erations). This sequence performed well in an evaluation
of the IBM Models (Och and Ney, 2003).

For comparative purposes, we show results of apply-
ing both P(f|e) and P(e|f) prior to symmetrization, along
with results of symmetrization. Comparison of the asym-
metric and symmetric results largely supports the hypoth-
esis presented in Section 2.3, as our system generally pro-
duces much better recall than IBM Model 4, while of-
fering a competitive precision. Our symmetrized results
usually produced higher recall and precision, and lower
alignment error rate.

We found that the largest gain in performance came
from the improved initialization. The combined distor-
tion model (Equation 4), which provided a small benefit
over the surface distortion model (Equation 2) on the de-
velopment set, performed slightly worse on the test set.

We found that the dependencies on C(es ,) and
T (eq_,) were harmful to the P(f|e) alignment for Inukti-
tut, and did not submit results for the unlimited resources
configuration. However, we found that alignment was
generally difficult for all models on this particular task,
perhaps due to the agglutinative nature of Inuktitut.

4 Conclusions

We have proposed improvements to the largely over-
looked HMM word alignment model. Our improvements
yield good results on the workshop data. We have addi-
tionally shown that syntactic information can be incorpo-
rated into such a model; although the results are not su-
perior, they are competitive with surface distortion. In fu-
ture work we expect to explore additional parameteriza-
tions of the HMM model, and to perform extrinsic evalu-
ations of the resulting alignments by using them in the pa-
rameter estimation of a phrase-based translation model.
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Abstract

We recently decided to develop a new
alignment algorithm for the purpose
of improving our Example-Based Ma-
chine Translation (EBMT) system’s per-
formance, since subsentential alignment is
critical in locating the correct translation
for a matched fragment of the input. Un-
like most algorithms in the literature, this
new Symmetric Probabilistic Alignment
(SPA) algorithm treats the source and tar-
get languages in a symmetric fashion.

In this short paper, we outline our basic
algorithm and some extensions for using
context and positional information, and
compare its alignment accuracy on the
Romanian-English data for the shared task
with IBM Model 4 and the reported results
from the prior workshop.

1 Symmetric Probabilistic Alignment
(SPA)

In subsentential alignment, mappings are produced
from words or phrases in the source language sen-
tence and those words or phrases in the target lan-
guage sentence that best express their meaning.

An alignment algorithm takes as input a bilingual
corpus consisting of corresponding sentence pairs
and strives to find the best possible alignment in the
second for selected n-grams (sequences of n words)
in the first language. The alignments are based on
a number of factors, including a bilingual dictionary
(preferably a probabilistic one), the position of the
words, invariants such as numbers and punctuation,
and so forth.
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For our baseline algorithm, we make the follow-
ing simplifying assumptions, each of which we in-
tend to relax in future work, and the last of which
has already been partially relaxed:

1. A fixed bilingual probabilistic dictionary is
available.

2. Fragments (word sequences) are translated in-
dependently of surrounding context.

3. Contiguous fragments of source language text
are translated into contiguous fragments in the
target language text.

Unlike the work of (Marcu and Wong, 2002),
our alignment algorithm is not generative and does
not use the idea of a bag of concepts from which
the phrases in the sentence pair arise. It is, rather,
intended to find the corresponding target-language
phrase given a specific source-language phrase of in-
terest, as required by our EBMT system after find-
ing a match between the input and the training data
(Brown, 2004).

1.1 Baseline Algorithm

Our baseline algorithm is based on maximizing the
probability of bi-directional translations of individ-
ual words between a selected n-gram in the source
language and every possible n-gram in the corre-
sponding paired target language sentence. No posi-
tional preference assumptions are made, nor are any
length preservation assumptions made. That is, an
n-gram may translate to an m-gram, for any val-
ues of n or m bounded by the source and target
sentence lengths, respectively. Finally a smooth-
ing factor is used to avoid singularities (i.e. avoid-
ing zero-probabilities for unknown words, or words
never translated before in a way consistent with the
dictionary).

Proceedings of the ACL Workshop on Building and Using Parallel Tesiges 87-90,
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Given a source-language sentence

(1)

in the bilingual corpus, where s;, ..., s; 1% IS a phrase
of interest, and the corresponding target language
sentence S2 is

S1 180,81y e0y Siy ooy Sidthey +vs Sy

S2 :tg, t1, ...t ©)

crtjals eertm

the values of j and [ are to be determined.

Then the segment we try to obtain is the target
fragment F with the highest probability of all pos-
sible fragments of S2 to be a mutual translation with
the given source fragment, or

Fr = argmax g,y (P(Si; -, tj+))

3)
All possible segments can be checked in O(m?)
time, where m is the target language length, because
we will check m 1-word segments, m — 1 two-word
segments, and so on. If we bound the target language
n-grams to a maximal length k, then the complexity
is linear, i.e. O(km).

The score of the best possible alignment is com-
puted as follows: Let L7 be the Target Language
Vocabulary, s a source word, ¢; be target segment
words, and V' = {t; € {Lr}|i > 1} the translation
word set of s,

We define the trandation relation probability
p(Tr(s) € {to,t1,...,tx}) as follows:

Sitk < by ey

1. p(Tr(s) € {to,t1,....tx}) = max(p(t;|s))
for all ¢; € {to,t1,...,tx} when {t;|t; €
{to,t1,...,tx } } is not empty.

2. p(Tr(s) € {to, t1,...,

Then the score of the best alignment is

tr}) = 0 otherwise.

(4)

SFT = %&?SFT

where the score can be written as two components
SFT = P1 X P2 (5)

which can be further specified as

1

+1

<H max (p (Tr(siym) € {tJ J+l}) ))
(6)
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<H max (p (Tr(tj1n) € {Si.ith}) €
(7)

where € is a very small probability used as a smooth-
ing value.

1.2 Length Penalty

The ratio between source and target segment (n-
gram) lengths should be comparable to the ratio be-
tween the lengths of the source and target sentences,
though certainly variation is possible. Therefore, we
add a penalty function to the alignment probability
that increases with the discrepancy between the two
ratios.

Let the length of the source language segment be
1 and the length of a target language segment under
consideration be j. Given a source language sen-
tence length of n (in the corpus sentence containing
the fragment) and its corresponding target language
length of m. The expected target segment length is
then given by 7 = i x . Further defining an allow-
able difference AD, our implementation calculates
the length penalty LP as follows, with the value of
the exponent determined empirically:

. A\ 4
LPp, = min ((UA_Dﬂ) ,1) (8)

The score for a segment including the penalty func-
tion is then:

SFT<_SFT X(l_LPFT) (9)

Note that, as intended, the score is forced to 0 when
the length difference |j — 5| > AD.

1.3 Distortion Penalty

For closely-related language pairs which tend to
have similar word orders, we introduce a distortion
penalty to penalize the alignment score of any can-
didate target fragment which is out of the expected
position range. First, we calculate C'g, the expected
center of the candidate target fragment using C'p,,
the center of the source fragment and the ratio of
target- to source-sentence length.

m

CE:CFS*_ (10)
n



Then we calculate an allowed distance limit of the
center D j0weq USING a constant distance limit value
DL and the ratio of actual target sentence length to
average target sentence length.

m
Dallowed =DL* ———

maverage

1)

Let D,...a be the actual distance difference be-
tween the candidate target fragment’s center and the
expected center, and set

SFT<—{

Furthermore, we think that we can apply this
penalty to language pairs which have lower word-
order similarities than e.g. French-English. Because
there might exist certain positional relationships be-
tween such language pairs, if we can calculate the
expected position using each language’s sentence
structure, we can apply a distortion penalty to the
candidate alignments.

07 ifl)actual > Dallowed
SFp
(Dactual_Dallolued+1)

(12)

>, otherwise

1.4 Anchor Context

If the adjacent words of the source fragment and the
candidate target fragment are translations of each
other, we expect that this alignment is more likely
to be correct. We boost S, with the anchor context
alignment score Sac,

Sac, = P(si—1 < tj—1) x P(sit, < tj4) (13)

SFT — (SFT))\ * (SACp)lfA (14)

Empirically, we found this combination gives the
best score for French-English when A = 0.6 and
for Romanian-English when A = 0.8, and leads to
better results than the similar formula

SFT<—)\*SFT+(1—)\)*SACP (15)

2 Experimental Design

In previous work (Kim et al., 2005), we tested our
alignment method on a set of French-English sen-
tence pairs taken from the Canadian Hansard corpus
and on a set of English-Chinese sentence pairs, and
compared the results to human alignments. For the
present workshop, we chose to use the Romanian-
English data which had been made available.
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Due to a lack of time prior to the period of the
shared task, we merely re-used the parameters which
had been tuned for French-English, rather than tun-
ing the alignment parameters specifically for the de-
velopment data.

SPA was run under three experimental conditions.
In the first, labeled “SPA (c)” in Tables 1 and 2, SPA
was instructed to examine only contiguous target
phrases as potential alignments for a given source
phrase. In the second, labeled “SPA (n)”, a noncon-
tiguous target alignment consisting of two contigu-
ous segments with a gap between them was permit-
ted in addition to contiguous target alignments. The
third condition (“SPA (h)”) examined the impact of
a small amount of manual alignment information on
the selection of contiguous alignments. Unlike the
first two conditions, the presence of additional data
beyond the training corpus forces SPA(h) into the
Unlimited Resources track.

We had a native Romanian speaker hand-align
204 sentence pairs from the training corpus, and
extracted 732 distinct translation pairs from those
alignments, of which 450 were already present in
the automatically-generated dictionaries. The new
translation pairs were added to the dictionaries for
the SPA(h) condition and the translation probabili-
ties for the existing pairs were increased to reflect
the increased confidence in their correctness. Had
more time been available, we would have investi-
gated more sophisticated means of integrating the
human knowledge into the translation dictionaries.

3 Reaultsand Conclusions

Table 1 compares the performance of SPA on what
is now the development data against the submissions
with the best AER values reported by (Mihalcea
and Pedersen, 2003) for the participants in the 2003
workshop, including CMU, MITRE, RALLI, Univer-
sity of Alberta, and XRCE 1. As SPA generates only
SURE alignments, the values in Table 1 are SURE
alignments under the NO-NULL-Align scoring con-
dition for all systems except Fourday, which did not
generate SURE alignments.

Despite the fact that SPA was designed specifi-
cally for phrase-to-phrase alignments rather than the

ICitations for individual participants papers have been
omitted for space reasons; al appear in the same proceedings.



Table 1: Romanian-English alignment results (De-
velopment Set, NO-NULL-Align)

word-to-word alignments needed for the shared task
and was not tuned for this corpus, its performance is
competitive with the best of the systems previously
used for the shared task. We thus decided to submit
runs for the official 2005 evaluation, whose resulting
scores are shown in Table 2.

On the development set, noncontiguous align-
ments resulted in slightly lower precision than con-
tiguous alignments, which was not unexpected, but
recall does not increase enough to improve F1 or
AER. The modified dictionaries improved preci-
sion slightly, as anticipated, but lowered recall suffi-
ciently to have no net effect on F1 or AER.

The evaluation set proved to be very similar in dif-
ficulty to the development data, resulting in scores
that were very close to those achieved on the dev-test
set. Noncontiguous alignments again proved to have
a very small negative effect on AER resulting from
reduced precision, but this time the altered dictionar-
ies for SPA(h) resulted in a substantial reduction in
recall, considerably harming overall performance.

After the shared task was complete, we performed
some tuning of the alignment parameters for the
Romanian-English development test set, and found
that the French-English-tuned parameters were close
to optimal in performance. The AER on the develop-
ment test set for the SPA(c) contiguous alignments
condition decreased from 36.44% to 36.11% after
the re-tuning.

4 Future Work

Enhancements in the extraction of word-to-word
alignments from what is fundamentally a phrase-to-
phrase alignment algorithm could probably further
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Method Prec% | Rec% | F1% | AER Method | Prec% | Recall% | F1% | AER%
SPA (c) 64.47 | 62.68 | 63.56 | 36.44 SPA (c) | 64.96 61.34 | 63.10 | 36.90
SPA (n) 64.38 | 62.70 | 63.53 | 36.47 SPA (n) | 64.91 61.34 | 63.07 | 36.93
SPA (h) 64.61 | 62.55 | 63.56 | 36.44 SPA (h) | 64.60 60.54 | 62.50 | 37.50
Fourday 52.83 | 42.86 | 47.33 | 52.67 . .
UMD.RE2 | 5829 | 4999 | 5382 | 46.61 Table 2: Evaluation results (NO-NULL-Align)
BiBr 70.65 | 55.75 | 62.32 | 41.39

Ralign 92.00 | 45.06 | 60.49 | 35.24 . . .
XRCEnolm | 82.65 | 62.44 | 7114 | 28.86 improve results on the Romanian-English data. We

also intend to investigate principled, seamless inte-
gration of manual alignments and dictionaries with
probabilistic ones, since the ad hoc method proved
detrimental. Finally, a more detailed performance
analysis is in order, to determine whether the close
balance of precision and recall is inherent in the bidi-
rectionality of the algorithm or merely coincidence.
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Abstract

We discuss results on the shared task of
Romanian-English word alignment. The
baseline technique is that of symmetrizing
two word alignments automatically gener-
ated using IBM Model 4. A simple vo-
cabulary reduction technique results in an
improvement in performance. We also
report on a new alignment model and a
new training algorithm based on alternat-
ing maximization of likelihood with mini-
mization of error rate.

1 Introduction

ISI participated in the WPTO05 Romanian-English
word alignment task. The system used for baseline
experiments is two runs of IBM Model 4 (Brown et
al., 1993) in the GIZA++ (Och and Ney, 2003) im-
plementation, which includes smoothing extensions
to Model 4. For symmetrization, we found that Och
and Ney’s “refined” technique described in (Och and
Ney, 2003) produced the best AER for this data set
under all experimental conditions.

We experimented with a statistical model for in-
ducing a stemmer cross-lingually, but found that the
best performance was obtained by simply lower-
casing both the English and Romanian text and re-
moving all but the first four characters of each word.

We also tried a new model and a new training
criterion based on alternating the maximization of
likelihood and minimization of the alignment error
rate. For these experiments, we have implemented
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an alignment package for IBM Model 4 using a hill-
climbing search and Viterbi training as described in
(Brown et al., 1993), and extended this to use new
submodels. The starting point is the final alignment
generated using GIZA++’s implementation of IBM
Model 1 and the Aachen HMM model (Vogel et al.,
1996).

Paper organization: Section 2 is on the baseline,
Section 3 discusses vocabulary reduction, Section 4
introduces our new model and training method, Sec-
tion 5 describes experiments, Section 6 concludes.

We use the following notation: e refers to an En-
glish sentence composed of English words labeled
e;. [ refers to a Romanian sentence composed of
Romanian words labeled f;. a is an alignment of e
to f. We use the term “Viterbi alignment” to denote
the most probable alignment we can find, rather than
the true Viterbi alignment.

2 Basdine

To train our systems, Model 4 was trained two times,
first using Romanian as the source language and
then using English as the source language. For each
training, we ran 5 iterations of Model 1, 5 iterations
of the HMM model and 3 iterations of Model 4.
For the distortion calculations of Model 4, we re-
moved the dependencies on Romanian and English
word classes. We applied the “union”, “intersection”
and “refined” symmetrization metrics (Och and Ney,
2003) to the final alignments output from training, as
well as evaluating the two final alignments directly.

We tried to have a strong baseline. GIZA++ has
many free parameters which can not be estimated us-
ing Maximum Likelihood training. We did not use
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the defaults, but instead used settings which produce
good AER results on French/English bitext. We
also optimized p0 on the 2003 test set (using AER),
rather than using likelihood training. Turning off the
extensions to GIZA++ and training p0 as in (Brown
et al., 1993) produces a substantial increase in AER.

3 Vocabulary Size Reduction

Romanian is a Romance language which has a sys-
tem of suffixes for inflection which is richer than
English. Given the small amount of training data,
we decided that vocabulary size reduction was de-
sirable. As a baseline for vocabulary reduction, we
tried reducing words to prefixes of varying sizes
for both English and Romanian after lowercasing
the corpora. We also tried Porter stemming (Porter,
1997) for English.

(Rogati et al., 2003) extended Model 1 with an ad-
ditional hidden variable to represent the split points
in Arabic between the prefix, the stem and the suf-
fix to generate a stemming for use in Cross-Lingual
Information Retrieval. As in (Rogati et al., 2003),
we can find the most probable stemming given the
model, apply this stemming, and retrain our word
alignment system. However, we can also use the
modified model directly to find the best word align-
ment without converting the text to its stemmed
form.

We introduce a variable r; for the Romanian stem
and a variable s; for the Romanian suffix (which
when concatenated together give us the Romanian
word f;) into the formula for the probability of gen-
erating a Romanian word f; using an alignment a;
given only an English sentence e. We use the index
z to denote a particular stemming possibility. For a
given Romanian word the stemming possibilities are
simply every possible split point where the stem is at
least one character (this includes the null suffix).

p(fj ajle) =Y p(rjz, sjz, ajle) 63)

If the assumption is made that the stem and the
suffix are generated independently from e, we can
assume conditional independence.

P(fja aj|€) = ZP(TJ',Z, Gj|€)p(3j,z, ajfe) 2)

We performed two sets of experiments, one set
where the English was stemmed using the Porter
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stemmer and one set where each English word was
stemmed down to its first four characters. We
tried the best performing scoring heuristic for Ara-
bic from (Rogati et al., 2003) where p(s; ., ajle) is
modeled using the heuristic p(s; .|l;) where s; . is
the Romanian suffix, and /; is the last letter of the
Romanian word f;; these adjustments are updated
during EM training. We also tried several other ap-
proximations of p(s; ., a;le) with and without up-
dates in EM training. We were unable to produce
better results and elected to use the baseline vocab-
ulary reduction technique for the shared task.

4 New Model and Training Algorithm

Our motivation for a new model and a new training
approach which combines likelihood maximization
with error rate minimization is threefold:
e Maximum Likelihood training of Model 4 is
not sufficient to find good alignments
e We would like to model factors not captured by
IBM Model 4
e Using labeled data could help us produce better
alignments, but we have very few labels

We create a new model and train it using an al-
gorithm which has a step which increases likelihood
(like one iteration in the EM algorithm), alternating
with a step which decreases error. We accomplish
this by:

e grouping the parameters of Model 4 into 5 sub-

models
e implementing 6 new submodels
e combining these into a single log-linear model
with 11 weights, \; to A1, which we group
into the vector A

e defining a search algorithm for finding the
alignment of highest probability given the sub-
models and A

e devising a method for finding a A which min-
imizes alignment error given fixed submodels
and a set of gold standard alignments

e inventing a training method for alternating

steps which estimate the submodels by increas-
ing likelihood with steps which set A\ to de-
crease alignment error

The submodels in our new alignment model are
listed in table 1, where for ease of exposition we



Table 1: Submodels used for alignment

1 t(filed) TRANSLATION PROBABILITIES

2 n(pile;)  FERTILITY PROBABILITIES, ¢; 1S THE NUMBER OF WORDS GENERATED BY THE ENGLISH WORD ¢;

3 null PARAMETERS USED IN GENERATING ROMANIAN WORDS FROM ENGLISH NULL WORD (INCLUDING p0, p1)
4 di(Ay) MOVEMENT (DISTORTION) PROBABILITIES OF FIRST ROMANIAN WORD GENERATED FROM ENGLISH WORD
5 d>1(Aj) MOVEMENT (DISTORTION) PROBABILITIES OF OTHER ROMANIAN WORDS GENERATED FROM ENGLISH WORD
6 TTABLE ESTIMATED FROM INTERSECTION OF TWO STARTING ALIGNMENTS FOR THIS ITERATION

7 TRANSLATION TABLE FROM ENGLISH TO ROMANIAN MODEL 1 ITERATION 5

8 TRANSLATION TABLE FROM ROMANIAN TO ENGLISH MODEL 1 ITERATION 5

9 BACKOFF FERTILITY (FERTILITY ESTIMATED OVER ALL ENGLISH WORDS)

10 ZERO FERTILITY ENGLISH WORD PENALTY

11 NON-ZERO FERTILITY ENGLISH WORD PENALTY

consider English to be the source language and Ro-
manian the target language.

The log-linear alignment model is specified by
equation 3. The model assigns non-zero proba-
bilities only to 1-to-many alignments, like Model
4. (Cettolo and Federico, 2004) used a log-linear
model trained using error minimization for the trans-
lation task, 3 of the submodels were taken from
Model 4 in a similar way to our first 5 submodels.

— exp(Zm Amhm(f? a, 6))
Zf,e,a 6xp(2m )‘mhm(fv a, e))

Given ), the alignment search problem is to find
the alignment « of highest probability according to
equation 3. We solve this using the local search de-
fined in (Brown et al., 1993).

We set A as follows. Given a sequence A of align-
ments we can calculate an error function, E(A). For
these experiments average sentence AER was used.
We wish to minimize this error function, so we se-
lect \ accordingly:

argmin Z E(a)i(a, (argmaxpa(a, fle)))  (4)

pala, fle) 3

Maximizing performance for all of the weights
at once is not computationally tractable, but (Och,
2003) has described an efficient one-dimensional
search for a similar problem. We search over each
A (holding the others constant) using this tech-
nique to find the best A, to update and the best value
to update it to. We repeat the process until no further
gain can be found.

Our new training method is:

REPEAT

e Start with submodels and lambda from previ-

ous iteration
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e Find Viterbi alignments on entire training cor-
pus using new model (similar to E-step of
Model 4 training)

e Reestimate submodel parameters from Viterbi
alignments (similar to M-step of Model 4
Viterbi training)

e Find a setting for A\ that reduces AER on dis-
criminative training set (new D-step)

We use the first 148 sentences of the 2003 test set
for the discriminative training set. 10 settings for A
are found, the hypothesis list is augmented using the
results of 10 searches using these settings, and then
another 10 settings for A are found. We then select
the best A\. The discriminative training regimen is
otherwise similar to (Och, 2003).

5 Experiments

Table 2 provides a comparison of our baseline sys-
tems using the “refined” symmetrization metric with
the best limited resources track system from WPTO03
(Dejean et al., 2003) on the 2003 test set. The best
results are obtained by stemming both English and
Romanian words to the first four letters, as described
in section 2.

Table 3 provides details on our shared task sub-
mission. RUNL1 is the word-based baseline system.
RUN?2 is the stem-based baseline system. RUN4
uses only the first 6 submodels, while RUN5 uses
all 11 submodels. RUN3 had errors in processing,
S0 we omit it.

Results:

e Our new 1-to-many alignment model and train-
ing method are successful, producing decreases
of 0.03 AER when the source is Romanian, and
0.01 AER when the source is English.



Table 2: Summary of results for 2003 test set

SYSTEM STEM SIZES AER
XEROX “NOLEM-ER-56K" 0.289
BASELINE NO PROCESSING 0.284
BASELINE ENG PORTER/ROM 4 0.251
BASELINE ENG 4/ Rowm 4 0.248

Table 3: Full results on shared task submissions (blind test 2005)

RUN NAMES STEM SIZES SOURCE ROM  SOURCEENG UNION INTERSECTION REFINED
ISI.RUN1 NO PROCESSING 0.3834 0.3589 0.3590 0.3891 0.3165
ISI.RUN2 ENG 4/ Rom 4 0.3056 0.2880 0.2912 0.3041 0.2675
ISI.RUN4 ENG 4/ Rom 4 0.2798 0.2833 0.2773 0.2862 0.2663
ISI.RUN5 ENG 4/ Rom 4 0.2761 0.2778 0.2736 0.2807 0.2655

e These decreases do not translate to a large im-
provement in the end-to-end task of producing
many-to-many alignments with a balanced pre-
cision and recall. We had a very small decrease
of 0.002 AER using the “refined” heuristic.

e The many-to-many alignments produced using
“union” and the 1-to-1 alignments produced us-
ing “intersection” were also improved.

e It may be a problem that we trained p0 using
likelihood (it is in submodel 3) rather than op-
timizing pO discriminatively as we did for the
baseline.

6 Conclusion

e Considering multiple stemming possibilities
for each word seems important.

e Alternating between increasing likelihood and
decreasing error rate is a useful training ap-
proach which can be used for many problems.

e Our model and training method improve upon a
strong baseline for producing 1-to-many align-
ments.

e Our model and training method can be used
with the “intersection” heuristic to produce
higher quality 1-to-1 alignments

e Models which can directly model many-to-
many alignments and do not require heuristic
symmetrization are needed to produce higher
guality many-to-many alignments. Our train-
ing method can be used to train them.
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Abstract third, the two translations are joined. The high com-
putational costs associated with the training of the

We present some experiments conducted model made it necessary to split the training pairs in
within the context of one of the shared smaller parts using a simple heuristic.
tasks of the ACL 2005 Workshop on
Building and Using Parallel Texts. We
have employed a new model for finding
the alignments. This new model takes
a recursive approach in order to find the
alignments. As its computational costs are
quite high, a method for splitting the train-
ing sentences in smaller parts is used.

Initial work with this model can be seen in (Vi-
lar Torres, 1998). A detailed presentation can be
found in (Vilar and Vidal, 2005). This model shares
some similarities with the stochastic inversion trans-
duction grammars (SITG) presented by Wu in (Wu,
1997). The main point in common is the num-
ber of possible alignments between the two models.
On the other hand, the parametrizations of SITGs
and the MAR are completely different. The gen-
1 Introduction erative process of SITGs produces simultaneously

the input and output sentences and the parameters
We present the experiments we conducted within th§s the model refer to the rules of the nontermi-
context of the shared task of the track on building,gis.  This gives a clear symmetry to both input
and using parallel texts for languages with scarcgq output sentences. Our model clearly distin-
resources of the ACL 2005 Workshop on BU”d‘guishes an input and output sentence and the pa-
ing and Using Parallel Texts. The aim of the taskameters are based on observable properties of the
was to align the words of sentence pairs in differsentences (their lengths and the words composing
ent language pairs. We have participated using thgem). Also, the idea of splitting the sentences un-
Romanian-English corpora. til a simple structure is found in the Divisive Clus-

We have used a new model, the MAR (from thqering presented in (Deng et al., 2004). Again, the
Spanish initials of Recursive Alignment Model) thatmain difference is in the probabilistic modeling of
allowed us to find structured alignments that wergne alignments. In Divisive Clustering a uniform dis-

The basic idea of the model is that the translation Qfses a explicit parametrization.

a sentence can be obtained in three steps: first, the

sentence is divided in two parts; second, each part The rest of the paper is structured as follows: the

is translated separately using the same process; amekt section gives an overview of the MAR, then we

_ _ __explain the task and how the corpora were split, after
*Work partially supported by Bancaixa through the prOjectth h he ali btained i lained

“Sistemas Inductivos, Estélicos y Estructurales, para la Tra- - at, how the alignments Were.o tained Is explained,

duccbn Autorratica (SIESTA)”. finally the results and conclusions are presented.
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2 The MAR Deciding the concatenation direction The direc-
tion of the concatenation is also decided as a func-

We provide .here a brief glescnptlon of the .mOd.eltion of the two words adjacent to the cut point, that
a more detailed presentation can be found in (Vilar_

and Vidal, 2005). The idea is that the translation o'fs'
a sentenceé into a sentencg can be performed in Pr(D | b,&) ~ Dp(zp, 2ps1)

the following steps
gsiep Pr(I | b,7) = Dy(wp, Tp41),
(a) If z is small enough, IBM’s model 1 (Brown et
al., 1993) is employed for the translation. where D stands for direct concatenation (i.e.

o L the translation ofz% will precede the transla-
(b) If not, a cut point is selected in yielding two  ion of %;,,) and I stands forinverse Clearly,

parts that are independently translated applyin@D(%’bu) + Di(zp,as1) = 1 for every
the same procedure recursively. pair (4, 2p41)-

(c) The two translations are concatenated either i@z Final form of the model

the same order that they were produced or sec- . .
ond first. With these parameters, the final model is:

2.1 Model parameters pr(y|z) =

)
Apart from the parameters of model 1 (a stochas- M;(|z|)p:(7 | %)
tic dictionary and a discrete distribution of lenghts), |z|-1
each of the steps above defines a set of parameters A, (|z)) Z ‘_l|5’_(1$b, Tpi1)
We will consider now each set in turn. = Yoy Blwi,wign)

—c | =b —. —.
whether to use IBM’s model 1 or to apply the MAR Dp (@, zp+1) 21 pr(y1 | Z0)pr Yoy | Tiga)
recursively. This decision is taken on account of the -
length ofz. A table is used so that:

Deciding the submodel The first decision is ( 11

g1
+ Dr(wp, Tp+1) Z pr(Gisr | 23)pr (5 | 5%+1))
Pr(IBM | z) ~ M (|z|), e=1

Pr(MAR | z) = My (|z]). were p; represents the probability assigned by

Clearly, for everyz we have thatr(IBM | z) + model 1 to a pair of sentences.

Pr(MAR | z) = 1. 2.3 Model training

Deciding the cut point It is assumed that the The training of the model parameters is done max-
probability of cutting the input sentence at a giverimizing the likelihood of the training sample. For
positiond is most influenced by the words around it:each training paifz, ) and each parametét rele-
xp andx, 1. We use a tabl® such that: vant to it, the value of
- B(xp, zp11) P Opr(y|=x
doic1 Bz wiv1) pr(ylz) OP

That is, a weight is assigned to each pair of wordg computed. This corresponds to tbeuntsof P
and they are normalized in order to obtaing a propé# that pair. As the model is polynomial on all
probability distribution. its parameters except for the cuts (), Baum-

lWe use the following notational conventions. A string orEagon’S inequality (Baum and Eagon, 1967) guar-
sequence of words is indicated by a bar likezinindividual ~antees that normalization of the counts increases the
words from the sequence carry a subindex and no bar like,in likelihood of the sample. For the cuts, Gopalakr-

substrings are indicated with the first and last positionlik@{in . s . . .
Finally, when the final position of the substring is also the Ias{Shnan s inequality (Gopalakrishnan et al., 1991) is

of the string, a dot is used like ify; used.
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These scores are chosen with the aim of reduc-
Yng the number of segments and making them as
“complete” as possible, ie, the words they cover are
aligned to as many words as possible.

After the segments of are so scored, the partition
Romanian 48481 976429 48303  of 7 that maximizes the sum of scores is computed
English 48481 1029507 27053 by dynamic programming.

The training material was split in parts up to ten
words in length. For this, an alignment was obtained

The initial values for the dictionary are trained - .
using model 1 training and then a series of iterak-)ytralnlng an IBM model_4 using GIZ.AT% (Gchand
, 2003). The test pairs were split in parts up to

tions are made updating the values of every paranlw\l-ey

eter. Some additional considerations are taken in%’enty words. After the split, there werill 945

account for efficiency reasons, see (Vilar and Vidalt,ralnlng pairs and 337 test pairs. Information was

2005) for details. stored about the pz_nlrtition in order to be able to re-
A potential problem here is the large number of OVer the correct alignments later.

parameters associated with cuts and directions: tvep Aligning the corpus

for each possible pair of words. But, as we are in-

terested only in aligning the corpus, no provision ighe parameters of the MAR were trained as ex-

Table 1: Statistics of the training corpus. Vocabular
refers to the number of different words.

Language Sentences Words Vocabulary

made for the data sparseness pr0b|em. plained above: first ten IBM model 1 iterations were
used for giving initial values to the dictionary proba-
3 Thetask bilities and then ten more iterations for retraining the

The aim of the task was to align a set of 200 translaqlc'“Onar_y together with the rest Of the parameters.
The alignment of a sentence pair has the form of a

tion pairs between Romanian and English. As train- . - L
ing material, the text of 1984, the Romanian contree S|m|Iar' to those in Flgurg 1. Each mterlor'node
stitution and a collection of texts from the Web weré“'JIS two chlldren cqrrespopdlng o the transla_tl_on of
provided. Some details about this corpus can be se two parts in which the input sentence is divided.

in Table 1 The leaves of the tree correspond to those segments
' that were translated by model 1.
4 Splitting the corpus As the reference alignments do not have this kind

of structure it is necessary to “flatten” them. The

To reduce the high computatioqal_costs of training %rocedure we have employed is very simple: if we
the parameters of MAR, a heuristic was employed Bre in a leaf, every output word is aligned to every

order to split long sentences into smaller parts Witﬁhput word: if we are in an interior node. the “flat”

a length less thahwords. alignments for the children are built and then com-

Suppose we are to split sentenceandy. We  pinaq Note that the way leaves are labeled tends to
begin by aligning each word ig to a word inZ. ¢, o racall over precision.

Then, a score and a translation is assigned to eachrpe it alignment corresponding to the trees of
substringz! with a length below. The translation is Figure 1 are:

produced by looking for the substring@fvhich has

a length belowl and which has the largest number
of words aligned to positions betweémandj. The \
pair so obtained is given a score equal to sum of: (a)
the square of the length af ; (b) the square of the
number of words in the output aligned to the inputand
and (c) minus ten times the sum of the square of the Winston
number of words aligned to a nonempty position out
of z/ and the number of words outside the segment
chosen that are aligned ig.

economig |si| |finantelg |publice

economy [and| |public| |finance

intoarsg |brusc

\

Winston| [turned |[round| |abruptly
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economia si finantele publice

. Winston se intoarse brusc .
economy and public finance

/ \ Winston turned round abruptly .

economia si finantele publice - -
Winston se intoarse brusc .
economy and ublic finance -
y P Winston turned round abruptly .
economia si finantele publice Winston se intoarse brusc
economy and finance public Winston turned round abruptly

Figure 1: Two trees representing the alignment of two pair of sentences.

Precision Recall F-Measure AER References

0.5404 0.6465 0.5887 0.4113 Leonard E. Baum and J. A. Eagon. 1967. An inequal-
ity with applications to statistical estimation for prob-
abilistic functions of Markov processes and to a model
for ecology. Bulletin of the American Mathematical
Society 73:360-363.

6 Results and discussion Peter F. Brown, Stephen A. Della Pietra, Vincent J. Della

. . Pietra, and Robert L. Mercer. 1993. The mathemat-
The results for the alignment can be seen in Ta- jcs of statistical machine translation: Parameter esti-

ble 2. As mentioned above, there is a certain prefer- mation. Computational Linguistigs19(2):263-311,

ence for recall over precision. For comparison, us- June.

ing GIZA++ on the split corpus yields a precisionypnggang Deng, Shankar Kumar, and Wiliam Byrne.

of 0.6834 and a recall of 0.5601 for a total AER 2004. Bitext chunk alignment for statistical machine

of 0.3844. translation. Research Note 50, CLSP Johns Hopkins
Note that although the definition of the task al- JMVersity, April.

lowed to mark the alignment as eithgrobableor P. S. Gopalakrishnan, Dimitri Kanevsky, Arthuiabis,

Table 2: Results for the task

sure we marked all the alignments asre so pre-  and David Nahamoo. 1991. An inequality for ra-
cision and recall measures are given only for sure tional functions with apphcatlons to some statistical

) problems.|IEEE Transactions on Information Theory
alignments. 37(1):107-113, January.

There are aspects that deserve further experimen-

. o : - Franz Josef Och and Hermann Ney. 2003. A system-
tation. The.flrst is the split of the. or!glnal COTPUS.  tic comparison of various statistical alignment mod-
It would be important to evaluate its influence, and e|s, Computational Linguistic29(1):19-51.

fo try to find methods of using MAR without any uan Miguel Vilar and Enrique Vidal. 2005. A recursive
split at all. A second ?SpeCt_Of 9reat Importance 'g statistical translation model. IWdrkshob on Build-
the method used for “flattening”. The way leaves ing and Using Parallel TextsAnn-Arbour (Michigan),
of the tree are treated probably could be improved June.

if the dictionary probabilities were somehow takerbuan Miguel Vilar Torres. 1998 Aprendizaje de Tra-

into account. ductores Subsecuenciales para su empleo en tareas
_ de dominio restringido Ph.D. thesis, Departamento
7 Conclusions de Sistemas Inforaticos y Computadin, Universidad

Politecnica de Valencia, Valencia (Spain). (in Span-
We have presented the experiments done using aish).
hew translation model for finding word a“gnmentSDekai Wu. 1997. Stochastic inversion transduction

in parallel corpora. Also, a method for splitting the  grammars and bilingual parsing of parallel corpora.
input before training the models has been presented.Computational Linguistic23(3):377-403.
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Abstract

Several algorithms are available for sen-
tence alignment, but there is a lack of
systematic evaluation and comparison of
these algorithms under different condi-
tions. In most cases, the factors which
can significantly affect the performance
of a sentence alignment algorithm have
not been considered while evaluating. We
have used a method for evaluation that
can give a better estimate about a sen-
tence alignment algorithm’s performance,
so that the best one can be selected. We
have compared four approaches using this
method. These have mostly been tried
on European language pairs. We have
evaluated manually-checked and validated
English-Hindi aligned parallel corpora un-
der different conditions. We also suggest
some guidelines on actual alignment.

1 Introduction

Aligned parallel corpora are collections of pairs of
sentences where one sentence is a translation of the
other. Sentence alignment means identifying which
sentence in the target language (TL) is a translation
of which one in the source language (SL). Such cor-
pora are useful for statistical NLP, algorithms based
on unsupervised learning, automatic creation of re-
sources, and many other applications.

Over the last fifteen years, several algorithms have
been proposed for sentence alignment. Their perfor-
mance as reported is excellent (in most cases not less
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than 95%, and usually 98 to 99% and above). The
evaluation is performed in terms of precision, and
sometimes also recall. The figures are given for one
or (less frequently) more corpus sizes. While this
does give an indication of the performance of an al-
gorithm, the variation in performance under varying
conditions has not been considered in most cases.
Very little information is given about the conditions
under which evaluation was performed. This gives
the impression that the algorithm will perform with
the reported precision and recall under all condi-
tions.

We have tested several algorithms under differ-
ent conditions and our results show that the per-
formance of a sentence alignment algorithm varies
significantly, depending on the conditions of test-
ing. Based on these results, we propose a method
of evaluation that will give a better estimate of the
performance of a sentence alignment algorithm and
will allow a more meaningful comparison. Our view
is that unless this is done, it will not be possible to
pick up the best algorithm for certain set of con-
ditions. Those who want to align parallel corpora
may end up picking up a less suitable algorithm for
their purposes. We have used the proposed method
for comparing four algorithms under different con-
ditions. Finally, we also suggest some guidelines for
using these algorithms for actual alignment.

2 Sentence Alignment Methods

Sentence alignment approaches can be categorized
as based on sentence length, word correspondence,
and composite (where more than one approaches are
combined), though other techniques, such as cog-

Proceedings of the ACL Workshop on Building and Using Parallel Tpxsiges 99-106,
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nate matching (Simard et al., 1992) were also tried.
Word correspondence was used by Kay (Kay, 1991;
Kay and Roscheisen, 1993). It was based on the idea
that words which are translations of each other will
have similar distributions in the SL and TL texts.
Sentence length methods were based on the intuition
that the length of a translated sentence is likely to be
similar to that of the source sentence. Brown, Lai
and Mercer (Brown et al., 1991) used word count as
the sentence length, whereas Gale and Church (Gale
and Church, 1991) used character count. Brown, Lai
and Mercer assumed prior alignment of paragraphs.
Gale and Church relied on some previously aligned
sentences as ‘anchors’. Wu (Wu, 1994) also used
lexical cues from corpus-specific bilingual lexicon
for better alignment.

Word correspondence was further developed in
IBM Model-1 (Brown et al., 1993) for statistical
machine translation. Melamed (Melamed, 1996)
also used word correspondence in a different (geo-
metric correspondence) way for sentence alignment.
Simard and Plamondon (Simard and Plamondon,
1998) used a composite method in which the first
pass does alignment at the level of characters as
in (Church, 1993) (itself based on cognate match-
ing) and the second pass uses IBM Model-1, fol-
lowing Chen (Chen, 1993). The method used by
Moore (Moore, 2002) also had two passes, the first
one being based on sentence length (word count) and
the second on IBM Model-1. Composite methods
are used so that different approaches can compli-
ment each other.

3 Factors in Performance

As stated above, the performance of a sentence
alignment algorithm depends on some identifiable
factors.  We can even make predictions about
whether the performance will increase or decrease.
However, as the results given later show, the algo-
rithms don’t always behave in a predictable way. For
example, one of the algorithms did worse rather than
better on an ‘easier’ corpus. This variation in perfor-
mance is quite significant and it cannot be ignored
for actual alignment (table-1). Some of these factors
have been indicated in earlier papers, but these were
not taken into account while evaluating, nor were
their effects studied.
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Translation of a text can be fairly literal or it can
be a recreation, with a whole range between these
two extremes. Paragraphs and/or sentences can be
dropped or added. In actual corpora, there can even
be noise (sentences which are not translations at all
and may not even be part of the actual text). This can
happen due to fact that the texts have been extracted
from some other format such as web pages. While
translating, sentences can also be merged or split.
Thus, the SL and TL corpora may differ in size.

All these factors affect the performance of an al-
gorithm in terms of, say, precision, recall and F-
measure. For example, we can expect the perfor-
mance to worsen if there is an increase in additions,
deletions, or noise. And if the texts were translated
fairly literally, statistical algorithms are likely to per-
form better. However, our results show that this does
not happen for all the algorithms.

The linguistic distance between SL and TL can
also play a role in performance. The simplest mea-
sure of this distance is in terms of the distance on
the family tree model. Other measures could be the
number of cognate words or some measure based
on syntactic features. For our purposes, it may not
be necessary to have a quantitative measure of lin-
guistic distance. The important point is that for lan-
guages that are distant, some algorithms may not
perform too well, if they rely on some closeness be-
tween languages. For example, an algorithm based
on cognates is likely to work better for English-
French or English-German than for English-Hindi,
because there are fewer cognates for English-Hindi.
It won’t be without a basis to say that Hindi is
more distant from English than is German. English
and German belong to the Indo-Germanic branch
whereas Hindi belongs to the Indo-Aryan branch.
There are many more cognates between English and
German than between English and Hindi. Similarly,
as compared to French, Hindi is also distant from
English in terms of morphology. The vibhaktis of
Hindi can adversely affect the performance of sen-
tence length (especially word count) as well as word
correspondence based algorithms. From the syntac-
tic point of view, Hindi is a comparatively free word
order language, but with a preference for the SOV
(subject-object-verb) order, whereas English is more
of a fixed word order and SVO type language. For
sentence length and IBM model-1 based sentence



alignment, this doesn’t matter since they don’t take
the word order into account. However, Melamed’s
algorithm (Melamed, 1996), though it allows ‘non-
monotonic chains’ (thus taking care of some differ-
ence in word order), is somewhat sensitive to the
word order. As Melamed states, how it will fare
with languages with more word variation than En-
glish and French is an open question.

Another aspect of the performance which may not
seem important from NLP-research point of view, is
its speed. Someone who has to use these algorithms
for actual alignment of large corpora (say, more than
1000 sentences) will have to realize the importance
of speed. Any algorithm which does worse than
O(n) is bound to create problems for large sizes. Ob-
viously, an algorithm that can align 5000 sentences
in 1 hour is preferable to the one which takes three
days, even if the latter is marginally more accurate.
Similarly, the one which takes 2 minutes for 100 sen-
tences, but 16 minutes for 200 sentences will be dif-
ficult to use for practical purposes. Actual corpora
may be as large as a million sentences. As an esti-
mate of the speed, we also give the runtimes for the
various runs of all the four algorithms tested.

Some algorithms, like those based on cognate
matching, may even be sensitive to the encoding or
notation used for the text. One of the algorithms
tested (Melamed, 1996) gave worse performance
when we used a notation called ITRANS for the
Hindi text, instead of the WX-notation.!

4 Evaluation in Previous Work

There have been attempts to systematically evaluate
and compare word alignment algorithms (Och and
Ney, 2003) but, surprisingly, there has been a lack of
such evaluation for sentence alignment algorithms.
One obvious problem is the lack of manually aligned
and checked parallel corpora.

Two cases where a systematic evaluation was per-
formed are the ARCADE project (Langlais et al.,
1996) and Simard et al. (Simard et al., 1992). In the
ARCADE project, six alignment systems were eval-
uated on several different text types. Simard et al.
performed an evaluation on several corpus types and

'In this notation, capitalization roughly means aspiration for
consonants and longer length for vowels. In addition, ‘w’ rep-
resents ‘t’ as in French entre and ‘x’ means something similar
to ‘d’ in French de, hence the name of the notation.
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corpus sizes. They, also compared the performance
of several (till then known) algorithms.

In most of the other cases, evaluation was per-
formed on only one corpus type and one corpus size.
In some cases, certain other factors were considered,
but not very systematically. In other words, there
wasn’t an attempt to study the effect of various fac-
tors described earlier on the performance. In some
cases, the size used for testing was too small. One
other detail is that size was sometimes mentioned in
terms of number of words, not number of sentences.

5 Evaluation Measures

We have used local (for each run) as well as global
(over all the runs) measures of performance of an
algorithm. These measures are:

e Precision (local and global)

e Recall (local and global)

e F-measure (local and global)

e 95% Confidence interval of F-measure (global)
e Runtime (local)

6 An Evaluation Scheme

Unless sentence alignment is correct, everything
else that uses aligned parallel corpora, such as word
alignment (for automatically creating bilingual dic-
tionaries) or statistical machine translation will be
less reliable. Therefore, it is important that the best
algorithm is selected for sentence alignment. This
requires that there should be a way to systemati-
cally evaluate and compare sentence alignment al-
gorithms.

To take into account the above mentioned factors,
we used an evaluation scheme which can give an
estimate of the performance under different condi-
tions. Under this scheme, we calculate the measures
given in the previous section along the following di-
mensions:

e Corpus type
e Corpus size
e Difference in sizes of SL and TL corpora

e Noise



We are also considering the corpus size as a factor
in performance because the second pass in Moore’s
algorithm is based on IBM Model-1, which needs
training. This training is provided at runtime by us-
ing the tentative alignments obtained from the first
pass (a kind of unsupervised learning). This means
that larger corpus sizes (enough training data) are
likely to make word correspondence more effective.
Even for sentence length methods, corpus size may
play arole because they are based on the distribution
of the length variable. The distribution assumption
(whether Gaussian or Poisson) is likely to be more
valid for larger corpus sizes.

The following algorithms/approaches were evalu-
ated:

e Brn: Brown’s sentence length (word count)
based method, but with Poisson distribution

e GC: Church and Gale’s sentence length (char-
acter count) based method, but with Poisson
distribution

e Mmd: Melamed’s geometric correspondence
based method

e Mre: Moore’s two-pass method (word count
plus word correspondence)

For Brn and GC we used our own implemen-
tations. For Mmd we used the GMA alignment
tool and for Mre we used Moore’s implementation.
Only 1-to-1 mappings were extracted from the out-
put for calculating precision, recall and F-measure,
since the test sets had only 1-to-1 alignments. En-
glish and Hindi stop lists and a bilingual lexicon
were also supplied to the GMA tool. The parame-
ter settings for this tool were kept the same as for
English-Malay. For Brn and GC, the search method
was based on the one used by Moore, i.e., searching
within a growing diagonal band. Using this search
method meant that no prior segmentation of the cor-
pora was needed (Moore, 2002), either in terms
of aligned paragraphs (Gale and Church, 1991), or
some aligned sentences as anchors (Brown et al.,
1991).

We would have liked to study the effect of linguis-
tic distance more systematically, but we couldn’t get
equivalent manually-checked aligned parallel cor-
pora for other pairs of languages. We have to rely
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on the reported results for other language pairs, but
those results, as mentioned before, do not mention
the conditions of testing which we are considering
for our evaluation and, therefore, cannot be directly
compared to our results for English-Hindi. Still, we
did an experiment on the English-French test data
(447 sentences) for the shared task in NAACL 2003
workshop on parallel texts (see table-1).

For all our experiments, the text in Hindi was in
WX-notation.

In the following sub-sections we describe the de-
tails of the data sets that were prepared to study the
variation in performance due to various factors.

6.1 Corpus Type

Three different types of corpora were used for the
same language pair (English-Hindi) and size. These
were EMILLE, ERDC and India Today. We took
2500 sentences from each of these, as this was the
size of the smallest corpus.

6.1.1 EMILLE

EMILLE corpus was constructed by the EMILLE
project (Enabling Minority Language Engineering),
Lancaster University, UK, and the Central Institute
of Indian Languages (CIIL), Mysore, India. It con-
sists of monolingual, parallel and annotated corpora
for fourteen South Asian languages. The parallel
corpus part has a text (200000 words) in English and
its translations in Hindi, Bengali, Punjabi, Gujarati
and Urdu. The text is from many different domains
like education, legal, health, social, and consumer
markets. The documents are mostly in simple, for-
mal language. The translations are quite literal and,
therefore, we expected this corpus to be the ‘easiest’.

6.1.2 ERDC

The ERDC corpus was prepared by Electronic
Research and Development Centre, NOIDA, India.
It also has text in different domains but it is an un-
aligned parallel corpus. A project is going on to pre-
pare an aligned and manually checked version of this
corpus. We have used a part of it that has already
been aligned and manually checked. It was our opin-
ion that the translations in this corpus are less literal
and should be more difficult for sentence alignment
than EMILLE. We used this corpus for studying the
effect of corpus size, in addition to corpus type.



Table 1: Results for Various Corpus Types (Corpus Size = 2500)

Clean, Same Size Noisy, Same Size Noisy, Different Size

Type Brn GC Mmd Mre Brn GC Mmd Mre | Brn GC Mmd Mre
EMILLE | P | 99.3 99.1 85.0 66.8 | 855 874 382 662|872 865 480 655
R| 960 930 800 632 |804 80.0 362 580|812 79.1 465 574
F| 976 960 820 649 |828 835 372 61.8|84.0 826 473 612

T 23 23 261 45 47 44 363 64 25 25 413 47

ERDC | P| 996 995 942 100.0 | 8.4 844 48.0 96.5|84.6 855 509 977
R| 99.0 99.1 927 970 |81.7 806 467 789 |805 813 498 79.1

F| 993 993 934 984 |835 824 473 86.8 825 833 503 &7.1

T 31 29 1024 85 92 90 2268 124 | 55 52 3172 101
India P| 918 939 764 995 | 715 76.7 497 944 |73.6 755 517 934
Today | R | 81.0 83.0 70.6 81.5 |61.0 655 476 675|624 644 50.1 62.6
F| 8.1 881 734 89.6 | 658 70.7 486 78.7|67.6 695 509 750

T 32 32 755 91 96 101 2120 159 | 60 68 987 134
English- | P | 100.0 100.0 100.0 1000 | 874 87.5 77.2 952|912 933 777 96.6
French | R | 1000 99.3 100.0 993 |855 843 817 846|832 837 826 83.0

P: Precision, R: Recall, F': F-Measure, 7: Runtime (seconds)

6.1.3 India Today

India Today is a magazine published in both En-
glish and Hindi. We used some parallel text col-
lected from the Internet versions of this magazine. It
consists of news reports or articles which appeared
in both languages. We expected this corpus to be the
most difficult because the translations are often more
like adaptations. They may even be rewritings of the
English reports or articles in Hindi. This corpus had
2500 sentences.

6.2 Corpus Size

To study the effect of corpus size, the sizes used
were 500, 1000, 5000 and 10000. All these data sets
were from ERDC corpus (which was expected to be
neither very easy nor very difficult).

6.3 Noise and Difference in Sizes of SL and TL
Corpora

To see the effect of noise and the difference in sizes
of SL and TL corpora, we took three cases for each
of the corpus types and sizes:

e Same size without noise
e Same size with noise

e Different size with noise
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Three different data sets were prepared for each
corpus type and for each corpus size. To obtain
such data sets from the aligned, manually checked
and validated corpora, we added noise to the cor-
pora. The noise was in the form of sentences from
some other unrelated corpus. The number of such
sentences was 10% each of the corpus size in the
second case and 5% to SL and 15% to the TL in the
third case. The sentences were added at random po-
sitions in the SL and TL corpora and these positions
were recorded so that we could automatically cal-
culate precision, recall and F-measure even for data
sets with noise, as we did for other data sets. Thus,
each algorithm was tested on (3+4)(3) =21 data sets.

7 A Limitation

One limitation of our work is that we are considering
only 1-to-1 alignments. This is partly due to prac-
tical constraints, but also because 1-to-1 alignments
are the ones that can be most easily and directly used
for linguistic analysis as well as machine learning.
Since we had to prepare a large number of data
sets of sizes up to 10000 sentences, manual check-
ing was a major constraint. We had four options.
The first was to take a raw unaligned corpus and
manually align it. This option would have allowed
consideration of 1-to-many, many-to-1, or partial




Table 2: Results for Various Corpus Sizes

Clean, Same Size Noisy, Same Size Noisy, Different Size

Size Brn GC Mmd Mre | Brn GC Mmd Mre | Brn GC Mmd Mre
500 | P |99.2 992 939 998 | 754 782 574 943|835 872 454 924
R |[98.8 988 91.8 950 |71.0 734 568 70.0|77.0 80.8 448 70.8

F {990 99.0 928 973 |73.1 757 571 804 |80.1 839 451 802

T 9 9 126 14 10 10 148 13 10 10 181 14

1000 | P {993 99.6 964 100.0 | 84.6 846 678 968|822 840 473 951
R [989 994 951 963 | 814 822 684 737|763 787 46.1 727
F|199.1 995 957 981 |830 834 681 837 |79.1 812 467 824

T | 13 13 278 29 24 23 335 34 15 15 453 30

5000 | P {99.8 99.8 932 999 [88.5 886 561 985|859 866 576 978
R|{994 995 91.6 982 |832 833 549 86.0|81.7 813 56.7 86.3
F|996 99.7 924 99.1 | 857 859 554 918|837 839 572 917

T | 54 53 3481 186 | 199 185 5248 274 | 185 174 3639 275

10000 | P [ 99.8 999 932 100.0 | 88.0 889 596 985 | 868 887 572 984
R|[994 996 914 986 |829 837 589 899 813 828 562 89.2
F|199.6 997 923 993 | 854 862 592 940 |84.0 856 56.6 94.0

T | 102 96 4356 305 | 370 346 4477 467 | 345 322 4351 479

alignments. The second option was to pass the text
through an alignment tool and then manually check
the output for all kinds of alignment. The third op-
tion was to check only for 1-to-1 alignments from
this output. The fourth option was to evaluate on
much smaller sizes.

In terms of time and effort required, there is an
order of difference between the first and the second
and also between the second and the third option. It
is much easier to manually check the output of an
aligner for 1-to-1 alignments than to align a corpus
from the scratch. We couldn’t afford to use the first
two options. The fourth option was affordable, but
we decided to opt for a more thorough evaluation of
1-to-1 alignments, than for evaluation of all kinds of
alignments for smaller sizes. Thus, our starting data
sets had only 1-to-1 alignments.

In future, we might extend the evaluation to all
kinds of alignments, since the manual alignment
currently being done on ERDC corpus includes par-
tial and 1-to-2 or 2-to-1 alignments. Incidentally,
there are rarely any 2-to-1 alignments in English-
Hindi corpus since two English sentences are rarely
combined into one Hindi sentence (when translating
from English to Hindi), whereas the reverse is quite
possible.
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8 Evaluation Results

The results for various corpus types are given in
table-1, for corpus sizes in table-2, and the global
measures in table-3. Among the four algorithms
tested, Moore’s (Mre) gives the best results (ex-
cept for the EMILLE corpus). This is as expected,
since Mre combines sentence length based method
with word correspondence. The results for Mmd are
the worst, but it should be noted that the results for
Mmd reported in this paper may not be the best that
can be obtained with it, because its performance de-
pends on some parameters. Perhaps with better tun-
ing for English-Hindi, it might perform better. An-
other expected outcome is that the results for GC
(character count) are better than Brn (word count).
One reason for this is that there are more of charac-
ters than words (Gale and Church, 1991).

Leaving aside the tuning aspect, the low perfor-
mance of Mmd may be due to the fact that it relies
on cognate matching, and there are fewer cognates
between Hindi and English. It might also be due to
the syntactic differences (word order) between Hindi
and English. This could, perhaps be taken care of
by increasing the maximum point dispersal thresh-
old (relaxing the linearity constraint), as suggested
by Melamed (Melamed, 1996).



The results of experiment on English-French
(table-1) show that Mmd performs better for this
language pair than for English-Hindi, but it still
seems to be more sensitive to noise than the other
three algorithms. Mre performed the best for
English-French too.

With respect to speed, Brn and GC are the fastest,
Mre is marginally slower, and Mmd is much slower.

The effects of the previously mentioned factors on
performance have been summarized below.

8.1 Corpus Type

Brn, GC, and Mmd performed almost equally well
for EMILLE and ERDC corpora, but not that well
for India Today. However, surprisingly, Mre per-
formed much worse for EMILLE than it did for
the other two corpora. It could be because of the
fact that the EMILLE has a lot of very short (1-3
words) sentences, and word correspondence (in the
second pass) may not be that effective for such sen-
tences. The results don’t support our assumption
that EMILLE is easier than ERDC, but India Today
does turn out to be more difficult than the other two
for all the test cases. This is understandable since
the translations in this corpus are much less literal.

8.2 Corpus Size

Only in the case of Mre, the performance almost
consistently increased with size. This is as expected
since the second pass in Mre needs training from
the results of the first pass. The corpus size has to be
large for this training to be effective. There doesn’t
seem to be a clear relationship between size and per-
formance for the other three algorithms.

8.3 Noise and Difference in Sizes of SL and TL
Corpora

As expected, introducing noise led to a decrease
in performance for all the algorithms (table-1 and
table-2). However (barring EMILLE) Mre seems to
become less sensitive to noise as the corpus size in-
creases. This again could be due to the unsupervised
learning aspect of Mre.

Making the SL and TL corpora differ in size
tended to reduce the performance in most cases, but
sometimes the performance marginally improved.
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Table 3: Global Evaluation Measures

Brn GC | Mmd | Mre
Clean, L | 926 | 934 | 814 | 80.8
Same Size | H | 100.0 | 100.0 | 96.3 | 100.0
P | 984 | 987 | 90.3 | 95.1
R | 96.1 96.1 87.6 | 90.0
F| 972 | 973 889 | 924
Noisy, L | 73.1 | 75.8 | 44.1 72.6
Same Size | H | 87.5 | 864 | 624 | 92.3
P | 827 | 84.1 53.8 | 92.2
R| 774 | 784 | 52.8 | 749
F | 798 | 81.1 53.3 82.5
Noisy, L | 747 | 764 | 462 | 71.3
Different | H| 856 | 864 | 550 | 92.0
Size P | 834 | 849 | 512 | 915
R | 772 | 78.3 50.0 | 74.0
F | 80.1 814 | 50.6 | 81.6
Overall L | 81.1 824 | 554 | 80.0
H| 904 | 90.8 | 73.1 91.0
P | 882 | 89.2 | 65.1 92.9
R | 83.6 | 84.3 63.5 | 79.6
F | 8.7 | 86.6 | 64.6 | 855
L and H: Lower and higher limits of
95% confidence interval for F-measure
P, R, and F: Average precision,
recall, and F-measure

9 Some Notes on Actual Corpus Alignment

Based on the evaluation results and our experience
while manually checking alignments, we make some
observations below which could be useful to those
who are planning to create aligned parallel corpora.

Contrary to what we believed, sentence length
based algorithms turn out to be quite robust, but also
contrary to the commonly held view, there is scope
for improvement in the performance of these algo-
rithms by combining them with other techniques as
Moore has done. However, as the performance of
Mre on EMILLE shows, these additional techniques
might sometimes decrease the performance.

There is a tradeoff between precision and recall,
just as between robustness and accuracy (Simard and
Plamondon, 1998). If the corpus aligned automati-
cally is to be used without manual checking, then we
should opt for maximum precision. But if it’s going
to be manually checked before being used, then we



should opt for maximum recall. It depends on the
application too (Langlais et al., 1996), but if man-
ual checking is to be done, we can as well try to
get the maximum number of alignments, since some
decrease in precision is not going to make manual
checking much more difficult.

If the automatically aligned corpus is not to be
checked manually, it becomes even more important
to perform a systematic evaluation before aligning
a corpus, otherwise the parallel corpus will not be
reliable either for machine learning or for linguistic
analysis.

10 Conclusion

We used a systematic evaluation method for select-
ing a sentence alignment algorithm with English and
Hindi as the language pair. We tested four algo-
rithms for different corpus types and sizes, for the
same and different sizes of SL and TL corpora, as
well as presence and absence of noise. The evalu-
ation scheme we have described can be used for a
more meaningful comparison of sentence alignment
algorithms. The results of the evaluation show that
the performance depends on various factors. The di-
rection of this variation (increase or decrease) was as
predicted in most of the cases, but some results were
unexpected. We also presented some suggestions on
using an algorithm for actual alignment.
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Abstract

We briefly describe a word alignment system
that combines two different methods in bitext
correspondences identification. The first one is
a hypotheses testing approach (Gale and
Church, 1991; Melamed, 2001; Tufis 2002)
while the second one is closer to a model
estimating approach (Brown et al., 1993; Och
and Ney, 2000). We show that combining the
two aligners the results are significantly
improved as compared to each individual
aligner.

Introduction

In (Tufis, 2002) we described a translation equivalence
extraction program called TREQ the development of
which was twofold motivated: to help enriching the
synsets of the Romanian wordnet (Tufis et al. 2004a)
with new literals based on bilingual corpora evidence
and to check the interlingual alignment of our wordnet
against the Princeton Wordnet. The translation
equivalence extractor has been also incorporated into a
WSD system (Tufis et al., 2004b) part of a semantic
web annotation platform. It also constituted the
backbone of our TREQ-AL word aligner which
successfully participated in the previous HLT-NAACL
2003 Shared Task' on word alignment for Romanian-
English parallel texts. A detailed description of
TREQ&TREQ-AL is given in (Tufis et al. 2003b) and it
will be very shortly overviewed.

A quite different approach from our hypotheses
testing implemented in the TREQ-AL aligner is taken
by the model-estimating aligners, most of them relying
on the IBM models (1 to 5) described in the (Brown et
al. 1993) seminal paper. The first wide-spread and
publicly available implementation of the IBM models
was the GIZA program, which itself was part of the
SMT toolkit EGYPT (Al-Onaizan et al., 1999). GIZA
has been superseded by its recent extension GIZA++
(Och and Ney, 2000, 2003) publicly available®. We used
the translation probabilities generated by GIZA++ for
implementing a second aligner, MEBA, described in a

! http://www.cs.unt.edu/~rada/wpt/index.html#shared
2 http://www.fjoch.com/GIZA++.2003-09-30.tar.gz
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little more details in a subsequent section. The
alignments produced by MEBA were compared to the
ones produced by TREQ-AL. We used for comparison
the Gold Standard® annotation from the HLT-NAACL
2003 Shared Task. In order to combine the two aligners
we had to check whether their accuracy was comparable
and that when they are wrong the set of mistakes made
by one aligner is not a proper set of the errors made by
the second one. The first check was performed by using
McNamer’s test (Dieterich, 1998) and for the second
we used Brill &Wu test (Brill, Wu, 1998). Both tests
confirmed that the conditions for combining were
ensured so, we built the combiner.

The Combined Word Aligner, COWAL, is a
wrapper of the two aligners (TREQ-AL and MEBA)
ensuring the pre- and post-processing. It is
complemented by a graphical user interface that allows
for the visualisation of the alignments (intermediary and
the final ones) as well as for their editing. We should
note that the corrections made by the user are stored by
COWAL as positive and negative examples for word
dependencies (in the monolingual context) and
translation equivalencies (in the bilingual context). In
the current version the editorial logs are used by the
human developers but we plan to further extend
COWAL for automatic learning from this extremely
valuable kind of data.

The bitext processing

The two base aligners and their combination use the
same format for the input data and provide the
alignments in the same format. The input format is
obtained from two raw texts which represent reciprocal
translations. If not already sentence aligned, the two
texts are aligned. In the shared task this step was not
necessary since both the training data and evaluation
data were provided in the sentence aligned format.

The texts in each language are then tokenized with
the MULTEXT multilingual tokenizer®. The tokenizer is
a finite state automaton using language specific

3 We noticed in the Gold Standard two sentences where

alignments were wrongly shifted by one position (due to an
unprintable character) and we corrected them.
* http://aune.lpl.univ-aix.fr:16080/projects/multext/MtSeg/
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resources. It recognizes several compounds (phrasal
verbs, idioms, dates) and split contrasted or cliticized
constructions. This tokenization considerably differs
from the one prescribed by the Shared Task where a
token is any character string delimited by a blank or a
punctuation sign (which itself is considered a token).

Since our processing tools (especially the tokeniser)
were built with a different segmentation strategy in
mind, we generated the alignments based on our own
tokenization and, at the end, we “re-tokenised” the text
according to original evaluation data (and consequently
re-index) all the linking pairs. After tokenization, both
texts are tagged and lemmatized. We used in-house
language models and lemmatizers and the Brants’s TnT
tagger’. For both English and Romanian we used
MULTEXT-EAST® compliant tagsets. With different
tags, a tagset mapping table becomes an obligatory
external resource. Although, more often than not, the
translation equivalents have the same part-of speech,
relying on such a restriction would seriously affect the
alignment recall. However, when the translation
equivalents have different parts of speech, this
difference is not arbitrary. During the training phase we
estimated bilingual POS affinities: {p(POS,*°| POS,*N)}
and {p(POS,"NPOS,*°)}. POS affinities were used as
one of the information sources in dealing with
competitive alignments.

The next preprocessing step is represented by a
rather primitive form of sentence chunking in both
languages. They roughly correspond to (non-recursive)
noun phrases, adjectival phrases, prepositional phrases
and verb complexes (analytical realization of tense,
aspect mood and diathesis and phrasal verbs). The
“chunks” are recognized by a set of regular expressions
defined over the tagsets. Finally, the bitext is assembled
as an XML document (XCES-Align-ana format), as
used in the MULTEXT-EAST corpus, which is the
standard input for most of our tools, including COWAL
alignment platform.

The three aligners

TREQ-AL generates translation equivalence hypotheses
for the pairs of words (one for each language in the
parallel corpus) which have been observed occurring in
aligned sentences more than expected by chance. The
hypotheses are filtered by a loglikelihood score
threshold. Several heuristics (string similarity-cognates,
POS affinities and alignments locality’) are used in a

> http://acl.ldc.upenn.edu/A/A00/A00-1031.pdf

® http:/nLijs.si/ME/V2/

” The alignments locality heuristics exploits the observation
made by several researchers that adjacent words of a text in
the source language tend to align to adjacent words in the
target language. A more strict alignment locality constraint
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competitive linking manner (Melamed, 2001) to make
the final decision on the most likely translation
equivalents. Given that, initially, this program was
designed for extracting translation equivalents for the
alignment of the Romanian wordnet to the Princeton
wordnet, it deals only with one to one mappings. To
cope with the many to many mappings (especially for
functional words alignment), the earlier version of the
translation equivalence extractor encoded some general
rules assumed to be valid over a large set of natural
languages such as: auxiliaries and verbal particles
(infinitive, subjunctive, aspectual and temporal) are
related to the closest main verb, determiners (articles,
pronominal adjectives, quantifiers) are related to the
closest nominal category (noun or pronoun). Currently
this part of the TREQ-AL code became redundant
because the chunking module mentioned before does
the same job in a more general and flexible way.

MEBA is an iterative algorithm which uses the
translation probabilities, distorsions and POS-affinities
generated by GIZA++ and takes advantage of all
preprocessing phases mentioned in the previous section.
In each step are aligned different categories of tokens
(content words, named entities, functional words) in
decreasing order of statistical evidence. The score of a
link is computed by a linear function of 7 parameters’
scores: translation probability, POS affinity, string
similarity, alignments locality (both strict and weaker
versions) distortions and the entropy of the translation
equivalents. For all these parameters, in each processing
step, we empirically set minimal thresholds and various
weights. The tokens considered for the computing
translation probabilities are the lemmas trailed by the
grammatical categories (eg. plane N, plane V
plane A). This way we aimed at avoiding data
sparseness and filtering noisy data. For highly
inflectional languages (as Romanian is) the use of
lemmas instead of word occurrences contributes
significantly to the data sparseness reduction. For
languages with weak inflectional character (as English
is) the POS trailing contributes especially to the filtering
the search space. Each processing step is controlled by
above mentioned parameters, the weights and thresholds
of which vary from step to step (even the order of the
processing steps is one of the possible parameters).

The first alignment step builds only links with a
high level of certainty (that is cognates, pairs of high
translation probability and high POS affinity). The
grammatical categories which are considered in this step
are user controlled (usually nouns, adjectives or non-
auxiliary verbs and which have the fewest competitive
translations). The next processing steps try to align

requires that all alignment links starting from a chunk, in the
one language end in a chunk in the other language. This
restricted form of locality is relevant for related languages.



content words (open class categories) as confidently as
possible, following the alignments in previous steps as
anchor points. In all steps the candidates are considered
if and only if they meet the minimal threshold
restrictions. If the input bitext is chunked, the strict
alignment locality heuristics is very effective to
determine the correct alignment even for unseen pairs of
words (or for which the translation equivalence
probability is below the considered threshold). When
the pre-chunking of the parallel texts is not available,
MEBA uses the weaker form of the locality heuristics
by analyzing the alignments already existing in a
window of N tokens centered on the focused token. The
window size is variable, proportional to the sentence
length. For all alignments in the window, an average
displacement is computed and, among the competing
alignments, preference will be given to the links with
displacement values closer to the average one.

The functional words and punctuation are processed
in the last step and their alignments are guided by the
POS-affinities and alignment locality heuristics. If none
of the alignment clues or their combination (Tiedemann,
2003) is strong enough, the functional words are
automatically aligned with the word(s) their governor is
aligned to. The governor is chunk-based defined: it is
the content word of a chunk (if there are more content
words in a chunk, then the governor is the grammatical
head). If the chunking is not available, the closest
content word is selected as the governor. Proximity is
checked to the left or to the right according to the
frequencies of the POS-ngram containing the current
functional word.

We should mention that the probabilities computed
during the training phase are not re-estimated for each
run-time processing step. At run-time only the weights
and thresholds change from step to step.

COWAL, the combined aligner takes advantage of the
alignments independently provided by TREQ-AL and
MEBA. The simplest combination method consists in
computing either the union (high recall, low precision),
or the intersection (lower recall, higher precision) of the
independent alignments. We evaluated both these
simple methods of combination and found that the best
F-measure was provided by the union-based
combination. Although for the shared task we submitted
the union-based combined alignment (Baseline
COWAL, see Table 1), there are various ways to
improve it. We discuss three cases where improvement
is possible (C1, C2 and C3, see below) and which were
evaluated after the submission deadline. The results of
this (unofficial) evaluation are summarized in Table 1
by the f~COWAL line. These cases refer to competing
links that appeared after the union of the independent
alignments. The conflicts resolution is based on the
(weak) locality and distortion heuristics discussed
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before. The currently identified competing links are

only those for which the following conditions apply:

C1) if one aligner found for a word W a non-null
alignment and the other aligner generated for the
same word W a null link, then the baseline alignment
contains an impossible situation: the token W is
recorded both as translated and not-translated in the
other language. The translation probabilities, POS
affinity and the relative displacement of the tokens in
the non-null candidates were the strongest decision
criteria. We found that in about 60% of the cases the
null alignments were mistaken. So, for the time being,
we simply eliminated the null competing alignments
(this should be addressed in a more principled way by
the future version of the combiner).

C2) long distant competing links; this case appears
when one aligner found for the word Ws the link to
the target word Wt,,, the other aligner found for Ws
the target Wt,, and the distance between Wt, and
Wt,, is more than 3 words (in a future version this
maximum distance will be a dynamic parameter,
depending on the sentence length and the POS of
Ws).

C3) competing links to the same target(s) of a word
occurring several times in the same sentence;
consider, for example, the Romanian fragment:

“...la; Neptun, la, Orastie si la; Afumati, ...

which in English is translated by the next segment:
“...in Neptun, Orastie and Afumati...

In spite of the gold standard considering that all three
occurrences of the preposition “la” in Romanian (la;,
la, ,1a;3) are aligned to the same word in English (“in”
the filtering, in this case, licensed only the alignment
“la; <> in”. We consider that this filtered alignment
is correct, since omitting “la,” and “la;” does not alter
the syntactic correctness of the Romanian text, and
also because the insertion in the English fragment of
the preposition “in” before “Orastie” and before
“Afumati” wouldn’t alter the grammaticality of the
English fragment. Since both repetitions and
omissions are optional, we consider that only the first
occurrence of the preposition (“la,”) is translated in
English, while the others are omitted.

Another possible improvement (not implemented yet)
was revealed by observing that the final result contained
several incomplete n-m (phrasal) alignments. It is likely
that even an elementary n-gram analysis (both sides of
the bitext) would bring valuable evidence for improving
the phrasal alignments.

Post-processing

As said in the second section, our tokenization was
different from the tokenization in the training and test
data. To comply with the evaluation protocol, we had to
re-tokenize the aligned text and re-compute the indexes



of the links. Some multi-word expressions recognized
by the tokenizer as one token, such as dates (25
ianuarie, 2001), compound prepositions (de la, pdana
la), conjunctions (pentru ca, de cdnd, pdnda cand) or
adverbs (de jur imprejur, in fata) as well as the hyphen
separated nominal compounds (mass-media, prim-
ministru) were split, their positions were re-indexed and
the initial one link of a split compound was replaced
with the set obtained by adding one link for each
constituent of the compound to the target English word.
The same hold for the other way around. Therefore if
two multiword expressions were initially found to be
translation equivalents (one alignment link) after the
post-processing number of generated links became
N*M, where N represented the number of words in the
first language compound and M the number of words in
the second language compound.

Evaluation and conclusions

Neither TREQ-AL nor MEBA needs an a priori
bilingual dictionary, as this will be automatically
extracted by the TREQ or GIZA++. We made
evaluation of the individual alignments in both
experimental settings: without a startup bilingual
lexicon and with an initial mid-sized bilingual lexicon.
Surprisingly enough, we found that while the
performance of TREQ-AL increases a little bit (approx.
1% increase of the F-measure) MEBA is doing better
without an additional lexicon. So, in the evaluation
below MEBA uses only the training data vocabulary.

Aligner Precision |Recall| F- AER
meas.
TREQ-AL 81.71 160.57 | 69.57 | 30.43
MEBA 82.85 | 60.41| 69.87 | 30.13
Baseline 70.84 | 76.67| 73.64 | 26.36
(union) COWAL
f~=COWAL 87.17 | 70.25| 77.80 | 22.20
(H1+H2+H3)

Table 1. Evaluation results against the official GS

After the release of the official Gold Standard we
noticed and corrected some obvious errors and also
removed the controversial links of the type ¢) discussed
in the previous section. The evaluations against this new
“Gold Standard” showed, on average, 3.5% better
figures (precision, recall, F-measure and AER) for the
individual aligners, while for the combined classifiers,
the performance scores were about 4% better.

MEBA is very sensitive to the values of the
parameters which control its behavior. Currently they
are set according to the developers’ intuition and after
the analysis of the results from several trials. Since this
activity is pretty time consuming (human analysis plus
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re-training might take a couple of hours) we plan to
extend MEBA with a supervised learning module,
which would automatically determine the “optimal”
parameters (thresholds and weights) values.
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Abstract statistical alignments between single words (de-

_ _ fined in bilingual lexicons) and applies language-
In this paper we describe LIHLA, a lexical independent heuristics to them, aiming at finding the
aligner which uses bilingual probabilis- best alignments between words or multiword units.
tic lexicons generated by a freely availa- Although the most frequent alignment category is
ble set of tools (NATools) and language- | . 1 (in which one source word is translated exactly
independent heuristics to find links be- g gne target word), other categories such as omis-
tween single words and multiword units  gjong 4 . 0 or0 : 1) or those involving multiword
in sentence-aligned parallel texts. The nits ¢, . m, withn and/orm > 1) are also possible.
method has achieved an alignment error This paper is organized as follows: section 2 ex-
rate of 22.72% and 44.49% on English— o5ing how LIHLA works: section 3 describes some
Inuktitut and Romanian—English parallel oy e riments carried out with LIHLA together with
sentences, respectively. their results and, in section 4, some concluding re-

marks are presented.
1 Introduction

. . . 2 How LIHLA works
Alignment of words and multiword units plays an

important role in many natural language processings the first step, LIHLA uses alignments between
(NLP) applications, such as example-based machisingle words defined in two bilingual lexicons
translation (EBMT) (Somers, 1999) and statistica{source—target and target—source) generated from
machine translation (SMT) (Ayan et al., 2004; Ochsentence-aligned parallel texts using NATobls.
and Ney, 2000), transfer rule learning (Carl, 2001; Given two sentence-aligned corpus files, the NA-
Menezes and Richardson, 2001), bilingual lexiTools word aligner —based on the Twenty-One sys-
cography (&mez Guinovart and Sacau Fontenlatem (Hiemstra, 1998)— counts the co-occurrences
2004), and word sense disambiguation (Gale et abf words in all aligned sentence pairs and builds a
1992), among others. sparse matrix of word-to-word probabilities (Model

Aligning two (or more) texts means finding A) using an iterative expectation-maximization al-
correspondences (translation equivalences) betwegarithm (5 iterations by default). Finally, the ele-
segments (paragraphs, sentences, words, etc.) of thents with higher values in the matrix are cho-
source text and segments of its translation (the tagsen to compose two probabilistic bilingual lexi-
get text). Following the same idea of many recentlgons (source—target and target—source) {@&isnand
proposed approaches on lexical alignment (e.g., WAlmeida, 2003). For each word in the corpus, each
and Wang (2004) and Ayan et al. (2004)), the—; : _

. . . NATools is a set of tools developed to work with parallel

method described in this paper, LIHLA (Languageborpora, which is freely available inttp://natura.di.
Independent Heuristics Lexical Aligner) starts fromuminho.pt/natura/natura/
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bilingual lexicon gives: the number of occurrences
of that word in the corpus (its absolute frequency)
and its most likely translations together with their
probabilities.

The construction of the bilingual lexicons is an
independent prior step for the alignment performed
by LIHLA and the same bilingual lexicons can be
used several times to align parallel sentences.

So, using the two bilingual lexicons generated

by NATools and some language-independent heuris-3-

tics, LIHLA tries to find the best alignment between
source and target tokens (words, numbers, special
characters, etc.) in a pair of parallel sentences. For
each source tokes; in source sentenc€, LIHLA

will look for the best token; in the target parallel
sentencd’” applying these heuristics in sequence:

t; (for target multiword units) and are not pos-
sible translations for other words ifi and S,
respectively. According to the multiword units
that have (or not) been found,la: 1, 1 : n,

m : 1 orm : n alignment is established. An
omission alignment fos; (1 : 0) can also be
established if no target candidate watdthat
satisfies this heuristic is available.

Cognates

If no possible translation fos; is found in the
bilingual lexicon and the target sentend@ at
the same time, LIHLA uses the LCSR to look
for cognates fos; in 7" and sets d : 1 align-
ment between; and its best cognate orla: 0
alignment if there is no cognate available.

1. Exact match

These heuristics are applied while alignments can
LIHLA creates al : 1 alignment between, still be produced and a maximum number of itera-
andt; if they are identical. This heuristic staystions is not reached (see section 3 for the number
for exact matches, for instance, between propdX iterations performed in the experiments described
names and numbers. in this paper). Furthermore, at the first iteration,
all words with a frequency higher than a set thres-
hold are ignored to avoid erroneous alignments since
all subsequent alignments are based on the previous

. Best candidate according to the bilingual
lexicon
LIHLA looks for possible translations of; in  ones.
the source—target bilingual lexicorB§) and In its last step (which is optional and has not
makes an intersection between them and theeen performed in the experiments described in
words in7". In this intersection, if no candi- this paper), LIHLA aligns the remaining unaligned
date word identical to those iBs is found, source and target tokens between two pairs of al-
then LIHLA tries to look for cognates for ready aligned tokens establishing sevérall align-
those words using the longest common subseaents when there are the same number of source
quence ratio (LCSRJ.By doing this, LIHLA and target tokens, or just one alignment involving
can deal with small changes in possible transall source and target tokens if they exist in different
lations such as different forms of the same verlguantities. The decision of creating1 : 1 align-
changes in gender and/or number of nounsnents in spite of just one : n alignment when there
adjectives, and so on. is the same number of source and target tokens is due
Then, LIHLA selects the best target candidateo the fact that 4 : 1 alignment is more likely to be
wordt; for s; —the best candidate word accor-found than au : n one.
ding to Bs among those in a position which
is favorably situated in relation te,— and 3 EXxperiments
looks for multiword units involvings; andt; this section we present the experiments carried
—those words that occur immediately before . p .
and/or afters; (for source multiword units) or out Wlth LIHLA for the Shared. ta_sk on word-allgn-
J ment” in the Workshop on Building and Using Pa-

2The LCSR of two words is computed by dividing the lengthrallel Texts during ACL2005. Systems participa-
of their longest common subsequence by the length of thﬁng in this shared task were provided with training

longer word. For example, the LCSR of Portuguese vadirat
hamentaand Spanish wordlineamientds 2 ~ (.83 as their
longest common subsequencaiki-n-a-m-e-n-t-o

data (consisting of sentence-aligned parallel texts)
for three pairs of languages: English—Inuktitut,

12 —
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Romanian—-English and English—Hindi. Further- The results obtained in these experiments were
more, the systems would choose to participate in omot so good as those achieved by LIHLA on the
or both subtasks of “limited resources” (where systanguage pairs for which it was developed, that
tems were allowed to use only the resources pras, 92.48% of precision and 88.32% of recall on
vided) and "unlimited resources” (where system&ortuguese—Spanish parallel texts and 84.35% of
were allowed to use any resources in addition tprecision and 76.39% of recall on Portuguese—
those provided). The system described in this panglish ones.
per, LIHLA, participated in the subtask of limited re-  The poor performance in the English—Inuktikut
sources aligning English—Inuktitut and Romaniantask may be partly due to the fact that Inuktikut is
English test sets. a polysynthetic language, that is, one in which, un-
The training sets —composed of 338,343ike in English, words are formed by long strings of
English—Inuktitut aligned sentences (omission case&®ncatenated morphemes. This makes it difficult for
were excluded from the whole set of 340,526 paird)ATools to build reasonable dictionaries and lead
and 48,478 Romanian—English aligned ones— wete a predominance af : 1 alignments, which are
used to build the bilingual lexicons.  Then,harder to determine —this fact can be confirmed by
without changing any default parameter (thresholthe better precision of LIHLA when probable align-
for LCSR, maximum number of iterations, etc.),ments were considered (see table 1). The perfor-
LIHLA aligned the 75 English—Inuktitut and the 203mance in the English—Romanian task, not very far
Romanian—English parallel sentences on test sefeom the English—Portuguese task used to tune up
The whole alignment process (bilingual lexicon gethe parameters of the algorithm, is harder to explain
neration and alignment itself) did not take more thamwithout further analysis.
17 minutes for English—Inuktitut (3 iterations per The difference in precision and recall between
sentence, on average) and 7 minutes for Romaniatke two language pairs is due to the fact that on
English (4 iterations per sentence, on average). the English—Inuktitut reference corpus in addition to
The evaluation was run with respect to precisiorsure alignments the probable ones were also anno-
recall, F-measure, and alignment error rate (AERJated while in Romanian—English only sure align-
considering sure and probable alignments but natents are found. This indicates that evaluating
NULL ones (Mihalcea and Pedersen, 2003). Tablealignment systems is not a simple task since their
1 and 2 present metric values for English—Inuktituperformance depends not only on the language pairs
and Romanian—English alignments, respectively, and the quality of parallel corpora (constant criteria
provided by the organization of the shared task. in this shared task) but also the way the reference
corpus is built.

Metric Sure | Probable So, at this moment, it would be unfair to blame
Precision | 46.55% | 79.53% the worse performance of LIHLA on its alignment
Recall 73.72%| 18.71% methodology since it has been applied to the new
F-measurel 57.07%| 30.30% language pairs without changing any of its default
AER 22.72% parameters. Maybe a simple optimization of para-

_ _ meters for each pair of languages could bring better
Table 1: LIHLA results for English—Inuktitut  regits and also the impact of size and quality of
training and reference corpora used in these experi-
ments should be investigated. Then, the only conclu-

Metric Sure | Probable sion that can be taken at this moment is that LIHLA,
Precision | 57.68%| 57.68% with its heuristics and/or default parameters, can not
Recall 53.51%| 53.51% be indistinctly applied to any pair of languages.
I’-measure 55.51%)| 55.51% Despite of its performance, LIHLA has some

AER 44.49%

. . 3For more details of these experiments see (Caseli et al., ac-
Table 2: LIHLA results for Romanian—English  cepted paper). P (
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advantages when compared to other lexical aligHelena M. Caseli, Maria das Gragas V. Nunes, and

ment methods found in the literature, such as: it Mikel L. Forcada.
does not need to be trained for a new pair of lan-

(accepted paper). LIHLA: A
lexical aligner based on language-independent heuris-
tics. In Proceedings of the V Encontro Nacional de

guages (as in Och and Ney (2000)) and neither does|nejigencia Artificial (ENIA05) Sao Leopoldo, RS,
it require pre-processing steps to handle texts (asBrazil.

in Gbmez Guinovart and Sacau Fontenla (2004)

Furthermore, the whole alignment process (bilingual

illiam A. Gale, Kenneth W. Church, and David

Yarowsky. 1992. Using bilingual materials to develop

lexical generation and alignment itself) has proved word sense disambiguation methods. Pioceedings

to be very fast as mentioned previously.

4 Concluding remarks

of the 4th International Conference on Theoretical and
Methodological Issues in Machine Translation (TMI
1992) pages 101-112, Montreal, Canada, June.

This paper has presented a lexical alignmentdvier Gomez Guinovart and Elena Sacau Fontenla.

method, LIHLA, which aligns words and multi-
word units based on initial statistical word-to-word

2004. Metodos de optimizaoh de la extracéin de
Iéxico bilingie a partir de corpus paralelofroce-
samiento del Lenguaje Natur&d3:133-140.

correspondences and language-independent heuris-

tics.

In the experiments carried out at the “Shared

task on word alignment” which took place at the
Workshop on Building and Using Parallel Texts
during ACL2005, LIHLA has been evaluated on

Djoerd Hiemstra. 1998. Multilingual domain modeling

in Twenty-One: automatic creation of a bi-directional
translation lexicon from a parallel corpus. In Pe-
ter Arno Coppen, Hans van Halteren, and Lisanne Te-
unissen, editorfRroceedings of the 8th CLIN meeting
pages 41-58.

English—Inuktitut and Romanian—-English parallelaryl Menezes and Stephen D. Richardson. 2001. A best-

texts achieving an AER of 22.72% and 44.49%,
respectively.

As future work, we aim at investigating the impact
of using additional linguistic information (such as
part-of-speech tags) on LIHLA's performance. Also,

first alignment algorithm for automatic extraction of
transfer mappings from bilingual corpora. Pnoceed-
ings of the Workshop on Data-driven Machine Trans-
lation at 39th Annual Meeting of the ACL (ACL-2001)
pages 39-46, Toulouse, France.

as a long-term goal, LIHLA will be part of a systemRada Mihalcea and Ted Pedersen. 2003. An evaluation

implemented to learn transfer rules from sequences

of aligned words.
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Abstract

In this paper, we describe a word
alignment algorithm for English-Hindi
parallel data. The system was developed
to participate in the shared task on word
alignment for languages with scarce
resources at the ACL 2005 workshop, on
“Building and using parallel texts: data
driven machine translation and beyond”.
Our word alignment algorithm is based on
a hybrid method which performs local
word grouping on Hindi sentences and
uses other methods such as dictionary
lookup, transliteration similarity, expected
English words and nearest aligned
neighbours. We trained our system on the
training data provided to obtain a list of
named entities and cognates and to collect
rules for local word grouping in Hindi
sentences. The system scored 77.03%
precision and 60.68% recall on the shared
task unseen test data.

1 Introduction

This paper describes a word alignment system
developed as a part of shared task on word
alignment for languages with scarce resources at
the ACL 2005 workshop on “building and using
parallel texts: data driven machine translation and
beyond”. Participants in the shared task were
provided with common sets of training data,
consisting of English-Inuktitut, Romanian-English,
and English-Hindi parallel texts and the
participating teams could choose to evaluate their
system on one, two, or all three language pairs.
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Our system is for aligning English-Hindi parallel
data at the word level. The word-alignment
algorithm described here is based on a hybrid —
multi-feature approach, which groups Hindi words
locally within a Hindi sentence and uses dictionary
lookup (DL) as the main method of aligning words
along with other methods such as Transliteration
Similarity (TS), Expected English Words (EEW)
and Nearest Aligned Neighbors (NAN). We used
the training data supplied to derive rules for local
word grouping in Hindi sentences and to find
Named Entities (NE) and cognates using our TS
approach. In the following sections we briefly
describe our approach.

2 Training Data
The training data set was composed of
approximately 3441  English-Hindi  parallel

sentence pairs drawn from the EMILLE (Enabling
Minority Language Engineering) corpus (Baker et
al., 2004). The data was pre-tokenized. For the
English data, a token was a sequence of characters
that matches any of the “Dr.”, “Mr.”, “Hon.”,
“Mrs.”, “Ms.”, “etc.”, “i.e.”, “e.g.”, “[a-zA-ZO-
9]+”, words ending with apostrophe and all special
characters except the currency symbols £ and $.
Similarly for the Hindi, a token consisted of a
sequence of characters with spaces on both ends
and all special characters except the currency
symbols £ and $.

3 Word Alignment
Given a pair of parallel sentences, the task of word

alignment can be described as finding one-to-one,
one-to-many, and many-to-many correspondences
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between the words of source and target sentences.
It becomes more complicated when aligning
phrases of one language with the corresponding
words or phrases in the target language. For some
words, it is also possible not to find any translation
in the target language. Such words are aligned to
null.

The algorithm presented in this paper, is a blend of
various methods. We categorize words of a Hindi
sentence into one of four different categories and
use different techniques to deal with each of them.
These categories include: 1) NEs and cognates 2)
Hindi words for which it is possible to predict their
corresponding English words 3) Hindi words that
match certain pre-specified regular expression
patterns specified in a rule file (explained in
section 3.3.) and finally 4) words which do not fit
in any of the above categories. In the following
sections we explain different methods to deal with
words from each of these categories.

3.1 Named Entities and Cognates

According to WWW1, the Named Entity Task is
the process of annotating expressions in the text
that are ‘“unique identifiers” of entities (e.g.
Organization, Person, Location etc.). For example:
“Mr. Niraj Aswani”, “United Kingdom”, and
“Microsoft” are examples of NEs. In most text
processing systems, this task is achieved by using
local pattern-matching techniques e.g. a word that
is in upper initial orthography or a Title followed
by the two adjacent words that are in upper initial
or in all upper case. We use a Hindi gazetteer list
that contains a large set of NEs. This gazetteer list
is distributed as a part of Hindi Gazetteer
processing resource in GATE (Maynard et al.,
2003). The Gazetteer list contains various NEs
including person names, locations, organizations
etc. It also contains other entities such as time
units — months, dates, and number expressions.
Cognates can be defined as two words having a
common etymology and thus are similar or
identical. In most cases they are pronounced in a
similar way or with a minor change. For example
“Bungalow” in English is derived from the word

“garerr” in Hindi, which means a house in the
Bengali style (WWW?2). We use our TS method to
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locate such words. Section 3.2 describes the TS

approach.
3.2 Transliteration Similarity

For the English-Hindi alphabets, it is possible to
come up with a table consisting of
correspondences between the letters of the two
alphabets. This table is generated based on the
various sounds that each letter can produce. For
example a letter “c” can be mapped to two letters
in Hindi, “%” and “8”. This mapping is not
restricted to one-to-one but also includes many-to-
many correspondences. It is also possible to map a
sequence of two or more characters to a single
character or to a sequence two or more characters.
For example “tio” and “sh” in English correspond

to the character “¢1”” in Hindi.

Prior to executing our word alignment algorithm,
we use the TS approach to build a table of NEs and
cognates. We consider one pair of parallel
sentences at a time and for each word in a Hindi
sentence, we generate different English words
using our TS table. We found that before
comparing words of two languages, it is more
accurate to eliminate vowels from the words
except those that appear at the start of words. We
use a dynamic programming algorithm called
“edit-distance” to measure the similarity between
these words (WWW3). We calculate the similarity
measure for each word in a Hindi sentence by
comparing it with each and every word of an
English sentence. We come up with an m x n
matrix, where m and n refer to the number of
words in Hindi and English respectively. This
matrix contains a similarity measure for each word
in a Hindi sentence corresponding to each word in
a parallel English sentence. From our experiments
of comparing more than 100 NE and cognate pairs,
we found that the word pairs should be considered
valid matches only if the similarity is greater than
75%. Therefore, we consider only those pairs
which have the highest similarity among the other
pairs with similarity greater than 75%. The
following example shows how TS is used to
compare a pair of English-Hindi words. For

example consider a pair “aswani = I1HaTH” and
the TS table entries as shown below:



A>3, S>9, SS>4, V>3, W27 and N>+

We remove vowels from both words: “aswn =2

L]

SEER R
possible English words. This gives four different
combinations: “asvn”, “assvn”, “aswn”’ and
“asswn”. These words are then compared with the
actual English word “aswn”. Since we are able to
locate at least one word with similarity greater than

75%, we consider “aswani = I&aTHT as a NE.

Once a list of NEs and cognates is ready, we
switch to our next step: local word grouping,
where all words in Hindi sentences, either those
available in the gazetteer list or in the list derived
using TS approach, are aligned using TS approach.

and then convert the Hindi word into

3.3 Local Word Grouping

Hindi is a partially free order language (i.e. the
order of the words in a Hindi sentence is not fixed
but the order of words in a group/phrase is fixed).
Unlike English where the verbs are used in
different inflected forms to indicate different
tenses, Hindi uses one or two extra words after the
verb to indicate the tense. Therefore, if the English
verb is not in its base form, it needs to be aligned
with one or more words in a parallel Hindi
sentence. Sometimes a phrase is aligned with
another phrase. For example “customer benefits”

aligns with ‘“TTg#® & ®@”. In this example the
first word “customer” aligns with the first word
“Irg+” and the second word “benefits” aligns with
the third word “wr@s”. Considering “customer
satisfaction” and ‘VTg® F ®TAS” as phrases to be

aligned with each other, “&F" is the word that
indicates the relation between the two words

“UATg” and “®wrI=”, which means the “benefits of
customer” in English. These words in a phrase
need to be grouped together in order to align them
correctly. In the case of certain prepositions,
pronouns and auxiliaries, it is possible to predict
the respective Hindi postpositions, pronouns and
other words. We derived a set of more than 250
rules to group such patterns by consulting the
provided training data and other grammar
resources such as Bal Anand (2001). The rule file
contains the following information for each rule:
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1) Hindi Regular Expression for a word or
phrase. This must match one or more words in
the Hindi sentence.

Group name or a part-of-speech category.
Expected English word(s) that this Hindi word
group may align to.

In case a group of one or more English words
aligns with a group of one or more Hindi
words, information about the key words in
both groups. Key words must match each
other in order to align English-Hindi groups.

A rule to convert Hindi word into its base
form.

2)
3)

4)

5)

We list some of the derived rules below:

1) Group a sequence of [X + Postposition], where
X can be any category in the above list except
postposition or verb. For example: “For X =

“X & o137, where “For” = “&F o9,

Root Verb + (&1, %@l or ¥8) + (PH). Present

continuous tense. We use “PH” as an
abbreviation to refer to the present/past tense

conjunction of the verb “Er1” - , &, &, &I, etc.
Group two words that are identical to each

2)

3)
other. For example: "< 31 331", which means
“different” in English. Such bi-grams are
common in Hindi and are used to stress the
importance of a word/activity in a sentence.

Once the words are grouped in a Hindi sentence,
we identify those word groups which do not fit in
any of the TS and EEW categories. Such words
are then aligned using the DL approach.

3.3 Dictionary lookup

Since the most dictionaries contain verbs in their
base forms, we use a morphological analyzer to
convert verbs in their base forms. The English-
Hindi dictionary is obtained from (WWW4). The
dictionary returns, on average, two to four Hindi
words referring to a particular English word. The
formula for finding the lemma of any Hindi verb
is: infinitive = root verb + “AT”. Since in most
cases, our dictionary contains Hindi verbs in their
infinitive forms, prior to comparing the word with
the unaligned words, we remove the word “AT’

from the end of it. Due to minor spelling mistakes
it is also possible that the word returned from
dictionary does not match with any of the words in



a Hindi sentence. In this case, we use edit-distance
algorithm to obtain similarity between the two
words. If the similarity is greater than 75%, we
consider them similar. We use EEW approach for
the words which remain unaligned after the DL
approach.

3.4 Expected English words

Candidates for the EEW approach are the Hindi
word groups (HWG) that are created by our Hindi
local word grouping algorithm (explained in
section 3.3). The HWGs such as postpositions,
number expressions, month-units, day-units etc.
are aligned using the EEW approach. For
example, for the Hind word “ame=” in a Hindi
sentence, which means “fifty two” in English, the
algorithm tries to locate “fifty two” in its parallel
English sentence and aligns them if found. For the
remaining unaligned Hindi words we use the NAN
approach.

3.5 Nearest Aligned Neighbors

In certain cases, words in English-Hindi phrases
follow a similar order. The NAN approach works
on this principle and aligns one or more words
with one of the English words. Considering one
HWG at a time, we find the nearest Hindi word
that is already aligned with one or more English
word(s). Aligning a phrase “customer benefits”

with “UTg® * HIR” (example explained in section

3.3) is an example of NAN approach. Similarly
consider a phrase “tougher controls”, where for its

equivalent Hindi phrase “sfe® f==0r", the
dictionary returns a correct pair ‘“controls —>
fA==ror”, but fails to locate “tougher = =f&r®". For
aligning the word “tougher”, NAN searches for the
nearest aligned word, which, in this case, is
“controls”. Since the word ‘“controls” is already
aligned with the word “fA==r”, the NAN method
aligns the word “tougher”

unaligned word “sTf&rsF",

with the nearest

4 Test Data results

We executed our algorithm on the test data
consisting of 90 English-Hindi sentence pairs. We
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obtained the following results for non-null

alignment pairs.

Word Alignment Evaluation

Evaluation of SURE alignments

Precision = 0.7703
Recall = 0.6068
F-measure = 0.6788

Evaluation of PROBABLE alignments

Precision = 0.7703

Recall = 0.6068

F-measure = 0.6788

AER = 0.3212
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Abstract

The ACL-2005 Workshop on Paral-

lel Texts hosted a shared task on
building statistical machine translation

systems for four European language
pairs: French—English, German—English,
Spanish—-English, and Finnish-English.
Eleven groups patrticipated in the event.
This paper describes the goals, the task
definition and resources, as well as results
and some analysis.

Shared Task: Statistical Machine Translation between European Languages

Christof Monz
UMIACS
University of Maryland
College Park, MD 20742, USA
christof@umiacs.umd.edu

In contrast to the bigger NIST competition, we
wanted to keep the barrier of entry as low as possi-
ble. We provided not only training data from the Eu-
roparl corpus (Koehn, 2005), but also additional re-
sources: sentence and word alignments, the decoder
Pharaoh (Koehn, 2004b), and a language model,
so that participation was feasible even as a graduate
level class project.

Using about 15 million words of translated text,
participants were asked to build a phrase-based sta-
tistical machine translation system. The focus of
the task was to build a probabilistic phrase transla-

tion table, since most of the other resources were

Statistical machine translation is currently thd’rovided — for more on phrase-based statistical
dominant paradigm in machine translation researcmachme_translaflon, refer to Koehn et al. (2003).
Annual competitions are held for Chinese—Englis] "€ participants’ systems were compared by how

and Arabic—English by NIST (sponsored by the ugvell they translated 2000 previously unseen test sen-

military funding agency DARPA), which creates at€"ces from the same domain.

forum to present and compare novel ideas and leads'he shared task operated within an extremely
to steady progress in the field. short timeframe. The workshop and hence the

One of the advantages of statistical machine tran§hared task was accepted on February 22, 2005 and

lation is that the currently applied methods are fairnounced on March 3. The official test data was
language-independent.  Building a new machin@‘ade available on April 3, results were due one

translation system for a new language pair is ndveek later. Despite this tight schedule, eleven re-

much more than a matter of running a training Iorog,earch groups participated and built a total of 32 ma-

cess on a training corpus of parallel text (a text iighine translation systems for the four language pairs.
one language paired with a translation in another). 1 Goal
It is therefore possible to hold a competition oals

where rese_zarch groups have only a few weeks _When setting up this competition, we were moti-
build machine translation systems for language pai{gieq by a number of goals. We set out to:

that they have not previously worked on. We effec- o aate 4 platform to demonstrate the effective-
tively demonstrated this with our shared task. Fo”nﬁess of novel ideas: The research community is

stance, seven teams built Finnish—English maching,qj, palkanized, where different groups work on
translation systems, a language pair that was cer-
tainly not of their immediate concern before.  http://www.isi.edu/licensed-sw/pharach/
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different data sets and under different condition2 Rules of Engagement

so that it becomes often hard to assess, how effec- _ _ »
tive a novel method is. By creating an environmer;r/e set up a ma_tchlne translation c_ompetltlgn for

with common test and training sets, language mod pur Ianguagg pairs. We chose Spanish-English and
preprocessing, and even decoder, the effect of Othlé’pench—Engllsh, because many researchers would

model choices can be more easily demonstrated. be familiar W'th thgse Ian.guages. W? chose
K | . ~ German-English for its special problems with word

.Wor on New language pairs, new problems: order (such as nested constructions and split verb
Different language pairs pose different challenge%roups) and morphology.  Finally, we picked

We picked Finnish—English and German_Englis*l‘—‘innish—Eninsh for the rich agglutinative morphol-

for the special problems of rich morphology, wordOgy of Einnish.

order, which are a challenge to current phrase-base Statistical machine translation systems are typi-
SMT methods. cally trained on sentence-aligned parallel corpora.
Enable more researchers to get engaged in we selected Europdtl a freely available parallel
SMT research: One of our main goals with provid- corpus in eleven languages. In addition, we also
ing as many resources as possible was to keep thfyde a word alignment available, which was de-
barrier of entry low. Participants could use the worgived using a variant of the current default method

alignment and other resources and focus on phragg word alignment — Och and Ney (2003)’s refined
extraction. We hoped to attract researchers that aggethod.

relatively new to the field. We were satisfied to learn Figure 1 details some properties of the parallel

that many entries are by graduate students workingrpora. The training corpus is most of the Europar
on their own. corpus, only the text of sessions from last quarter of
Promote and create free resourcesAcademic the year 2000 was reserved for testing. The corpus
research thrives on freely available resources. THws the size of roughly 15 million English words in
field of statistical machine translation has bee00,000 sentences — these numbers differ for each of
blessed with a long tradition of freely available softthe four parallel corpora due to the different number
ware tools — such as GIZA++ (Och and Ney, 2003pf discarded sentences during sentence alignment
— and parallel corpora — such as the Canadiaand after enforcing a 40 word length limit for sen-
Hansard& Following this lead, we made word tences.
alignments and a language model available for this The number of foreign words differs even more
competition in addition to our previously publisheddramatically. The effect of Finnish morphology
resources (Europarl and Pharaoh). The competitionanifests itself in a low humber of words (just over
created resources as well. Most teams agreed 14 million), but a high number of distinct words
share system output and their model files. You cagmore than 5 times as many as in the English half).
download them from the competition web Site The test corpus consists of 2000 sentences aligned

Promote work on European language pairs; across all five languages. Note that the output of
Finally, we wanted to promote work on Europearfach system is compared against the same English
languages. The increasing economic and politicaeferences for all source languages. The number of
ties within the European Union create a huge ned@tal words, distinct words, and words not seen in the
for translation services. We would like to see refraining data reflects again the morphology effect.
searchers rise to the challenge of creating high qual- For researchers willing to create their own word

ity machine translation systems to fill these needs.alignment, we suggested the use of GIZA+an

We are very grateful for the strong participation,'m|°|emf:"m"’ltIon of the_ IBM word—_based machln_e
especially by researchers who are relatively new t anslation models, which also assisted the creation
the field of the provided word alignments.

We trained a language model on the English part

2http://www.isi.edu/natural-language/download/hansard/ “http://www.statmt.org/europarl/
3http:/iwww.statmt.org/wpt05/mt-shared-task/ Shttp:/iww.fioch.com/GIZA++.html
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Spanish—English| French-English | Finnish-English | German—English
Training corpus
Sentences 730,740 688,031 716,960 751,088
Source words 15,676,710 15,323,737 11,318,287 15,256,793
English words 15,222,105 13,808,104 15,492,903 16,052,269
Distinct source words 102,886 80,349 358,345 195,291
Distinct English words 64,123 61,627 64,662 65,889
Test corpus
Sentences 2,000
Source words 60,276 \ 65,029 \ 41,431 \ 54,247
English words 57,945
Distinct source words 7,782 \ 7,285 \ 11,996 \ 8,666
Distinct English words 6,054
Unseen source words 209 \ 143 \ 737 \ 377

Figure 1: Properties of the Europarl training and test corpora used in the shared task

of the Europarl corpus using the SRI language mo®B8 Results
eling toolkit (Stolke, 2002). Finally, we suggested
the use of Pharaoh (Koehn, 2004b), a phrase-basElgven teams from eight institutions in Europe and
machine translation decoder. North America participated, see Figure 2 for a com-
How well does this setup match the state of thlete list. The figure also indicates, if a team used
art? The MIT system using the Pharaoh decoddfe Pharaoh decoder (eight teams), the provided lan-
(Koehn, 2004a) proved to be very competitive irfuage model (seven teams) and the provided word
last year's NIST evaluation. However, the field isalignment (four did, three of those with additional
moving fast, and a number of steps help to improvBreprocessing or additional data).
upon the provided baseline setup, e.g., larger lan- Translation performance was measured using the
guage models trained on general text (up to a biBLEU score (Papineni et al., 2002), which measures
lion words have been used), better reodering mod-gram overlap with a reference translation. In our
els (e.g., suggested by Tilman (2004) and Ockase, we only used a single reference translation,
etal. (2004)), better language-specific preprocessitsice the test set was taken from a held-out portion
(Koehn and Knight, 2003) and restructuring (Collin®f the Europarl corpus. On the other hand we used a
et al., 2005), additional feature functions such akelatively large number of test sentences to guaran-
word class language models, and minimum errdee that the BLEU results are stable despite the fact
rate training (Och, 2003) to optimize parameters. that we used only one reference translation for each
Some of these steps (e.g., improved reordepentence.
ing models) go beyond the current capabilities of Shared tasks like this one, of course, bring out the
Pharaoh. However, we are hopeful that freely availtompetitive spirit of participants and can draw criti-
able software continues to match or at least followgisms about being a horse race. From an outside per-
closely the state of the art. spective, however, it is far more interesting to learn
We announced the shared task on March 3, anghich methods and ideas proved to be successful,
provided all the resources mentioned above (alsothan who won the competition.
development test corpus to track the quality of sys- Taking stock of the results — see Figure 3 — one
tems being developed). The test schedule called fobserves a very packed field at the top. While the
the translation of 2000 sentence for each of the foyrarticipants from the University of Washington pro-
language pairs in the week between April 3—10. Wduced the best translations for every single language
allowed late submissions up to April 17. pair, the distance to many other participant scores
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ID Team Pharaoh | LM | Word Al
cmu-b | Carnegie Mellon University, USA - Bing Zhao yes yes no
cmu-j Carnegie Mellon University, USA - Ying (Joy) Zhang yes yes no
glasgow| University of Glasgow, UK yes yes yes+
nrc National Research Council, Canada no no no
rali University of Montreal / RALI, Canada yes yes no
saar Saarland University, Germany yes yes yes
uji University Jaume |, Spain yes yes yes+
upc-j Polytechnic University of Catalonia, Spain - Jesus Gimenezyes yes no
upc-m | Polytechnic University of Catalonia, Spain - Marta Ruiz no no no
upc-r Polytechnic University of Catalonia, Spain - Rafael Banchs no no no
uw University of Washington, USA yes no yes+

Figure 2: The eleven participating teams: the table also lists, if the Pharaoh decoder, the provided language
model, and the provided word alignment was used (yes+ indicates additional preprocessing)

is within a BLEU percentage point or two. As one5 Outlook
might have expected, the scores are pest for S'paniari]ven the short timeframe, one should view the sys-
and Frenph, and worst for me.Sh' Figure 4 ShOW?em performances (albeit very competitive with the
some typical output of the submitted systems. ;
H i o th kshob include detail state of the art) as a baseline effort on the task of
€ proceedings fo theé Worksnop Inciude detaie pen domain text translation between European lan-
system descriptions of all participants. Novel phras

. “guages.
extraction approaches were proposed, along wi We hope that future researchers will use the pro-

better preprocessing, language modeling, rescorir\%ded environment as a test bed for their machine

and other ideas. We are certain J_[hf"lt better perfo{r'anslation systems. We will continue to publish any
mance can be achieved by combining some of thfcores reported to us

methods used by dlfferer_lt participants. Since we placed much of the systems’ output on-

And hence, we would like to pose the challenge e the interested reader may be inspired to more
the research community to build and test better sygjosely explore the quality and shortcomings. Even
tems using the provided resources. We will gladlyqme of the model files have been made available,
list additional results on the competition web site. it is even possible to download and install some

of the systems.
4 Survey

References
Following the end of the competition, we sent out a
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tions what they would like to see different in a po- Clause restructuring for statistical machine trans-

tential future competition. lation. In Proceedings of the 43rd Meeting
We listed four potential changes: 70% of the re- of the Association for Computational Linguistics

spondends checkedanslation from English 50% (ACL'05), Main Volumepages 531-540, Ann Ar-

checkedut of domain test data0% checkednore bor, Michigan.

|anguage pairso% checkedewer |anguage pai[s Koehn, P. (20043) The foundation for statistical ma-
Additional suggestions were: alternatives to the Chine translation at MIT. IrfProceedings of Ma-

BLEU scoring method (maybe human judgment by chine Translation Evaluation Workshop 2004

participants themselves), transitive translation usingoehn, P. (2004b). Pharaoh: a beam search decoder

pivot languages, translation of resource-poor lan- for statistical machine translation. @th Confer-

guages, and more time to prepare for the task. ence of the Assaociation for Machine Translation
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Spanish-English

System| BLEU | 1/2/3/4-gram precision (bp)
uw 30.95 | 64.1/36.6/24.0/16.3 (1.000
upc-r | 30.07 | 63.1/35.8/23.2/15.6 (1.000
upc-m | 29.84 | 63.9/35.5/23.0/15.5 (0.995
nrc 29.08 | 62.7/34.9/22.2/14.7 (1.000
rali 28.49 | 62.4/34.5/21.9/14.4 (0.992
upc-j | 28.13 | 61.5/33.8/21.4/14.1 (1.000
saar | 26.69 | 61.0/33.1/20.7/13.5 (0.973
cmu-j | 26.14 | 61.2/32.4/19.8/12.6 (0.986
uji 21.65 | 59.7/27.8/15.2/8.7 (1.000)
French-English
System | BLEU | 1/2/3/4-gram precision (bp)
uw 30.27 | 64.8/36.8/23.8/16.0 (0.981
upc-r | 30.20 | 63.9/36.2/23.3/15.6 (0.998
nrc 29.53 | 63.7/35.8/22.7/14.9 (0.997
rali 28.89 | 62.6/34.7/22.0/14.6 (1.000
cmu-b | 27.65 | 63.1/34.0/20.9/13.3 (0.995
cmu-j | 26.71 | 61.9/33.0/20.3/13.1 (0.984
saar | 26.29 | 60.8/32.5/20.1/12.9 (0.982
glasgow| 23.01 | 57.3/28.0/16.7/10.5 (1.000
uji 21.25 | 59.8/27.7/14.8/8.3 (1.000)
Finnish-English
System| BLEU | 1/2/3/4-gram precision (bp)
uw 22.01 | 59.0/28.6/16.1/9.4 (0.979)
nrc 20.95 | 57.8/27.2/14.8/8.4 (0.996)
upc-r | 20.31 | 56.6/26.0/14.3/8.3 (0.993)
rali 18.87 | 55.2/24.7/13.1/7.1 (0.998)
saar | 16.76 | 58.4/26.3/14.2/8.0 (0.819)
uji 13.79 | 60.0/23.2/10.8/5.3 (0.821)
cmu-j | 12.66 | 53.9/21.7/10.7/5.7 (0.775)
German-English
System | BLEU | 1/2/3/4-gram precision (bp)
uw 24.77 | 62.2/31.8/18.8/11.7 (0.965
upc-r | 24.26 | 59.7/30.1/17.6/11.0 (1.000
nrc 23.21 | 60.3/29.8/17.1/10.3 (0.979
rali 22.91 | 58.9/29.0/16.8/10.3 (0.982
saar | 20.48 | 58.0/27.5/15.5/9.2 (0.938)
cmu-j | 18.93 | 59.2/26.8/14.3/8.1 (0.914)
uji 18.89 | 59.3/25.5/13.0/7.2 (0.976)
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Reference

We know all too well that the present Treaties are inadequate and that the Union will need a better
and different structure in future , a more constitutional structure which clearly distinguishes the

powers of the Member States and those of the Union .

Input Spanish
Sabemos muy bien que los Tratados actuales no bastany que , en el futamecssario desarro|
lar una estructura mejor y diferente para la@mEuropea , una estructuramconstitucional que
tambien deje bien claras ales son las competencias de los Estados miembrasgscpertenece
alaUnbn.

Best system (Spanish—English)

o

=)

we all know very well that the current treaties are not enough and that , in the future , it will
be necessary to develop a structure better and different for the european union , a structure more
constitutional also make it clear what the competences of the member states and what belongs to

the union .
Worst System (Spanish—English)

we know very well that the current treaties not enough and that , in the future , will be necessary
develop a better structure and different to the european union , a structure more constitutional that

also be well clear the powers of the member states and what belong to the union .

Input French

Nous savons &s bien que les Trds actuels ne suffisent pas et qu ' il seegessairé | * avenir
de cevelopper une structure plus efficace etéfifinte pour | * Union , une structure plus consti-
tutionnelle qui indique clairement quelles sont les cétepces destats membres et quelles sant
les comjetences de | ' Union .
Best system (French—English)

we know very well that the current treaties are not enough and that it will be needed in the|future
to develop a structure more effective and different for the union , a structure more constitutional
which clearly indicates what are the competence of member states and what are the powers of the

union .

Input Finnish
Tiedamme oikein hyvin , e#t nykyiset perustamissopimuksetéile riittavia ja eta tulevaisu-

udessa on tarpeen kelit unionille parempi ja toisenlainen rakenne , siis perustuslaillisempi

rakenne , jossa mys ilmaistaan sélkemin , mié jasenvaltioiden ja unionin toimivaltaan kuulyiu
Best system (Finnish—English)

we know very well that the existing founding treaties do not need to be developed for the|union
and a different structure , therefore perustuslaillisempi structure , which also expresses|clearly
what the member states and the union 's competence is not sufficient and that better in the|future .

Input German
Uns ist sehr wohl bewusst , dass die geltenden &getunzunglich sind und lnftig eine andere
, effizientere Strukturifr die Union entwickelt werden mussamlich eine sarker konstitutionell

ausgepilgte Struktur mit einer klaren Abgrenzung zwischen den Befugnissen der Mitgliedstaaten

und den Kompetenzen der Union .
Best system (German—English)

the union must be developed , with a major institutional structure with a clear demarcation
between the powers of the member states and the competences of the union is well aware that the

existing treaties are inadequate and in the future , a different , more efficient structure for us .

Figure 4: The first sentence of the test corpus and system translations

124



Improved Language Modeling for Statistical Machine Tranglation

Katrin Kirchhoff and Me Yang
Department of Electrical Engineering
University of Washington, Seattle, WA, 98195
{kat ri n, yangnei }@e. washi ngt on. edu

Abstract

Statistical machine translation systems
use a combination of one or more transla-
tion models and a language model. While
there is a significant body of research ad-
dressing the improvement of translation
models, the problem of optimizing lan-
guage models for a specific translation
task has not received much attention. Typ-
ically, standard word trigram models are
used as an out-of-the-box component in
a statistical machine translation system.
In this paper we apply language model-
ing techniques that have proved benefi-
cial in automatic speech recognition to the
ACLO05 machine translation shared data
task and demonstrate improvements over a
baseline system with a standard language
model.

1 Introduction

Statistical machine translation (SMT) makes use of
a noisy channel model where a sentence € in the de-
sired language can be conceived of as originating as
a sentence f in a source language. The goal is to
find, for every input utterance f, the best hypothesis
€* such that

e* = argmazzP(e|f) = argmaz:P(f|e)P(e)
1)
P(f|e) is the translation model expressing proba-
bilistic constraints on the association of source and
target strings. P(é) is a language model specifying
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the probability of target language strings. Usually, a
standard word trigram model of the form

l

HP(61|61—1762‘—2)

=3

P(el,...,el) ~ (2)

is used, where € = eq, ..., ¢;. Each word is predicted
based on a history of two preceding words.

Most work in SMT has concentrated on develop-
ing better translation models, decoding algorithms,
or minimum error rate training for SMT. Compara-
tively little effort has been spent on language mod-
eling for machine translation. In other fields, partic-
ularly in automatic speech recognition (ASR), there
exists a large body of work on statistical language
modeling, addressing e.g. the use of word classes,
language model adaptation, or alternative probabil-
ity estimation techniques. The goal of this study was
to use some of the language modeling techniques
that have proved beneficial for ASR in the past and
to investigate whether they transfer to statistical ma-
chine translation. In particular, this includes lan-
guage models that make use of morphological and
part-of-speech information, so-called factored lan-
guage models.

2 Factored Language Models

A factored language model (FLM) (Bilmes and
Kirchhoff, 2003) is based on a representation of
words as feature vectors and can utilize a variety of
additional information sources in addition to words,
such as part-of-speech (POS) information, morpho-
logical information, or semantic features, in a uni-
fied and principled framework. Assuming that each
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word w can be decomposed into k features, i.e. w =
FEE atrigram model can be defined as

T
1K K 1:K 1K 1K 1K
p( 1 »J2 e JT )%Hp(ft ‘ft—la t—2)
t=3

©)
Each word is dependent not only on a single stream
of temporally preceding words, but also on addi-
tional parallel streams of features. This represen-
tation can be used to provide more robust probabil-
ity estimates when a particular word n-gram has not
been observed in the training data but its correspond-
ing feature combinations (e.g. stem or tag trigrams)
has been observed. FLMs are therefore designed to
exploit sparse training data more effectively. How-
ever, even when a sufficient amount of training data
is available, a language model utilizing morpholog-
ical and POS information may bias the system to-
wards selecting more fluent translations, by boost-
ing the score of hypotheses with e.g. frequent POS
combinations. In FLMs, word feature information
is integrated via a new generalized parallel back-
off technique. In standard Katz-style backoff, the
maximum-likelihood estimate of an n-gram with too
few observations in the training data is replaced with
a probability derived from the lower-order (n — 1)-
gram and a backoff weight as follows:

(4)

pBO(wt|wt—17wt—2)

_ { depyrr(welws—1,we—2) if e > 71

a(wi—1, wi—2)ppo (wwy—1) otherwise

where ¢ is the count of (wy,wi—1,wi—2), PmL
denotes the maximum-likelihood estimate, 7 is a
count threshold, d. is a discounting factor and
a(wi—1,we—o) IS @ normalization factor. During
standard backoff, the most distant conditioning vari-
able (in this case w;_o) is dropped first, followed
by the second most distant variable etc., until the
unigram is reached. This can be visualized as a
backoff path (Figure 1(a)). If additional condition-
ing variables are used which do not form a tempo-
ral sequence, it is not immediately obvious in which
order they should be eliminated. In this case, sev-
eral backoff paths are possible, which can be sum-
marized in a backoff graph (Figure 1(b)). Paths in
this graph can be chosen in advance based on lin-

guistic knowledge, or at run-time based on statis-
tical criteria such as counts in the training set. It
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Figure 1. Standard backoff path for a 4-gram lan-
guage model over words (left) and backoff graph
over word features (right).

is also possible to choose multiple paths and com-
bine their probability estimates. This is achieved by
replacing the backed-off probability pgo in Equa-
tion 2 by a general function g, which can be any
non-negative function applied to the counts of the
lower-order n-gram. Several different g functions
can be chosen, e.g. the mean, weighted mean, prod-
uct, minimum or maximum of the smoothed prob-
ability distributions over all subsets of conditioning
factors. In addition to different choices for g, dif-
ferent discounting parameters can be selected at dif-
ferent levels in the backoff graph. One difficulty in
training FLMs is the choice of the best combination
of conditioning factors, backoff path(s) and smooth-
ing options. Since the space of different combina-
tions is too large to be searched exhaustively, we use
a guided search procedure based on Genetic Algo-
rithms (Duh and Kirchhoff, 2004), which optimizes
the FLM structure with respect to the desired crite-
rion. In ASR, this is usually the perplexity of the
language model on a held-out dataset; here, we use
the BLEU scores of the oracle 1-best hypotheses on
the development set, as described below. FLMs have
previously shown significant improvements in per-
plexity and word error rate on several ASR tasks
(e.g. (\Vergyri et al., 2004)).

3 Basdine System

We used a fairly simple baseline system trained us-
ing standard tools, i.e. GIZA++ (Och and Ney, 2000)
for training word alignments and Pharaoh (Koehn,
2004) for phrase-based decoding. The training data



was that provided on the ACL05 Shared MT task
website for 4 different language pairs (translation
from Finnish, Spanish, French into English); no
additional data was used. Preprocessing consisted
of lowercasing the data and filtering out sentences
with a length ratio greater than 9. The total num-
ber of training sentences and words per language
pair ranged between 11.3M words (Finnish-English)
and 15.7M words (Spanish-English). The develop-
ment data consisted of the development sets pro-
vided on the website (2000 sentences each). We
trained our own word alignments, phrase table, lan-
guage model, and model combination weights. The
language model was a trigram model trained us-
ing the SRILM toolkit, with modified Kneser-Ney
smoothing and interpolation of higher- and lower-
order ngrams. Combination weights were trained
using the minimum error weight optimization pro-
cedure provided by Pharaoh. We use a two-pass de-
coding approach: in the first pass, Pharaoh is run
in N-best mode to produce N-best lists with 2000
hypotheses per sentence. Seven different compo-
nent model scores are collected from the outputs,
including the distortion model score, the first-pass
language model score, word and phrase penalties,
and bidirectional phrase and word translation scores,
as used in Pharaoh (Koehn, 2004). In the second
pass, the N-best lists are rescored with additional
language models. The resulting scores are then com-
bined with the above scores in a log-linear fashion.
The combination weights are optimized on the de-
velopment set to maximize the BLEU score. The
weighted combined scores are then used to select
the final 1-best hypothesis. The individual rescoring
steps are described in more detail below.

4 Language Models

We trained two additional language models to be
used in the second pass, one word-based 4-gram
model, and a factored trigram model. Both were
trained on the same training set as the baseline sys-
tem. The 4-gram model uses modified Kneser-
Ney smoothing and interpolation of higher-order
and lower-order n-gram probabilities. The potential
advantage of this model is that it models n-grams
up to length 4; since the BLEU score is a combina-
tion of n-gram precision scores up to length 4, the
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integration of a 4-gram language model might yield
better results. Note that this can only be done in a
rescoring framework since the first-pass decoder can
only use a trigram language model.

For the factored language models, a feature-based
word representation was obtained by tagging the text
with Rathnaparki’s maximum-entropy tagger (Rat-
naparkhi, 1996) and by stemming words using the
Porter stemmer (Porter, 1980). Thus, the factored
language models use two additional features per
word. A word history of up to 2 was considered (3-
gram FLMSs). Rather than optimizing the FLMs on
the development set references, they were optimized
to achieve a low perplexity on the oracle 1-best hy-
potheses (the hypotheses with the best individual
BLEU scores) from the first decoding pass. This is
done to avoid optimizing the model on word combi-
nations that might never be hypothesized by the first-
pass decoder, and to bias the model towards achiev-
ing a high BLEU score. Since N-best lists differ for
different language pairs, a separate FLM was trained
for each language pair. While both the 4-gram lan-
guage model and the FLMs achieved a 8-10% reduc-
tion in perplexity on the dev set references compared
to the baseline language model, their perplexities on
the oracle 1-best hypotheses were not significantly
different from that of the baseline model.

5 N-best List Rescoring

For N-best list rescoring, the original seven model
scores are combined with the scores of the second-
pass language models using the framework of dis-
criminative model combination (Beyerlein, 1998).
This approach aims at an optimal (with respect to
a given error criterion) integration of different infor-
mation sources in a log-linear model, whose com-
bination weights are trained discriminatively. This
combination technique has been used successfully
in ASR, where weights are typically optimized to
minimize the empirical word error count on a held-
out set. In this case, we use the BLEU score of
the N-best hypothesis as an optimization criterion.
Optimization is performed using a simplex downhill
method known as amoeba search (Nelder and Mead,
1965), which is available as part of the SRILM
toolkit.



| Language pair | 1st pass | oracle |

Fi-En 21.8 29.8
Fr-En 28.9 34.4
De-En 23.9 31.0
Es-En 30.8 37.4

Table 1: First-pass (left column) and oracle results
(right column) on the dev set (% BLEU).

| Language pair | 4-gram | FLM | both |

Fi-En 22.2 22.2 | 223
Fr-En 30.2 30.2 | 30.4
De-En 24.6 242 | 246
Es-En 314 31.0 | 31.3

Table 2: Second-pass rescoring results (% BLEU)
on the dev set for 4-gram LM, 3-gram FLM, and
their combination.

6 Results

The results from the first decoding pass on the de-
velopment set are shown in Table 1. The second
column in Table 1 lists the oracle BLEU scores for
the N-best lists, i.e. the scores obtained by always
selecting the hypothesis known to have the highest
individual BLEU score. We see that considerable
improvements can in principle be obtained by a bet-
ter second-pass selection of hypotheses. The lan-
guage model rescoring results are shown in Table 2,
for both types of second-pass language models indi-
vidually, and for their combination. In both cases we
obtain small improvements in BLEU score, with the
4-gram providing larger gains than the 3-gram FLM.
Since their combination only yielded negligible ad-
ditional improvements, only 4-grams were used for
processing the final evaluation sets. The evaluation
results are shown in Table 3.

| Language pair | baseline | 4-gram |

Fi-En 21.6 22.0
Fr-En 29.3 30.3
De-En 24.2 24.8
Es-En 30.5 31.0

Table 3: Second-pass rescoring results (% BLEU)
on the evaluation set.
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7 Conclusions

We have demonstrated improvements in BLEU
score by utilizing more complex language models
in the rescoring pass of a two-pass SMT system.
We noticed that FLMs performed worse than word-
based 4-gram models. However, only trigram FLM
were used in the present experiments; larger im-
provements might be obtained by 4-gram FLMs.
The weights assigned to the second-pass language
models during weight optimization were larger than
those assigned to the first-pass language model, sug-
gesting that both the word-based model and the FLM
provide more useful scores than the baseline lan-
guage model. Finally, we observed that the overall
improvement represents only a small portion of the
possible increase in BLEU score as indicated by the
oracle results, suggesting that better language mod-
els do not have a significant effect on the overall sys-
tem performance unless the translation model is im-
proved as well.
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Abstract

This paper describes the participation of
the Portage team at NRC Canada in the
shared task' of ACL 2005 Workshop on
Building and Using Parallel Texts. We dis-
cuss Portage, a statistical phrase-based
machine translation system, and present
experimental results on the four language
pairs of the shared task. First, we focus on
the French-English task using multiple re-
sources and techniques. Then we describe
our contribution on the Finnish-English,
Spanish-English and German-English lan-
guage pairs using the provided data for the
shared task.

1 Introduction

The rapid growth of the Internet has led to a rapid
growth in the need for information exchange among
different languages. Machine Translation (MT) and
related technologies have become essential to the
information flow between speakers of different lan-
guages on the Internet. Statistical Machine Transla-
tion (SMT), a data-driven approach to producing
translation systems, is becoming a practical solution
to the longstanding goal of cheap natural language
processing.

In this paper, we describe Portage, a statistical
phrase-based machine translation system, which we
evaluated on all different language pairs that were
provided for the shared task. As Portage is a very

! http:/www.statmt.org/wpt05/mt-shared-task/
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new system, our main goal in participating in the
workshop was to test it out on different language
pairs, and to establish baseline performance for the
purpose of comparison against other systems and
against future improvements. To do this, we used a
fairly standard configuration for phrase-based SMT,
described in the next section.

Of the language pairs in the shared task, French-
English is particularly interesting to us in light of
Canada’s demographics and policy of official bilin-
gualism. We therefore divided our participation into
two parts: one stream for French-English and an-
other for Finnish-, German-, and Spanish-English.
For the French-English stream, we tested the use of
additional data resources along with hand-coded
rules for translating numbers and dates. For the
other streams, we used only the provided resources
in a purely statistical framework (although we also
investigated several automatic methods of coping
with Finnish morphology).

The remainder of the paper is organized as fol-
lows. Section 2 describes the architecture of the
Portage system, including its hand-coded rules for
French-English. Experimental results for the four
pairs of languages are reported in Section 3. Section
4 concludes and gives pointers to future work.

2 Portage

Portage operates in three main phases: preprocess-
ing of raw data into tokens, with translation sugges-
tions for some words or phrases generated by rules;
decoding to produce one or more translation hy-
potheses; and error-driven rescoring to choose the
best final hypothesis. (A fourth postprocessing
phase was not needed for the shared task.)
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2.1 Preprocessing

Preprocessing is a necessary first step in order to
convert raw texts in both source and target lan-
guages into a format suitable for both model train-
ing and decoding (Foster et al., 2003). For the
supplied Europarl corpora, we relied on the existing
segmentation and tokenization, except for French,
which we manipulated slightly to bring into line
with our existing conventions (e.g., converting |’
an into I’ an). For the Hansard corpus used to
supplement our French-English resources (de-
scribed in section 3 below), we used our own
alignment based on Moore’s algorithm (Moore,
2002), segmentation, and tokenization procedures.

Languages with rich morphology are often prob-
lematic for statistical machine translation because
the available data lacks instances of all possible
forms of a word to efficiently train a translation sys-
tem. In a language like German, new words can be
formed by compounding (writing two or more
words together without a space or a hyphen in be-
tween). Segmentation is a crucial step in preproc-
essing languages such as German and Finnish texts.

In addition to these simple operations, we also
developed a rule-based component to detect hum-
bers and dates in the source text and identify their
translation in the target text. This component was
developed on the Hansard corpus, and applied to the
French-English texts (i.e. Europarl and Hansard), on
the development data in both languages, and on the
test data.

2.2 Decoding

Decoding is the central phase in SMT, involving a
search for the hypotheses t that have highest prob-
abilities of being translations of the current source
sentence s according to a model for P(t[s). Our
model for P(t|s) is a log-linear combination of four
main components: one or more trigram language
models, one or more phrase translation models, a
distortion model, and a word-length feature. The
trigram language model is implemented in the
SRILM toolkit (Stolcke, 2002). The phrase-based
translation model is similar to the one described in
(Koehn, 2004), and relies on symmetrized IBM
model 2 word-alignments for phrase pair induction.
The distortion model is also very similar to
Koehn’s, with the exception of a final cost to ac-
count for sentence endings.
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To set weights on the components of the log-
linear model, we implemented Och’s algorithm
(Och, 2003). This essentially involves generating,
in an iterative process, a set of nbest translation hy-
potheses that are representative of the entire search
space for a given set of source sentences. Once this
is accomplished, a variant of Powell’s algorithm is
used to find weights that optimize BLEU score
(Papineni et al, 2002) over these hypotheses, com-
pared to reference translations. Unfortunately, our
implementation of this algorithm converged only
very slowly to a satisfactory final nbest list, so we
used two different ad hoc strategies for setting
weights: choosing the best values encountered dur-
ing the iterations of Och’s algorithm (French-
English), and a grid search (all other languages).

To perform the actual translation, we used our
decoder, Canoe, which implements a dynamic-
programming beam search algorithm based on that
of Pharaoh (Koehn, 2004). Canoe is input-output
compatible with Pharaoh, with the exception of a
few extensions such as the ability to decode either
backwards or forwards.

2.3 Rescoring

To improve raw output from Canoe, we used a
rescoring strategy: have Canoe generate a list of
nbest translations rather than just one, then reorder
the list using a model trained with Och’s method to
optimize BLEU score. This is identical to the final
pass of the algorithm described in the previous sec-
tion, except for the use of a more powerful log-
linear model than would have been feasible to use
inside the decoder. In addition to the four basic fea-
tures of the initial model, our rescoring model in-
cluded IBM2 model probabilities in both directions
(i.e., P(s|t) and P(t|s)); and an IBM1-based feature
designed to detect whether any words in one lan-
guage seemed to be left without satisfactory transla-
tions in the other language. This missing-word
feature was also applied in both directions.

3 Experiments on the Shared Task

We conducted experiments and evaluations on
Portage using the different language pairs of the
shared task. The training data was provided for the

shared task as follows:
- Training data of 688,031 sentences in
French and English. A similarly sized cor-



pus is provided for Finnish, Spanish and
German with matched English translations.

- Development test data of 2,000 sentences in

the four languages.

In addition to the provided data, a set of
6,056,014 sentences extracted from Hansard corpus,
the official record of Canada’s parliamentary de-
bates, was used in both French and English lan-
guages. This corpus was used to generate both
language and translation models for use in decoding
and rescoring.

The development test data was split into two
parts: The first part that includes 1,000 sentences in
each language with reference translations into Eng-
lish served in the optimization of weights for both
the decoding and rescoring models. In this study,
number of n-best lists was set to 1,000. The second
part, which includes 1,000 sentences in each lan-
guage with reference translations into English, was
used in the evaluation of the performance of the
translation models.

3.1 Experiments on the French-English Task

Our goal for this language pair was to conduct ex-
periments on Portage for a comparative study ex-
ploiting and combining different resources and
techniques:

1. Method E is based on the Europarl corpus
as training data,

2. Method E-H is based on both Europarl and
Hansard corpora as training data,

3. Method E-p is based on the Europarl corpus
as training data and parsing numbers and
dates in the preprocessing phase,

4. Method E-H-p is based on both Europarl

and Hansard corpora as training data and
parsing numbers and date in the preprocess-
ing phase.

Results are shown in Table 1 for the French-
English task. The first column of Table 1 indicates
the method, the second column gives results for
decoding with Canoe only, and the third column for
decoding and rescoring with Canoe. For comparison
between the four methods, there was an improve-
ment in terms of BLEU scores when using two lan-
guage models and two translation models generated
from Europarl and Hansard corpora; however, pars-
ing numbers and dates had a negative impact on the
translation models. The best BLEU score for our
participation at the French-English task was 29.53.
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Method Decoding Decoding+Rescoring
E 27.71 29.22
E-H 28.71 29.53
E-p 26.45 28.21
E-H-p 28.29 28.56

Table 1. BLEU scores for the French-English test
sentences

A noteworthy feature of these results is that the
improvement given by the out-of-domain Hansard
corpus was very slight. Although we suspect that
somewhat better performance could have been
achieved by better weight optimization, this result
clearly underscores the importance of matching
training and test domains. A related point is that our
number and date translation rules actually caused a
performance drop due to the fact that they were op-
timized for typographical conventions prevalent in
Hansard, which are quite different from those used
in Europarl.

Our best result ranked third in the shared
WPTO05 French-English task , with a difference of
0.74 in terms of BLEU score from the first ranked
participant, and a difference of 0.67 in terms of
BLEU score from the second ranked participant.

3.2 Experiments on other Pairs of Languages

The WPTO05 workshop provides a good opportunity
to achieve our benchmarking goals with corpora
that provide challenging difficulties. German and
Finnish are languages that make considerable use of
compounding. Finnish, in addition, has a particu-
larly complex morphology that is organized on
principles that are quite different from any in Eng-
lish. This results in much longer word forms each of
which occurs very infrequently.

Our original intent was to propose a number of pos-
sible statistical approaches to analyzing and split-
ting these word forms and improving our results.
Since none of these yielded results as good as the
baseline, we will continue this work until we under-
stand what is really needed. We also care very
much about translating between French and English
in Canada and plan to spend a lot of extra effort on
difficulties that occur in this case. Translation be-
tween Spanish and English is also becoming more
important as a result of increased trade within North
America but also functions as a good counterpoint
for French-English.



Language Pair Decoding+Rescoring

Finnish-English 20.95
German-English 23.21
Spanish English 29.08

Table 2 BLEU scores for the Finnish-English, Ger-
man-English and Spanish-English test sentences

To establish our baseline, the only preprocessing
we did was lowercasing (using the provided tokeni-
zation). Canoe was run without any special settings,
although weights for distortion, word penalty, lan-
guage model, and translation model were optimized
using a grid search, as described above. Rescoring
was also done, and usually resulted in at least an
extra BLEU point.

Our final results are shown in Table 2. Ranks at
the shared WPTO05 Finnish-, German-, and Spanish-
English tasks were assigned as second, third and
fourth, with differences of 1.06, 1.87 and 1.56 in
terms of BLEU scores, respectively, compared to
the first ranked participant.

4 Conclusion

We have reported on our participation in the shared
task of the ACL 2005 Workshop on Building and
Using Parallel Texts, conducting evaluations of
Portage, our statistical machine translation system,
on all four language pairs. Our best BLEU scores
for the French-, Finnish-, German-, and Spanish-
English at this stage were 29.5, 20.95, 23.21 and
29.08, respectively. In total, eleven teams took part
at the shared task and most of them submitted re-
sults for all pairs of languages. Our results distin-
guished the NRC team at the third, second, third
and fourth ranks with slight differences with the
first ranked participants.

A major goal of this work was to evaluate Port-
age at its first stage of implementation on different
pairs of languages. This evaluation has served to
identify some problems with our system in the areas
of weight optimization and number and date rules.
It has also indicated the limits of using out-of-
domain corpora, and the difficulty of morphologi-
cally complex languages like Finnish.

Current and planned future work includes the
exploitation of comparable corpora for statistical
machine translation, greater use of morphological
knowledge, and better features for nbest rescoring.
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Abstract French, de: German, and fi: Finnish) into English
_ _ ) (en) are presented and discussed.
This work discusses translapon results for The paper is structured as follows. Section 2 de-
the four Euparl data sets which were made  g¢ripes the bilingual n-gram translation model. Sec-
available for the shared taskxploit- tion 3 presents a brief overview of the whole SMT
ing Parallel Texts for Statistical Machine procedure. Section 4 presents and discusses the

Translation™. All results presented were  ghared task results and other interesting experimen-

generated by using a statistical machine  (5ion. Finally, section 5 presents some conclusions
translation system which implements a 54 further work.

log-linear combination of feature func-
tions along with a bilingual n-gram trans- 2 Bilingual N-gram Translation Model

lation model. . .
ation mode As already mentioned, the translation model used

] here is based on bilingual n-grams. It actually con-
1 Introduction stitutes a language model of bilingual units which

During the last decade, statistical machine transiat€ referred to as tuples (de Gispert and Mayi~
tion (SMT) systems have evolved from the orig2002). This model approximates the joint probabil-
inal word-based approach (Browet al, 1993) ity between source and target languages by u3ing
into phrase-based translation systems (Koehal, 9rams as it is described in the following equation:
2003). Similarly, the noisy channel approach has
been expanded to a more general maximum entropyp(7, S) H p((t; 8)nl(t, 8)n—2, (t,s)n-1) (1)
approach in which a log-linear combination of mul-
tiple models is implemented (Och and Ney, 2002). wheret refers to targets to source andt, s), to the
The SMT approach used in this work implements‘* tuple of a given bilingual sentence pair.
a log-linear combination of feature functions along Tuples are extracted from a word-to-word aligned
with a translation model which is based on bilinguatorpus according to the following two constraints:
n-grams. This translation model was developed Hirst, tuple extraction should produce a monotonic
de Gispert and Manié (2002), and it differs from the segmentation of bilingual sentence pairs; and sec-
well known phrase-based translation model in twond, the produced segmentation is maximal in the
basic issues: first, training data is monotonously segense that no smaller tuples can be extracted with-
mented into bilingual units; and second, the modelut violating the previous constraint (Crego al,
considers n-gram probabilities instead of relative004). According to this, tuple extraction provides a
frequencies. This model is described in section 2. unigue segmentation for a given bilingual sentence
Translation results from the four source languagemir alignment. Figure 1 illustrates this idea with a
made available for the shared task (es: Spanish, §imple example.
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Once the training data was preprocessed, a word-

and union of alignment sets in both directions were

t 4 computed for each training set.

3 t

1 2

We :Would like : to achleve‘ perfect translations to-word alignment was performed in both direc-
| | l tions, source-to-target and target-to-source, by us-
! ! ! ing GIZA++ (Och and Ney, 2000). As an approxi-
| | | mation to the most probable alignment, the Viterbi
NULL | quisieramos | lograr | traducciones perfectas  glignment was considered. Then, the intersection

t 3 t
3.2 Feature Function Computation

Figure 1. Example of tuple extraction from an

aligned sentence pair. The considered translation system implements a to-

tal of five feature functions. The first of these mod-
els is the tuple3-gram model, which was already de-
Two important issues regarding this translatioRcribed in section 2. Tuples for the translation model
model must be mentioned. First, when extractingjere extracted from the union set of alignments as
tuples, some words always appear embedded into hown in Figure 1. Once tuples had been extracted,
ples containing two or more words, So no translatioghe tuple vocabulary was pruned by using histogram
probability for an independent occurrence of SUCBruning. The same pruning parameter, which was
words exists. To overcome this problem, the tuplgctually estimated for Spanish-English, was used for
3-gram model is enhanced by incorporatitgram the other three language pairs. After pruning, the
translation probabilities for all the embedded wordﬁjp|e 3-gram model was trained by using the SRI
(de Gisperet al, 2004). Language Modeling toolkit (Stolcke, 2002). Finally,
Second, some words linked to NULL end up prothe obtained model was enhanced by incorporating
ducing tuples with NULL source sides. This cannof-gram probabilities for the embedded word tuples,
be allowed since no NULL is expected to occur in hich were extracted from the intersection set of
translation input. This problem is solved by preproglignments.
cessing alignments before tuple extraction such thatTable 1 presents the total number of running

any target word that is linked to NULL is attachedyords, distinct tokens and tuples, for each of the four
to either its precedent or its following word. training data sets.

3 SMT Procedure Description Table 1:Total number of running words, distinct to-

This section describes the procedure followed fdfens and tuples in training.

preprocessing the data, training the models and opf source | running | distinct tuple
timizing the translation system parameters. language| words tokens | vocabulary
. , Spanish | 15670801 113570, 1288770
3.1 Preprocessing and Alignment French | 14844465 78408 | 1173424
The Euparl data provided for this shared task (Eu-| German | 15207550| 204949 1391425
parl, 2003) was preprocessed for eliminating all sen-| Finnish | 11228947| 389223| 1496417

tence pairs with a word ratio larger thant. As a

result of this preprocessing, the number of sentencesThe second feature function considered was a tar-
in each training set was slightly reduced. Howeveget language model. This feature actually consisted
no significant reduction was produced. of a word3-gram model, which was trained from the
In the case of French, a re-tokenizing procedurtarget side of the bilingual corpus by using the SRI
was performed in which all apostrophes appeaririganguage Modeling toolkit.
alone were attached to their corresponding words. The third feature function was given by a word
For example, pairs of tokens such lasandqu ’° penalty model. This function introduces a sentence
were reduced to single tokens suchH’asndqu’. length penalization in order to compensate the sys-
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tem preference for short output sentences. More

specifically, the penalization factor was given by the

total number of words contained in the translation | es-en| fr-en | de-en| fi-en |

hypothesis. | 0.3007] 0.3020] 0.2426] 0.2031|
Finally, the fourth and fifth feature functions cor-

responded to two lexicon models based on IBM
Model 1 lexical parameters(t|s) (Brown et al. As can be seen from Table 2 the best ranked trans-

1993). These lexicon models were calculated fdptions were those obtained for French, followed by
each tuple according to the following equation: Spanish, German and Finnish. A big difference is
observed between the best and the worst results.

1 J I o Differences can be observed from translation out-
Preicon((t; )n) = T IID> »(tls)h) (@  puts too. Consider, for example, the following seg-
j=1i=0 ments taken from one of the test sentences:

Table 2:BLEU scores (shared task test sets).

where sgl and tfl are thej*" and " words in the es-en: We know very well that the present Treaties are not
source and target sides of tugle s),,, being.J and enough and that , in the future , it will be necessary to develop
I the corresponding total number words in each sidestructure better and different for the European Union...
of it. fr-en: We know very well that the Treaties in their current
The forward lexicon model uses IBM Modepa- are not enough and that it will be necessary for the future to
rameters obtained from source-to-target alignmentigvelop a structure more effective and different for the Union...
while the backward lexicon model uses parameters de-en: We very much aware that the relevant treaties are
obtained from target-to-source alignments. inadequate and , in future to another , more efficient structure
for the European Union that must be developed...
3.3 Decoding and Optimization fi-en: We know full well that the current Treaties are not
The search engine for this translation system wasfficient and that , in the future , it is necessary to develop the
developed by Creget al. (2005). It implements Union better and a different structure...

a beam-search strategy based on dynamic Programy ;s evident from these translation outputs that

ming and takes into account all the five feature fun(ffanslation quality decreases when moving from
tions described above simultaneously. It also aIIOV\§Ioanish and French to German and Finnish. A
for thhr_ee different pruning n;e;hodsr; th_reshold pbr_undetailed observation of translation outputs reveals
ng, Istogram pruning, and hypot eslS recombiNgg ¢ there are basically two problems related to this
tion. For all the results presented in this work th%legradation in quality. The first has to do with re-

decoder; ”_“O”_Oton'c searf:h modallty was u§ed. ordering, which seems to be affecting Finnish and,
An optimization tool, which is based on a S'mple)%pecially, German translations.

method (Preset al, 2002), was developed and used The second problem has to do with vocabulary. It

for compqtlng Iog-Iln_ear weights for gach of _the fea.-s well known that large vocabularies produce data
ture functions described above. This algorithm a&s—

. : ) .. sparseness problems (Koehn, 2002). As can be con-
justs the log-linear weights so thBLEU (Papineni firmed from Tables 1 and 2, translation quality de-

etal, 2002) is maximized over a given CleVeIOpmen(’freases as vocabulary size increases. However, it is

set.f Onedobptlml_zatl?hné(l;gg eac? Ianggagel pair W?r?ot clear yet, in which degree such degradation is
performed by using ~sentence developmentyy e to monotonic decoding and/or vocabulary size.

sets made available for the shared task. Finally, we also evaluated how much the full fea-
4 Shared Task Results ture function system differs from the baseline tu-
ple 3-gram model alone. In this wagLEU scores
Table 2 presents thBLEU scores obtained for the were computed for translation outputs obtained for
shared task test data. Each test set consisted0of the baseline system and the full system. Since the
sentences. The comput&lLEU scores were case English reference for the test set was not available,
insensitive and used one translation reference.  we computed translations aBiLEU scores over de-
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velopment sets. Table 3 presents the results for bothics of statistical machine translation: parameter esti-
the full system and the baselihe. mation”. Computational Linguistics19(2):263—-311.

Josep M. Crego, JesB. Martio, and Adra de Gispert.
Table 3: Baseline- and full-system BLEU scores 2004._ Flnlte-sta_te-k,?ased and phrase-based statistical
d d | machine translation”.Proc. of the 8th Int. Conf. on
(computed over development sets). Spoken Language Processjng7—40, October.

‘ language palﬁ basellne\ ful ‘ Josep M. Crego, JesB. Martio, and Adra de Gispert.
es-en 0.2588 | 0.3004 2005. “A Ngram-based Statistical Machine Transla-
fr - en 0.2547 | 0.2938 tion Decoder”. Submitted to INTERSPEECH 2005.

d.e - én 0.1844 1 0.2350 Adria de Gispert, and Jes8. Mariio. 2002. “Using X-
fi-en 0.1526 | 0.1989 grams for speech-to-speech translatioRtoc. of the
7th Int. Conf. on Spoken Language Processing

From Table 3, itis evident that the four additionalgriy de Gispert, JesB. Marifo, and Josep M. Crego.

feature functions produce important improvements 2004. “TALP: Xgram-based spoken language transla-
in translation quality. tion system”. Proc. of the Int. Workshop on Spoken
Language Translation85—90. Kyoto, Japan, October.

5 Conclusions and Further Work EUPARL: European Parliament Proceedings Parallel

Corpus 1996-2003. Available on-line atttp://
As can be concluded from the presented results, Pl yeopl e. csai | . i t. edu/ peopl e/ koehn/ publ i ¢

formance of the translation system used is much bet-at i ons/ eur opar | /

ter for French and Spanish than for German and

- ; ilipp Koehn. 2002. “Europarl: A Multilingual Cor-
Finnish. As.some results suggest, reordering arﬁ)(!Ppus for Evaluation of Machine Translation”. Avail-
vocabulary size are the most important problems re- gple on-line atht t p://peopl e. csail . mt.edul

lated to the low translation quality achieved for Ger- peopl e/ koehn/ publ i cati ons/ eur opar| /

man. and an.ISh' - IIDhiIipp Koehn, Franz J. Och, and Daniel Marcu. 2003.
Itis also evident that the bilingual n-gram model «siagistical phrase-based translationProc. of the

used requires the additional feature functions to pro- 2003 Meeting of the North American chapter of the
duce better translations. However, more experimen-ACL, Edmonton, Alberta.

.tatl'or'1 is required in prder to fully understand eaCF—‘ranz J. Och and Hermann Ney. 2000. “Improved statis-
individual feature’s influence on the overall log- tical alignment models”Proc. of the 38th Ann. Meet-
linear model performance. ing of the ACL.Hong Kong, China, October.

Franz J. Och and Hermann Ney. 2002. “Discriminative
training and maximum entropy models for statistical
machine translation”Proc. of the 40th Ann. Meeting
of the ACL, :295-302, Philadelphia, PA, July.
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Abstract systems can do across different language families.
We began with a core system which is described
Thanks to the profusion of freely avail- in the next section and from which we obtained
able tools, it recently became fairly baseline performances that we tried to improve
easy to built a statistical machine trans- upon.
lation (SMT) engine given a bitext. The Since the French- and Spanish-English sys-

expectations we can have onthe quality  tems produced output that were comprehensi-
of such a system may however greatly  ple enough, we focussed on the two languages

vary from one pair of languages to an- whose translations were noticeably worse: Ger-
other. We report on our experiments  man and Finnish. For German, we tried to move
in building phrase-based translationen-  around words in order to mimic English word or-
gines for the four pairs of languages we  der; and we tried to split compound words. This
had to consider for the SMT shared- s described in section 4. For the Finnish/English
task. pair, we tried to decompose Finnish words into
smaller substrings (see section 5).
1 Introduction In parallel to that, we tried to smooth a phrase-

) o based model (PBM) making use of #DNET.
Machlne tran;latlon_ is nowadays mature enougye report on this experiment in section 3. We de-
that it is possible without too much effort to de- g.yihe in section 6 the final setting of the systems
vise automatically a statistical translation system, o sed for submitting translations and their of-

from just a parallel corpus. This is possible fiiq| results as computed by the organizers. Fi-
thanks to the dissemination of valuable package%a”y we conclude our two weeks of efforts in
The performance of such a system may howeve§ecﬁ'On 7

greatly vary from one pair of languages to an-

other. Indeed, there is no free lunch for systemp The core system

developers, and if a black box approach can some-

times be good enough for some applications (w&Ve assembled up a phrase-based statistical engine

can surely accomplish translatigistingwith the by making use of freely available packages. The

French-English and Spanish-English systems wéanslation engine we used is the one suggested

developed during this exercice), making use ofwithin the shared task:HARAOH (Koehn, 2004).

the output of such a system for, let's say, qual-The input of this decoder is composed of a phrase-

ity translation is another kettle of fish (especiallybased model (PBM), a trigram language model

in our case with the Finnish-English system weand an optional set of coefficients and thresholds

ended-up with). ~ IWhat we mean by this is nothing more than we were
We devoted two weeks to the SMT shared taSkmostIy able to infer the original meaning of the source sen-

the aim of which was precisely to see how welltence by reading its automatic translation.
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pair WER  SER NIST BLEU longing to the original model the following ap-
fi-en | 66.53 99.20 5.3353 18.73 proximation:

de-en| 60.70 98.40 5.8411 21.11

fr-en | 53.77 98.20 6.4717 27.69 pleilfi) = ) punleile) x pulelf;)

es-en| 53.84 98.60 6.5571 28.08 cc€

Table 1: Baseline performances measured on the where& is the English vocabulary,, desig-
500 top sentences of thEEV corpus in terms of nates the native distribution apg,, is the proba-
WER (word error rate) SER (sentence error rate), bility that two words in the English side are linked
NIST andBLEU scores. together. We estimated this distribution by co-
occurrence counts over a large English cofpus
, To avoid taking into account unrelated but co-
which control the decoder. occurring words, we used WRDNET to filter in
For acquiring a PBM, we followed the ap- gy the co-occurrences of words that are in re-
proach described by Koehn et al. (2003). In brief,ation according to VBRDNET. However, since
we relied on a bi-directional word alignment of yany words are not listed in this resource, we had
the training corpus to acquire the parameters ofy smooth the bigram distribution, which we did

the model. We used the word alignment pro-py annlying Katz smoothing (Katz, 1997):
duced by Giza (Och and Ney, 2000) out of an

IBM model 2 We did try to use the alignmgnt zé(?(:lvgéf)m if c(es, e|W,L) >0
produced with IBM model 4, but did not notice Prat-(eile) = ej Aleg el _
significant differences over our experiments; an a(e)pratz(e:)  otherwise
observation consistent with the findings of Koehn

et al. (2003). Each parameter in a PBM can be where C(a’b‘W’.L) is the good-turing dis
: ) . counted count of times two wordsandb that are

scored in several ways. We considered its rela: :
. : linked together by a WWRDNETrelation, co-occur
tive frequency as well as its IBM-model 1 score. .
in a window of 2 sentences.

where the transfer probabilities were taken from .
( P We used this smoothed model to score the pa-

an IBM model 2 transfer table). The language . .
. e rameters of our PBM instead of the native trans-
model we used was the one provided within the ) .
fer table. The results were however disappoint-

shared task. . . .
) : ._ing for both the G-E and S-E translation direc-
We obtained baseline performances by tuning.
ions we tested. One reason for that, may be

the engine on the top 500 sentences of the deve]:

. hat the English corpus we used for computing

opment corpus. Since we only had a few param- . .
L . the co-occurrence counts is an out-of-domain cor-
eters to tune, we did it by sampling the parameter .
) pus for the present task. Another possible ex-
space uniformly. The best performance we ob- LT .
. . . o planation lies in the fact that we considered both

tained,i.e., the one which maximizes theLeu

. wy nonymic and hyperonymic links in @RDNET;
metric as measured by tmateval scripf is re- synonymic and hyperonymic links '

ported for each pair of languages in Table 1. the Iatter_ kind of links pot_ent|ally introducing too
much noise for a translation task.

3 Smoothing PBMs with WORDNET 4 The German-English task

Among the things we tried but which did not We identified two major problems with our ap-

work well, we investigated Whether_smoothlng proach when faced with this pair of languages.
the transfer table of an IBM model (2 in our Case)First, the tendency in German to put verbs at the

¥Vith WORDS'ET wou:;j proguce better ehstimates end of a phrase happens to ruin our phrase acqui-
boréare Worl s 2\6\/3 a fapte Ia? approac Rprqposlegtion process, which basically collects any box

y Cao et al. (2005) for an Information Retrieva of aligned source and target adjacent words. This
task, and computed for any parameter, f;) be-

- 3For this, we used the English side of the provided train-
2http://www.nist.gov/speech/tests/mt/ ing corpus plus the English side of our in-house Hansard bi-
mt2001/resource text; that is, a total of more than 7 million pairs of sentences.
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can be clearly seen in the alignment matrix of fig-e,, of a pattern has been identified, a rule is col-
ure 1 where the verbal constructionuld clarify  lected whenever the following conditions apply:
is translated by two very distant German wordsfor each worck in the locus, there is a target word
konntenand erlautern Second, there are many f which is aligned tce in both alignment direc-
compound words in German that greatly dilutetions; these target words when moved can lead to
the various counts embedded in the PBM table. a diagonal going from the target worf) associ-
ated toe,,_; to the target word which is aligned

. . . X to Evtl-
erlautern . . . . . oxL L L The rules we memorize are tripletg, i, o)
p_unkt <o - o= - o - =X« wherec = (I,r) is the context of the locus and
einen <+« .+« . . X “P. . andoare the input and output German word order
mir - - - -« .« .« . . . X (thatis, the order in which the tokens are found,
sie -+ - - - X. . . . . . . andthe order in which they should be moved).
oder R For instance, in the example of Figure 1,
kam'SS'O” <+ X - - -« =« - - theVerb Verb pattern match the locusould
die oo X oo oo« clarify and the following rule is acquired:
kénnten . . . . . . X. . . . . . (sie einen, K Onnten erl Autern,
vielleicht . <. . . . . . . . . . . Kpnnten erl autern) , a paraphrase of
NULL : - - which is: "whenever you find (in this order)
Nptcoyccapf m. the wordkdnntenand erlauternin a German
Uehorool oo0e sentence containing also (in this ordsi§ and
Lrem wuua Lr einen move konntenand erlautern betweensie
Lh m l'r n andeinen
English perhaps the commission or you could A set of 124271 rules have been acquired
clarify a point for me . this way from the training corpus (for a total of
German vielleicht knnten die kommission oder 157970 occurrences). The most frequent rule ac-
sie mir einen punkt eglutern . quired is (ich herrn, m  ochte danken,

nochte danken) , which will transform a sen-
tence like ‘ich mdchte herrn wynnir seinen
bericht dankeri.into ”ich mochte danken herrn
wynn fir seinen bericht.

In practice, since this acquisition process does
not involve any generalization step, only a few
rules learnt really fire when applied to the test ma-
terial. Also, we devised a fairly conservative way
4.1 Moving around German words of applying the rules, which means that in prac-

For the first problem, we applied a memory-basedice, only 3.5% of the sentences of the test corpus
approach to move around words in the Germanvhere actually modified.

side in order to better synchronize word order The performance of this procedure as measured
in both languages. This involves, first, to learn-on the development set is reported in Table 2. As
ing transformation rules from the training corpus,simple as itis, this procedure yields a relative gain
second, transforming the German side of this corof 7% in BLEU. Given the crudeness of our ap-
pus; then training a new translation model. Theproach, we consider this as an encouraging im-
same set of rules is then applied to the Germaprovement.

text to be translated.

The transformation rules we learned concern
few (five in our case) verbal constructions thatFor the second problem, we segmented German
we expressed with regular expressions built orwords before training the translation models. Em-
POS tags in the English side. Once tloeus pirical methods for compound splitting applied to

Figure 1: Bidirectional alignment matrix. A cross
in this matrix designates an alignment valid in
both directions, while thep symbol indicates an
uni-directional alignmentf¢r has been aligned
with einen , but not the other way round).

&2 Compound splitting
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system WER SER  NIST BLEU where the moving of words ranked the best. This
baseline 60.70 98.40 5.8411 21.11 defined the configuration we submitted, whose re-
swap 60.73 98.60 5.9643 22.58 sults (as provided by the organizers) are reported
split 60.67 98.60 5.7511 21.99 in Table 3.

swap+split 60.57 98.40 5.9685 23.10

pair BLEU p1lpalpslpy

Table 2: Performances of the swapping and the  fi-en ~ 18.87  55.2/24.7/13.1/7.1
compound splitting approaches on the top 500 de-en 2291 58.9/29.0/16.8/10.3
sentences of the development set. es-en 28.49 62.4/34.5/21.9/14.4
fr-en 28.89 62.6/34.7/22.0/14.6

German have been studied by Koehn and Knighfable 3: Results measured by the organizers for
(2003). They found that a simple splitting strat-the TEST corpus.

egy based on the frequency of German words was

the most efficient method of the ones they tested,

when embedded in a phrase-based translation ed- Conclusion

gine. Therefore, we applied such a strategy Que found that, while comprehensible translations
spllt_German words in our corpora. The resultsWere produced for pairs of languages such as
of this approach are shown in Table 2. French-English and Spanish-English; things did
Note: Both the swapping strategy and the com-not go as well for the German-English pair and
pound splitting yielded improvements in terms ofe€specially not for the Finnish-English pair. We
BLEU score. Only after the deadline did we find had a hard time improving our baseline perfor-
time to train new models with a combination of mance in such a tight schedule and only man-
both techniques; the results of which are reporte@ged to improve our German-English system. We

in the last line of Table 2. were less lucky with other attempts we imple-
o _ mented, among them, the smoothing of a trans-
5 The Finnish-English task fer table with WORDNET, and the segmentation

The worst performances were registered on th@' the Finnish corpus into smaller units.

Finnish-English pair. This is due to the aggluti-
native nature of Finnish. We tried to segment theReferences

an.ISh material into smaller units (sul'Jstr.Ings) byG. Cao, J. Nie, and J. Bai. 2005. Integrating Word
making use of the frequency of all Finnish sub- relationships into Language Models. tm appear
strings found in the training corpus. We main- in Proc. of SIGIR

tained a suffix tree struc.ture f(?r t.hat purpose.s. Katz. 1997. Estimation of Probabilities from
We proceeded by recursively finding the most ™ gparse pata for the Language Model Component of
promising splitting points in each Finnish token a Speech RecognizdEEE Transactions on Acous-

of C charactersF® by computing split(FC) tics Speech and Signal Processig§.
where: Philipp Koehn and Kevin Knight._ 2003. Empirical
|Fij‘ if j—i<?2 Methods for Compound Splitting. IEACL, Bu-

» ' dapest, Hungary.
splzt(Fi]) =4 MaXcg[i42,j-2 || x

splz't(FgH) otherwise P. Koehn, F.J. Och, and D. Marcu. 2003. Statistical

Phrase-Based Translation. Rmoceedings of HLT
This approach yielded a significant degradation Pages 127-133.

in performance that we still have to analyze. P. Koehn. 2004. Pharach: a Beam Search Decoder
] ) for Phrase-Based SMT. IRroceedings of AMTA
6 Submitted translations pages 115-124.

At the time of the deadline, the best translationd™J. Och and H. Ney. 2000. Improved Statistical
we had were the baselines ones for all the lan- Alignment Models. InProceedings of ACLpages

. . 440-447, Hongkong, China.
guage pairs, except for the German-English one grong
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Abstract

In this paper, we present a phrase ex-
traction algorithm using a translation lex-
icon, a fertility model, and a simple dis-
tortion model. Except these models, we
do not need explicit word alignments for
phrase extraction. For each phrase pair (a
block), a bilingual lexicon based score is
computed to estimate the translation qual-
ity between the source and target phrase
pairs; a fertility score is computed to es-
timate how good the lengths are matched
between phrase pairs; a center distortion
score is computed to estimate the relative
position divergence between the phrase
pairs. We presented the results and our
experience in the shared tasks on French-
English.

1 Introduction

Phrase extraction becomes a key component in to-
day’s state-of-the-art statistical machine translation
systems. With a longer context than unigram, phrase
translation models have flexibilities of modelling lo-
cal word-reordering, and are less sensitive to the er-
rors made from preprocessing steps including word
segmentations and tokenization. However, most of
the phrase extraction algorithms rely on good word
alignments. A widely practiced approach explained
in details in (Koehn, 2004), (Och and Ney, 2003)
and (Tillmann, 2003) is to get word alignments from
two directions: source to target and target to source;
the intersection or union operation is applied to get
refined word alignment with pre-designed heuristics
fixing the unaligned words. With this refined word
alignment, the phrase extraction for a given source
phrase is essentially to extract the target candidate
phrases in the target sentence by searching the left
and right projected boundaries.
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In (Vogel et al., 2004), they treat phrase align-
ment as a sentence splitting problem: given a source
phrase, find the boundaries of the target phrase such
that the overall sentence alignment lexicon probabil-
ity is optimal. We generalize it in various ways, esp.
by using a fertility model to get a better estimation of
phrase lengths, and a phrase level distortion model.

In our proposed algorithm, we do not need ex-
plicit word alignment for phrase extraction. Thereby
it avoids the burden of testing and comparing differ-
ent heuristics especially for some language specific
ones. On the other hand, the algorithm has such flex-
ibilities that one can incorporate word alignment and
heuristics in several possible stages within this pro-
posed framework to further improve the quality of
phrase pairs. In this way, our proposed algorithm
is more generalized than the usual word alignment
based phrase extraction algorithms.

The paper is structured as follows: in section 2,
The concept of blocks is explained; in section 3, a
dynamic programming approach is model the width
of the block; in section 4, a simple center distortion
of the block; in section 5, the lexicon model; the
complete algorithm is in section 6; in section 7, our
experience and results using the proposed approach.

2 Blocks

We consider each phrase pair as a block within a
given parallel sentence pair, as shown in Figure 1.
The y-axis is the source sentence, indexed word
by word from bottom to top; the z-axis is the target
sentence, indexed word by word from left to right.
The block is defined by the source phrase and its pro-
jection. The source phrase is bounded by the start
and the end positions in the source sentence. The
projection of the source phrase is defined as the left
and right boundaries in the target sentence. Usually,
the boundaries can be inferred according to word
alignment as the left most and right most aligned
positions from the words in the source phrase. In

Proceedings of the ACL Workshop on Building and Using Parallel Texsiges 141-144,
Ann Arbor, June 20050 Association for Computational Linguistics, 2005



[4— src center

B widh —»

Left boundary | tgt center Right poundary

Figure 1: Blocks with “width” and “centers”

this paper, we provide another view of the block,
which is defined by the centers of source and target
phrases, and the width of the target phrase.

Phrase extraction algorithms in general search
for the left and right projected boundaries of each
source phrase according to some score metric com-
puted for the given parallel sentence pairs. We
present here three models: a phrase level fertility
model score for phrase pairs’ length mismatch, a
simple center-based distortion model score for the
divergence of phrase pairs’ relative positions, and
a phrase level translation score to approximate the
phrase pairs’ translational equivalence. Given a
source phrase, we can search for the best possible
block with the highest combined scores from the
three models.

3 Length Model: Dynamic Programming

Given the word fertility definitions in IBM Mod-
els (Brown et al., 1993), we can compute a prob-
ability to predict phrase length: given the candi-
date target phrase (English) e{ , and a source phrase
(French) of length J, the model gives the estima-
tion of P(J|el) via a dynamic programming algo-
rithm using the source word fertilities. Figure 2
shows an example fertility trellis of an English tri-
gram. Each edge between two nodes represents one
English word e;. The arc between two nodes rep-
resents one candidate non-zero fertility for e;. The
fertility of zero (i.e. generating a NULL word) cor-
responds to the direct edge between two nodes, and
in this way, the NULL word is naturally incorpo-
rated into this model’s representation. Each arc is

142

el e2 e3

Figure 2: An example of fertility trellis for dynamic
programming

associated with a English word fertility probability
P(¢ile;). A path ¢! through the trellis represents
the number of French words ¢; generated by each
English word e;. Thus, the probability of generating
J words from the English phrase along the Viterbi
path is:

I
max HP(¢¢|6¢) (1)

P(Jlef) = X
{(b{vJ:Zz:l (bI} =1

The Viterbi path is inferred via dynamic program-
ming in the trellis of the lower panel in Figure 2:

—

Ole;)
1le;)
2le;)
3lei)

@lj,i — 1] +log PnuLL
[ —1,i—1] +log Py
j—2,i—1]+log Py

o= s ¢
¢lj —3,i—1] +log Py

—~

where Pyyrr(0le;) is the probability of generating
a NULL word from e;; Py(k = 1le;) is the usual
word fertility model of generating one French word
from the word e;; ¢[j, 1] is the cost so far for gener-
ating j words from i English words e : e1,- - , e;.

After computing the cost of ¢[J, I], we can trace
back the Viterbi path, along which the probability
P(Jlel) of generating .J French words from the En-
glish phrase e! as shown in Eqn. 1.



With this phrase length model, for every candidate
block, we can compute a phrase level fertility score
to estimate to how good the phrase pairs are match
in their lengthes.

4 Distortion of Centers

The centers of source and target phrases are both il-
lustrated in Figure 1. We compute a simple distor-
tion score to estimate how far away the two centers
are in a parallel sentence pair in a sense the block is
close to the diagonal.

In our algorithm, the source center ©® i of the

phrase fjj 1 with length [ + 1 is simply a normalized
relative position defined as follows:

i=j+t

1 J
|F|jz: [+1 @

where |F| is the French sentence length.

For the center of English phrase e?k in the target
sentence, we first define the expected corresponding
relative center for every French word f;/ using the
lexicalized position score as follows:

®ijj+l =

L SR Pfyles)
itk Ji') = 755 ¢ r ! 3
S I S ey

where |E| is the English sentence length. P(f;|e;)
is the word translation lexicon estimated in IBM
Models. i is the position index, which is weighted
by the word level translation probabilities; the term
of S0, P( fj|ei) provides a normalization so that
the expected center is within the range of target sen-

tence length. The expected center for e“rk is simply
a average of © i+k (fj):
1 J+l
@1+k:l+1z®l+kfj (4)

J'=j

This is a general framework, and one can certainly
plug in other kinds of score schemes or even word
alignments to get better estimations.

Given the estimated centers of © f3+z and
® etk WE can compute how close they are by
the probability of P(® 6;+k’® fig_+z) To estimate

P(®, i+ ]®fj+z), one can start with a flat gaussian
i J
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model to enforce the point of (© i+x, ©® f4+z) not too

far off the diagonal and build an initial list of phrase
pairs, and then compute the histogram to approxi-
mate P(®_i+x |®fj+z).

i J

5 Lexicon Model

Similar to (Vogel et al., 2004), we compute for each
candidate block a score within a given sentence pair
using a word level lexicon P(f|e) as follows:

-y Ak

k+1
J'E€lg,5+1] ¥ €[i,i+k] T

I > a2

J'&ld,d+1 7' Eliyi+k]

P(fj+l|€§+k)

6 Algorithm

Our phrase extraction is described in Algorithm
1. The input parameters are essentially from IBM
Model-4: the word level lexicon P( f|e), the English
word level fertility Py(¢. = kl|e), and the center
based distortion P(@ez}k |®f;_-+z )

Overall, for each source phrase f; H, the algo-
rithm first estimates its normalized relative center
in the source sentence, its projected relative cen-
ter in the target sentence. The scores of the phrase
length, center-based distortion, and a lexicon based
score are computed for each candidate block A lo-
cal greedy search is carried out for the best scored
phrase pair (fﬁl eithy.

In our submltted system, we computed the
following seven base scores for phrase pairs:
Pef(f]7.+l|ez+k), Pfe(e§+k]fjj.+l), sharing similar
function form in Eqn. 5.

Pef(f;+l|€z+k) _ HZP fg ‘el 6@ ’ez—i-k:)
x5 o

We compute phrase level relative frequency in both
directions: Prf(f;H]eﬁJrk) and Prf(e§+k|fj+l). We
compute two other lexicon scores which were also
used in (Vogel et al., 2004): Sl(f]]-+l|e§+k) and

So(ei | fj ') using the similar function in Eqn. 6:

HZP firlew) 6)

S ]-H z+k



In addition, we put the phrase level fertility score
computed in section 3 via dynamic programming to
be as one additional score for decoding.

Algorithm 1 A Generalized Alignment-free Phrase
Extraction

1: Input: Pre-trained models: Py(p. = kle) ,

P(Op|OF) , and P(fle).

2: Output: PhraseSet: Phrase pair collections.
3: Loop over the next sentence pair

4: forj: 0 — |F| -1,

5. forl:0 — MaxLength,

6: foreach f]”l

7: compute © ¢ and O

8: left = @ - |E|-MaxLength,

9: right= O - | E|+MaxLength,

10: for 7 : left — right,

11: for k : 0 — right,

12: compute ©, of e?k,

13: score the phrase pair ( f; + eitF), where

score = P(@| @) P(llef ™) P(f]ef™)
14:  add top-n {(ijH, e!*%)V into PhraseSet.

)

7 Experimental Results

Our system is based on the IBM Model-4 param-
eters. We train IBM Model 4 with a scheme of
1729473%43 using GIZA++ (Och and Ney, 2003).
The maximum fertility for an English word is 3. All
the data is used as given, i.e. we do not have any
preprocessing of the English-French data. The word
alignment provided in the workshop is not used in
our evaluations. The language model is provided
by the workshop, and we do not use other language
models.

The French phrases up to 8-gram in the devel-
opment and test sets are extracted with top-3 can-
didate English phrases. There are in total 2.6 mil-
lion phrase pairs ! extracted for both development
set and the unseen test set. We did minimal tuning
of the parameters in the pharaoh decoder (Koehn,
2004) settings, simply to balance the length penalty
for Bleu score. Most of the weights are left as they
are given: [ttable-limit]=20, [ttable-threshold]=0.01,

'Our phrase table is to be released to public in this workshop
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[stack]=100, [beam-threshold]=0.01, [distortion-
limit]=4, [weight-d]=0.5, [weight-1]=1.0, [weight-
w]=-0.5. Table 1 shows the algorithm’s performance
on several settings for the seven basic scores pro-
vided in section 6.

settings | Dev.Bleu | Tst.Bleu
S1 27.44 27.65
59 27.62 28.25

Table 1: Pharaoh Decoder Settings

In Table 1, setting s; was our submission
without using the inverse relative frequency of
Py (e?ﬂfj”). s9 is using all the seven scores.

8 Discussions

In this paper, we propose a generalized phrase ex-
traction algorithm towards word alignment-free uti-
lizing the fertility model to predict the width of the
block, a distortion model to predict how close the
centers of source and target phrases are, and a lex-
icon model for translational equivalence. The algo-
rithm is a general framework, in which one could
plug in other scores and word alignment to get bet-
ter results.
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Abstract

We describe the Spanish-to-Englisbv-
comBO system for the Shared Task 2:
“Exploiting Parallel Texts for Statistical
Machine Translation” of the ACL-2005
Workshop on “Building and Using Par-
allel Texts: Data-Driven Machine Trans-
lation and Beyond”. Our approach ex-
plores the possibility of working with
alignments at different levels of abstrac-
tion, using different degrees of linguistic
annotation. Several phrase-based trans-
lation models are built out from these
alignments. Their combination significa-
tively outperforms any of them in isola-
tion. Moreover, we have built a word-
based translation model based on Word-
Net which is used for unknown words.

}@lsi.upc.edu

and shallow parsing (chunks). In order to avoid con-
fusion so forth we will talk aboutokensinstead of
wordsas the minimal alignment unit.

Apart from redefining the scope of the alignment
unit, we may use different degrees of linguistic an-
notation. We introduce the general conceptiafa
view, which is defined as any possible representation
of the information contained in a bitext. We enrich
data view tokens with features further than lexical
such a?0S lemma andchunk label

As an example of the applicability of data views,
suppose the case of the wopdays’ being seen in
the training data acting as a verb. Representing this
information asplays, .’ would allow us to distin-
guishit from its homograptplaysy~s’ for ‘plays’ as
a noun. ldeally, one would wish to have still deeper
information, moving through syntax onto semantics,
such asvord sensesTherefore, it would be possible
to distinguish for instance between two realizations
of ‘plays’ with different meaningshe; . plays s«
guitaryy’ and‘he,x» plays - basketball .

1 Introduction Of course, there is a natural trade-off between the

use of data views and data sparsity. Fortunately, we

The main motivation behind our work is to intro- e i
duce linguistic information, other than lexical units 12V data enough so that statistical parameter esti-
mation remains reliable.

to the process of building word and phrase align-
ments. Many other authors have tried to do so. Seé—:‘
(Och and Ney, 2000), (Yamada and Knight, 2001),
(Koehn and Knight, 2002), (Koehn et al., 2003),The LDv-cOMBO system follows the SMT architec-
(Schafer and Yarowsky, 2003) and (Gildea, 2003). ture suggested by the workshop organizers.

Far from full syntactic complexity, we suggest to First, training data are linguistically annotated for
go back to the simpler alignment methods first dethe two languages involved (See subsection 2.1).
scribed by (Brown et al., 1993). Our approach ex10 different data views have been built. Notice
ploits the possibility of working with alignments at that it is not necessary that the two parallel coun-
two different levels of granularity, lexical (words) terparts of a bitext share the same data view, as

System Description
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long as they share the same granularity. Howeurrency, etc., should be considered so as to further
ever, in all our experiments we have annotated bo#nhance the system.

sides with the same linguistic information. See o ] )

token descriptions: (W) word, (WL) word and 2.2 Building Combined Translation Models
lemma, (WP) word and PoS, (WC) word and chuniBecause data views capture different, possibly com-
label, (WPC) word, PoS and chunk label, (Cw)plementary, aspects of the translation process it
chunk of words (Cwl), chunk of words and lem-seems reasonable to combine them. We consider
mas, (Cwp) chunk of words and PoS (Cwc) chunkwo different ways of building such combo-models:

of words and chunk labels (Cwpc) chunk of words, . :
LPHEX Local phrase extraction. To build a separate

PoS and chunk labels. By chunk label we re- h based t lati del f h dat
fer to the 10B label associated to every word in- phrase-based transiation modet for each data
view alignment, and then combine them. There

side a chunk, e.gl, v, declare, v, resume.. are two ways of combining translation models:
the, _np» Session y» Ofs_r» the; _y» European_,» y 9 '

Parliament_,» .o"). We build chunk tokens by ex- MRG Merging translation models. We work on
plicitly connecting words in the same chunk, e.g. a weighted linear interpolation of models.
‘(N »» (declareresumed), (thesession), (0f)s»s These weights may be tuned, although a
(the.EuropeanParliament),,’. See examples of uniform weight selection yields good re-
some of these data views in Table 1. sults. Additionally, phrase-pairs may be

Then, runningGIZA++, we obtain token align- filtered out by setting a score threshold.
ments for each of the data views. Combined phrase- noMRG Passing translation models directly to
based translation models are built on top of the the Pharaoh decoder. However, we en-
Viterbi alignments output bysIZA++. See details countered many problems with phrase-
in subsection 2.2Combo-modelmust be then post- pairs that were not seen in all single mod-
processed in order to remove the additional linguis- els. This obliged us to apply arbitrary
tic annotation and split chunks back into words, so smoothing values to score these pairs.

they fit the format required biyharaoh
Moreover, we have used the Multilingual CentraGPHEX Global phrase extraction. To build a sin-
Repository (MCR), a multilingual lexical-semantic ~ 9le phrased-based translation model from the
database (Atserias et al., 2004), to build a word- union of alignments from several data views.
based translation model. We back-off to this model

i th t unk q th th Lof i In its turn, anyMRG operation performed on a
nt € case of Lnknown woras, wit _t € 90al Ot Mo mbo-model results again in a valid combo-model.
proving system recall. See subsection 2.3.

In any case, phrase extractida performed as de-

2.1 Data Representation picted by (Och, 2002).

In order to achieve robustness the same tools ha?e3 Using the MCR

been used to linguistically annotate both languageg)ter knowledge may be supplied to tRéaraoh
The SVMToot has been used for PoS-taggingjecoder by annotating the input with alternative
(Giménez and Mirquez, 2004). Thereeling® pack- {ranslation options via XML-markup. We enrich
age (Carreras et al., 2004) has been used for Iemrn@;,ery unknown word by looking up every possi-
tizing. Finally, thePhrecosoftware by (Carreras et e translation for all of its senses in the MCR.
al., 2005) has been used for shallow parsing. These are scored by relative frequency according to
No additional tokenization or pre-processinGhe number of senses that lexicalized in the same
steps other than case lowering have been performeflanner. Letwy, p; be the source word and PoS,
Special treatment of named entities, dates, numbegg,g w,. be the target word, we define a function

The SVMTool may be freely downloaded at 3we always work with the union of alignments, no heuristic
http://www.lIsi.upc.es/"nlp/SVMTool/ . refinement, and phrases up to 5 tokens. Phrase pairs appearing

2Freeling Suite of Language Analyzers may be downloadednly once have been discarded. Scoring is performed by relative
at http://www.lIsi.upc.es/"nlp/freeling/ frequency. No smoothing is applied.
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?\t{z_z\rzsfpp] thepr.5_~r Weekenty n.r—np) BYrn.5-pp| Mr[NI\{P:B—NP] FISChIef}\_JI_VP:I—NP]
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Fischlety ynv.-vr pronunc{)[vz\u:s—vp] UNpr.s—np AdiSCUrSQyc.r—np) €St€pp.5-~r) fiNNcir— NP
desp.5_pp) SEMaNAc.5_np) €Nspn—rp) €lipas_spar) QU8PRoT—spar) PAr€EAy a5 v p|
habefy an.r—v e cAMbiad@, v p.r—vr d8sp.s—pp) ACtUDNc.5- NP -(Fpi0]
(It[PRP:B—NP]]) (WOUld[MD:vam]—appea{rVB:If‘/P]) (tha%IN:B—SBAR]) (a{DT:B—NP]—SpeeCh\lN:I—NP])
(madey sn.5-ve) @ ~n.s—pr) thepr s—vp-weekengy y.;—~py) (BY~.5-pr)
(Mrxnp.5—np)-Fischlefy yp.r— v py) (indicate$, s z.5_v p)) (@ pr.5—~p-ChANY@Y N 71— N P])
(of s v.5—pry) (NiSprPs. 5— N p1-POSItIONN N1 n p)) (1:07)

Cwpc

(FiSChleEVZWN:B—VP]) (pronunc{)[VZ\/II:B—VP]) (un[DI:B—NP]fdiscursQNC:I—NP]) (eStQDD:B—NP] 7ﬁn[NC:I—NP])
(dqu':B—PP]) (semang;c.p—_npy) (eQSP:B—.PP]) (€lpa:p—sBar quQPRO:I—SB/.AR])
(pareday vir.p_vr)-Nabefy an.1_vp-cAMbiade, vp.;_vr)) (d€8sp.5_pr)) (@CtitUdy .5~ p)) (rp0)

Table 1:An example of 2 rich data views: (WPC) word, PoS and 0B chunk label (Cwpc) chunk of word, PoS and chunk label.

data view [ GTM-1 [ GTM-2 | BLEU | NIST |

Scount(wy,pr,w.) Which counts the number of

: - W 0.6108| 0.2600| 25.92] 7.1576

senses .fO(UJf', pf) which can lexicalize as.. A WL 061101 02601 257771495
translation pair is scored as: WP 0.6096| 0.2600| 25.74 | 7.1415
WC 0.6124| 0.2600| 25.98 | 7.1852

Seount WPC 0.6107| 0.2587| 25.79| 7.1595

score(wy, pylwe) = count(wy, py, We) Cw 0.5740| 0.2384| 22.73| 6.6149
Y wypy) SCOUNt(Ws, Py, We) Cwi 0.5756 | 0.2385| 22.73 | 6.6204

) Cwp 0.5771] 0.2395| 23.06 | 6.6403

cwe 0.5759| 0.2390| 22.86 | 6.6207

Better results would be expected working with [ CWPC 0.5744] 0.2379] 22.77] 6.5949

word sense disambiguated text. We are not at thigable 2:MT Results for the 10 elementary data views on the
point yet. A first approach could be to work with thedevelopment set.
most frequent sense heuristic.

is performed. We refer to the model as our base-
line. In this view, only words are used. TBe-MRG
3.1 Data and Evaluation Metrics and 5W-GPHEX models use a combination of the 5
ord-based data views, as MRG and GPHEX, re-

We have used the data sets and language model p\%

vided by the organization. No extra training or de_spectlvely. ThesC-MRG and5C-GPHEX system use

velopment data were used in our experiments a combination of the 5 chunk based data views, as
We evaluate results with 3 different metrics: GTM" MR® and GPHEX res_pectlvely. .ThaO'M.RG SYs
F,-measured = 1, 2), BLEU score . = 4) as pro- tem uses all 10 data views combined asikG. The
, L , 10-GPHEX/MRGSYystem uses the 5 word based views
vided by organizers, and NIST score £ 5). ) ) .
yorg €9) combined as iInGPHEX, the 5 chunk based views
3.2 Experimenting with Data Views combined as irPHEX, and then a combination of

these two combo-models asnmRG.
Table 2 presents MT results for the 10 elementary

data views devised in Section 2. Default parameters dataview [ GTM-1 [ GTM-2 [ BLEU | NIST |

3 Experimental Results

are used fot\,, A\jm, and\,,. No tuning has been | W 0.6108| 0.2609| 25.92| 7.1576
: S5W-MRG 0.6134| 0.2631| 26.25| 7.2122

p_erfc_)_rme_d. As_expected, word-based views Obta"nSW-GPHEX 56177 09615 26051 75803
significatively higher results than chunk-based. Altsc-vire 05786 02407| 23.18] 6.6754
data views at the same level of granularity obtain5C-GPHEX 0.5739| 0.2368| 22.80| 6.5714
10-MRG 0.6130| 0.2624| 26.24| 7.2196

comparable results. 10-GPHEX/MRG | 0.6142| 0.2600| 26.58 | 7.2542

In Table 3 MT results for different data view com-
binations are showed. Merged model weights ar&able 3:MT Results without tuning, for some data view com-
set equiprobable, and no phrase-pair score filterifgnations on the development set.
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It can be seen that results improve by combining\cknowledgements
several data views. Furthermore, global phrase e
traction GPHEX) seems to work much finer than lo-
cal phrase extractionFHEX).

Table 4 shows MT results after optimizing,,,
Nim» Aw, and the weights for th&RG operation,
by means of th®ownhill Simplex Method in Multi-
dimensiongWilliam H. Press and Flannery, 2002). References
Observe that tuning the system improves the perfor-

iderably. The, ter i " Jordi Atserias, Luis Villarejo, German Rigau, Eneko
mance considaerably. parameter IS particu- Agirre, John Carroll, Bernardo Magnini, and Piek

larly sensitive to tuning. Vossen. 2004. The meaning multilingual central
Even though the performance of chunk-based repository. InProceedings of GW@rno, Czech Re-

models is poor, the best results are obtained by com-Public, January. ISBN 80-210-3302-9.

binining the two levels of abstraction, thus provingreter E Brown, Stephen A. Della Pietra, Robert L. Mer-
that syntactically motivated phrases may help- cer, and Vincent J. Della Pietra. 1993. The mathemat-
MRG and 10-GPHEX models achieve a similar per- ics of statistical machine translation: Parameter esti-
formance. Thelo-MRG-best~ System corresponds mation. Computational Linguisticsl9(2):263-311.

to the 10-MRG model using WordNet. Theo-MRG- Xavier Carreras, Isaac Chao, iduPado, and Muntsa
subyy System is this same system at the time of sub- Pl"j‘goé azr?gl“'ze':;e‘f#‘ogéeégir?psg}stﬁgrzg]SL”étg é’f lan-
mission. Results using WordNet, taking into account dtad yzers. g

that the number of unknowirwords in the develop- Xavier Carreras, Llis Marquez, and Jorge Castro. 2005.

ment set was very small, are very promising. i':nige'r\i/lnsérr]?n”gifgafr?irncgggig?ljaming for partial pars-

fhis research has been funded by the Spanish
Ministry of Science and Technology (ALIADO
TIC2002-04447-C02). Authors are thankful to Pa-
trik Lambert for providing us with the implementa-
tion of the Simplex Method used for tuning.

dataview [ GTM-1 [ GTM-2 [ BLEU | NIST | Daniel Gildea. 2003. Loosely tree-based alignment for

W 061741 02583 2813 7.1540 machine translation. IRroceedings of ACL

SW-MRG 0'6306 0'3605 38'50 7'2072 Jedis Ginenez and Llis Marquez. 2004. Svmtool: A

g\év'l\(;’lggEx 8.2832 8'2282 22'82 2'513333 general pos tagger generator based on support vector
~ : : ' : machines. IrProceedings of 4th LREC

5C-GPHEX 0.5816| 0.2387| 24.40| 6.5595

10-MRG 0.6218| 0.2623| 28.88| 7.2491| phijlipp Koehn and Kevin Knight. 2002. Chunkmt:

10-GPHEX/MRG | 0.6229| 0.2622| 28.82| 7.2414 Statistical machine translation with richer linguistic

10-MRGy 0.6228| 0.2625| 28.90 | 7.2583 knowledge. Draft.

10-MRG-suky x 0.6228 | 0.2622| 28.79| 7.2528

] o Philipp Koehn, Franz Josef Och, and Daniel Marcu.
Table 4: MT Results for some data view combinations after  2003. Statistical phrase-based translatiorProceed-
tuning on the development set. ings of HLT/NAACL

Franz Josef Och and Hermann Ney. 2000. Improved

4 Conclusions statistical alignment models. Proceedings of ACL

o . . Franz Josef Och. 2002 Statistical Machine Transla-
We haVe ShOWGd that itis pOSS|bIe to Obta|n better tion: From Sing|e_W0rd Models to A“gnment Tem-

phrase-based translation models by utilizing align- plates Ph.D. thesis, RWTH Aachen, Germany.

ments built on top of different linguistic _data Vi?WS_'_CharIes Schafer and David Yarowsky. 2003. Statistical
These models can be robustly combined, signifi- machine translation using coercive two-level syntactic
cantly outperforming all of their components in iso- transduction. IrProceedings of EMNLP

lation. We leave for further work the experimen-yjjiam T, Vetterling William H. Press, Saul A. Teukol-
tation of new data views such as word senses andsky and Brian P. Flannery. 200Numerical Recipes
semantic roles, as well as their natural porting and in C++: the Art of Scientific ComputingCambridge
evolution from the alignment step to phrase extrac- University Press.

tion and decoding. Kenji Yamada and Kevin Knight. 2001. A syntax-based

e ] statistical translation model. Iroceedings of ACL
Translation for 349 unknown words was found in the MCR.
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Abstract

Nowadays, most of the statistical translation sys-
tems are based on phrases (i.e. groups of words).
In this paper we study different improvements to
the standard phrase-based translation system. We
describe a modified method for the phrase extrac-
tion which deals with larger phrases while keeping
a reasonable number of phrases. We also propose
additional features which lead to a clear improve-
ment in the performance of the translation. We
present results with the EuroParl task in the direc-
tion Spanish to English and results from the evalu-
ation of the shared task “Exploiting Parallel Texts
for Statistical Machine Translation” (ACL Work-
shop on Parallel Texts 2005).

1 Introduction

Statistical Machine Translation (SMT) is based on
the assumption that every sentence e in the target
language is a possible translation of a given sen-
tence f in the source language. The main difference
between two possible translations of a given sen-
tence is a probability assigned to each, which has
to be learned from a bilingual text corpus. Thus,
the translation of a source sentence f can be for-
mulated as the search of the target sentence e that
maximizes the translation probability P(e|f),

(1)

€ = argmax P(e|f)

OThis work has been supported by the European Union
under grant FP6-506738 (TC-STAR project).

If we use Bayes rule to reformulate the transla-

tion probability, we obtain,
€ = argmax P(f|e)P(e) (2)
e

This translation model is known as the source-
channel approach [1] and it consists on a lan-
guage model P(e) and a separate translation model
P(fle) [5).

In the last few years, new systems tend to use
sequences of words, commonly called phrases [§],
aiming at introducing word context in the transla-
tion model. As alternative to the source-channel
approach the decision rule can be modeled through
a log-linear maximum entropy framework.

M
€ = argmax { Z Amhum (e, f)}

m=1

(3)

The features functions, h,,, are the system mod-
els (translation model, language model and others)
and weigths, )\;, are typically optimized to max-
imize a scoring function. It is derived from the
Maximum Entropy approach suggested by [13] [14]
for a natural language understanding task. It has
the advantatge that additional features functions
can be easily integrated in the overall system.

This paper addresses a modification of the
phrase-extraction algorythm in [11]. It also com-
bines several interesting features and it reports an
important improvement from the baseline. It is or-
ganized as follows. Section 2 introduces the base-
line; the following section explains the modification
in the phrase extraction; section 4 shows the differ-
ent features which have been taken into account;
section 5 presents the evaluation framework; and
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the final section shows some conclusions on the ex-
periments in the paper and on the results in the
shared task.

2 Baseline

The baseline is based on the source-channel ap-
proach, and it is composed of the following models
which later will be combined in the decoder.

The Translation Model. It is based on bilin-
gual phrases, where a bilingual phrase (BP) is
simply two monolingual phrases (M P) in which
each one is supposed to be the translation of each
other. A monolingual phrase is a sequence of words.
Therefore, the basic idea of phrase-based transla-
tion is to segment the given source sentence into
phrases, then translate each phrase and finally com-
pose the target sentence from these phrase transla-
tions [17].

During training, the system has to learn a dictio-
nary of phrases. We begin by aligning the training
corpus using GIZA++ [6], which is done in both
translation directions. We take the union of both
alignments to obtain a symmetrized word align-
ment matrix. This alignment matrix is the starting
point for the phrase based extraction.

Next, we define the criterion to extract the set of
BP of the sentence pair (f/?;e;?) and the alignment
matrix A C JxI, which is identical to the alignment
criterion described in [11].

BP(f{,ef, A) = {(f];, i) :

J17 Vi
V(j,i)eA:j1 <j<jaein <i <2
NG i)eA s gy < j <jaANip <i<i2}

The set of BP is consistent with the alignment
and consists of all BP pairs where all words within
the foreign language phrase are only aligned to the
words of the English language phrase and viceversa.
At least one word in the foreign language phrase has
to be aligned with at least one word of the English
language. Finally, the algorithm takes into account
possibly unaligned words at the boundaries of the
foreign or English language phrases.

The target language model. It is combined
with the translation probability as showed in equa-
tion (2). It gives coherence to the target text ob-
tained by the concatenated phrases.

3 Phrase Extraction

Motivation. The length of a M P is defined as
its number of words. The length of a BP is the
greatest of the lengths of its M P.

As we are working with a huge amount of data
(see corpus statistics), it is unfeasible to build a
dictionary with all the phrases longer than length
4. Moreover, the huge increase in computational
and storage cost of including longer phrases does
not provide a significant improve in quality [8].

X-length In our system we considered two length
limits. We first extract all the phrases of length 3
or less. Then, we also add phrases up to length
5 if they cannot be generated by smaller phrases.
Empirically, we chose 5, as the probability of reap-
pearence of larger phrases decreases.

Basically, we select additional phrases with
source words that otherwise would be missed be-
cause of cross or long alignments. For example,
from the following sentence,

Cuando el Parlamento FEuropeo , que tan fre-
cuentemente insiste en los derechos de los traba-
jadores y en la debida proteccion social , (...)

NULL () When (1 ) the ( 2 ) European ( 4
) Parliament (8 4 ), (5 ) that (6 ) so (7 )
frequently (8 ) insists (9 ) on (10 ) workers ( 11
15) 7 (14 ) rights ( 12 ) and ( 16 ) proper ( 19 )
social ( 21 ) protection (20 ), ( 22 ) (...)

where the number inside the clauses is the
aligned word(s). And the phrase that we are look-
ing for is the following one.

7

los derechos de los trabajadores # workers
rights

which only could appear in the case the maximum
length was 5.
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4 Phrase ranking

4.1 Conditional probability P(f|e)

Given the collected phrase pairs, we estimated the
phrase translation probability distribution by rela-
tive frecuency.

P(fle) = 41 (@)

where N(f,e) means the number of times the phrase
f is translated by e. If a phrase e has N > 1
possible translations, then each one contributes as
1/N [17].

Note that no smoothing is performed, which may
cause an overestimation of the probability of rare
phrases. This is specially harmful given a BP
where the source part has a big frecuency of ap-
pearence but the target part appears rarely. For
example, from our database we can extract the fol-
lowing BP: ”"you # la que no”, where the English
is the source language and the Spanish, the tar-
get language. Clearly, ”"la que no” is not a good
translation of ”you”, so this phrase should have a
low probability. However, from our aligned training
database we obtain,

P(fle) =

This BP is clearly overestimated due to sparse-
ness. On the other, note that ”la que no” can-
not be considered an unusual trigram in Spanish.
Hence, the language model does not penalise this
target sequence either. So, the total probability
(P(fle)P(e)) would be higher than desired.

In order to somehow compensate these unreili-
able probabilities we have studied the inclusion of
the posterior [12] and lexical probabilities [1] [10]
as additional features.

P(you|la que no) = 0.23

4.2 Feature P(e|f)

In order to estimate the posterior phrase probabil-
ity, we compute again the relative frequency but re-
placing the count of the target phrase by the count
of the source phrase.

Plel) = k) )

where N’(f,e) means the number of times the
phrase e is translated by f. If a phrase f has N > 1

possible translations, then each one contributes as
1/N.

Adding this feature function we reduce the num-
ber of cases in which the overall probability is over-
estimated. This results in an important improve-
ment in translation quality.

4.3 IBM Model 1

We used IBM Model 1 to estimate the probability
of a BP. As IBM Model 1 is a word translation and
it gives the sum of all possible alignment probabil-
ities, a lexical co-ocurrence effect is expected. This
captures a sort of semantic coherence in transla-
tions.

Therefore, the probability of a sentence pair is
given by the following equation.

J 1
P(fles M) = o I stsle) @
j=11=0

The p(fjle;) are the source-target IBM Model 1
word probabilities trained by GIZA++. Because
the phrases are formed from the union of source-to-
target and target-to-source alignments, there can
be words that are not in the P(fj|e;) table. In this
case, the probability was taken to be 10740,

In addition, we have calculated the IBM~! Model
1.

I J
P(el f; M1) = JH HZ (eil i) (7)
I=1j=0

4.4 Language Model

The English language model plays an important
role in the source channel model, see equation (2),
and also in its modification, see equation (3). The
English language model should give an idea of the
sentence quality that is generated.

As default language model feature, we use a stan-
dard word-based trigram language model generated
with smoothing Kneser-Ney and interpolation (by
using SRILM [16]).

4.5 Word and Phrase Penalty

To compensate the preference of the target lan-
guage model for shorter sentences, we added two
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Spanish English
Train Sentences | 1223443 1223443
Words 34794006 | 33379333
Vocabulary 168685 104975
Dev Sentences 504 504
Words 15353 15335
ooV 25 16
Test Sentences 504 504
Words 10305 10667
(0104 36 19

Table 1: Statistics of training and test corpus

simple features which are widely used [17] [7]. The
word penalty provides means to ensure that the
translations do not get too long or too short. Neg-
ative values for the word penalty favor longer out-
put, positive values favor shorter output [7].

The phrase penalty is a constant cost per pro-
duced phrase. Here, a negative weight, which
means reducing the costs per phrase, results in a
preference for adding phrases. Alternatively, by us-
ing a positive scaling factors, the system will favor
less phrases.

5 Evaluation framework

5.1 Corpus Statistics

Experiments were performed to study the effect
of our modifications in the phrases. The training
material covers the transcriptions from April 1996
to September 2004. This material has been dis-
tributed by the European Parlament. In our ex-
periments, we have used the distribution of RWTH
of Aachen under the project of TC-STAR !. The
test material was used in the first evaluation of the
project in March 2005. In our case, we have used
the development divided in two sets. This mate-
rial corresponds to the transcriptions of the sessions
from October the 21st to October the 28th. It has
been distributed by ELDAZ2. Results are reported
for Spanish-to-English translations.

Thttp:/ /www.tcstar.org/
2http://www.elda.org/

5.2 Experiments

The decoder used for the presented translation sys-
tem is reported in [2]. This decoder is called
MARIE and it takes into account simultaneously
all the 7 features functions described above. It im-
plements a beam-search strategy.

As evaluation criteria we use: the Word Error
Rate (WER), the BLEU score [15] and the NIST
score [3].

As follows we report the results for several ex-
periments that show the performance of: the base-
line, adding the posterior probability, IBM Model
1 and IBM1~!, and, finally, the modification of the
phrases extraction.

Optimisation. Significant improvements can be
obtained by tuning the parameters of the features
adequately. In the complet system we have 7 pa-
rameters to tune: the relatives frecuencies P(f|e)
and P(e|f), IBM Model 1 and its inverse, the word
penalty, the phrase penalty and the weight of the
language model. We applied the widely used algo-
rithm SIMPLEX to optimise [9]. In Table 2 (line
5th), we see the final results.

Baseline. We report the results of the baseline.
We use the union alignment and we extract the
BP of length 3. As default language model fea-
ture, we use the standard trigram with smoothing
Kneser-Ney and interpolation. Also we tune the
parameters (only two parameters) with the SIM-
PLEX algorithm (see Table 2).

Posterior probability. Table 2 shows the effect
of using the posterior probability: P(e|f). We use
all the features but the P(e|f) and we optimise the
parameters. We see the results without this feature
decrease around 1.1 points both in BLEU and WER
(see line 2rd and 5th in Table 2).

IBM Model 1. We do the same as in the para-
graph above, we do not consider the IBM Model
1 and the IBM1~!. Under these conditions, the
translation’s quality decreases around 1.3 points
both in BLEU and WER (see line 3th and 5th in
Table 2).
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Modification of the Phrase Extraction. Fi-
nally, we made an experiment without modification
of the phrases’ length. We can see the comparison
between: (1) the phrases of fixed maximum length
of 3; and (2) including phrases with a maximum
length of 5 which can not be generated by smaller
phrases. We can see it in Table 2 (lines 4th and
5th). We observe that there is no much difference
between the number of phrases, so this approach
does not require more resources. However, we get
slightly better scores.

5.3 Shared Task

This section explains the participation of “Exploit-
ing Parallel Texts for Statistical Machine Transla-
tion”. We used the EuroParl data provided for this
shared task [4]. A word-to-word alignment was per-
formed in both directions as explained in section
2. The phrase-based translation system which has
been considered implements a total of 7 features
(already explained in section 4). Notice that the
language model has been trained with the training
provided in the shared task. However, the opti-
mization in the parameters has not been repeated,
and we used the parameters obtained in the sub-
section above. We have obtained the results in the
Table 3.

6 Conclusions

We reported a new method to extract longer
phrases without increasing the quantity of phrases
(less than 0.5%).

We also reported several features as P(e|f)
which in combination with the functions of the
source-channel model provides significant improve-
ment. Also, the feature IBM1 in combination with
IBM1~! provides improved scores, too.

Finally, we have optimized the parameters, and
we provided the final results which have been pre-
sented in the Shared Task: Exploiting Parallel
Texts for Statistical Machine Translation (June 30,
2005) in conjunction with ACL 2005 in Ann Arbor,
Michigan.

7 Acknowledgements

The authors want to thank José B. Marifio, Adria
de Gispert, Josep M. Crego, Patrik Lambert and
Rafael E. Banchs (members of the TALP Research
Center) for their contribution to this work.

References

[1] P.F. Brown, J. Cocke, S.A. Della Pietra,
V.J. Della Pietra, F. Jelinek, J.D. Lafferty,
R.L. Mercer, and P.S. Rossin. A statistical ap-
proach to machine translation. Computational
Linguistics, 16(2):79-85, June 1990.

[2] Josep M. Crego, José B. Marifio, and Adria
de Gispert. An Ngram-based Statistical Ma-
chine Translation Decoder. In Draft, 2005.

[3] G. Doddington. Automatic evaluation ma-
chine translation quality using n-gram co-
ocurrence statistics. In Proc. ARPA Workshop
on Human Language Technology, 2002.

[4] EuroParl: European Parliament Proceed-
ings Parallel Corpus. Available on-line at:
http://people.csail.mit.edu/koehn /publica-
tions/europarl/. 1996-2003.

[5] I. Garcia-Varea. Traduccidn Automdtica es-
tadistica: Modelos de Traduccion basados en
Maxima Entropia y Algoritmos de Busqueda .
UPYV, Diciembre 2003.

[6] Giza++. http://www-i6.informatik.rwth-
aachen.de/~och/software/giza++.html/,
1999.

[7] P. Koehn. A Beam Search Decoder for Phrase-
Based Statistical Machine Translation Models.
2003.

[8] P. Koehn, F. J. Och, and D. Marcu. Statisti-
cal phrase-based translation. In Proceedings of
the Human Language Technology Conference
(HLT-NAACL), pages 127-133, May 2003.

[9] J.A. Nelder and R. Mead. A simplex method
for function minimization. The Computer
Journal, 7:308-313, 1965.

153



Phr Lcngth ALM )\p(f\e) )\p(e\f) AIBM1 )\]BMl—l App )\WP WER | BLEU | NIST # fmses
3 0.788 | 0.906 | 0 0 0 0 0 33.98 | 57.44 | 10.11 | 67.7TM
3+5length | 0.788 | 0.941 | O 0.771 | 0.200 3.227 | 0.448 | 28.97 | 64.71 | 11.07 | 68M
3+5length | 0.788 | 0.824 | 0.820 | O 0 3.430 | -0.083 | 29.17 | 64.59 | 10.99 | 68M

3 0.746 | 0.515 | 0.979 | 0.514 0.390 1.537 | -1.264 | 27.94 | 65.70 | 11.18 | 67.7TM
3+b5length | 0.788 | 0.617 | 0.810 | 0.635 | 0.101 1.995 | -0.296 | 27.88 | 65.82 | 11.23 | 68M

Table 2: Results for the different experiments with optimized parameters in the direction SPA->ENG

Phr Length /\p(€|f) AIBM1

ALM | Ap(fle)

/\IBM1*1

App Awp BLEU | # frases

3+blength | 0.788 | 0.617 | 0.810 | 0.635

0.101

1.995 | -0.296 | 29.84 | 34.8M

[10]

[11]

[12]

[13]

[15]

Table 3: Results for the ACL training and ACL test (SPA->ENG)

F. J. Och, D. Gildea, S. Khudanpur, A. Sarkar,
K. Yamada, A. Fraser, S. Kumar, L. Shen,
D. Smith, K. Eng, V. Jain, Z. Jin, and
D. Radev. A Smorgasbord of Features for Sta-
tistical Machine Translation. In Proceedings of

the Human Language Technology Conference
(HLT-NAACL), May 2004.

F. J. Och and H. Ney. The Alignment Tem-
plate Approach to Statistical Machine Trans-
lation. Computational linguistics, 30:417-449,
December 2004.

Franz Josef Och and Hermann Ney. Discrimi-
native Training and Maximum Entropy Mod-
els for Statistical Machine Translation. In
ACL, pages pages 295-302, July 2002.

Papineni, S.Roukos, and R.T. Ward. Feature-
based language understanding. In Furopean
Conf. on Speech Communication and Technol-
ogy, pages 1435-1438, September 1997.

Papineni, S.Roukos, and R.T. Ward. Maxi-
mum likelihood and discriminative training of
direct translation models. In Proc. Int. Conf.

on Acoustics, Speech, and Signal Proceedings,
pages 189-192, May 1998.

K.A. Papineni, S. Roukos, T. Ward, and W.J.
Zhu. Bleu: a method for automatic evaluation
of machine translation. In Technical Report
RC22176 (W0109-022), IBM Research Divi-
ston, 2001.

1

[16]

[17]

54

A. Stolcke. SRILM - An Extensible Language
Modeling Toolkit. In Proceedings Intl. Confer-
ence Spoken Language Processing, September
2002.

R. Zens and H. Ney. Improvements in Phrase-
Based Statistical Machine Translation. In
Proceedings of the Human Language Technol-
ogy Conference (HLT-NAACL), pages 257—
264, May 2004.




First Steps towards Multi-Engine Machine Translation

Andreas Eisele
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D-66041 Saarlircken, Germany
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Abstract

We motivate our contribution to the shared
MT task as a first step towards an inte-
grated architecture that combines advan-
tages of statistical and knowledge-based
approaches. Translations were generated
using the Pharaoh decoder with tables de-
rived from the provided alignments for alll
four languages, and for three of them us-
ing web-based and locally installed com-
mercial systems. We then applied statis-
tical and heuristic algorithms to select the
most promising translation out of each set
of candidates obtained from a source sen-
tence. Results and possible refinements
are discussed.

of its ingredients, an idea pionieered in (Frederking
and Nirenburg, 1994). So far, the larger group of
related publications has focused on the task of se-
lecting, from a set of translation candidates obtained
from different engines, one translation that looks
most promising (Tidhar andissner, 2000; Akiba et
al., 2001; Callison-Burch and Flournoy, 2001; Ak-
iba et al., 2002; Nomoto, 2004). But also the more
challenging problem of decomposing the candidates
and re-assembling from the pieces a new sentence,
hopefully better than any of the given inputs, has
recently gained considerable attention (Rayner and
Carter, 1997; Hogan and Frederking, 1998; Banga-
lore et al., 2001; Jayaraman and Lavie, 2005).
Although statistical MT approaches currently

come out as winners in most comparative evalua-
tions, it is clear that the achievable quality of meth-

ods relying purely on lookup of fixed phrases will be
limited by the simple fact that for any given combi-
nation of topic, application scenario, language pair,
"The problem of robust, efficient and reliable@nd text style there will never be sufficient amounts
speech-to-speech translation can only be crack& Pre-existing translations to satisfy the needs of
by the combined muscle of deep and shallow prdurely data-driven approaches.

cessing approaches.” (Wahister, 2001) Although this Rule-based approaches can exploit the effort that
statement has been coined in the context of VerbMa@oes into single entries in their knowledge reposi-
bil, aiming at translation for direct communication,tories in a broader way, as these entries can be un-
it appears also realistic for many other translatiofolded, via rule applications, into large numbers of
scenarios, where demands on robustness, coveragessible usages. However, this increased generality
or adaptability on the input side and quality on theeomes at significant costs for the acquisition of the
output side go beyond today’s technological possrequired knowledge, which needs to be encoded by
bilities. The increasing availability of MT enginesspecialists in formalisms requiring extensive train-
and the need for better quality has motivated coring to be used. In order to push the limits of today’s
siderable efforts to combine multiple engines intdMT technology, integrative approaches will have to
one “super-engine” that is hopefully better than anye developed that combine the relative advantages of

1 Motivation and Long-term Perspective

155

Proceedings of the ACL Workshop on Building and Using Parallel Texsiges 155-158,
Ann Arbor, June 20050 Association for Computational Linguistics, 2005



both paradigms and use them to compensate for théiom a given set of parallel corporais no more overly
disadvantages. In particular, it should be possibldifficult, especially if — as in the case in this shared
to turn single instances of words and constructionsisk — word alignments and a decoder are provided.
found in training data into internal representationgurthermore, once the second task in our chain will
that allow them to be used in more general ways. have been surmounted, it will be relatively easy to

In a first step towards the development of intefeed back building blocks of improved translations
grated solutions, we need to investigate the relativiato the phrase table, which constitutes the central
strengths and weaknesses of competing systems msource of the SMT system Therefore, SMT facili-
the level of the target text, i.e. find out which sentates experiments aiming at dynamic and interactive
tences and which constructions are rendered weltaptation, the results of which should then also be
by which type of engine. In a second step, suchpplicable to MT engines that represent knowledge
an analysis will then make it possible to take thén a more condensed form.

outcomes of various engines apart and re-assemble, o qer 1 collect material for testing these ideas,

from the building blocks new translations that avoine constructed phrase tables for all four languages,
errors made by the indiyidual engines, i.e. to find infollowing roughly the procedure given in (Koehn,

tegrated solutions that improve over the best of thqn) 1t deviating in one detail related to the treat-
candidates they have been built from. Once this cgfjent of unaligned words at the beginning or end of
be done, the third and final step will involve feed[he phrasés We used the Pharaoh decoder as de-

back of corrections into the individual systems, Sucgcribed on http://www.statmt.org/wpt05/mt-shared-
that differences between system behaviour can trigsqy; after normalization of all tables to lower case.
ger (potentially after manual resolution of unclear

cases) system updates and mutual learning.

In the long term, one would hope to achieve & , Using Commercial Engines
setup where a group of MT engines can converge
to a committee that typically disagrees only in truIyA

difficul | h ) ning di S our main interest is in the integration of statis-
fiticult cases. In such a committee, remaining 'Sfical and rule-based MT, we tried to collect results

sent between the members would be a symptom 5m “conventional” MT systems that had more or

unresolveql amblguilty, that would warrant the COSfss uniform characteristics across the languages in-
of manual intervention by the fact that the_s_,ystem Rolved. We could not find MT engines supporting all
%whole \7\7 n actuall;t/hl_earntfrortn tge ad(il_ltlolnall evf’four source languages, and therefore decided to drop
:c ence. h € expec I\'/ISTse up to he par |cbu ary €leinnish for this part of the experiment. We sent the
ective w en e>§|stlng _engines have to be porte?exts of the other three languages through several in-
to new application domains. Here, a rule-based e nations of Systran-based MT Web-sendcasd

gine would be _able to profit from its more 99”??‘%hrough an installation of Lernout & Hauspie Power
knowledge during the early stages of the trans'tloﬁ‘ranslator Pro. Version 6.43

and could teach unseen correspondences of known

words and phrases to the SMT engine, whereas the

SMT system WOU_Id p”ng in its abilities to ap_ply We used slightly more restrictive conditions that resulted in
known phrase pairs in novel contexts and quickly 5.76% reduction of phrase table size

learn new vocabulary from examples. 2The results were incomplete and different, but sufficiently
close to each other so that it did not seem worthwhile to explore

the differences systematically. Instead we ranked the services

2 Collecting Translation Candidates according to errors in an informal comparison and took for each
sentence the first available translation in this order.
2.1 Setting up Statistical MT 3After having collected or computed all translations, we ob-

. . . . served that in the case of French, both systems were quite sen-

In the general picture laid out in the preceding SeGsitive to the fact that the apostrophes were formatted as separate
tion, statistical MT plays an important role for sey-tokens in the source texts (I homme instead of 'homme). We

. therefore modified and retranslated the French texts, but did not

eral reasons. On one hand, the construction of a rQeliplore possible effects of similar transformations in the other

atively well-performing phrase-based SMT systenmnguages.
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3 Heuristic Selection Source | MT BLEU
Languagel Engine score
3.1 Approach DE Pharaoh 20.48
We implemented two different ways to select, out L&H 13.97
of a set of alternative translations of a given sen- Systran 14.92
tence, one that looks most promising. The first ap- heuristic selection| 16.01
proach is purely heuristic and is limited to the case statistical selection 20.55
where more than two candidates are given. For each | FR Pharaoh 26.29
candidate, we collect a set of features, consisting of L&H 17.82
words and wordch-grams ¢ € {2,3,4}). Each of Systran 20.29
these features is weighted by the number of can- heuristic selection| 21.44
didates it appears in, and the candidate with the statistical selection 26.49
largest feature weight per word is taken. This can ES Pharaoh 26.69
be seen as the similarity of each of the candidate L&H 17.28
to a prototypical version composed as a weighted Systran 17.38
mixture of the collection, or as being remotely re- heuristic selection| 19.16
lated to a sentence-specific language model derived statistical selection 26.74
from the candidates. The heuristic measure was used | F| Pharaoh 16.76
to select “favorite” from each group of competing all heuristic selection| 22.83
translations obtained from the same source sentence, statistical selection 25.80
yielding a fourth set of translations for the sentences
given in DE, FR, and ES. Table 1: BLEU scores of various MT engines and

A particularity of the shared task is the fact thagombinations
the source sentences of the development and test sets
form a parallel corpus. Therefore, we can not onl¥

integrate multiple translations of the same sourc ; , .
at in each group of translations for a given source

sentence into a hopefully better version, but we Callf'i‘ the statistical . t best. E
merge the translations of corresponding parts fro nguage, the statistical engine came out besL. Fur-

different source languages into a target form thépermore, our heuristic approach for the selection

combines their advantages. This approach, calle?rj thedt_)sst ?mongi]tg sma!l set of Ca??r']date transle;
triangulation in (Kay, 1997), can be motivated byIonS Id not result In an increase of the measure

the fact that most cases of translation for dissemﬁl‘EU .score, but typically gave a score that was

nation involve multiple target languages; hence ond dients. Thi hat di inti it
can assume that, except for the very first of ther‘r%re ents. 'S somewnhat disappointing resuft can
b

renderings in multiple languages exist and can he e>_<p;|_a|ged n tV\;O \_/vays];fA?paren:_ly, t?e sefl(a:[ctlon
used as input to the next stepSee also (Och and e;uns \c ﬁtesf nothglve ed%c ;ve elszmlﬁ €s 0 ratrrl]s-
Ney, 2001) for some related empirical evidence. Irlwa lon quaiity for the candidates. Furthermore, the

order to obtain a first impression of the potential Ofgranularlty on .Wh'Ch thg choices hz—flve to bee made
IS too coarse, i.e. the pieces for which the symbolic

triangulation in the domain of parliament debates, . .
g P ngines do produce better translations than the SMT

we applied the selection heuristics to a set of four"d! ied by bad choi
translations, one from Finnish, the other three th ngine are accompanied by too many bad choices So
that the net effect is negative.

result of the selections mentioned above.

ereof are given in Table 1. These results show

3.2 Results and Discussion 4 Statistical Selection

The BLEU scores (Papineni et al., 2002) for 10 diThe other score we used was based on probabilities
rect translations and 4 sets of heuristic selectiorss computed by the trigram language model for En-

“Admittedly, in typical instances of such chains, English9/ISN provid_ed by the Qrgani_zers of the task, in_a
would appear earlier. representation compatible with the SRI LM toolkit
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(Stolcke, 2002). However, a correct implementa- lect the best among outputs from multiple mt systems.
tion for obtaining these estimates was not available In COLING.

in time, SO the SeleCtionS generated from the Stati%'rinivas Banga|ore, German BordeL and Giuseppe Ric-
tical language model could not be used for official cardi. 2001. Computing consensus translation from
submissions, but were generated and evaluated af-multiple machine translation systems.ASRU Italy.

ter the closing date. The results, also displayed ighris Callison-Burch and Raymond S. Flournoy. 2001.
Table 1, show that this approach can lead to slight A program for automatically selecting the best output
improvements of the BLEU score, which however from multiple machine translation engines.Rroc. of
turn out not to be statistically sigificant in then sense MT Summit VIlj Santiago de Compostela, Spain.

of (Zhang et al., 2004). Robert E. Frederking and Sergei Nirenburg. 1994. Three
heads are better than one.ANLP, pages 95-100.
5 Next Steps Christopher Hogan and Robert E. Frederking. 1998. An

. evaluation of the multi-engine mt architecture.Rro-
When we started the experiments reported here, theceegings of AMTApages 113-123.

hope was to find relatively simple methods to select

the best among a small set of candidate translatiorgYamsundar Jayaraman and Alon Lavie. 2005. Multi-
engine machine translation guided by explicit word

and to achieve significant improvements of a hybrid matching. InProc. of EAMT Budapest, Hungary.
architecture over a purely statistical approach. Al-

though we could indeed measure certain improve/a'tin Kay. 1997. The proper place of men and ma-
chines in language translatioMachine Translation

ments, these are not yet big enough for a conclu- 12:3 23 First appeared as a Xerox PARC working
sive “proof of concept”. We have started a refine- paper in 1980.

ment of our approach that can not only pick the be%hilipp Koehn. 2004. Pharaoh: A beam search decoder
among translations of complete sentences, but alsofo phrase-based statistical machine translation mod-
judge the quality of the building blocks from which els. INnAMTA pages 115-124.

the translations are composed. Firstinformal results, ,. ... Nomoto. 2004 Multi-engine machine transla-

look very promising. Once we can replace single tjon with voted language model. Proc. of ACL

phrases that appear in one translation by better alter-

. . . anz-Josef Och and Hermann Ney. 2001. Statistical
nafives taken from a competing candidate, Chancgg‘multi-source translation. IRroceedings of MT Sum-

are good that a significant increase of the overall mjt viiI, Santiago de Compostela, Spain, September.

translation quality can be achieved. ) o ) .
Kishore Papineni, Salim Roukos, Todd Ward, and Wei-

6 Ack led t Jing Zhu. 2002. BLEU: a method for automatic eval-
cknowiedgements uation of machine translation. Proceedings of ACL
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Abstract 2 Translation Likelihood as a Statistical

. . . " Test
This article describes the competitive

grouping algorithm at the core of our Inte- Given a bilingual corpus of language pé&ir(For-
grated Segmentation and Alignment (ISA) eign, source language) artel(English, target lan-
model. ISA extracts phrase pairs from a  guage), if we know the word alignment for each sen-
bilingual corpus without requiring the pre- tence pair we can calculate the co-occurrence fre-
calculated word alignment as many other  quency for each source/target word pair typie, e)
phrase alignment models do. Experiments  and the marginal frequency(f) = . C(f,e) and
conducted within the WPT-05 shared task ~ C(e) = >2;C(f,e). We can apply various sta-
on statistical machine translation demon- tistical tests (Manning and Satze, 1999) to mea-
strate the simplicity and effectiveness of sure how likely is the association betweg¢nand

this approach. e, in other words how likely they are mutual trans-
lations. In the following sections, we will usg?
1 Introduction statistics to measure the the mutual translation like-

_ _ lihood (Church and Hanks, 1990).
In recent years, various phrase translation ap-

proaches (Marcu and Wong, 2002; Och etal., 1999  The Core of the Integrated Phrase

Koehn et al.,, 2003) have been shown to outper- Segmentation and Alignment

form word-to-word translation models (Brown et al.,

1993). Many of these phrase alignment strategiekhe competitive linking algorithm  (CLA)
rely on the pre-calculated word alignment and uséMelamed, 1997) is a greedy word alignment
different heuristics to extract the phrase pairs fromlgorithm. It was designed to overcome the problem
the Viterbi word alignment path. The Integratedof indirect associations using a simple heuristic:
Segmentation and Alignment (ISA) model (Zhangvhenever several word tokerfsin one half of the

et al., 2003) does not require such word alignmenhilingual corpus co-occur with a particular word to-
ISA segments the sentence into phrases and finkisne in the other half of the corpus, the word that is
their alignment simultaneously. ISA is simple andnost likely to bee’s translation is the one for which
fast. Translation experiments have shown comparéie likelihood L( f, e) of translational equivalence
ble performance to other phrase alignment strategieshighest. The simplicity of this algorithm depends
which require complicated statistical model trainingon a one-to-one alignment assumption. Each word
In this paper, we describe the key idea behind thisanslates to at most one other word. Thus when
model and connect it with the competitive linking al-one pair{ f, e} is “linked”, neither f nor e can be
gorithm (Melamed, 1997) which was developed foaligned with any other words. This assumption
word-to-word alignment. renders CLA unusable in phrase level alignment.
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We propose an extension, the competitive grouping,

as the core component in the ISA model.

3.1 Competitive Grouping Algorithm (CGA)

The key modification to the competitive linking al-
gorithm is to make it less greedy. When a word pair
is found to be the winner of the competition, we al-
low it to invite its neighbors to join the “winner’s
club” and group them together as an aligned phrase

pair.
north by including an additional source word
fisiari—1 to be aligned with all the target words

in the current group; or one can expand to the

northeast by includingf;,,,,.—1 ande;_, +1
(Figure 1).

sion:

pair. The one-to-one assumption is thus discarded

in CGA. In addition, we introduce thcality as-

sumption for phrase alignmeritocality states that a

source phrase of adjacent words can only be aligned
to a target phrase composed of adjacent words. This
is not true of most language pairs in cases such as
the relative clause, passive tense, and prepositional
clause, etc.; however this assumption renders the

problem tractable. Here is a description of CGA:

For a sentence pafff, e}, represent the word pair

statistics for each word pairf, e} in a two dimen-
sional matrixL;y s, whereL(i, j) = x?(fi,e;) in
our implementation?

jend ey

................ ;’

Current Phrase ¥
Pair

(2] jstart

(a) If a new source word;, is to be grouped,
MaX;.,,,<j<jenq L(7';j) should be no
smaller thanmax;<;<s L(i',j). Since
CGA is a greedy algorithm as described
below, this is to guarantee that will not
“regret” the decision of joining the phrase

target words to be aligned with. Similar
constraint is applied if a new target word
e; is to be grouped.

(b) The highest value in the newly-expanded

area needs to be “similar” to the seed value

L™, j*).

Expand the current phrase pair to the largest ex-
tend possible as long as both criteria are satis-

fied.

are 8 ways to group new words into the phrase
For example, one can expand to the

Two criteria have to be satisfied for each expan-

pair because it does not have other “better”

fi /
/

Expanded phrase pair if go “northeast”

Figure 1: Expanding the current phrase pair

. The locality assumption means that the aligned

phrase cannot be aligned again. Therefore, all
the source and target words in the phrase pair
are marked as “invalid” and will be skipped in

Denote an aligned phrase pai{f,é}~ as
a tuple [istartaiendajsturtajend] where f is

Jistart> Jistares1s - - -+ Jionq @Nd similarly fore.

1. Findi* andj* such that(:*, j*) is the highest.

Create aseedphrase paifi*, i*, j*, j*] which is
simply the word paif f;«, e« } itself.

2. Expand the current phrase
[istartaiendajstartajend] to the neighboring

the following steps.

4. If there is another valid paif f;, e;}, then re-
peat from Step 1.

Figure 2 and Figure 3 show a simple example

of applying CGA on the sentence pdile déclare
reprise la session/i declare resumed the segsion

pair

session

0.04

resumed |the
001

je 1559

territory to include adjacent source and target
words in the phrase alignment group. There

1?2 statistics were found to be more discriminative in our

déclare

4085

0.33

86.78

reprise

31273

031

402.86

la

10.50

017

BE67.43

160

session

0.00

513

0.80

3795.00

experiments than other symmetric word association measureg-igure 2: Seed pai{je / i}, no expansion allowed

such as the averaged mutual informatigf statistics and Dice-
coefficient.
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i declare  |resumed |the session
déclare 76079 4085 033 678 P

reprise 2466 31273 031 40286 -

E 0.0t 007 erAg =] : T o
sqession 40.42 5.13 z
- - - - 3
Figure 3: Seed paifsession/sessignexpanded to T e
{Ia session/the SeSSibn 4 ‘ session/session ‘ ‘ o session/fe session ‘ \“reprise la session/resume the session

3.2 Exploring all possible groupings

6 la/tl;;/ \\l\ases:ion/the sesgion
The similarity criterion 2-(b) described previously
is used to control the granularity of phrase pairs.

In cases where the paitsh fo, e1es}, {f1,e1} and Figure 4: Depth-first itinerary of all possible group-

{f2,e2} are all valid translations pairs, similar-"9 choices.
ity is used to control whether we want to align
{f1f2,e1e2} as one phrase pair or two shorter onesby their weighted frequency:

The granularity of the phrase pairs is hard to op- . .
timize especially when the test data is unknown. On P(fle) = count(f€) - L(f.€)
the one hand, we prefer long phrases since inter- Z]zcount(f,é) -L(f,é)
action among the words in the phrase, for example o _ o
word sense, morphology and local reordering coullf© Smoothing is applied to the probabilities.
be encapsulated. On the other hand, long phraie
pairs are less likely to occur in the test data than the
shorter ones and may lead to low coverage. To have most cases, word alignment information is not
both long and short phrases in the alignment, we agiven and is treated as a hidden parameter in the
ply a range of similarity thresholds for each of theraining process. We initialize a word pair co-
expansion operations. By applying a low similarityoccurrence frequency by assuming uniform align-
threshold, the expanded phrase pairs tend to be largeent for each sentence pair, i.e. for sentence pair
while a higher similarity threshold results in shorter(f, e) wheref has/ words ande has.J words, each
phrase pairs. As described above, CGA is a greedyord pair{ f, e} is considered to be aligned with fre-
algorithm and the expansion of the seed pair restrictﬂjencyﬁ. These co-occurrence frequencies will
the possible alignments for the rest of the sentencke accumulated over the whole corpus to calculate
Figure 4 shows an example as we explore all the po#e initial L( f, e). Then we iterate the ISA model:
sible grouping choices in a depth-first search. In the . . .
end, all unique phrase pairs along the path traveledl' Apply the compet|_t|ve grouping algprlthm to
are output as phrase translation candidates for the eaph sentence pair to find all possible phrase
current sentence pair. pairs.

Learning co-occurrence information

2. For each identified phrase pdif, ¢}, increase

3.3 Phrase translation probabilities N
the co-occurrence counts for all word pairs in-

Each aligned phrase paﬁgf, ¢} is assigned a likeli- side{f, &} with weight .
hood scord.(f, ¢), defined as: |f1-1él
3. CalculateL( f, ) again and goto Step 1 for sev-
2, max; log L(fi, €j) + 3. max; log L(fi. ¢;) eral iteratio(ns. )
[F1+ el

. 5 Experiments
wherei ranges over all words iifi and similarly; in
é.
Given the collected phrase pairs and their likeli
hood, we estimate the phrase translation probability 2http://www.statmt.org/wpt05/mt-shared-task/

We participated the shared task in the WPTO5 work-
shopg and applied ISA to all four language pairs
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(French-English, Finnish-English, German-Englisipairs. Despite its simplicity, the ISA model has
and Spanish-English). Table 1 shows thgram achieved competitive translation results. We plan to
coverage of the dev-test set. French and Spanistlease ISA toolkit to the community in the near
data are better covered by the training data confuture.

pared to the German and Finnish sets. Since our

phrase alignment is constrained by the locality as-

sumption and we can only extract phrase pairs dreferences

adjacent words, lowet-gram coverage will resultin Peter F. Brown, Vincent J. Della Pietra, Stephen A. Della

lower translation scores. We used the training data Pietra, and Robert L. Mercer. 1993. The mathemat-
ics of statistical machine translation: parameter esti-

’ Dev-testH DE ‘ ES ‘ Fl ‘ FR ‘ mation. Comput. Linguist.19(2):263—-311.
N=1| 99.2| 99.6| 98.2| 99.8 Kenneth Ward Church and Patrick Hanks. 1990. Word
N=2 || 88.2| 93.3| 73.0| 94.7 association norms, mutual information, and lexicogra-
N=3 1594 71.7] 382 76.0 phy. Comput. Linguist.16(1):22—29.
N=4 | 30.0| 42.9| 17.0| 50.6 Philipp Koehn, Franz Josef Och, and Daniel Marcu.
N=5 | 13.0| 21.7| 6.8| 29.8 2003. Statistical phrase-based translatiorPrvceed-

— ings of the Human Language Technology and North
N=16 (8) | (65| (1) @01 American Association for Computational Linguistics
N=19 | (1) (23) (34) Conference (HLT/NAACILEdomonton, Canada, May

N=23 (1) (1) 27-June 1.

Table 1: Percentage of dev-tesgrams covered by Christopher D. Manning and Hinrich Safze. 1999.
the training data. Numbers in parenthesis are the Foundations of statistical natural language process-
g ) P ing. MIT Press, Cambridge, MA, USA.

actual counts ofi-gram tokens in the dev-test data.
Daniel Marcu and William Wong. 2002. A phrase-based,

. joint probability model for statistical machine transla-
and the language model as provided and manuallytion. In Proc. of the Conference on Empirical Meth-

tuned the parameters of the Pharaoh decbwenp- ods in Natural Language Processirfghiladephia, PA,
timize BLEU scores. Table 2 shows the translation July 6-7.

results on the dev-test and the test set of WPTO?'Dan Melamed. 1997. A word-to-word model of trans-
The BLEU scores appear comparable to those of |ational equivalence. liProceedings of the 8-th con-
other state-of-the-art phrase alignment systems, inference on EACLpages 490-497, Morristown, NJ,
spite of the simplicity of the ISA model and ease of USA. Association for Computational Linguistics.

training. Franz Josef Och, Christoph Tillmann, and Hermann Ney.
1999. Improved alignment models for statistical ma-

’ H DE ‘ ES ‘ FI ‘ FR ‘ chine translation. InProc. of the Conference on
Dev-test! 18.63] 26.20] 12.881 26.20 Empirical Methods in Natural Language Processing

and Very Large Corporapages 20-28, University of
Maryland, College Park, MD, June.

Test|| 18.93| 26.14| 12.66| 26.71

Table 2: BLEU scores of ISA in WPT05 Ying Zhang, Stephan Vogel, and Alex Waibel. 2003. In-
tegrated phrase segmentation and alignment algorithm
for statistical machine translation. Proceedings of

6 Conclusion NLP-KE’03 Beijing, China, October.

In this paper, we introduced the competitive group-
ing algorithm which is at the core of the ISA phrase
alignment model. As an extension to the competitive
linking algorithm which is used for word-to-word
alignment, CGA overcomes the assumption of one-
to-one mapping and makes it possible to align phrase

3http://www.isi.edu/licensed-sw/pharaoh/ “http://projectile.is.cs.cmu.edu/research/public/isa/index.htm
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Deploying Part-of-Speech Patterns to Enhance Statistical Phrase-Based
Machine Translation Resources
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Abstract

Part-of-Speech patterns extracted from
parallel corpora have been used to en-
hance a translation resource for statistical
phrase-based machine translation.

1 Introduction

The use of structural and syntactic information in
language processing implementations in recent
years has been producing contradictory results.
Whereas language generation has benefited from
syntax [Wu, 1997; Alshawi et al., 2000], the per-
formance of statistical phrase-based machine trans-
lation when relying solely on syntactic phrases has
been reported to be poor [Koehn et al., 2003].

We carry out a set of experiments to explore
whether heuristic learning of part-of-speech pat-
terns from a parallel corpus can be used to enhance
phrase-based translation resources.

2 System

The resources used for our experiments are as fol-
lows. The statistical machine translation GIZA++
toolkit was used to generate a bilingual translation
table from the French-English parallel and sen-
tence-aligned Europarl corpus. Additionally, a
phrase table generated from the Europarl French-
English corpus, and a training test set of 2000
French and English sentences that were made
available on the webpage of the ACL 2005 work-
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shop' were also used. Syntactic tagging was real-
ized by the TreeTagger, which is a probabilistic
part-of-speech tagger and lemmatizer. The decoder
used to produce machine translations was Pharaoh,
version 1.2.3.

We used GIZA++ to generate a translation table
from the parallel corpus. The table produced con-
sisted of individual words and phrases, followed by
their corresponding translation and a unique prob-
ability value. Specifically, every line of the said
table consisted of a French entry (in the form of
one or more tokens), followed by an English entry
(in the form of one or more tokens), followed by
P(fle), which is the probability P of translation to
the French entry f given the English entry e. We
added the GIZA++-generated table to the phrase-
based translation table downloaded from the work-
shop webpage. During this merging of translation
tables, no word or phrase was omitted, replaced or
altered. We chose to combine the two aforemen-
tioned translation tables in order to achieve better
coverage. We called the resulting merged transla-
tion table lexical phrase table.

In order to utilize the syntactic information
stemming from our resources, we used the Tree-
Tagger to tag both the parallel corpus and the lexi-
cal phrase table. The probability values included
in the lexical phrase table were not tagged. The
TreeTagger uses a slightly modified version of the
Penn Treebank tagset, different for each language.
In order to achieve tag-uniformity, we performed
the following dual tag-smoothing operation.

! The Europarl French-English corpus and phrase table, and
the training test set are available at:
http://www.statmt.org/wpt05/mt-shared-
task/

Proceedings of the ACL Workshop on Building and Using Parallel Texsiges 163—-166,
Ann Arbor, June 20050 Association for Computational Linguistics, 2005



Firstly, we changed the French tags into their Eng-
lish equivalents, i.e. NOM (noun — French) became
NN (noun — English). Secondly, we simplified the
tags, so that they reflected nothing more than gen-
eral part-of-speech information. For example, tags
denoting predicate-argument  structures, wh-
movement, passive voice, inflectional variation,
and so on, were simplified. For example, NNS
(noun — plural) became NN (noun).

Once our resources were uniformly tagged, we
used them to extract part-of-speech correspon-
dences between the two languages. Specifically,
we extracted a sentence-aligned parallel corpus of
French and English part-of-speech patterns from
the tagged Europarl parallel corpus. We called this
corpus of parallel and corresponding part-of-
speech patterns pos-corpus. The format of the pos-
corpus remained identical to the format of the
original parallel corpus, with the sole difference
that individual words were replaced by their corre-
sponding part-of-speech tag. Similarly, we ex-
tracted a translation table of part-of-speech patterns
from the tagged lexical phrase table. We called
this part-of-speech translation table pos-table. The
pos-table had exactly the same format as the lexi-
cal phrase table, with the unique difference that
individual words were replaced by their corre-
sponding part-of-speech tag. The translation prob-
ability values included in the lexical phrase table
were copied onto the pos-table intact.

Each of the part-of-speech patterns contained in
the pos-corpus was matched against the part-of-
speech patterns contained in the pos-table. Match-
ing was realized similarly to conventional left-to-
right string matching operations. Matching was
considered to be successful not simply when a
part-of-speech pattern was found to be contained
in, or part of a longer pattern, but when patterns
were found to be absolutely identical. When a per-
fect match was found, the translation probability
value of the specific pattern in the pos-table was
increased to the maximum value of 1. If the score
were already 1, it remained unchanged. When
there were no matches, values remained un-
changed. We chose to match identical part-of-
speech patterns, and not to accept partial pattern
matches, because the latter would require a revi-
sion of our probability recomputation method. This
point is discussed in section 3 of this paper.

Once all matching was complete, the newly en-
hanced pos-table, which now contained translation
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probability scores reflecting the syntactic features
of the relevant languages, was used to update the
original lexical phrase table. This update consisted
in matching each and every part-of-speech pattern
with its original lexical phrase, and replacing the
initial translation probability score with the values
contained in the pos-table. The identification of the
original lexical phrases that generated each and
every part-of-speech pattern was facilitated by the
use of pattern-identifiers (pos-ids) and phrase-
identifiers (phrase-ids), which were introduced at a
very early stage in the process for that purpose.
The resulting translation phrase table contained
exactly the same entries as the lexical phrase table,
but had different probability scores assigned to
some of these entries, in line with the parallel part-
of-speech co-occurrences and correspondences
found in the Europarl corpus. We called this table
enhanced phrase table. Table 1 illustrates the
process described above with the example of a
phrase, the part-of-speech analysis of which has
been used to increase its original translation prob-
ability value from 0.333333 to 1.

Lexical phrase table
actions extérieures | external action | 0.333333
Tagged lexical phrase table
actions_NN extérieures_JJ | external_JJ action_NN
10.333333

pos-corpus

NN JJIJJ NN
Enhanced phrase table
actions extérieures | external action | 1

Table 1: Extracting and matching a part-of-
speech pattern to increase translation probability.

We used the Pharaoh decoder firstly with our
lexical phrase table, and secondly with our en-
hanced phrase table in order to generate statistical
machine translations of source and target language
variations of the French and English training test
set. We measured performance using the BLEU
score [Papineri et al., 2001], which estimates the
accuracy of translation output with respect to a
reference translation. For both source-target lan-
guage combinations, the use of the lexical phrase
table received a slightly lower score than the score
achieved when using the enhanced phrase table.
The difference between these two approaches is
not significant (p-value > 0.05). The results of our



experiments are displayed in Table 2 and discussed
in Section 3.

Language Pair | Lexical | Enhanced
English-French | 25.50 25.63
French-English | 26.59 26.89

Table 2: Our translation performance
(measured with BLEU)

3 Discussion

The motivation behind this investigation has been
to test whether syntactic or structural language as-
pects can be reflected or represented in the re-
sources used in statistical phrase-based machine
translation.

We adopted a line of investigation that concen-
trates on the correspondence of part-of-speech pat-
terns between French and English. We measured
the usability of syntactic structures for statistical
phrase-based machine translation by comparing
translation performance when a standard phrase
table was used, and when a syntactically enhanced
phrase table was used. Both approaches scored
very similarly. This similarity in the performance
is justified by the following three factors.

Firstly, the difference between the two transla-
tion resources, namely the lexical phrase table and
the enhanced phrase table, does not relate to their
entries, and thus their coverage, but to a simple
alteration of the translation probability values of
some of their entries. The coverage of these re-
sources is exactly identical.

Secondly, a closer examination of the transla-
tion probability value alterations that took place in
order to reflect part-of-speech correspondences
reveals that the proportion of the entries of the
phrase table that were matched syntactically to
phrases from the parallel corpus, and thus under-
went a modification in their translation probability
score, was very low (less than 1%). The reason
behind this is the fact that the part-of-speech pat-
terns produced by the parallel corpus were long
strings in their vast majority, while the part-of-
speech patterns found in the phrase table were sig-
nificantly shorter strings. The inclusion of phrases
longer than three words in translation resources has
been avoided, as it has been shown not to have a
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strong impact on translation performance [Koehn
et al., 2003].

Thirdly, the above described translation prob-
ability value modifications were not parameterized,
but consisted in a straightforward increase of the
translation probability to its maximum value. It
remains to be seen how these probability value
alterations can be expanded to a type of probability
value ‘reweighing’, in line with specific parame-
ters, such as the size of the resources involved, the
frequency of part-of-speech patterns in the re-
sources, the length of part-of-speech patterns, as
well as the syntactic classification of the members
of part-of-speech patterns. If one is to compare the
impact that such parameters have had upon the
performance of automatic information summarisa-
tion [Mani, 2001] and retrieval technology [Belew,
2000], it may be worth experimenting with such
parameter tuning when refining machine transla-
tion resources.

A note should be made to the choice of tagger
for our experiments. A possible risk when attempt-
ing any syntactic examination of a large set of data
may stem from the overriding role that syntax of-
ten assumes over semantics. Statistical phrase-
based machine translation has been faced with in-
stances of this phenomenon, often disguised as
linguistic idiosyncrasies. This phenomenon ac-
counts for such instances as when nouns appear in
pronominal positions, or as adverbial modifiers.
On these occasions, and in order for the syntactic
examination to be precise, words would have to be
defined on the basis of their syntactic distribution
rather than their semantic function. The TreeTag-
ger abides by this convention, which is one of the
main reasons why we chose it over a plethora of
other freely available taggers, the remaining rea-
sons being its high speed and low error rate. In ad-
dition, it should be clarified that there is no
statistical, linguistic, or other reason why we chose
to adopt the English version of the Penn TreeBank
tagset over the French, as they are both equally
conclusive and transparent.

The overall driving force behind our investiga-
tion has been to test whether part-of-speech struc-
tures can be of assistance to the enhancement of
translation resources for statistical phrase-based
machine translation. We view our use of part-of-
speech patterns as a natural extension to the intro-
duction of structural elements to statistical machine
translation by Wang [1998] and Och et al. [1999].



Our empirical results suggest that the use of part-
of-speech pattern correspondences to enhance ex-
isting translation resources does not damage ma-
chine translation performance. What remains to be
investigated is how this approach can be opti-
mized, and how it would respond to known statis-
tical machine translation issues, such as mapping
nested structures, or the handling of ‘unorthodox’
language pairs, i.e. agglutinative-fusion languages.

4 Conclusion

Syntactic and structural language information con-
tained in a bilingual parallel corpus has been ex-
tracted and used to refine the translation
probability values of a translation phrase table,
using simple heuristics. The usability of the said
translation table in statistical phrase-based machine
translation has been tested in the shared task of the
second track of the ACL 2005 Workshop on Build-
ing and Using Parallel Corpora. Findings suggest
that using part-of-speech information to alter trans-
lation probabilities has had no significant effect
upon translation performance. Further investiga-
tion is required to reveal how our approach can be
optimized in order to produce significant perform-
ance improvement.
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Abstract

This paper presents novel approaches to
reordering in phrase-based statistical ma-
chine translation. We perform consistent
reordering of source sentences in train-
ing and estimate a statistical translation
model. Using this model, we follow a
phrase-based monotonic machine transla-
tion approach, for which we develop an ef-
ficient and flexible reordering framework
that allows to easily introduce different re-
ordering constraints. In translation, we
apply source sentence reordering on word
level and use areordering automaton as in-
put. We show how to compute reordering
automata on-demand using IBM or ITG
constraints, and also introduce two new
types of reordering constraints. We further
add weights to the reordering automata.
We present detailed experimental results
and show that reordering significantly im-
proves translation quality.

Introduction

A second category of finite-state translation ap-
proaches uses joint instead of conditional probabili-
ties. Many joint probability approaches originate in
speech-to-speech translation as they are the natural
choice in combination with speech recognition mod-
els. The automated transducer inference techniques
OMEGA (Vilar, 2000) and GIATI (Casacuberta et
al., 2004) work on phrase level, but ignore the re-
ordering problem from the view of the model. With-
out reordering both in training and during search,
sentences can only be translated properly into a lan-
guage with similar word order. In (Bangalore et al.,
2000) weighted reordering has been applied to tar-
get sentences since defining a permutation model on
the source side is impractical in combination with
speech recognition. In order to reduce the computa-
tional complexity, this approach considers only a set
of plausible reorderings seen on training data.

Most other phrase-based statistical approaches
like the Alignment Template system of Bender
et al. (2004) rely on (local) reorderings which are
implicitly memorized with each pair of source and
target phrases in training. Additional reorderings on
phrase level are fully integrated into the decoding
process, which increases the complexity of the sys-
tem and makes it hard to modify. Zens et al. (2003)

Reordering is of crucial importance for machingeviewed two types of reordering constraints for this
translation. Already (Knight et al., 1998) use full un-type of translation systems.
weighted permutations on the level of source words In our work we follow a phrase-based transla-

in their early weighted finite-state transducer aption approach, applying source sentence reordering
proach which implemented single-word based trangn word level. We compute a reordering graph on-

lation using conditional probabilities. In a refine-demand and take it as input for monotonic trans-
ment with additional phrase-based models, (Kumdation. This approach is modular and allows easy
et al., 2003) define a probability distribution overintroduction of different reordering constraints and

all possible permutations of source sentence phragg®babilistic dependencies. We will show that it per-

and prune the resulting automaton to reduce confierms at least as well as the best statistical machine
plexity. translation system at the IWSLT Evaluation.
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In the next section we briefly review the basic(f;, €;). Mapping the bilingual language model to a
theory of our translation system based on weighted/FSTT is canonical and it has been shown in (Kan-
finite-state transducers (WFST). In Sec. 3 we inthak et al., 2004) that the search problem can then be
troduce new methods for reordering and alignmemewritten using finite-state terminology:
monotonizaFion in trair_1ing. To compare differ- &l — project-output (best (7 oT)).
ent reordering constraints used in the translation
search process we develop an on-demand corhhis implementation of the problem as WFSTs may
putable framework for permutation models in Sec. 4€ used to efficiently solve the search problem in
In the same section we also define and analyze umachine translation.
restricted and restricted permutations with some
them being first published in this paper. We con*

clude the paper by presenting and discussing a righen the alignment functiorl’ is not monotonic,
set of experimental results. target language phraséscan become very long.
For example in a completely non-monotonic align-
ment all target words are paired with the last aligned
Let £/ ande! be two sentences from a source angource word, whereas all other source words form
target language. Assume that we have word levéliples with the empty phrase. Therefore, for lan-
alignmentsA of all sentence pairs from a bilingual guage pairs with big differences in word order, prob-
training corpus. We denote wit#y the segmenta- ability estimates may be poor.

tion of a target sentened into J phrases such that  This problem can be solved by reordering either
f{ andé&/ can be aligned to form bilingual tuples source or target training sentences such that align-
(fj.€;). If alignments are onlfunctions of target ments become monotonic for all sentences. We
words A’ : {1,...,I} — {1,...,J}, the bilingual suggest the following consistent source sentence re-
tuples(f;, é;) can be inferred with e.g. the GIATI ordering and alignment monotonization approach in
method of (Casacuberta et al., 2004), or with ouwhich we compute optimal, minimum-cost align-
novel monotonization technique (see Sec. 3). Eacghents.

source word will be mapped to a target phrase of one First, we estimate a cost matr&X for each sen-

or more words or an “empty” phraseIn particular, tence pair(f{,e!). The elements of this matrix;

the source words which will remain non-aligned duere the local costs of aligning a source wgido a

to the alignment functionality restriction are pairedarget worde;. Following (Matusov et al., 2004), we

SI Reordering in Training

2 Machine Translation using WFSTs

with the empty phrase. compute these local costs by interpolating state oc-
We can then formulate the problem of finding thecupation probabilities from the source-to-target and
best translatios! of a source sentencg’: target-to-source training of the HMM and IBM-4

models as trained by the GIZA++ toolkit (Och et al.,
2003). For a given alignment C I x J, we define
the costs of this alignment(A) as the sum of the

¢l = argmax Pr(fi, el)

I
€1

= argmax > pr(ff e, A) local costs of all aligned word pairs:
& AcA
> argmax max Pr(A) - Pr(f{,é]|A) c(4) = Z Cij (1)
&/ AeA (3,7)€A
~ argmax max H Pr(fy.e| 7Y, &7, A) The goal'ls to fl'nd an aI_lgnment Wlth the minimum
g ASAL T costs which fulfills certain constraints.
J-
— afgma“}gj{ H p fj,egl m’ ~§ 7171714) 3.1 Source Sentence Reordering
“ fig=1..0 To reorder a source sentence, we require the

alignment to be dunction of sourcewords A;:
,J} — {1,..., I}, easily computed from the
cost matrGC as:

In other words: if we assume a uniform distri-
bution for Pr(A), the translation problem can be 11
mapped to the problem of estimatingrangram lan-
guage model over a learned set of bilingual tuples Ai(j) = argmin, ¢;; (2)
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We do not allow for non-aligned source word4; mir wiirde sehr gut Anfang Mai passen .

naturally defines a new order of the source wofgds Alm \
which we denote byci] By CompUting this permu- tne very beginning of May would suit me .
tation for each pair of sentences in training and ap
plying it to each source sentence, we create acorpus)ehr gut Anfang Mai wiirde passen mir

of reordered sentences. z/s\/'T ;\\ \ \ \ T
. . . the very beginning of May would suit me .
3.2 Alignment Monotonization
sehr gut Anfang Mai wiirde passen mir .
In order to create a “sentence” of bilingual tuplesA/ \ /4 \ \ \ \ T
(f{,&]) we required alignments between reordered b _
source and target words to befunction of target the verY beginning of May would suit me .

WordSAQ . {17 ceey I} - {17 ceey J} ThIS align' sehr |the_very gut|$ Anfang|beginning
ment can be computed in analogy to Eq. 2 as: Mai|of_May wiirde|would passen|suit mir|me .|.

Ag(i) = argmin; é; (3) Figure 1: Example of alignment, source sentence re-

where¢;; are the elements of the new cost matrixordering, monotonization, and construction of bilin-

C which corresponds to the reordered source segual tuples.

tence. We can optionally re-estimate this matrix by

repeating EM training of state occupation probabiliwith the dynamic programming algorithm. Fig. 1
ties with GIZA++ using the reordered source corpuglso shows the resulting bilingual tupl(eﬁ €;).

and the original target corpus. Alternatively, we can
get the cost matrix_’ by reordering the columns of 4 Reordering in Search

the cost matrixC' according to the permutation givenwhen searching the best translatighfor a given

by alignmentA; . source sentencg’, we permute the source sentence
In alignmentA4, some target words that were pre-as described in (Knight et al., 1998):

viously unaligned in4; (like “the” in Fig. 1) may
now still violate the alignment monotonicity. The
monotonicity of this alignment can not be guaran- Permuting an input sequence df symbols re-
teed forall words if re-estimation of the cost matri- sults in .J! possible permutations and representing
ces had been performed using GIZA++. the permutations as a finite-state automaton requires
The general GIATI technique (Casacuberta et alat least2”’ states. Therefore, we opt for computing
2004) is applicable and can be used to monotonizhe permutation automaton on-demand while apply-
the alignmentA4,. However, in our experiments ing beam pruning in the search.
the following method performs better. We make
use of the cost matrix representation and compufel Lazy Permutation Automata
a monotonic minimum-cost alignment with a dy-For on-demand computation of an automaton in the
namic programming algorithm similar to the Lev-flavor described in (Kanthak et al., 2004) it is suffi-
enshtein string edit distance algorithm. As costs dfient to specify a state description and an algorithm
each “edit” operation we consider the local alignthat calculates all outgoing arcs of a state from the
ment costs. The resulting alignmeAt represents state description. In our case, each state represents
a minimum-cost monotonic “path” through the cost permutation of a subset of the source wofgds
matrix. To makeAs a function of target words we which are already translated.
do not consider the source words non-alignedijn This can be described by a bit vectf (Zens
and also forbid “deletions” (“many-to-one” sourceet al., 2002). Each bit of the state bit vector corre-
word alignments) in the DP search. sponds to an arc of the linear input automaton and is
An example of such consistent reordering andet to one if the arc has been used on any path from
monotonization is given in Fig. 1. Here, we re-the initial to the current state. The bit vectors of two
order the German source sentence based on the igiates connected by an arc differ only in a single bit.
tial alignmentA,, then compute the function of tar- Note that bit vectors elegantly solve the problem of
get wordsAs, and monotonize this alignment#;  recombining paths in the automaton as states with

é1 = project-output (best (permute (f{)oT))
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the same bit vectors can be merged. As a result,aé
fully minimized permutation automaton has only a
single initial and final state. o)1~ )2 (o0 )2 o) @
Even with on-demand computation, complexity
using full permutations is unmanagable for long sen-
tences. We further reduce complexity by additionb)
ally constraining permutations. Refer to Figure 2 for

visualizations of the permutation constraints which !
we describe in the following.
4.2 IBM Constraints

The IBM reordering constraints are well-known in

the field of machine translation and were first de-
scribed in (Berger et al., 1996). The idea behing)
these constraints is to deviate from monotonic trans-
lation by postponing translations of a limited num-
ber of words. More specifically, at each state we
can translate any of thirst [ yet uncovered word

positions. The implementation using a bit vector is
straightforward. For consistency, we associate win-
dow size with the parametéfor all constraints pre-

sented here. d) . M
; S

0000

4.3 Inverse IBM Constraints

3
4
.. . 1101
The original IBM constraints are useful for a large

number of language pairs where the ability to skip _ -

some words reflects the differences in word ordefigure 2: Permutations of a) positions= 1,2, 3, 4
between the two languages. For some other paif@f & SOUrce sentench f f; f4 using a window size
it is beneficial to translate some words at the end ¢ 2 for b) IBM constraints, c) inverse IBM con-
the sentence first and to translate the rest of the setifaints and d) local constraints.

tence nearly monotonically. Following this idea we o .
can define thinverse IBM constraintsLet j be the VETY 10w complexity is given by the following per-

first uncovered position. We can choose any IOOS511utation rule: the next word for translation comes
tion for translation, unless— 1 words on positions 7oM the window ofl positions counting from the
j' > j have been translated. If this is the case whrstyetuncovered position. Note, that the local con-

must translate the word in positigh The inverse straints define a true subset of the permutations de-
IBM constraints can also be expressed by fined by the IBM constraints.
invIBM (z) = transpose (IBM(transpose (z))). 4.5 TG Constraints

As thetranspose  operation can not be computed,yper type of reordering can be obtained using In-
on-demz}nd_, our specialized |mplem_entat|on uses kwarsion Transduction Grammars (ITG) (Wu, 1997).
vectorsbi similar to the IBM constraints. These constraints are inspired by bilingual bracket-
4.4 Local Constraints ing. They proved to be quite useful for machine

| _ i i translation, e.g. see (Bender et al., 2004). Here,
For some language pairs, e.g. ltalian — EnglisRq interpret the input sentence as a sequence of seg-
words are moved only a few words to the left or

_ . X ments. In the beginning, each word is a segment of
right. The IBM constraints provide too many alter-

X . its own. Longer segments are constructed by recur-
native permutations to chose from as each word c

) d\ely combining two adjacent segments. At each
be moved to the end of the sentence. A solution that

allows only for local permutations and therefore has 'both covered and uncovered

170



| Chinese| English|| Japanese English|| Italian| English|

train sentences 20000 20000 66107
words 182904| 160523| 209012 160427| 410275| 427402
singletons 3525 2948 4108 2956 6 386 3974
vocabulary 7643 6982 9277 6932 15983 10971
dev  sentences 506 506 500
words 3515 3595 4374 3595 3155 3253
sentence length (avg/max)6.95/24| 7.01/29| 8.64/30| 7.01/29| 5.79/24| 6.51/25
test sentences 500 500 506
words 3794 - 4370 - 2931 3595
sentence length (avg/max)7.59/62| 7.16 /71| 8.74/75| 7.16/71|| 6.31/27| 6.84/28

Table 1: Statistics of the Basic Travel Expression (BTEC) corpora.

combination step, we either keep the two segments Experimental Results
in monotonic order or invert the order. This pro-g 4 Corpus Statistics

cess continues until only one segment for the whole

sentence remains. The on-demand computation e translation experiments were carried out on the
implemented in spirit of Earley parsing. Basic Travel Expression Corp¢BTEC), a multilin-

We can modify the original ITG constraints togual speech corpus which contains tourism-related
further limit the number of reorderings by forbid- SENtences usually found in travel phrase books.
ding segment inversions which violate IBM con-Wve tested our system on the so called Chinese-to-

straints with a certain window size. Thus, the reENglish (CE) and Japanese-to-English (JE) Supplied

sulting reordering graph contains the intersection of2SKS: the corpora which were provided during the

the reorderings with IBM and the original ITG con-/ntérnational Workshop on Spoken Language Trans-
straints. lation (IWSLT 2004) (Akiba et al., 2004). In ad-

dition, we performed experiments on the Italian-to-
4.6 Weighted Permutations English (IE) task, for which a larger corpus was
éﬁj_ndly provided to us by ITC/IRST. The corpus

So far, we have discussed how to generate the p tistics for the th BTEC ) .
mutation graphs under different constraints, but pe AlSTCs torthe three corpora are given in
ab. 1. The development corpus for the Italian-to-

mutations were equally probable. Especially for th nalish translation had onlv one reference transla
case of nearly monotonic translation it is make sen gl statl y i
egon of each Italian sentence. A set &6 source

to restrict the degree of non-monotonicity that w X )
allow when translating a sentence. We propose sentences and 16 reference t_ranslatlons is used as
simple approach which gives a higher probabilit development corpus for Chinese-to-English and
to the monotone transitions and penalizes the nof@panese-to-English and as a test corpus for ltalian-
monotonic ones to-English tasks. The 500 sentence Chinese and
A state descriptiorb'] for which the following Japanese test sets of the IWSLT 2004 evaluation
condition holds: b campaign were translated and automatically scored
' against 16 reference translations after the end of the
Mon(j) : by =6(' <) V1<j <J campaign using the IWSLT evaluation server.
t by = < <J <

: 5.2 Evaluation Criteria
represents the monotonic path up to the wfrdAt

each state we assign the probabilityto that out- For the automatic evaluation, we used the crite-
going arc where the target state description fullfill§ia from the IWSLT evaluation campaign (Akiba et
Mon(j+1) and distribute the remaining probability &l 2004), namely word error rate (WER), position-
massl — « uniformly among the remaining arcs. Inindependent word error rate (PER), and the BLEU
case there is no such arc, all outgoing arcs get tff&d NIST scores (Papineni et al., 2002; Doddington,
same uniform probability. This weighting scheme2002). The two scores measure accuracy, i. e. larger
clearly depends on the state description and the oficOres are better. The error rates and scores were
going arcs only and can be computed on-demand.computed with respect tmultiple reference transla-
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1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9
reordering constraints window size reordering constraints window size

Figure 3: Word error rate [%] as a function of the reordering window size for different reordering constraints:
Japanese-to-English (left) and Chinese-to-English (right) translation.

tions, when they were available. To indicate this, w&.3.1 Highly Non-Monotonic Translation (JE)

will label the error rate acronyms with an. Both Fig. 3 (left) shows word error rate on the
training and evaluation were performed using corjapanese-to-English task as a function of the win-
pora and references in lowercase and without pungow size for different reordering constraints. For

tuation marks. each of the constraints, good results are achieved
_ using a window size of 9 and larger. This can be
5.3 Experiments attributed to the Japanese word order which is very

We used reordering and alignment monotonizatioflifferent from English and often follows a subject-
in training as described in Sec. 3. To estimate th@bject-verb structure. For small window sizes, ITG
matrices of local alignment costs for the sentenc@' IBM constraints are better suited for this task, for
pairs in the training corpus we used the state occupt/ger window sizes, inverse IBM constraints per-
tion probabilities of GIZA++ IBM-4 model training form best. The local constraints perform worst and
and interpolated the probabilities of source-to-targd€quire very Igrge window sizes to capture the main
and target-to-source training directions. After thayord order differences between Japanese and En-
we estimated a smootheegram language model on glish. However, their computational complexity is
the level of bilingual tupleg;, &; and represented it low; f(_)r mstar_lce, a system with local constraints
as a finite-state transducer. and window size of 9 is as fast (25 words per sec-

When translating, we applied moderate bearfind) as the same system with IBM constraints and
pruning to the search automaton only when using rd¥indow size of 5. Using window sizes larger than
ordering constraints with window sizes larger tigan 10 iS computationally expensive and does not sig-
For very large window sizes we also varied the pruri?ificantly improve the translation quality under any
ing thresholds depending on the length of the inpiRf the constraints. _ _
sentence. Pruning allowed for fast translations and ab- 2 presents the overall improvements in trans-
reasonable memory consumption without a signifition quality when using the best setting: inverse
cant negative impact on performance. IBM constraints, window siz8. The baseline with-

In our first experiments, we tested the four reOut reordering in training and testing failed com-

ordering constraints with various window sizes. W&'€t€ly for this task, producing empty translations
; , ) ) 0 iqi
aimed at improving the translation resuits on the dd2f 37 % of the sentencés Most of the original

velopment corpora and compared the results Witﬂllgr]inzr!ts in trqlnlngf V\iere ?on-\]monotonlc WhoIICht
two baselines: reordering only the source trainin§SY'*€d IN Mapping ot aimost all Japanese words o

sentences and translation of the unreordered test sénv-\'hen using only the GIATI monqtonlzatlon tech-
tences; and the GIATI technique for creating bilin/1du€: Thus, the proposed reordering methods are of

gual tuples(f;, €;) without reordering of the source crucial importance for this task.
sentences, neither in training nor during translation. 2Hence a NIST score of 0 due to the brevity penalty.
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mWER | mPER | BLEU | NIST mWER | mPER | BLEU | NIST

Reordering:| [%)] [%0] [%] Reordering:| [%] [%] [%0]

BTEC Japanese-to-English (JE) dev none 25.6 22.0 | 62.1 | 10.46
none 59.7 58.8 | 13.0 | 0.00 in training 28.0 22.3 | 58.1 | 10.32
in training 57.8 394 | 14.7 | 3.27 + 4-local 26.3 20.3 | 62.2 | 10.81
+9-inv-ibm | 40.3 | 32.1 | 451 | 8.59 + weights 25.3 | 20.3 | 62.6 | 10.79
+rescoring | 39.1 30.9 | 53.2 | 9.93 + 3-ibm 27.2 205 | 614 | 10.76

BTEC Chinese-to-English (CE) dev + weights 25.2 20.3 | 62.9 | 10.80
none 55.2 52.1 | 249 | 1.34 +rescoring | 22.2 19.0 | 69.2 | 10.47
intraining | 54.0 | 423 | 230 | 418 | Taple 4: Translation results with optimal reordering
+7-inv-ibm | 47.1 | 39.4 | 345 | 6.53 | constraints and window sizes for the test corpus of
+rescoring | 483 | 40.7 | 39.1 | 811 | the BTEC IE task’ Optimized for WER.

Table 2: Translation results with optimal reorder
ing constraints and window sizes for the BTE
Japanese-to-English and Chinese-to-English dev
opment corpora.Optimized for the NIST score.

straints already with relatively small window sizes.
ncreasing the window size beyoddor these con-

Sraints only marginally improves the translation er-
ror measures for both short (under 8 words) and long

MWER | mPER | BLEU | NIST sentences. Thus, a suitable language-pair-specific
[%] [%] [%] choice of reordering constraints can avoid the huge
BTEC Japanese-to-English (JE) test computational complexity required for permutations
AT 41.9 33.8 | 45.3 | 9.49 of long sentences.
WEST | 42.1 35.6 | 47.3 | 9.50 Tab. 2 includes error measures for the best setup
BTEC Chinese-to-English (CE) test with inverse IBM constraints with window size ©f
AT 45.6 390 | 409 | 855 as well as additional improvements obtained by a
WFST| 46.4 | 38.8 | 40.8 | 8.73 best list rescoring.

The best settings for reordering constraints and
odel scaling factors on the development corpora
ere then used to produce translations of the IWSLT
Japanese and Chinese test corpora. These trans-

Further improvements were obtained with dations were evaluated against multiple references
rescoring procedure. For rescoring, we produceghich were unknown to the authors. Our system
a k-best list of translation hypotheses and used thiglenoted with WFST, see Tab. 3) produced results
word penalty and deletion model features, the IBMompetitive with the results of the best system at the
Model 1 lexicon score, and target languaggram evaluation campaign (denoted with AT (Bender et
models of the order up . The scaling factors for al., 2004)) and, according to some of the error mea-
all features were optimized on the development cosures, even outperformed this system.

pus for the NIST score, as described in (Bender et ) )
al., 2004). 5.3.3 Almost Monotonic Translation (IE)

The word order in the Italian language does not
5.3.2 Moderately Non-Mon. Translation (CE)  djffer much from the English. Therefore, the abso-
Word order in Chinese and English is usually simlute translation error rates are quite low and translat-
ilar. However, a few word reorderings over quiteing without reordering in training and search already
large distances may be necessary. This is especiatBsults in a relatively good performance. This is re-
true in case of questions, in which question wordflected in Tab. 4. However, even for this language
like “where” and “when” are placed at the end ofpair it is possible to improve translation quality by
a sentence in Chinese. The BTEC corpora contaperforming reordering both in training and during
many sentences with questions. translation. The best performance on the develop-
The inverse IBM constraints are designed to pement corpus is obtained when we constrain the re-
form this type of reordering (see Sec. 4.3). As showndering with relatively small window sizes of 3 to 4
in Fig. 3, the system performs well under these corand use either IBM or local reordering constraints.

Table 3. Comparison of the IWSLT-2004 automati
evaluation results for the described system (WFS%EI
with those of the best submitted system (AT).
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On the test corpus, as shown in Tab. 4, all error mea- Int. Workshop on Spoken Language Translation, pp.
sures can be improved with these settings. 79-84, Kyoto, Japan.

Especially for languages with similar word orderA. L. Berger, P. F. Brown, S. A. Della Pietra, V. J. Della
it is important to useveightedreorderings (Sec. 4.6) Pietra, J. R. Gillett, A. S._Kehler, and R. L. Mercer.
. - 1996. Language Translation Apparatus and Method
in order to prefer the original word order. Introduc-

. . . . ; of Using Context-based Translation Model&nited
tion of reordering weights for this task results in no-  siates Patent 5510981.

table improvement of most error measures using &t casacuberta and E. Vidal. 2004. Machine Transla-
ther the IBM or local constraints. The optimal prob- tion with Inferred Stochastic Finite-State Transducers.
ability o for the unreordered path was determined Computational Linguistics, vol. 30(2):205-225.

on the development corpus 8% for both of these G. Doddington. 2002Automatic Evaluation of Machine

constraints. The results on the test corpus using this Translation Quality Using n-gram Co-Occurrence
setting are also given in Tab. 4. Statistics Proc. Human Language Technology Conf.,

San Diego, CA.

6 Conclusion S. Kanthak and H. Ney. 2004FSA: an Efficient and

In this paper. we described a reordering framework Flexible C++ Toolkit for Finite State Automata using
IS paper, w : ing w On-demand ComputationProc. 42nd Annual Meet-

which performs source sentence reordering on word jng of the Association for Computational Linguistics,
level. We suggested to use optimal alignment func- pp. 510-517, Barcelona, Spain.

tions for monotonization and improvement of transk. Knight and Y. Al-Onaizan. 1998.Translation with
lation model training. This allowed us to translate Finite-State DevicesLecture Notes in Atrtificial Intel-
monotonically taking a reordering graph as input. ligence, Springer-Verlag, vol. 1529, pp. 421-437.
We then described known and novel reordering cor- Kumar and W. Byrne. 2003A Weighted Finite State

. : . o : _ Transducer Implementation of the Alignment Template
straints and their efficient finite-state implementa Model for Statistical Machine TranslatiorProc. Hu-

tions in which the reordering graph is computed on- i | anguage Technology Conf. NAACL, pp. 142—

demand. We also utilized weighted permutations. 149, Edmonton, Canada.

We showed that our monotonic phrase-based trans: Matusov, R. Zens, and H. Ney. 200ymmetric Word

lation approach effectively makes use of the reorder- Alignments for Statistical Machine TranslatioRroc.

ing framework to produce quality translations even 20th Int. Conf. on Computational Linguistics, pp. 219—
: i ; 225, Geneva, Switzerland.

from languages with significantly different word or _ .

der. On the Japanese-to-English and Chinese—tB—‘\]/' Och agd H. '_\'e3|" Aﬁ.OOS\ Sysﬁ”:jat;;:compa”.son |°f

English IWSLT tasks, our system performed at least arlous Statistical Alignment Models-omputationa

I he b hi lati Linguistics, vol. 29, number 1, pp. 19-51.
as well as the best machine translation system. . o, heni s Roukos, T. Ward, and W.-J. Zhu. 2002.

BLEU: a Method for Automatic Evaluation of Machine
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Abstract

Translation memories provide assis-
tance to human translators in produc-
tion settings, and are sometimes used
as first-pass machine translation in as-
similation settings because they pro-
duce highly fluent output very rapidly.
In this paper, we describe and eval-
uate a simple whole-segment transla-
tion memory, placing it as a new lower
bound in the well-populated space of
machine translation systems. The re-
sult is a new way to gauge how far ma-
chine translation has progressed com-
pared to an easily understood baseline
System.

The evaluation also sheds light on the
evaluation metric and gives evidence
showing that gaming translation with
perfect fluency does not fool BLEU the
way it fools people.

1 Introduction and background

Translation Memory (TM) systems provide
roughly concordanced results from an archive of
previously translated materials. They are typ-
ically used by translators who want computer
assistance for searching large archives for tricky
translations, and also to help ensure a group
of translators rapidly arrive at similar terminol-
ogy (Macklovitch et al., 2000). Several compa-
nies provide commercial TMs and systems for
using and sharing them. TMs can add value to
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computer assisted translation services (Drugan,
2004).

Machine Translation (MT) developers make
use of similar historical archives (parallel texts,
bitexts), to produce systems that perform a task
very similar to TMs. But while TM systems
and MT systems can appear strikingly simi-
lar, (Marcu, 2001) key differences exist in how
they are used.

TMs often need to be fast because they are
typically used interactively. They aim to pro-
duce highly readable, fluent output, usable in
document production settings. In this setting,
errors of omission are more easily forgiven than
errors of commission so, just like MT, TM out-
put must look good to users who have no access
to the information in source texts.

MT, on the other hand, is often used in as-
similation settings, where a batch job can of-
ten be run on multiple processors. This permits
variable rate output and allows slower systems
that produce better translations to play a part.
Batch MT serving a single user only needs to run
at roughly the same rate the reader can consume
its output.

Simple TMs operate on an entire translation
segment, roughly the size of a sentence or two,
while more sophisticated TMs operate on units
of varying size: a word, a phrase, or an entire
segment (Callison-Burch et al., 2004). Mod-
ern approaches to MT, especially statistical MT,
typically operate on more fine-grained units,
words and phrases (Och and Ney, 2004). The re-
lationship between whole segment TM and MT
can be viewed as a continuum of translation
granularity:

Proceedings of the ACL Workshop on Building and Using Parallel Texsiges 175-182,
Ann Arbor, June 20050 Association for Computational Linguistics, 2005



segments words

simple TM hybrid TM MT
Simple TM systems, focusing on segment-level
granularity, lie at one extreme, and word-
for-word, IBM-model MT systems on the
other. Example-Based MT (EBMT), phrase-
based, and commercial TM systems likely lie
somewhere in between.

This classification motivates our work here.
MT systems have well-studied and popular eval-
uation techniques such as BLEU (Papineni et al.,
2001). In this paper we lay out a methodology
for evaluating TMs along the lines of MT evalu-
ation. This allows us to measure the raw relative
value of TM and MT as translation tools, and to
develop expectations for how TM performance
increases as the size of the memory increases.

There are many ways to perform TM segmen-
tation and phrase extraction. In this study, we
use the most obvious and simple condition—a
full segment TM. This gives a lower bound on
real TM performance, but a lower bound which
is not trivial.

Section 2 details the architecture of our simple
TM. Section 3 describes experiments involving
different strategies for IR, oracle upper bounds
on TM performance as the memory grows, and
techniques for rescoring the retrievals. Section 4
discusses the results of the experiments.

2 A Simple Chinese-English
Translation Memory

For our experiments below, we constructed a
simple translation memory from a sentence-
aligned parallel corpus. The system consists of
three stages. A source-language input string is
rewritten to form an information retrieval (IR)
query. The IR engine is called to return a list
of candidate translation pairs. Finally a single
target-language translation as output is chosen.

2.1 Query rewriting

To retrieve a list of translation candidates from
the IR engine, we first create a query which is
a concatenation of all possible ngrams of the
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source sentence, for all ngram sizes from 1 to
a fixed n.

We rely on the fact that the Chinese data
in the translation memory is tokenized and in-
dexed at the unigram level. Each Chinese char-
acter in the source sentence is tokenized indi-
vidually, and we make use of the IR engine’s
phrase query feature, which matches documents
in which all terms in the phrase appear in con-
secutive order, to create the ngrams. For exam-
ple, to produce a trigram + bigram 4+ unigram
query for a Chinese sentence of 10 characters, we
would create a query consisting of eight three-
character phrases, nine two-character phrases,
and 10 single-character “phrases”. All phrases
are weighted equally in the query.

This approach allows us to perform lookups
for arbitrary ngram sizes. Depending on the
specifics of how idf is calculated, this may yield
different results from indexing ngrams directly,
but it is advantageous in terms of space con-
sumed and scalability to different ngram sizes
without reindexing.

This is a slight generalization of the success-
ful approach to Chinese information retrieval us-
ing bigrams (Kwok, 1997). Unlike that work,
we perform no second stage IR after query ex-
pansion. Using a segmentation-independent en-
gineering approach to Chinese IR allows us to
sidestep the lack of a strong segmentation stan-
dard for our heterogeneous parallel corpus and
prepares us to rapidly move to other languages
with segmentation or lemmatization challenges.

2.2 The IR engine

Simply for performance reasons, an IR engine,
or some other sort of index, is needed to imple-
ment a TM (Brown, 2004). We use the open-
source Lucene v1.4.3, (Apa, 2004) as our IR en-
gine. Lucene scores candidate segments from
the parallel text using a modified #f-idf formula
that includes normalizations for the input seg-
ment length and the candidate segment length.
We did not modify any Lucene defaults for these
experiments.

To form our translation memory, we indexed
all sentence pairs in the translation memory cor-
pora, each pair as a separate document. We



TM output

However , everything depended on the missions to be decided by the Security Council .
The presentations focused on the main lessons learned from their activities in the field .
It is wrong to commit suicide or to use ones own body as a weapon of destruction .
There was practically full employment in all sectors .

One reference translation (of four)

Doug Collins said, “He may appear any time. It really depends on how he feels.”

At present, his training is defense oriented but he also practices shots.

He is elevating the intensity to test whether his body can adapt to it.

So far as his knee is concerned, he thinks it heals a hundred percent after the surgery.”

Table 1: Typical TM output. Excerpt from a story about athlete Michael Jordan.

indexed in such a way that IR searches can be
restricted to just the source language side or just
the target language side.

2.3 Rescoring

The IR engine returns a list of candidate trans-
lation pairs based on the query string, and the
final stage of the TM process is the selection of
a single target-language output sentence from
that set.

We consider a variety of selection metrics in
the experiments below. For each metric, the
source-language side of each pair in the candi-
date list is evaluated against the original source
language input string. The target language seg-
ment of the pair with the highest score is then
output as the translation.

In the case of automated MT evaluation met-
rics, which are not necessarily symmetric, the
source-language input string is treated as the
reference and the source-language side of each
pair returned by the IR engine as the hypothe-
sis.

All tie-breaking is done via tf-idf, i.e. if multi-
ple entries share the same score, the one ranked
higher by the search engine will be output.

Table 1 gives a typical example of how the TM
performs. Four contiguous source segments are
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presented, followed by TM output and finally
one of the reference translations for those source
segments. The only indicator of the translation
quality available to monolingual English speak-
ers is the awkwardness of the segments as a
group. By design, the TM performs with perfect
fluency at the segment level.

3 Experiments

We performed several experiments in the course
of optimizing this TM, all using the same set
of parallel texts for the TM database and
multiple-reference translation corpus for eval-
The parallel texts for the TM come
from several Chinese-English parallel corpora,
all available from the Linguistic Data Consor-
tium (LDC). These corpora are described in Ta-
ble 2. We discarded any sentence pairs that
seemed trivially incomplete, corrupt, or other-
wise invalid. In the case of LDC2002E18, in
which sentences were aligned automatically and
confidence scores produced for each alignment,
we dropped all pairs with scores above 9, indi-
cating poor alignment. No duplication checks
were performed. Our final corpus contained ap-
proximately 7 million sentence pairs and con-

tained 3.2 GB of UTF-8 data.

Our evaluation corpus and reference corpus

utation.



come from the data used in the NIST 2002 MT
competition. (NIST, 2002). The evaluation cor-
pus is 878 segments of Chinese source text. The
reference corpus consists of four independent
human-generated reference English translations
of the evaluation corpus.

All performance measurements were made us-
ing a fast reimplementation of NIST’s BLEU.
BLEU exhibits a high correlation with human
judgments of translation quality when measur-
ing on large sections of text (Papineni et al.,
2001). Furthermore, using BLEU allowed us to
compare our performance to that of other sys-
tems that have been tested with the same eval-
uation data.

3.1 An upper bound on whole-segment
translation memory

Our first experiment was to determine an upper
bound for the entire translation memory corpus.
In other words, given an oracle that picks the
best possible translation from the translation
memory corpus for each segment in the evalu-
ation corpus, what is the BLEU score for the re-
sulting document? This score is unlikely to ap-
proach the maximum, BLEU =100 because this
oracle is constrained to selecting a translation
from the target language side of the parallel cor-
pus. All of the calculations for this experiment
are performed on the target language side of the
parallel text.

We were able to take advantage of a trait
particular to BLEU for this experiment, avoid-
ing many of BLEU score calculations required
to assess all of the 878 x 7.5 million combina-
tions. BLEU produces a score of 0 for any hy-
pothesis string that doesn’t share at least one
4-gram with one reference string. Thus, for
each set of four references, we created a Lucene
query that returned all translation pairs which
matched at least one 4-gram with one of the ref-
erences. We picked the top segment by calcu-
lating BLEU scores against the references, and
created a hypothesis document from these seg-
ments.

Note that, for document scores, BLEU’s
brevity penalty (BP) is applied globally to an
entire document and not to individual segments.
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Thus, the document score does not necessarily
increase monotonically with increases in scores
of individual segments. As more than 99% of
the segment pairs we evaluated yielded scores of
zero, we felt this would not have a significant
effect on our experiments. Also, the TM does
not have much liberty to alter the length of the
returned segments. Individual segments were
chosen to optimize BLEU score, and the result-
ing documents exhibited appropriately increas-
ing scores. While there is no efficient strategy
for whole-document BLEU maximization, an it-
erative rescoring of the entire document while
optimizing the choice of only one candidate seg-
ment at a time could potentially yield higher
scores than those we report here.

3.2 TM performance with varied
Ngram length

The second experiment was to determine the ef-
fect that different ngram sizes in the Chinese IR
query have on the IR engine’s ability to retrieve
good English translations.

We considered cumulative ngram sizes from 1
to 7, i.e. unigram, unigram + bigram, unigram
+ bigram + trigram, and so on. For each set
of ngram sizes, we created a Lucene query for
every segment of the (Chinese) evaluation cor-
pus. We then produced a hypothesis document
by combining the English sides of the top re-
sults returned by Lucene for each query. The
hypothesis document was evaluated against the
reference corpora by calculating a BLEU score.

While it was observed that IR perfor-
mance is maximized by performing bigram
queries (Kwok, 1997), we had reason to believe
the TM would not be similar. TMs must at-
tempt to match short sequences of stop words
that indicate grammar as well as more tradi-
tional content words. Note that our system
performed neither stemming nor stop word (or
ngram) removal on the input Chinese strings.

3.3 An upper bound on TM N-best list
rescoring

The next experiment was to determine an upper
bound on the performance of tf-idf for differ-
ent result set sizes, i.e. for different (maximum)



‘ LDC 1d ‘ Description Pairs
LDC2002E18 | Xinhua Chinese-English Parallel News Text v. 1.0 beta 2 64,371
LDC2002E58 | Sinorama Chinese-English Parallel Text 103,216
LDC2003E25 | Hong Kong News Parallel Text 641,308
LDC2004E09 | Hong Kong Hansard Parallel Text 1,247,294
LDC2004E12 | UN Chinese-English Parallel Text v. 2 4,979,798
LDC2000T47 | Hong Kong Laws Parallel Text 302,945

\ | Total | 7,338,932 |

Table 2: Sentence-aligned parallel corpora used for the creation of the translation memory. The
“pairs” column gives the number of translation pairs available after trivial pruning.

numbers of translation pairs returned by the IR
engine. This experiment describes the trade-off
between more time spent in the IR engine cre-
ating a longer list of returns and the potential
increase in translation score.

To determine how much IR was “enough” IR,
we performed an oracle experiment on different
IR query sizes. For each segment of the evalua-
tion corpus, we performed a cumulative 4-gram
query as described in Section 4.2. We produced
the n-best list oracle’s hypothesis document by
selecting the English translation from this result
set with the highest BLEU score when evaluated
against the corresponding segment from the ref-
erence corpus. We then evaluated the hypoth-
esis documents against the reference corpus by
computing BLEU scores.

3.4 N-best list rescoring with several
MT evaluation metrics

The fourth experiment was to determine
whether we could improve upon tf-idf by apply-
ing automated MT metrics to pick the best sen-
tence from the top n translation pairs returned
by the IR engine. We compared a variety of
metrics from MT evaluation literatures. All of
these were run on the tokens in the source lan-
guage side of the IR result, comparing against
the single pseudo-reference, the original source
language segment. While many of these metrics
aren’t designed to perform well with one refer-
ence, they stand in as good approximate string
matching algorithms.

The score that the IR engine associates with
each segment is retained and marked as tf-idf
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in this experiment. Naturally, BLEU (Papineni
et al., 2001) was the first choice metric, as it
was well-matched to the target language evalu-
ation function. ROUGE was a reimplementation
of ROUGE-L from (Lin and Och, 2004). It com-
putes an F-measure from precision and recall
that are both based on the longest common sub-
sequence of the hypothesis and reference strings.
WER-G is a variation on traditional word error
rate that was found to correlate very well with
human judgments (Foster et al., 2003), and PER
is the traditional position-independent error rate
that was also shown to correlate well with hu-
man judgments (Leusch et al., 2003). Finally,
a random metric was added to show the BLEU
value one could achieve by selecting from the top
n strictly by chance.

After the individual metrics are calculated
for these segments, a uniform-weight log-linear
combination of the metrics is calculated and
used to produce a new rank ordering under the
belief that the different metrics will make pre-
dictions that are constructive in aggregate.

4 Results

4.1 An upper bound for whole-sentence
™™

Figure 1 shows the maximum possible BLEU
score that can an oracle can achieve by selecting
the best English-side segment from the parallel
text. The upper bound achieved here is a BLEU
score of 17.7, and this number is higher than
the best performing system in the correspond-
ing NIST evaluation.

Note the log-linear growth in the resulting
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10000 100000 o fegments) 1e+06
Size BLEU
73389 7.88
366947 | 10.82
733893 | 12.58
3669466 | 16.27
7338932 | 17.69
Figure 1: Oracle bounds on TM performance as

corpus size increases.
6 T + T
N +
55 -+ +
= +
Jr
' ’ ’ Maxn—gr;mlength ° ° !
‘ Ngrams in query ‘ BLEU ‘
1] 272
1,2 | 4.73
1,23 | 5.68
1,234 | 5.87
1,2,345 | 5.80
1,2,3,4,5,6 | 5.52
1,2,3,4,5,6,7 | 5.48

Figure 2: BLEU scores for different cumulative
ngram sizes, when retrieving only the first trans-
lation pair.
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BLEU score of the TM with increasing database
size. As the database is increased by a factor
of ten, the TM gains approximately 5 points of
BLEU. While this trend has a natural limit at
20 orders of magnitude, it is unlikely that this
amount of text, let alone parallel text, will be a
indexed in the foreseeable future. This rate is
more useful in interpolation, giving an idea of
how much could be gained from adding to cor-
pora that are smaller than 7.5 million segments.

4.2 The effect of ngram size on Chinese
tf-idf retrieval

Figure 2 shows that our best performance is
realized when IR queries are composed of cu-
mulative 4-grams (i.e. unigrams + bigrams +
trigrams + 4-grams). As hypothesized, while
longer sequences are not important in document
retrieval in Chinese IR, they convey information
that is useful in segment retrieval in the trans-
lation memory. For the remainder of the ex-
periments, we restrict ourselves to cumulative
4-gram queries.

Note that the 4-gram result here (BLEU of
5.87) provides the baseline system performance
measure as well as the value when the segments
are reranked according to tf-idf.

4.3 Upper bounds for tf-idf

Figure 3 gives the n-best list rescoring bounds.
The upper bound continues to increase up to
the top 1000 results. The plateau achieved af-
ter 1000 IR results suggests that is little to be
gained from further IR engine retrieval.

Note the log-linear growth in the BLEU score
the oracle achieves as the n-best list extends on
the left side of the figure. As the list length
is increased by a factor of ten, the oracle up-
per bound on performance increases by roughly
3 points of BLEU. Of course, for a system to
perform as well as the oracle does becomes pro-
gressively harder as the n-best list size increases.

Comparing this result with the experiment
in section 4.1 indicates that making the oracle
choose among Chinese source language IR re-
sults and limiting its view to the 1000 results
given by the IR engine incurs only a minor re-
duction of the oracle’s BLEU score, from 17.7 to



16.3. This is one way to measure the impact
of crossing this particular language barrier and
using IR rather than exhaustive search.

18 T T T T T T T +
16 +
Jr
. +
2 12+ Jr
. +
¢ +
‘ Size ‘ BLEU score ‘
1 5.87
5 8.47
10 9.51
50 12.09
100 13.18
500 15.36
1000 16.29
7338932 17.69

Figure 3: BLEU scores for different (maximum)
numbers of translation pairs returned by IR en-
gine, where the optimal segment is chosen from
the results by an oracle.

4.4 Using automated MT metrics to
pick the best TM sentence

Fach metric was run on the top 1000 results
from the IR engine, on cumulative 4-gram
queries. Each metric was given the (Chinese)
evaluation corpus segment as the single refer-
ence, and scored the Chinese side of each of the
1000 resulting translation pairs against that ref-
erence. The hypothesis document for each met-
ric consisted of the English side of the transla-
tion pair with the best score for each segment.
These documents were scored with BLEU against
the reference corpus. Ties (e.g. cases where a
metric gave all 1000 pairs the same score) were
broken with tf-idf.

Results of the rescoring experiment run on
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Metric | BLEU |
BLEU 6.20
WER-G 5.90
ROUGE 5.88
tf-idf 5.87
PER 5.72
random 3.32
log(tf-idf)
+log(BLEU)
+log(ROUGE)
-log(WER-G)
-log(PER) 6.56

Table 3: BLEU scores for different metrics when
picking the best translation from 100 translation
pairs returned by the IR engine.

an n-best list of size 100 are given in Table 3.
Choosing from 1000 pairs did not give better
results. Choosing from only 10 gave worse re-
sults. The random baseline given in the table
represents the expected score from choosing ran-
domly among the top 100 IR returns. While the
scores of the individual metrics aside from PER
and BLEU reveal no differences, BLEU and the
combination metric performed better than the
individual metrics.

Surprisingly, tf-idf was outperformed only by
BLEU and the combination metric. While we
hoped to gain much more from n-best list rescor-
ing on this task, reaching toward the limits dis-
covered in section 4.3, the combination metric
was less than 0.5 BLEU points below the lower
range of systems that were entered in the NIST
2002 evals. The BLEU scores of research systems
in that competition roughly ranged between 7
and 15. Of course, each of the segments pro-
duced by the TM exhibit perfect fluency.

5 Discussion

The maximum BLEU score attained by a TM we
describe (6.56) would place it in last place in the
NIST 2002 evals, but by less than 0.5 BLEU. Suc-
cessive NIST competitions have exhibited im-
pressive system progress, but each year there
have been newcomers who score near (or in some
cases lower than) our simple TM baseline.



We have presented several experiments that
quantitatively describe how well a simple TM
performs when measured with a standard MT
evaluation measure, BLEU. We showed that the
translation performance of a TM grows as a log-
linear function of corpus size below 7.5 million
segments. We showed, somewhat surprisingly,
only 1000 IR returns need be evaluated by a
rescorer to get within 1 BLEU point of the max-
imum possible score attainable by the TM.

In future work, we expect to validate these
results with other language pairs. One question
is: how well does this simple IR query expansion
address segmented languages and languages that
allow more liberal word order? Supervised train-
ing of n-best reranking schemes would also de-
termine how far the oracle bound can be pushed.
The computationally more expensive reranking
procedure that attempts to optimize BLEU on
the entire document should be investigated to
determine how much can be gained by better
global management of the brevity penalty.

Finally, we believe it’s worth noting the degree
to which high fluency of the TM output could
potentially mislead target-language-only readers
in their estimation of the system’s performance.
Table 1 is representative of system output, and
is a good example of why translations should not
be judged solely on the fluency of a few segments
of target language output.
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Hybrid Example-Based SMT: the Best of Both Worlds?
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Abstract

(Way and Gough, 2005) provide an in-
depth comparison of their Example-Based
Machine Translation (EBMT) system with

a Statistical Machine Translation (SMT)

system constructed from freely available
tools. According to a wide variety of au-

tomatic evaluation metrics, they demon-
strated that their EBMT system outper-
formed the SMT system by a factor of two

to one.

Nevertheless, they did not test their EBMT
system against a phrase-based SMT sys-
tem. Obtaining their training and test
data for English—French, we carry out a
number of experiments using the Pharaoh
SMT Decoder. While better results are
seen when Pharaoh is seeded with Giza++
word- and phrase-based data compared to
EBMT sub-sentential alignments, in gen-
eral better results are obtained when com-
binations of this ‘hybrid’ data is used
to construct the translation and probabil-
ity models. While for the most part the
EBMT system of (Gough & Way, 2004b)
outperforms any flavour of the phrase-
based SMT systems constructed in our
experiments, combining the data sets au-
tomatically induced by both Giza++ and
their EBMT system leads to a hybrid sys-
tem which improves on the EBMT system
per sefor French—English.
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1 Introduction

(Way and Gough, 2005) provide what are to our
knowledge the first published results comparing
Example-Based and Statistical models of Machine
Translation (MT). Given that most MT research car-
ried out today is corpus-based, it is somewhat sur-
prising that until quite recently no qualitative re-
search existed on the relative performance of the two
approaches. This may be due to a number of factors:
the relative unavailability of EBMT systems, the
lack of participation of EBMT researchers in com-
petitive evaluations or the dominance in the MT re-
search community of the SMT approach—whenever
one paradigm finds favour with the clear majority of
MT practitioners, the assumption made by most of
the community is that this way of doing things is
clearly better than the alternatives.

Like (Way and Gough, 2005), we find this regret-
table: the only basis on which such views should
be allowed to permeate our field is following exten-
sive testing and evaluation. Nonetheless, given that
no EBMT systems are freely available, very few re-
search groups are in the position of being able to
carry out such work.

This paper extends the work of (Way and Gough,
2005) by testing EBMT against phrase-based mod-
els of SMT, rather than the word-based models used
in this previous work. In so doing, it provides a
more complete evaluation of the main question at
hand, namely whether an SMT system outperforms
an EBMT system on reasonably large training and
test sets.

We obtained the same training and test data used

Proceedings of the ACL Workshop on Building and Using Parallel Texsiges 183—-190,
Ann Arbor, June 20050 Association for Computational Linguistics, 2005



in (Way and Gough, 2005), and evaluated a num- 1. Searching the source side of the bitext for
ber of SMT systems which use the Pharaoh dedoder  ‘close’ matches and their translations;

against the Marker-Based EBMT system of (Gough

& Way, 2004b), for French—-English and English— 2 petermining the sub-sentential translation links
French. We provide results using a range of au-  in those retrieved examples;

tomatic evaluation metrics: BLEU (Papineni et al.,

2002), Precision and Recall (Turian et al., 2003), and
Word- and Sentence Error Rates. (Way and Gough,
2005) observe that EBMT tends to outperform a

word-based SMT model, and our experiments show

that a number of different phrase-based SMT Syéearching for the best matches involves determin-
tems still tend to fall short of the quality obtained"d & Similarity metric based on word occurrences

via EBMT for these evaluation metrics. HoweveraNd part-of-speech labels, generalised templates and
|I_|ngual dictionaries. The recombination process

when Pharaoh is seeded with the data sets autome?t :
cally induced by both Giza++ and their EBMT sys-déPends on the nature of the examples used in
tem, better results are seen for French—English thdfie first place, which may include aligning phrase-
for the EBMT systenper se structure (sub-)trees (Hearne & Way, 2003) or de-

The remainder of the paper is constructed as fopendency trees (Watanabe et al., 2003), or using

lows. In section 2, we summarize the main ideas b _Iaceables (Brown, 1999) as indicators of chunk

hind typical models of SMT and EBMT, as well as oundaries. _

the EBMT system of (Gough & Way, 2004b) used in Another method—and the one used in the EBMT
our experiments. In section 3, we revisit the exper2YStemM used in our experiments—is to use a set
iments and results carried out by (Way and Gougl“?,f closed-class words to segm_ent allgneq_ source
2005). In section 4, we describe our extensions t8Nd target sentences and to derive an additional set

their work, and compare their findings to ours, an@' exical and phrasal resources. (Gough & Way,
in section 5, present a number of hybrid SMT modzp(?"'b) base their work on the ‘Marker Hypothe-
els. Finally, we conclude and offer some thought§iS (Green, 1979), a universal psycholinguistic con-
for future work in section 6, and in section 7 presenttraint which posits that languages are ‘marked

some further comments on the narrowing gap pdor syntactic structure at surface level by a closed
tween EBMT and phrase-based SMT. set of specific lexemes and morphemes. In a pre-
processing stage, (Gough & Way, 2004b) use 7 sets

2 Example-Based and Statistical Models of ©f marker words for English and French (e.g. de-
Translation terminers, quantifiers, conjunctions etc.), which to-
gether with cognate matches and mutual information
A sine qua norfor both EBMT and SMT is a set of scores are used to derive three new data sources: sets
sentences in one language aligned with their tranef marker chunks, generalised templates and a lexi-
lations in another. Although similar in that bothcon.
models of translation automatically induce transla- In order to describe this in more detail, we revisit
tion knowledge from this resource, there are signifian example from (Gough & Way, 2004a), namely:
cant differences regarding both the type of informa-
tion learnt and how this is brought to bear in dealing(l)
with new input.

3. Recombining relevant parts of the target trans-
lation links to derive the translation.

each layer has a layer numbee-chaque
couche a un nombre de la couche

2.1 EBMT
From the sentence pair in (1), the strings in (2)

Given a new input string, EBMT models use threg, o ganerated, where marker words are automati-
separate processes in order to derive translations: 4 taqqed with their marker categories:

Yhttp://ww.isi.edu/licensed-sw/pharach/
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2 <QUANT> each layer hasxDET> a Essentially, the translation model establishes the
layer number —-<QUANT> chaque set of target language words (and more recently,
couche a<DET> un nombre<PREP> phrases) which are most likely to be useful in trans-
de la couche lating the source string, while the language model

tries to assemble these words (and phrases) in the

Taking into account marker tag information (labelmost likely target word order. The language model

and relative sentence pOSitiOﬂ), and lexical similarrs trained by determining all bigram and/or trigram

ity, the marker chunks in (3) are automatically genfrequency distributions occurring in the training
erated from the marker-tagged strings in (2): data, while the translation model takes into account
source and target word (and phrase) co-occurrence

(3) a <QUANT> each layer hasQUANT> g4 encies, sentence lengths and the relative sen-
chaque couche a tence positions of source and target words.

b. <DET> a layer number: <DET> un  yntil quite recently, SMT models of translation
nombre de la couche were based on the simple word alignment models

_ i i of (Brown et al., 1990). Nowadays, however, SMT
(3b) shows than:malignments are possible (the twop, 4 wtitioners also get their systems to learn phrasal

French marker chunksn nombreandde la couche 54 el as lexical alignments (e.g. (Koehn et al.,

are absorbed into one following the lexical similari-2003). (Och, 2003)). Unsurprisingly, the quality
ties betweeitayer andcoucheandnumberandnom- i ained by today's phrase-based SMT systems is

bre, respectively) given the sub-sentential alignmentysiqerably better than that obtained by the poorer
algorithm of (Gough & Way, 2004b). word-based models.

By generalising over the marker lexicon, a set
of marker templates is produced by replacing th8 Comparing EBMT and Word-Based
marker word by its relevant tag. From the examples SMT

in (3), the generalised templates in (4) are derived: , _
(Way and Gough, 2005) obtained a large translation

(4) a. <QUANT> layer has: <QUANT> memoryfromSun Microsystemsontaining 207,468
couche a English—French sentence pairs, of which 3,939 sen-
tence pairs were randomly extracted as a test set,
with the remaining 203,529 sentences used as train-
ing data. The average sentence length for the En-
These templates increase the robustness of the s@dsh test set was 13.1 words and 15.2 words for the
tem and make the matching process more flexibl€orresponding French test set. The EBMT system
Now any marker word can be inserted after the reldised was their Marker-based system as described in
vant tag if it appears with its translation in the lexi-section 2.1 above. In order to create the necessary
con, so that (saythe layer numbecan now be han- SMT language and translation models, they used:
dled by the generalised template in (4b) and insert- .
ing a (yor aII? translation(s) flgthe in t(he )system’s * Gizat+ (Och & Ney, 2003);

lexicon. e the CMU-Cambridge statistical toolkit;

b. <DET> layer number:<DET> nombre
de la couche

2.2 Word- and Phrase-Based SMT ¢ the ISI ReWrite Decodeft.

SMT systems require two large probability tables in

. ) Translation was performed from English—French
order to generate translations of new input:

and French—English, and the resulting translations

1. a translation model induced from a largeVere evaluated using a range of automatic metrics:
amount of bilingual data; BLEU (Papineni et al., 2002), Precision and Recall

] 2http://www.isi.edut-och/Giza++.html
2. atargetlanguage model induced from a(n even) 3. //mi.eng.cam.ac.ukipreL4/toolkit.html

large(r) quantity of separate monolingual text.  *http://iwww.isi.edu/licensed-swirewrite-decoder/
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(Turian et al., 2003), and Word- and Sentence Erraf arranging these target words in the right order.
Rates. In order to see whether the amount of trair®n the contrary, even a system containing some ba-
ing data affected the (relative) performance of thsic knowledge of how phrases fit together such as
EBMT and SMT systems, (Way and Gough, 2005)he Marker-based EBMT system of (Gough & Way,
split the training data into three sets, of 50K (1.1M2004b) will generate translations of far higher qual-
words), 100K (2.4M words) and 203K (4.8M words)ity.

sentence pairs (TS1-TS3 in what follows). _
3.2 French—English Results
3.1 English—French Results

Table 2: Comparing the EBMT system of (Gough & Way,
Table 1: Comparing the EBMT system of (Gough & 2004b) with a WB-SMT system for French-English.

Way, 2004b) with a Word-Based SMT (WB-SMT) system for BLEU T Prec. | Recal T WER T SER
English—French. TSI | WB-SMT | .3794 | .7096 | .7355 | 52.5 | 86.5
EBMT 2571 | 5419 | 6314 | 69.7 | 89.2
BLEL | Prec. | Recall | WER | SER TS2 | WB-SMT | .3924 | .7206 | .7433 | 46.2 | 81.3 |

TSI | WB-SMT | 2971 | 6739 | .5912 | 549 | 90.8 ’ - : : : : :
EBMT 3318 | 6525 | 6183 | 543 | 892 [ EBMT | 4262 | 6731[ 7962 [ 552 | 66.2 |
WBST T 355 6524 Soo2 T =i } WB SMT% 4462 % 7035% 7240 % 46.8 % 80.8 |

’ TS2 899 | ’ TS3

448 | 775 | 51.2 |

l l l l l l
I l l l l l

’ TS3 | WB-SMT | 3223 | 6513 | 5704 | 535 | 891 |
I l l l | 524 [ 56 |

The results obtained by (Way and Gough, 2005)
for French—English translations are presented in Ta-
le 2. Translating in this language direction is inher-

for English-French for their EBMT system andentl ‘easier’ than for English—French as far fewer
word-based SMT (WB-SMT) are given in Table 1. y 9 -
agreement errors and cases of boundary friction are

Essentially, all the automatic evaluation metrics balr . .
kely. Accordingly, all WB-SMT results in Table 2
one (Precision) suggest that EBMT can outperforrrll y Ingly us |

. . are better than for the reverse direction, while for
SMT from English—French. Surprisingly, however, .
. . EBMT, improved results are to be seen for BLEU,
apart from SER, all evaluation scores are higher u

. . . Recall and SER.

ing 100K sentence pairs as training data rather thanWhile the majority of metrics obtained for
English—French indicate that EBMT outperforms
S\NB-SMT, the results for French—English are by no

based MT systems will improve the quality of th .
output translations. (Way and Gough, 2005) observn(;eanS as conclusive. Of the 15 tests, WB-SMT out

that while this dip in performance may be due to gerforms EBMT in nine.
degree of over—f_itting, they intend to carry out somg Comparing EBMT and Phrase-Based
variance analysis on these results (e.g. performing MT
bootstrap-resampling on the test set (Koehn, 2004)),
or re-test with different sample test sets in ordeFrom the results in the previous sections for French—
to investigate whether the same phenomenon is obnglish and for English—French, (Way and Gough,
served. 2005) observe that EBMT outperforms WB-SMT in
With respect to SER, however, for both SMT andhe majority of tests. If we are to treat each of the
EBMT, the figures improve as more training data isnetrics as being equally significant, it can be said
made available. However, the improvement is mucthat EBMT appears to outperform WB-SMT by a
more significant for EBMT (20.6%) than for SMT factor of two to one. In fact, the only metric for
(0.1%). While the WER scores are much the samehich EBMT seems to consistently underperform
indicating that both systems are identifying reasoris precision for French—English which, when we
able target vocabulary that should appear in the outxamine WER, indicates that the EBMT system’s
put translation, the vast differences in SER usingnowledge of word correspondences is incomplete
TS3 indicate that a system containing essentially nand not as comprehensive as that of the WB-SMT
information about target syntax has very little hopeystem.

The results obtained by (Gough & Way, 2004b
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However, it has been apparent for some time nothe EBMT data set (word- and phrase-alignments)
that phrase-based SMT outperforms previous sys 403,317, while there are over four times as many
tems using word-based models. The results obtain&MT sub-sentential alignments (1,732,715).
by (Way and Gough, 2005) for SER also indicate Comparing these results with those in Table 1,
that if phrase-based SMT were used, then improveve can see that for the same training-test data,
ments in translation quality ought to be seen. the phrase-based SMT system outperforms the WB-

Accordingly, in this section we describe a seSMT system on most metrics, considerably so with
of experiments which extends the work of (Wayrespect to BLEU score (.3753 vs. .3223). WER,
and Gough, 2005) by evaluating the Marker-baseldowever, is somewhat worse (.585 vs. .535), and
EBMT system of (Gough & Way, 2004b) against aSER remains disappointingly high. Compared to
phrase-based SMT system built using the followinghe EBMT system of (Gough & Way, 2004b), the
components: phrase-based SMT system still falls well short with

_ respect to BLEU score (.4409 for EBMT vs. .3573

e Giza++, to extract the word-level correspon+g, SMT), and again, notably for SER (.656 EBMT,

dences; .868 SMT).

e The Giza++ word alignments are then refineg, » French—English Results
and used to extract phrasal alignments ((Och &
Ney, 2003); or (Koehn et al., 2003) for a more

recent implementation); Table 4. Seeding Pharaoh with Giza++ and EBMT sub-
sentential alignments for French—English.
e Probabilities of the extracted phrases are calcur BLEU | Prec. | Recall | WER | SER

TS3 | GIZA-DATA 4198 | .6527 | .7100 | 62.93 | 82.84
EBMT-DATA | .3952 | .6151 | .6643 | 74.77 | 86.21

lated from relative frequencies;

e The resulting phrase translation table is passed
to the Pharaoh phrase-based SMT decoderAgain, the phrase-based SMT system was seeded
which along with SRI language modellingWith the Giza++ and EBMT alignments, trained on

toolkit®> performs translation. the full 203K training set, and tested on the 4K test
_ set. The results are given in Table 4. As for English—
4.1 English-French Results French, the Giza++ alignments obtain better scores

than when the EBMT sub-sentential data is used.
. L Comparing these results with those in Table 2, we
Table 3: Seeding Pharach with Giza++ and EBMT sub-
sentential alignments for English—French. see that the phrase-based SMT system actually does
BET T Frec—TResaT —WER——5ER worse than WB-SMT, which is an unexpected re-
TS3 | GIZADATE | 3753 | 6598 | 5670 | S5 | 8682 sult®. As expected, therefore, the results for phrase-
: : : ' : based SMT here are worse still compared to EBMT.

We seeded the phrase-based SMT system caf- Towards Hybridity: Merging SMT and
structed from the publicly available resources listed EBMT Alignments
above with the word- and phrase-alignments derived _ _ o
via both Giza++ and the Marker-Based EBMT sysYVe decided to experiment further by combining
tem of (Gough & Way, 2004b). Using the full 203K parts of the EBMT sub-senteqtlal alignments with
training set of (Gough & Way, 2004b), and testind’arts of _the data induced b_y Giza++. In the follow-
on their near 4K test set, the results are given in TA9 Sections, for both English—French and French-
ble 3. Itis clear to see that the Giza++ alignmentEndlish, we seed the Pharaoh phrase-based SMT
obtain better scores than the EBMT sub-sententigyStem with:
data. Before one considers the full impact of these sthg pharaoh system is untuned, so as to provide an easily

results, one should take into account that the size afplicable baseline for other similar research. Itis quite possible
B that with tuning the phrase-based SMT system will outperform
Shttp://www.speech.sri.com/projects/srilm/ the word-based system.
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1. the EBMT phrase-alignments with the Giza++5.2.1 English—French Results
word-alignments;

2. all the EBMT and Giza++ sub-sentential align-Table 7: Seeding Pharaoh with all Giza++ and EBMT sub-

ments (both words and phrases). sentential alignments for English—French.
5.1 Giza++ Words and EBMT Phrases } TS3 % BizEsLsJa % F;rg;e% R:;:g % \QZEzRe% 5553%

Here we seeded Pharaoh with the word-alignments
induced by Giza++ and the EBMT phrasal chunks |nserting all Giza++ and EBMT data into

only (i.e. no Giza++ phrases and no EBMT lexicapharaoh’s knowledge sources gives the results in Ta-
alignments). ble 7. These are considerably better than the scores
5.1.1 English-French Results for the ‘s_enji-h_ybrid’ system described in section
5.1.1. This indicates that a phrase-based SMT sys-
_ o tem is likely to perform better when EBMT word-
Table 5: Seeding Pharaoh with Giza++ word and EBMT 5nd phrase-alignments are used in the calculation of
phrasal alignments for English—French. . .
I T WERTSER the translation and target language probability mod-
{ TS3 % 3962 % ,;7%% pass % 59.32 % 85,43% els. Note, however, that the size of the data set in-
creases to over 2M items. Despite this, compared to

Using the full 203K training set of (Gough & the results for the EBMT system of (Gough & Way,

Way, 2004b), and testing on their near 4K test Seg’OOA_rb) shown in Tableil, these results for the ‘fully
the results are given in Table 5. Comparing thes@yPrid’” SMT system siill fall somewhat short (ex-
figures to those in Table 3, we can see that all aePt for Precision: .6727 vs. .7026).

tomatic evaIL_Jation_ metrics improve with this hyprid5.2.2 French—English Results

system configuration. Note that the data set size Is

430,336, compared to 1.73M for the phrase-based

SMT system seeded solely with Giza++ alignmentsTable 8: Seeding Pharaoh with all Giza++ and EBMT sub-
With respect to the EBMT systeper sein Table 1, sentential alignments for French—English.

these results remain slightly below those figures (ex- l [ BLEU [ Prec. [ Recall | WER | SER |

cept for precision). [ TS3 | 4888 | 6927 | .7173 | 56.37 | 78.42 |

5.1.2  French-English Results Carrying out a similar experiment for the reverse
language direction gives the results in Table 8. This
Table 6: Seeding Pharaoh with Giza++ word and EBMTtime this hybrid SMT system does outperform the
phrasal alignments for French—English. EBMT system of (Gough & Way, 2004b), with re-
Frss % B4L2EG% % ZTL% R:gfg % \é\gEgiS % §3E§O% spect to BLEU score (.4888 vs .4611) and Precision
' ' : : ' (.6927 vs. 6782), but the EBMT system still wins

] ] out where Recall, WER and SER are concerned. Re-
Running the same experimental set up for the r?-N

) ) ) k arding this latter, it seems that the correlation be-
verse language direction gives the results in Table 8 con Jow SER and high BLEU score is not as im-

While regall Qrops slightly, all the other metricsportam as is claimed in (Way and Gough, 2005).
show a slight increase compared to the performance

obtained when Pharaoh is seeded with Giza++worgs  Conclusions
and phrase-alignments (cf. Table 4).

_ (Way and Gough, 2005) carried out a number of ex-
5.2 Merging All Data periments designed to test their large-scale Marker-
The following two experiments were carried out byBased EBMT system described in (Gough & Way,
seeding Pharaoh withll the EBMT and Giza++ 2004b) against a WB-SMT system constructed from
sub-sentential alignments, i.e. both words angublicly available tools. While the results were a lit-
phrases. tle mixed, the EBMT system won out overall.
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Nonetheless, WB-SMT has long been abandonete effect on translation quality. Given our find-
in favour of phrase-based models. We extendedgs here, we are optimistic that ‘hybrid statistical
the work of (Way and Gough, 2005) by performingEBMT’ will outperform the baseline EBMT system,
a range of experiments using the Pharaoh phrasgad that our findings will prompt EBMT practition-
based decoder. Our main observations are as fars to augment their data resources with SMT align-
lows: ments, something which to our knowledge is cur-

rently not done. In addition, we intend to continue

e Seeding Pharaoh with word- and phrasethis line of research on different and larger data sets,
alignments induced via Giza++ generates begnd for other language pairs.

ter results than if EBMT sub-sentential data is
used. 7 Final Remarks

e Seeding Pharaoh with a ‘hybrid’ dataset Ofrjnally, as (Way and Gough, 2005) observe, it is dif-
Giza++ word alignments and EBMT phrasesicylt to explain why to this day SMT practitioners
improves over the baseline phrase-based SM{aye not made full use of the large body of existing
system primed solely with Giza++ data. Thisyork on EBMT, from (Nagao, 1984) to (Carl & Way,
would appear to indicate that the quality of thepgn3) and beyond, which has contributed greatly to
EBMT phrases is better than the SMT phrasegpe field of corpus-based MT.
and that SMT practitioners should use EBMT £ its very inception EBMT has made use of a

phrasal data in the calculating of their languaggsnge of sub-sentential data — both phrasal and lexi-
and translation models, if available. cal — to perform translations whereas, until quite re-
cently, SMT models of translation were based on the

. elatively simple word alignment models of (Brown
Giza++ gnd the I.EBMT system Ie.ads o the- besézt al., 1990). With the advent of phrase-based SMT
performing hybrid SMT system: for English-—- stems the line between EBMT and SMT has be-
French, as well as EBMT phrasal data, EBMTSy

! : " me significantly blurr we are still unawar
word alignments also contribute positively, putOme sighiiica tly blurred, yet we are still unaware

the EBMT systenper sestill wins out (except of any papers on S.MT whm_h ackn.owledge their
AN . debt to EBMT or which describe their approach as
for Precision); for French—English, however, ,
. example—based'.
our hybrid Example-Based SMT system out- Despite it b o inalv difficul di
performs the EBMT system of (Gough & Way, . e_splte it becoming increasingly difficulty to dis-
tinguish between EBMT and (phrase—based) SMT
2004b) (cf. Table 9). . . . .
models of translation, some differences still exist.
Rather than using models of syntax impast hoc

fashion, as is the case with most SMT systems, an

Table 9:Comparing the hybrid phrase-based SMT system us- : o .
ing both the full Giza++ and full EBMT data against the EBMTSEBMT model of translation builds in syntaat its

system of (Gough & Way, 2004b) for the full training set (TS3).core.  Given this, a phrase—based SMT system is

e Seeding Pharaoh witlall data induced by

BLEU | Prec. | Recall | WER | SER more likely to ‘learn’ chunks that an EBMT sys-
EN-FR | HYBRID | .2971 | .6739 | .5912 54.9 90.8
Eevr | 3318 | eson | miss | o4z | a9 tem would not, as the system learnsgram se-
FR-EN | HYBRID | 2971 | 6739 | 5912 | 54.9 | 908 | guences rather than syntactically-motivated phrases
[TEBMT_ | 3318 | 6525 | 6183 | 543 | 89.2 |

per se Furthermore, our research here has demon-
strated quite clearly that if available, merging SMT
A number of avenues of further work remain operand EBMT data improves the quality of the result-
to us. We would like to extend our investigationsng hybrid SMT system, as phrases extracted by both
into hybrid example-based statistical approaches toethods that are more likely to function as syntac-
machine translation by experiment with seeding théc units (and therefore be more beneficial during
Marker-Based system of (Gough & Way, 2004b}he translation process) are given a higher statistical
with the SMT data, and combinations thereof withsignificance. Conversely, the probabilities of those
the EBMT sub-sentential alignments, to investigatdess useful’ SMTn-grams that are not also gener-
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ated by the EBMT system are reduced. Essentiallfhomas Green. 1979. The Necessity of Syntax Markers.
the EBMT data helps the SMT system to make the Two experiments with artificial languagedournal of
best use of phrase alignments during translation. ~ Veroal Learning and Behavial8.481-496.

Moreover, we see the fact that it is becoming inMary Hearne and Andy Way. 2003. Seeing the Wood for
creasingly difficult to describe the differences be- the Trees: Data-Oriented Translation. NI Summit
tween EBMT and SMT as a good thing, and that % New Orleans, LA., pp.165-172.

as here, this convergence can lead to hybrid systemgilipp Koehn. 2004. Statistical Significance Tests for
capable of outperforming leading EBMT systems as Machine Translation Evaluation. IRroceedings of

well as state-of-the-art phrase-based SMT. the 2004 Conference on Empirical Methods in Natu-

IL P i EMNLP 20 I .
We hope that the research presented here,gpaiﬁngg%gses_?g?ssmg( 0Barcelona

together with that begun by (Way and Gough,
2005), will lead to new areas of collaboration Philipp Koehn, Franz Och, and Dan Marcu. 2003. Sta-

tistical Phrase-Based Translatiotduman Language
between both sets of researchers, to the clear benefi echnology Conference, (HLT-NAACLEdmonton,

of the MT research community and the wider public. canada, pp.48-54.
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Abstract

Word graphs have various applications in
the field of machine translation. Therefore
it is important for machine translation sys-
tems to produce compact word graphs of
high quality. We will describe the gen-
eration of word graphs for state of the
art phrase-based statistical machine trans-
lation. We will use these word graph
to provide an analysis of the search pro-
cess. We will evaluate the quality of the
word graphs using the well-known graph
word error rate. Additionally, we intro-
duce the two novel graph-to-string crite-
ria: the position-independent graph word
error rate and the graph BLEU score.
Experimental results are presented for two
Chinese—English tasks: the small IWSLT
task and the NIST large data track task.
For both tasks, we achieve significant re-
ductions of the graph error rate already
with compact word graphs.

1 Introduction

A statistical machine translation system usually pro-
duces the single-best translation hypotheses for a
source sentence. For some applications, we are also
interested in alternative translations. The simplest
way to represent these alternatives is a list with the
N-best translation candidates. These N-best lists
have one major disadvantage: the high redundancy.
The translation alternatives may differ only by a sin-
gle word, but still both are listed completely. Usu-
ally, the size of the N-best list is in the range of a few
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hundred up to a few thousand candidate translations
per source sentence. If we want to use larger N-best
lists the processing time gets very soon infeasible.

Word graphs are a much more compact represen-
tation that avoid these redundancies as much as pos-
sible. The number of alternatives in a word graph is
usually an order of magnitude larger than in an N-
best list. The graph representation avoids the com-
binatorial explosion that make large N-best lists in-
feasible.

Word graphs are an important data structure with
various applications:

e Word Filter.
The word graph is used as a compact repre-
sentation of a large number of sentences. The
score information is not contained.

e Rescoring.
We can use word graphs for rescoring with
more sophisticated models, e.g. higher-order
language models.

e Discriminative Training.
The training of the model scaling factors as de-
scribed in (Och and Ney, 2002) was done on
N-best lists. Using word graphs instead could
further improve the results. Also, the phrase
translation probabilities could be trained dis-
crimatively, rather than only the scaling factors.

e Confidence Measures.
Word graphs can be used to derive confidence
measures, such as the posterior probability
(Ueffing and Ney, 2004).

Proceedings of the ACL Workshop on Building and Using Parallel Tesiges 191-198,
Ann Arbor, June 20050 Association for Computational Linguistics, 2005



o Interactive Machine Translation.
Some interactive machine translation systems
make use of word graphs, e.g. (Och et al,,
2003).

State Of The Art. Although there are these many
applications, there are only few publications directly
devoted to word graphs. The only publication, we
are aware of, is (Ueffing et al., 2002). The short-
comings of (Ueffing et al., 2002) are:

e They use single-word based models only. Cur-
rent state of the art statistical machine transla-
tion systems are phrase-based.

e Their graph pruning method is suboptimal as it
considers only partial scores and not full path
scores.

e The N-best list extraction does not eliminate
duplicates, i.e. different paths that represent the
same translation candidate.

e The rest cost estimation is not efficient. It has
an exponential worst-case time complexity. We
will describe an algorithm with linear worst-
case complexity.

Apart from (Ueffing et al., 2002), publications on
weighted finite state transducer approaches to ma-
chine translation, e.g. (Bangalore and Riccardi,
2001; Kumar and Byrne, 2003), deal with word
graphs. But to our knowledge, there are no publica-
tions that give a detailed analysis and evaluation of
the quality of word graphs for machine translation.

We will fill this gap and give a systematic descrip-
tion and an assessment of the quality of word graphs
for phrase-based machine translation. We will show
that even for hard tasks with very large vocabulary
and long sentences the graph error rate drops signif-
icantly.

The remaining part is structured as follows: first
we will give a brief description of the translation sys-
tem in Section 2. In Section 3, we will give a def-
inition of word graphs and describe the generation.
We will also present efficient pruning and N-best
list extraction techniques. In Section 4, we will de-
scribe evaluation criteria for word graphs. We will
use the graph word error rate, which is well known
from speech recognition. Additionally, we introduce
the novel position-independent word graph error rate
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and the graph BLEU score. These are generaliza-
tions of the commonly used string-to-string evalua-
tion criteria in machine translation. We will present
experimental results in Section 5 for two Chinese—
English tasks: the first one, the IWSLT task, is in the
domain of basic travel expression found in phrase-
books. The vocabulary is limited and the sentences
are short. The second task is the NIST Chinese—
English large data track task. Here, the domain is
news and therefore the vocabulary is very large and
the sentences are with an average of 30 words quite
long.

2 Translation System

In this section, we give a brief description of the
translation system. We use a phrase-based transla-
tion approach as described in (Zens and Ney, 2004).
The posterior probability Pr(el|f{) is modeled di-
rectly using a weighted log-linear combination of
a trigram language model and various translation
models: a phrase translation model and a word-
based lexicon model. These translation models are
used for both directions: p(f|e) and p(e|f). Addi-
tionally, we use a word penalty and a phrase penalty.
With the exception of the language model, all mod-
els can be considered as within-phrase models as
they depend only on a single phrase pair, but not on
the context outside of the phrase. The model scaling
factors are optimized with respect to some evalua-
tion criterion (Och, 2003).

We extended the monotone search algorithm from
(Zens and Ney, 2004) such that reorderings are pos-
sible. In our case, we assume that local reorder-
ings are sufficient. Within a certain window, all
possible permutations of the source positions are al-
lowed. These permutations are represented as a re-
ordering graph, similar to (Zens et al., 2002). Once
we have this reordering graph, we perform a mono-
tone phrase-based translation of this graph. More
details of this reordering approach are described in
(Kanthak et al., 2005).

3 Word Graphs

3.1 Definition

A word graph is a directed acyclic graph G = (V, E)
with one designated root node ng € V. The edges
are labeled with words and optionally with scores.
We will use (n,n’,w) to denote an edge from node



n to node n’ with word label w. Each path through
the word graph represents a translation candidate. If
the word graph contains scores, we accumulate the
edge scores along a path to get the sentence or string
score.

The score information the word graph has to con-
tain depends on the application.

If we want to use the word graph as a word fil-
ter, we do not need any score information at all. If
we want to extract the single- or N-best hypotheses,
we have to retain the string or sentence score infor-
mation. The information about the hidden variables
of the search, e.g. the phrase segmentation, is not
needed for this purpose. For discriminative training
of the phrase translation probabilities, we need all
the information, even about the hidden variables.

3.2 Generation

In this section, we analyze the search process in de-
tail. Later, in Section 5, we will show the (experi-
mental) complexity of each step. We start with the
source language sentence that is represented as a lin-
ear graph. Then, we introduce reorderings into this
graph as described in (Kanthak et al., 2005). The
type of reordering should depend on the language
pair. In our case, we assume that only local reorder-
ings are required. Within a certain window, all pos-
sible reorderings of the source positions are allowed.
These permutations are represented as a reordering
graph, similar to (Knight and Al-Onaizan, 1998) and
(Zens et al., 2002).

Once we have this reordering graph, we perform
a monotone phrase-based translation of this graph.
This translation process consists of the following
steps that will be described afterward:

1. segment into phrase
2. translate the individual phrases
3. split the phrases into words

4. apply the language model

Now, we will describe each step. The first step is
the segmentation into phrases. This can be imag-
ined as introducing “short-cuts” into the graph. The
phrase segmentation does not affect the number of
nodes, because only additional edges are added to
the graph.

In the segmented graph, each edge represents a
source phrase. Now, we replace each edge with one
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edge for each possible phrase translation. The edge
scores are the combination of the different transla-
tion probabilities, namely the within-phrase models
mentioned in Section 2. Again, this step does not
increase the number of nodes, but only the number
of edges.

So far, the edge labels of our graph are phrases. In
the final word graph, we want to have words as edge
labels. Therefore, we replace each edge representing
a multi-word target phrase with a sequence of edges
that represent the target word sequence. Obviously,
edges representing a single-word phrase do not have
to be changed.

As we will show in the results section, the word
graphs up to this point are rather compact. The
score information in the word graph so far consists
of the reordering model scores and the phrase trans-
lation model scores. To obtain the sentence posterior
probability p(el|f{), we apply the target language
model. To do this, we have to separate paths accord-
ing to the language model history. This increases the
word graph size by an order of magnitude.

Finally, we have generated a word graph with full
sentence scores. Note that the word graph may con-
tain a word sequence multiple times with different
hidden variables. For instance, two different seg-
mentations into source phrases may result in the
same target sentence translation.

The described steps can be implemented using
weighted finite state transducer, similar to (Kumar
and Byrne, 2003).

3.3 Pruning

To adjust the size of the word graph to the desired
density, we can reduce the word graph size using
forward-backward pruning, which is well-known in
the speech recognition community, e.g. see (Mangu
et al., 2000). This pruning method guarantees that
the good strings (with respect to the model scores)
remain in the word graph, whereas the bad ones are
removed. The important point is that we compare
the full path scores and not only partial scores as, for
instance, in the beam pruning method in (Ueffing et
al., 2002).

The forward probabilities F'(n) and backward
probabilities B(n) of a node n are defined by the



following recursive equations:

F(n) = Z F(n')-p(n',n,w)
(n'nw)eE

Bm) = S B@)-pln,w)
(n,n' w)eE

The forward probability of the root node and the
backward probabilities of the final nodes are initial-
ized with one. Using a topological sorting of the
nodes, the forward and backward probabilities can
be computed with linear time complexity. The pos-
terior probability q(n,n’,w) of an edge is defined
as:

F(n) - p(n,n’,w) - B(n')
B(no)

Q(n7 n/7w) =

The posterior probability of an edge is identical to
the sum over the probabilities of all full paths that
contain this edge. Note that the backward probabil-
ity of the root node B(ng) is identical to the sum
over all sentence probabilities in the word graph.
Let ¢* denoted the maximum posterior probability
of all edges and let 7 be a pruning threshold, then
we prune an edge (n,n’, w) if:

Q(n7nlaw) < q* - T

3.4 N-Best List Extraction

In this section, we describe the extraction of the N-
best translation candidates from a word graph.

(Ueffing et al., 2002) and (Mohri and Riley, 2002)
both present an algorithm based on the same idea:
use a modified A* algorithm with an optimal rest
cost estimation. As rest cost estimation, the negated
logarithm of the backward probabilities is used. The
algorithm in (Ueffing et al., 2002) has two disadvan-
tages: it does not care about duplicates and the rest
cost computation is suboptimal as the described al-
gorithm has an exponential worst-case complexity.
As mentioned in the previous section, the backward
probabilities can be computed in linear time.

In (Mohri and Riley, 2002) the word graph is rep-
resented as a weighted finite state automaton. The
word graph is first determinized, i.e. the nondeter-
ministic automaton is transformed in an equivalent
deterministic automaton. This process removes the
duplicates from the word graph. Out of this deter-
minized word graph, the IV best candidates are ex-
tracted. In (Mohri and Riley, 2002), e-transitions are
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ignored, i.e. transitions that do not produce a word.
These e-transitions usually occur in the backing-off
case of language models. The e-transitions have to
be removed before using the algorithm of (Mohri
and Riley, 2002). In the presence of e-transitions,
two path representing the same string are considered
equal only if the e-transitions are identical as well.

4 Evaluation Criteria

4.1 String-To-String Criteria

To evaluate the single-best translation hypotheses,
we use the following string-to-string criteria: word
error rate (WER), position-independent word error
rate (PER) and the BLEU score. More details on
these standard criteria can be found for instance in
(Och, 2003).

4.2 Graph-To-String Criteria

To evaluate the quality of the word graphs, we
generalize the string-to-string criteria to work on
word graphs. We will use the well-known graph
word error rate (GWER), see also (Ueffing et al.,
2002). Additionally, we introduce two novel graph-
to-string criteria, namely the position-independent
graph word error rate (GPER) and the graph BLEU
score (GBLEU). The idea of these graph-to-string
criteria is to choose a sequence from the word graph
and compute the corresponding string-to-string cri-
terion for this specific sequence. The choice of the
sequence is such that the criterion is the optimum
over all possible sequences in the word graph, i.e.
the minimum for GWER/GPER and the maximum
for GBLEU.

The GWER is a generalization of the word er-
ror rate. It is a lower bound for the WER. It can be
computed using a dynamic programming algorithm
which is quite similar to the usual edit distance com-
putation. Visiting the nodes of the word graph in
topological order helps to avoid repeated computa-
tions.

The GPER is a generalization of the position-
independent word error rate. It is a lower bound for
the PER. The computation is not as straightforward
as for the GWER.

In (Ueffing and Ney, 2004), a method for com-
puting the string-to-string PER is presented. This
method cannot be generalized for the graph-to-string
computation in a straightforward way. Therefore,



we will first describe an alternative computation for
the string-to-string PER and then use this idea for
the graph-to-string PER.

Now, we want to compute the number of position-
independent errors for two strings. As the word or-
der of the strings does not matter, we represent them
as multisets! A and B. To do this, it is sufficient to
know how many words are in A but not in B, i.e.
a := |A — B|, and how many words are in B but not
in A, i.e. b := |B— A|. The number of substitutions,
insertions and deletions are then:

sub = min{a,b}
mns = a— sub
del = b—sub
error = sub+ins+ del

a+ b — min{a, b}

= max{a,b}

It is obvious that there are either no insertions or no
deletions. The PER is then computed as the num-
ber of errors divided by the length of the reference
string.

Now, back to the graph-to-string PER computa-
tion. The information we need at each node of the
word graph are the following: the remaining multi-
set of words of the reference string that are not yet
produced. We denote this multiset C. The cardinal-
ity of this multiset will become the value a in the
preceding notation. In addition to this multiset, we
also need to count the number of words that we have
produced on the way to this node but which are not
in the reference string. The identity of these words is
not important, we simply have to count them. This
count will become the value b in the preceding nota-
tion.

If we make a transition to a successor node along
an edge labeled w, we remove that word w from the
set of remaining reference words C or, if the word
w 18 not in this set, we increase the count of words
that are in the hypothesis but not in the reference.

To compute the number of errors on a graph, we
use the auxiliary quantity @Q(n,C'), which is the
count of the produced words that are not in the refer-
ence. We use the following dynamic programming
recursion equations:

'A multiset is a set that may contain elements multiple
times.
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Q(no,Co) = 0
Q(n,C) = min

n’ w:(n/ nw)eE

{Qu.cufw)).
Q' C)+ 1}

Here, ng denote the root node of the word graph,
Cy denotes the multiset representation of the refer-
ence string. As already mentioned in Section 3.1,
(n/,n,w) denotes an edge from node n’ to node n
with word label w.

In the implementation, we use a bit vector to rep-
resent the set C' for efficiency reasons. Note that in
the worst-case the size of the ()-table is exponen-
tial in the length of the reference string. However, in
practice we found that in most cases the computation
is quite fast.

The GBLEU score is a generalization of the
BLEU score. It is an upper bound for the BLEU
score. The computation is similar to the GPER com-
putation. We traverse the word graph in topologi-
cal order and store the following information: the
counts of the matching n-grams and the length of the
hypothesis, i.e. the depth in the word graph. Addi-
tionally, we need the multiset of reference n-grams
that are not yet produced.

To compute the BLEU score, the n-gram counts
are collected over the whole test set. This results in
a combinatorial problem for the computation of the
GBLEU score. We process the test set sentence-wise
and accumulate the n-gram counts. After each sen-
tence, we take a greedy decision and choose the n-
gram counts that, if combined with the accumulated
n-gram counts, result is the largest BLEU score.
This gives a conservative approximation of the true
GBLEU score.

4.3 Word Graph Size

To measure the word graph size we use the word
graph density, which we define as the number of
edges in the graph divided by the source sentence
length.

5 Experimental Results

5.1 Tasks

We will show experimental results for two Chinese—
English translation tasks.



Table 1: IWSLT Chinese—English Task:
statistics of the bilingual training data.

‘ H Chinese | English ‘

corpus

Train Sentences 20000
Running Words || 182904 | 160523
Vocabulary 7643 6982

Test  Sentences 506
Running Words 3515 3595
avg. SentLen 6.9 7.1

Table 2: NIST Chinese English task: corpus statis-
tics of the bilingual training data.

‘ Chinese \ English ‘

Train Sentences 3.2M
Running Words | 51.4M | 55.5M
Vocabulary 80010 | 170758

Lexicon Entries 81968

Test Sentences 878
Running Words | 26431 | 23694
avg. SentLen 30.1 27.0

IWSLT Chinese-English Task. The first task is
the Chinese—English supplied data track task of the
International Workshop on Spoken Language Trans-
lation (IWSLT 2004) (Akiba et al., 2004). The do-
main is travel expressions from phrase-books. This
is a small task with a clean training and test corpus.
The vocabulary is limited and the sentences are rel-
atively short. The corpus statistics are shown in Ta-
ble 1. The Chinese part of this corpus is already
segmented into words.

NIST Chinese-English Task. The second task
is the NIST Chinese—English large data track task.
For this task, there are many bilingual corpora avail-
able. The domain is news, the vocabulary is very
large and the sentences have an average length of 30
words. We train our statistical models on various
corpora provided by LDC. The Chinese part is seg-
mented using the LDC segmentation tool. After the
preprocessing, our training corpus consists of about
three million sentences with somewhat more than 50
million running words. The corpus statistics of the
preprocessed training corpus are shown in Table 2.
We use the NIST 2002 evaluation data as test set.
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Figure 1: IWSLT Chinese—English: Graph error rate
as a function of the word graph density for different
window sizes.

5.2 Search Space Analysis

In Table 3, we show the search space statistics of the
IWSLT task for different reordering window sizes.
Each line shows the resulting graph densities after
the corresponding step in our search as described in
Section 3.2. Our search process starts with the re-
ordering graph. The segmentation into phrases in-
creases the graph densities by a factor of two. Doing
the phrase translation results in an increase of the
densities by a factor of twenty. Unsegmenting the
phrases, i.e. replacing the phrase edges with a se-
quence of word edges doubles the graph sizes. Ap-
plying the language model results in a significant in-
crease of the word graphs.

Another interesting aspect is that increasing the
window size by one roughly doubles the search
space.

5.3 Word Graph Error Rates

In Figure 1, we show the graph word error rate for
the IWSLT task as a function of the word graph den-
sity. This is done for different window sizes for
the reordering. We see that the curves start with a
single-best word error rate of about 50%. For the
monotone search, the graph word error rate goes
down to about 31%. Using local reordering during
the search, we can further decrease the graph word
error rate down to less than 17% for a window size
of 5. This is almost one third of the single-best word
error rate. If we aim at halving the single-best word
error rate, word graphs with a density of less than



Table 3: IWSLT Chinese—English: Word graph densities for different window sizes and different stages of
the search process.

language | level | graph type window size
1 2 3 4 5
source word | reordering 1.0 2.7 6.2 12.8 24.4
phrase | segmented 2.0 5.0 12.1 26.8 55.6
target translated 40.8 99.3 | 229.0 479.9 932.8
word | TM scores 78.6 | 184.6 | 419.2 869.1 | 16704
+ LM scores || 958.2 | 2874.2 | 7649.7 | 18029.7 | 39030.1
70 s 45
window-size-1 ——
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Figure 2: NIST Chinese—English: Graph error rate
as a function of the word graph density for different
window sizes.

200 would already be sufficient.

In Figure 2, we show the same curves for the
NIST task. Here, the curves start from a single-best
word error rate of about 64%. Again, dependent on
the amount of reordering the graph word error rate
goes down to about 36% for the monotone search
and even down to 23% for the search with a window
of size 5. Again, the reduction of the graph word er-
ror rate compare to the single-best error rate is dra-
matic. For comparison we produced an N-best list
of size 10 000. The NN-best list error rate (or oracle-
best WER) is still 50.8%. A word graph with a den-
sity of only 8 has about the same GWER.

In Figure 3, we show the graph position-
independent word error rate for the IWSLT task. As
this error criterion ignores the word order it is not
affected by reordering and we show only one curve.
We see that already for small word graph densities
the GPER drops significantly from about 42% down
to less than 14%.
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word graph density

Figure 3: IWSLT Chinese—English: Graph position-
independent word error rate as a function of the
word graph density.

In Figure 4, we show the graph BLEU scores for
the IWSLT task. We observe that, similar to the
GPER, the GBLEU score increases significantly al-
ready for small word graph densities. We attribute
this to the fact that the BLEU score and especially
the PER are less affected by errors of the word or-
der than the WER. This also indicates that produc-
ing translations with correct word order, i.e. syntac-
tically well-formed sentences, is one of the major
problems of current statistical machine translation
systems.

6 Conclusion

We have described word graphs for statistical ma-
chine translation. The generation of word graphs
during the search process has been described in de-
tail. We have shown detailed statistics of the in-
dividual steps of the translation process and have
given insight in the experimental complexity of each
step. We have described an efficient and optimal
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Figure 4: IWSLT Chinese-English: Graph BLEU
score as a function of the word graph density.

pruning method for word graphs. Using these tech-
nique, we have generated compact word graphs for
two Chinese—English tasks. For the IWSLT task, the
graph error rate drops from about 50% for the single-
best hypotheses to 17% of the word graph. Even for
the NIST task, with its very large vocabulary and
long sentences, we were able to reduce the graph er-
ror rate significantly from about 64% down to 23%.
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A Recursive Statistical Translation ModeF
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Abstract

A new model for statistical translation is
presented. A novel feature of this model
is that the alignments it produces are hier-
archically arranged. The generative pro-
cess begins by splitting the input sen-
tence in two parts. Each of the parts is
translated by a recursive application of
the model and the resulting translation
are then concatenated. If the sentence
is small enough, a simpler model (in our
case IBM’s model 1) is applied.

The training of the model is explained. Fi-
nally, the model is evaluated using the cor-
pora from a large vocabulary shared task.

Introduction

Suppose you were to find an English translation for
a Spanish sentence. One possible approach is to ?us
sume that every English sentence is a candidate b
that different English sentences have different prol%-
abilities of being the correct translation. Then, th
translation task can be divided in two parts: defin
an adequate probability distribution that answers t0 . .
L . . . .segments of the sentences. This recursive procedure

the question “given this English sentence, which is.
the probability that it is a good translation of tha
Spanish sentence?”; and use that distribution in or-
der to find the most likely translation of your input
sentence.
*Work partially supported by Bancaixa through the project

“Sistemas Inductivos, Estalicos y Estructurales, para la Tra-
duccbn Autonatica (Siesta)”.

Enrique Vidal
Dpto. de Sistemas Inforaticos
y Computaadn
Universidad Poliécnica de Valencia
Instituto Tecnobgico de Infornatica
Valencia (Spain)
evidal@iti.upv.es

This approach is referred to as the statistical ap-
proach to machine translation. The usual approach
is to define an statistical model and train its parame-
ters from a training corpus consisting in pairs of sen-
tences that are known to be translation of each other.
Different models have been presented in the litera-
ture, see for instance (Brown et al., 1993; Och and
Ney, 2004; Vidal et al., 1993; Vogel et al., 1996).
Most of them rely on the concept of alignment: a
mapping from words or groups of words in a sen-
tence into words or groups in the other (in the case
of (Vidal et al., 1993) the mapping goes from rules
in a grammar for a language into rules of a grammar
for the other language). This concept of alignment
has been also used for tasks like authomatic vocab-
ulary derivation and corpus alignment (Dagan et al.,
1993).

A new statistical model is proposed in this pa-
per, which was initially introduced in (Vilar Torres,
1998). This model is designed so that the align-
ment between two sentences can be seen in an struc-
u{ed manner. each sentence is divided in two parts
and they are put in correspondence; then each of
hose parts is similarly divided and related to its
ranslation. This way, the alignment can be seen as

e . : .
a tree structure which aligns progressively smaller

lglves its name to the model: MAR, which comes

from “Modelo de Alineamiento Recursivo”, which
Is Spanish for “Recursive Alignment Model”.

The rest of the paper is structured as follows: af-
ter a comment on previous works, we introduce the
notation that we will use throughout the paper, then
we briefly explain the model 1 from IBM, next we
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introduce our model, then we explain the process Consistentlyz denotes the input sentence and

of parameter estimation, and how to use the modék translation and both are assumed to have at least
to translate new test sentences. Finally, we presenie word. The input and output vocabularies &re
some experiments and results, together with concland)’, respectively. Finally, we assume that we are

sions. presentend a sg¥f for training our models. The ele-
_ ments of this set are paifs, y) wherey is a possible
2 Previous works translation forz.

The i_nitial formgle}tion of the proposed model,4 |BM’s model 1
including the training procedures, was presented
in (Vilar Torres, 1998), along with preliminary ex- IBM’'s model 1 is the simplest of a hierarchy of five
periments in a small translation task which provide@gtatistical models introduced in (Brown et al., 1993).
encouraging results. Each model of the hierarchy can be seen as a refine-
This model shares some similarities with theénentof the previous ones. Although model 1, which
stochastic inversion transduction grammars (SITGYe study here, relies on the concept of alignment,
presented by Wu in (Wu, 1997). The main poinits formulation allows an interpretation of it as a re-
in common is the type of possible alignments Conlationship between multisets of words (the order of
sidered in both models. Some of the propertiete words is irrelevant in the final formula).
of these alignments are studied in (Zens and Ney, Aword of warning is in order here. The model we
2003). However, the parametrizations of SITGs an@e® going to present has an important difference with
the MAR are completely different. The generativethe original: we do not use the empty word. This is
process of SITGs produces simultaneously the i Virtual word which does not belong to the vocabu-
put and output sentences and the parameters of #i§éy of the task and that is added to the beginning of
model refer to the rules of the nonterminals. Thigach sentence in order to allow words in the output
provides a Symmetry to both input and Output Serfhat cannot berSt|f|Ed by the words in the input. We
tences. In contrast, our model clearly distinguishe3ave decided not to incorporate it because of the use
the input and output sentences and the parametY§ are going to make of the model. As we will see,
are based on observable properties of the stringdodel 1 is going to be used repeatedly over different
(their lengths and the words composing them). ORubstrings of the input sentence in order to analyze
the other hand, the MAR idea of splitting the sentheir contribution to the total translation. This means
tences until a simple structure is found, also apthat we would have an empty word in each of these
pears in the Divisive Clustering approach presentegHbstrings. We have decided to avoid this “prolifer-
in (Deng et al., 2004). Again, the main differenceation” of empty words. Future work may introduce
lies in the probabilistic modeling of the alignmentsthe concept in a more appropriate way.
In Divisive Clustering a uniform distribution on the The model 1 makes two assumptions. That a

alignments is assumed while MAR uses a explicigtochastic dictionargan be employed to model the
parametrization. probability that wordy is the translation of word:

and that all the words in the input sentence have the
3 Some notation same weight in producing a word in the output. This

_ leads to:
In the rest of the paper, we use the following nota-

tion. Sentences are taken as concatenations of sym- — (|z[,|g]) & &

bols (words) and represented using a letter and a pr(y |z Uy| H Z (yj | z). (1)
small bar, like inz. The individual words are de-
signed by the name of the sentence and a subindgheret is the stochastic dictionary asdepresents
indicating the position, s&@ = z1z2...2,. The g3 table that relates the length of the alignment with
length of a sentence is indicated p§j. Segments the |ength of the input sentence (we assume that
of a sentence are denoted by= =;...x;. Forthe there is a finite range of possible lengths). This ex-
substrings of the fornﬂ"‘c| we use the notatiof;. plicit relations between the lengths is not present in

200



the original formulation of the model, but we prefer e The second is the choice bfa cut point ofz.

to include it so that the probabilities are adequately  The segment? will be used to generate one of
normalized. the parts of the translation, the segmept

Clearly, this model is not adequate to describe  will generate the other. It takes values frdm

complex translations in which complicated patterns  to|z| — 1.

and word order changes may appear. Nevertheless,
this model can do a good job to describe the transla-
tion of short segments of texts. For example, it can i )
be adequate to model the translation of the Spanish D (for direct) andr (for inverse).

“gracias” into the English “thank you™. e The fourth is the translation of each of the
halves ofz. They take values iy +.

e The third is the decision about the order of the
concatenation. It has two possible outcomes:

5 A Recursive Alignment Model

o . The translation probability can be approximated
To overcome that limitation of the model we will as follows: P y PP

take the following approach: if the sentence is com-
plex enough, it will be divided in two and the two ~ pr(y | #) = Pr(M = IBM | 2)p;(y | @)

halves_ will be transla.ted_independently and jqined + Pr(M = MAR | 2)pa (7 | 2).
later; if the sentence is simple, the model 1 will be
used. The value ofp;(y | Z) corresponds to IBM’s

Let us formalize this intuition for the generativemodel 1 (Equation 1). To derivey (y | ), we ob-

model. We are given an input sentenicend the first Serve that:
decission is whethet is going to be translated by S ) —

, L pm(y|z) =
IBM’s model 1 or it is complex enough to be trans- 21
lated by MAR. In the second case, three steps are Z Pr(b | 7)
taken: a cut point of is defined, each of the result- —
ing parts are translated, and the corresponding trans- «

lations are concatenated. For the translation of the Z Pr(d [ b,)
second step, the same proceseairsivelyapplied. de{D.I}

The concatenation of the third step can be done in Z Pr(y1 | b,d, %)
a “direct” way (the translation of the first part and grev+

then the translation of the second) or in an “inverse”

way (the translation of the second part and then the

translation of the first). The aim of this choice is to

allow for the differences in word order between the Note that the probability that is generated from

input and ouput languages. apair(yi,y2) is0if y # y1y2 andl if § = 7172, SO
So, we are proposing an alignment model ithe last two lines can be rewritten as:

which IBM’s model 1 will account for translation ~ ~

of elementary segments or individual words while > Pr(n | b.d,7)

translation of larger and more complex segments e

whole sentences will rely on a hierarchical align- Z Pr(y2 | b,d,2,91) Pr(y | b,d, T, 71, §2)

ment pattern in which model 1 alignments will beg.ey+

Z Pl‘(yg | b7 d>£7g1)Pr(g ‘ da bajvglaQQ)'

J2€Yt

on the lowest level of the hierarchy. _ Pr(in | b.d. ) Pr(ds | b.d. 7.0
. . . . - U1 y @y ) FT(Y2 » @y Ty Y1
Following this discussion, the model can be for- ylge:w @ | ) Pr(ye | )
mally described through a series of four random ex- y=v192
periments: = _Pr(i | b.d,2) Pr(yy g | 0,d 2, 51)

— . 91 € pref(y) — ¥
e The first is the selection of the model. It has 911
two possible outcomes: IBM and MAR, with Pr(i® - . -
' = T b,d,z)Pr b,d,z,yy),
obvious meanings. Z (1] ) Pr(Fe | i)

c=1
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wherepref(7) is the set oprefixesof 5. And finally:  Again, we haveDp (xy, xp41) + Dr(xp, xp1) = 1

for every pair of wordgxy, 41 1).

pu(y | %) = Finally, a probability must be assigned to the
lzl-1 translation of the two halves. Assuming that they are
> Pr(b|z) independent we can apply the model in a recursive
b=1 manner:
> Pr(d|b,7) i _

dcD.0 Pr(it | b,d, 7) ~ {PT(?J1 | 71) !f d=D,
gl-1 pr(@5 | 75,,) fd=1,
Z: Pr(yi | b,d, @) Pr(g.4q | b, d, Z,77). ~ o {pT(yéH | ,,) ifd=D,
c=1 Pr(yc+1 | b, d7x7y1) ~ _. _b :

) pr(Weq | 21)  ifd=1.

The number of parameters of this model is very Finally, we can rewrite (2) as:
large, so it is necessary to introduce some simplifi-
cations in it. The first one relates to the decision ofm (¥ | Z) =
thetranslation modelwe assume that it can be done  |z|-1
just on the basis of the length of the input sentence. " 78(%’ Tot1)
That is, we cat set up two tables{; and M,;, so b—1 Zlﬂfl B(xi, xiv1)

that

Pr(M = 1BM | &) =~ M;(|z|),
Pr(M = MAR | ) = M (|Z]).

Obviously, for any € X+, we will have M (|Z])+

lg|—1

¢ 1 -b . .

. <DD($ba-Tb+1) E pr(¥1 | 21)pr (Ter1 | Tip1)
c=1

lyl—1
+ Dr(zp, Tot1) Z pr(Ger1 | 23)pr(F1 | fi;ﬂ))-

c=1

Mys(]z]) = 1. On the other hand, since it is not
possible to break a one word sentence, we define The final form of the complete model is then:
M;(1) = 1. This restriction comes in the line men-

tioned before: the translation of longer sentencesr(y | Z) =

will be structured whereas shorter ones can be trans- M (|z|)p; (7 | )

lated directly.

In order to decide theut point we will assume
that the probability of cutting the input sentence at
a given positiorb is most influenced by the words
around it:z, andxy 1. We use a tabl# such that:

_ = B(xp, Tp41)
+Mar(lz)) Z Z—-1
b1 Doiz1 B(@i, Tit1)

lgl—1
: (DD(%,%H) > e @5 1 2)pr(ess | Tig)

_ B(xp, xp41 =1
Pr(b | z) ~ Z|x(1 B( ) )y 711
i Ty Ty —. - =C | e
=1 ! + Dr (e, 2p11) Y pr(er | 20)pr (35 | xb+1)>-
This can be interpreted as having a weight for each c=1
pair of words and normalizing these weights in each 3)
sentence in order to obtaing a proper probability dis-

tribution. 6 Parameter estimation

Two more tablespPp andDy, are used to store the Once the model is defined, it is necessary to find
As before, we assume that the decission can be magi§pusA1. We will use maximun likelihood estima-
on the basis of the symbols around the cut point: tjon, In our case, the likelihood of the sample corpus

Pr(d =D | b, i‘) = DD(xba'rb-‘rl)’ IS

Pr(d =1 |b,7) = Dy (xp, tpr1). V=] prr@la.

(z,5)eM
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In order to maximizel/, initial values are given 7 Some notes on efficiency
to the parameters and they are reestimated using
peatedly Baum-Eagon’s (Baum and Eagon, 196
and Gopalakrishnan’s (Gopalakrishnan et al., 199
inequalities. LetP be a parameter of the model (ex-
cept for those iB) and letF(P) be its “family” (i.e.
the set of parameters such t@beﬂp) Q = 1).
Then, a new value aP can be computed as follows:

stimating the parameters as discussed above entails
igh computational costs: computing(y | ) re-
uires O(mn) arithmetic operations involving the
values opr(ng \ fﬁc) for every possible value of
i, j, k andl, which areO(m?n?). This results in a
global cost ofO(m3n?). On the other hand, com-
puting %Lg costs as much as computipg. So it is

Pal interesting to keep the number of computed deriva-
N(P) = apav tives low.
Z Q@ 7.1 Reduction of the parameters to train
QeF(P) o In the experiments we have followed some heuristics
Z P 9pr(y|x) in order not to reestimate certain parameters:
5 pr(ylz) OP
_ z.g)eM e The values of M; —and, consequently,
YO Q  9dpr(y|z) of M,,— for lengths higher than a threshold
QoFtR) s yen pr(ylz) 0Q are assumed to bigand therefore there is no
need to estimate them.
__cwp
N C(Q)’ e As a consequence, the valueseofor lengths
QeF(P) above the same threshold, need not be reesti-
(4) mated.
where e The values of for pairs of words with counts

under a certain threshold are not reestimated.

P Opr(y|2)
C(p) = Z pr(glz) oP (5) Furthermore, during the computation of counts, the

(@.g)eM recursion is cut on those substring pairs where the

are the “counts” of parametd?. This is correct as value of the probability for the translation is very

long asV is a polynomial inP. However, we have a Small.

problem forB3 sinceV is a ratl_onal functlon of th(_ase 7.2 Efficient computation of model 1

parameters. We can solve it by assuming, without o o

lose of generality, thah " v Bla, ) = 1 Other source of optimization is the realization that

! x1,T2€ ’ . . _ _ .
Then Gopalakrishnan's inequality can be applied” computingpr(y | ), it is necessary to com-
similarly and we get: pute the value op; for each possible paizl;, 75;)
(whereib, ie, ob andoe stand forinput begin in-
N(P) = c+C(p) 6) put end output begirandoutput end respectively).
Z C + C(Q)’ Fortunately, it is possible to accelerate this compu-
QeF(P) tations. First, define:

pr(T, o)

whereC' is an adequate constant. Now it is easy I(
(ie —ib+1,0e —ob+ 1)

to design a reestimation algorithm. The algorithm
gives arbitrary initial values to the parameters (typi- 1 oe e

cally those corresponding to uniform probabilities), = (ie — ib + 1)oc—ob+1 H Zt(yj | Z;).
computes the counts of the parameters for the corpus j=obi=ib

and, using either (4) or (6), gets new values for thggw |et

parameters. This cycle is repeated until a stopping i

_cr|ter|on (m our case a prefixed num_ber_of iterations) S(ib,ie, j) = Z t(g; | 7).

is met. This algorithm can be seen in Figure 1

ib, ie, ob, oe) =
5

i=1b
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Algorithm Maximum likelihood estimation
give initial values to the parameters;
repeat
initialize the counts to;
for each (z,y) € M do
computepr(y | 2);
for each parameter” involved in the alignment ofz, y) do
P Opr(y|z),
pr(ylz) oP

Cp = Cp+

endfor
endfor
for each parameter” do
reestimateP using (4) or (6);
endfor
until the stopping criterion is met;
End Maximum likelihood estimation

Figure 1: Algorithm for maximum likelihood estimation of the parameters of MAR

This leads to After the segments af are so scored, the partition
o o of z that maximizes the sum of scores is computed
I(ib, ie, ob, oe) = S(ib, ie, ob), by dynamic programming.

if ob = oe, and to 8 Translating the test sentences

Ilib. i C0\S(ibi
I(ib,ie, ob, o€) = (b, ie, ob, oe — 1)S(ib,ie, ob)

The MAR model can be used to obtain adequate

(ie —ib+1) bilingual templates which can be used to translate
if ob # oe. new test sentences using an appropriate template-
So we can compute all values bfwith the algo- based translation system. Here we have adopted the
rithm in Figure 2. pharaoh program (Koehn, 2004).
7.3 Splitting the corpora 8.1 Finding the templates

Another way of reducing the costs of training hasThe parameters of the MAR were trained using the
been the use of a heuristic to split long sentenceggorithm above: first ten IBM model 1 iterations
into smaller parts with a length less thawords. were used for giving initial values to the dictionary
Suppose we are to split sentencesndy. We probabilities and then five more iterations for re-
begin by aligning each word ig to a word inz. training the dictionary together with the rest of the
Then, a score and a translation is assigned to eaphrameters.
substringz] with a length below. The translationis  The alignment of a pair has the form of a tree sim-
produced by looking for the substring@fvhich has ilar to the one in Figure 3 (this is one of the sen-
a length below and which has the largest numberences from the Spanish-English part of the training
of words aligned to positions betweémnd;j. The corpus). Each interior node has two children corre-
pair so obtained is given a score equal to sum of: (&ponding to the translation of the two parts in which
the square of the length af ; (b) the square of the the input sentence is divided. The leaves of the tree
number of words in the output aligned to the inputcorrespond to those segments that were translated by
and (c) minus ten times the sum of the square of th@odel 1. The templates generated were those de-
number of words aligned to a nonempty position oufined by the leaves. Further templates were obtained
of z/ and the number of words outside the segmetjy interpreting each pair of words in the dictionary
chosen that are aligned itf} as a template.
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Algorithm all IBM
for ob :=1to |y| do
for oe := obto |y| do
for ib :=1to |z| do
S :=0;
for ie :=ibto |z| do
S =5+ t(yoe | :L‘ie);

o {S/(ie—ib+ 1) if ob = oe,
1(ib,ie,0b,0€) := A S .
I(ib,ie,0b,0e — 1) x S/(ie —ib+ 1) otherwise
End all IBM
Figure 2: Efficient computation of different values of IBM’s model 1.
Equipos a presi6n transportables Table 1. Statistics of the training corpora. The
Transportable pressure equipment languages are German (De), English (En), Span-
/ \ ish (Es), Finnish (Fi) and French (Fr).
Equipos a presion transportables -
oquipment Tramsportable prossurs Languages Sentences  Words (input/output)
/ \ De-En 751088 15257871/16052702
_ Es-En 730740 15725136/15222505
apresion | | transportables Fi-En 716960 11318863 /15493334
pressure | | Transportable Fr-En 688031 15599184 /13808505

Figure 3: A sample alignment represented as a tree. _
9 Experiments

In order to test the model, we have decided to par-

Each template was assigned four weightsor-
P g g ticipate in the shared task for this workshop.

der to use th@haraoh program. For the templates
obtained from the alignments, the first weight wa®) {1 The task

the probability assigned to it by MAR, the secondThe aim of the task was to translate a set of 2,000
weight was the count for the template, i.e., the num- ’

. . sentences from German, Spanish, Finnish and
ber of times that template was found in the corpu‘l'i_,renCh into English. Those sentences were ex-

the third weight was the normalized count, i.e., th
. . racted from the Europarl corpus (Koehn, Unpub-
number of times the template appeared in the corpus

divided by the number of times the input part was'ShEd)' A.S training material, four differen_t corpora
present in the corpus, finally, the fourth weight wad <€ provided, one for each language pair, compris-

a small constantl(—3°). The intention of this last "2 around700 000 sentence pairs each. Some de-
) - ) tails about these corpora can be seen in Table 1. An
weight was to ease the combination with the teméutomatic alignment for each corpus was also pro-
plates from the dictionary. For these, the first thres. g P P
weights were assigned the same small constant an

gred.
the fourth was the probability of the translation of, he original sentence pairs were splitted using the

the pair obtained from the stochastic dictionary. Thit%eChanues discussed in sectlo.n 73 The total' num-
er of sentences after the split is presented in Ta-
%ﬁe 2. Two different alignments were used: (a) the
one provided in the definition of the task and (b)
—Y _ one obtained using GIZA++ (Och and Ney, 2003)
They should have been probabilities, but in two of the case, . IBM’ del 4. As i b h
there was no normalization and in one they were even great train an S_mo e - S '_t can be seen, the
than one! number of parts is very similar in both cases. The

of the dictionary in smoothing the templates.
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Table 2: Number of training pairs after splitting toTable 4: Best weights for each language pair. The
a maximum length of ten. “Provided” refers to thecolumns are for the probability given by the model,
alignment provided in the task, “GIZA++" to thosethe counts of the templates, the normalized counts
obtained with GIZA++. and the weight given to the dictionary.

(a) Using the alignments provided with the task.

Sentence pairs

Languages Provided GIZA++ Languages Model Count Norm Dict
De-En 2351121 2282316 De-En 0.0 3.0 0.0 0.3
Es-En 2160039 2137301 Es-En 0.0 2.9 0.0 0.4
Fi-En 2099634 2017130 Fi-En 0.0 7.0 0.0 0.0
Fr-En 2112931 2080200 Fr-En 0.0 7.0 1.0 1.0
(b) Using GIZA++.
Table 3: Number of templates for each language
pair: “Alignment” shows the number of templates Languages Model Count Norm Dict
dgrived from the glignmen.ts; “di‘(:tionflry”, those ob- De-En 0.0 3.0 0.0 0.0
tained from the dictionary; and “total” is the sum. Es-En 0.0 29 0.0 0.4
(a) Using the alignments provided with the task. Fi-En 0.0 3.0 15 0.0
Lang. Alignment Dictionary Total Fr-En 0.0 3.0 1.0 0.4
De-En 2660745 1840582 4501327
Es-En 2241344 1385086 3626430
Fi-En 2830433 2852583 5683016 Table 5: BLEU scores of the translations.
Fr-En 2178890 1222266 3401156
BLEU
(b) Using GIZA++. Languages Provided GIZA++
- — De-En 18.08 18.89
Lang. Alignment Dictionary Total Es-En 21.65 21 48
De-En 2672079 1796887 4468966 Fi-En 13.31 13.79
Es-En 2220533 1350526 3571059 Fr-En 21.25 19.86
Fi-En 2823769 2769929 5593698
Fr-En 2140041 1181990 3322031

the weights thapharaoh uses for each template
number of pairs after splitting is roughly three timedthese are the weights passed to opti@ight-t
the original. the other weights were not changed as an initial ex-
Templates were extracted as described in seBloration seemed to indicate that they had little im-

tion 8.1. The number of templates we obtained caf@Ccl)- As expected, the best weights differed be-
be seen in Table 3. Again, the influence of th&Ween language pairs. The values can be seen in

type of alignment was small. Except for Finnish@ble 4.

the number of dictionary templates was roughly two |t js interesting to note that the probabilities as-
thirds of the templates extracted from the alignsigned by the model to the temp|ates seemed to
ments. be better not taken into account. The most impor-
tant feature was the counts of the templates, which
sometimes were helped by the use of the dictionary,
Once the templates were obtained, the developmesithough that effect was small. Normalization of
corpora were used to search for adequate values ajunts also had little impact.

9.2 Obtaining the translations
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10 Results and discussion Ido Dagan, Kenneth W. Church, and William A. Gale.
1993. Robust bilingual word alignment for machine
The results over the test sets can be seen in Table 5aided translation. IfProceedings of the Workshop on

It can be seen that, except for French, the influence Very Large CorporaColumbus, Ohio (USA). ACL.

Of the |n|t|a.| allgnment |S Vel’y Sma” AISO, the beStYonggang Deng, Shankar Kumar, and William Byrne.
results are obtained for Spanish and French, which 2004. Bitext chunk alignment for statistical machine

are more similar to English that German or Finnish. translation. Research Note 50, CLSP Johns Hopkins
There are still many open questions that deserve University, April.

more experimentation. The first is the influence oP. S. Gopalakrishnan, Dimitri Kanevsky, Arthuéblas,

the split of the original corpora. Although the simi- and David Nahamoo. 1991. An inequality for ra-

larity of results seem to indicate that it has little in- tional functions with applications to some statistical
f this has to be tested. T | ¢ problems.IEEE Transactions on Information Theory
uence, this has to be tested. Two more relevant as-37(1).107-113, January.

pects are whether the weighting schema is the best

for the decoder. In particular, it is surprising that thé’hilipp Koehn. 2004. Pharaoh: A beam search decoder
o . for phrase-based statistical machine translation mod-
normalization of counts had so little effect.

} els. INAMTA pages 115-124.
Finally, the average number of words per template . N
is below two, which probably is too low. It is inter- Philipp Koehn. Unpublished. Europarl: A multilingual
esting to find alternate ways of obtaining the tem- corpus for evaluation of machine translation. Draft.

plates, for instance using internal nodes up to a givefranz Josef Och and Hermann Ney. 2003. A system-

height or covering portions of the sentences up to a atic comparison of various statistical alignment mod-
predefined number of words. els. Computational Linguistig29(1):19-51.

Franz Joseph Och and Hermann Ney. 2004. The align-
11 Conclusions ment template approach to statistical machine transla-
tion. Computational Linguistics30(4):417-449, De-
A new translation model has been presented. This cember.

model produces translations in a recursive way: thl?nrique Vidal, Roberto Pieraccini, and Esther Levin.

input sentence is divided in two parts, each is trans- 1993, Learning associations between grammars: A
lated using the same procedure recursively and thenew approach to natural language understanding. In

translations are concatenated. The model has beerF‘fO:?eedings of the EuroSpeech/§fges 1187-1190,
used for finding the templates in a large vocabulary Bein (Germany).

translation task. This involved using several heuriStuan Miguel Vilar Torres. 1998.Aprendizaje de Tra-
tics to improve training time, including a method for ductores Subsecuenciales para su empleo en tareas
splitting the input before training the models. Fi- de dominio restringido Ph.D. thesis, Departamento

. . o de Sistemas Inforaticos y Computaéin, Universidad
nally, the influence of using a stochastic dictionary p jitacnica de Valencia, Valencia (Spain). (in Span-

together with the templates as a means of smoothingish).
has been explored. ) _
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Abstract

Decision rules that explicitly account for
non-probabilistic evaluation metrics in
machine translation typically require spe-
cial training, often to estimate parame-
ters in exponential models that govern the
search space and the selection of candi-
date translations. While the traditional
Maximum A Posteriori (MAP) decision
rule can be optimized as a piecewise lin-
ear function in a greedy search of the pa-
rameter space, the Minimum Bayes Risk
(MBR) decision rule is not well suited to
this technique, a condition that makes past
results difficult to compare. We present a
novel training approach for non-tractable
decision rules, allowing us to compare and
evaluate these and other decision rules on
a large scale translation task, taking ad-
vantage of the high dimensional parame-
ter space available to the phrase based
Pharaoh decoder. This comparison is
timely, and important, as decoders evolve
to represent more complex search space
decisions and are evaluated against in-
novative evaluation metrics of translation
quality.

Introduction

Andreas Zollmann
School of Computer Science School of Computer Science School of Computer Science
Carnegie Mellon University Carnegie Mellon University Carnegie Mellon University

zollmann@cs.cmu.edu

Alex Waibel

waibel@cs.cmu.edu

As discussed in (Och, 2003), the direct translation
model represents the probability of target sentence
'English’ e = ey ...e1 being the translation for a
source sentence 'French’ = f; ... f5 through an
exponentiglor log-linear model

_exp(Qliiy Ak x hu(e, 1))
p,\(e|f) - Ze’eE exp(zznzl A * hk(e/’ f))

where e is a single candidate translation fér
from the set of all English translatiords, A is the
parameter vector for the model, and edghis a
feature function ok andf. In practice, we restrict
E to the setGenf) which is a set of highly likely
translations discovered by a decoder (Mogel et al.,
2003). Selecting a translation from this model under
the Maximum A PosterioriNIAP) criteria yields

(1)

transly (f) = arg max py (e|f) . 2
e

This decision rule is optimal under the zero-
one loss function, minimizing the Sentence Error
Rate (Mangu et al., 2000). Using the log-linear
form to modelp,(e|f) gives us the flexibility to
introduce overlapping features that can represent
global context while decoding (searching the space
of candidate translations) and rescoring (ranking a
set of candidate translations before performing the
arg max operation), albeit at the cost of the tradi-
tional source-channel generative model of transla-
tion proposed in (Brown et al., 1993).

State of the art statistical machine translation takes A significant impact of this paradigm shift, how-
advantage of exponential models to incorporate ever, has been the movement to leverage the flex-
large set of potentially overlapping features to sebility of the exponential model to maximize per-
lect translations from a set of potential candidateformance with respect to automatic evaluation met-
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rics. Each evaluation metric considers different aghat this loss function is operating on a sequence of
pects of translation quality, both at the sentence arsg&ntences with the vector notation. To avoid overfit-
corpus level, often achieving high correlation to huting, and since MT researchers are generally blessed
man evaluation (Doddington, 2002). It is clear thatvith an abundance of data, these sentences are from
the decision rule stated in (1) does not reflect tha separate development set.

choice of evaluation metric, and substantial work The optimization problem (3b) is hard since the
has been done to correct this mismatch in critearg max of (3a) causes the error surface to change
ria. Approaches include integrating the metric intan steps inR™, precluding the use of gradient based
the decision rule, and learniny to optimize the optimization methods. Smoothed error counts can
performance of the decision rule. In this papebe used to approximate theg max operator, but the
we will compare and evaluate several aspects oésulting function still contains local minima. Grid-
these techniques, focusing on Minimum Error Rateased line search approaches like Powell’'s algorithm
(MER) training (Och, 2003) and Minimum Bayescould be applied but we can expect difficultly when
Risk (MBR) decision rules, within a novel training choosing the appropriate grid size and starting pa-
environment that isolates the impact of each compwoameters. In the following, we summarize the opti-

nent of these methods. mization algorithm for the unsmoothed error counts
) _ ) presented in (Och, 2003) and the implementation de-

We now describe competing strategies to address the, RegardLoss(translA(F), ¥) as defined in (3b)
problem of modeling the evaluation metric within as a function of the parameter vectarto
the decoding and rescoring process, and introduce optimize and take thewgmax to compute
our contribution towards training non-tractable error translA(F) over the translationGer(f) accord-
surfaces. The methods discussed below make use ing to then-bestlist generated with an initial
of Genf), the approximation to the complete can- estimate\’.

didate translation spad8, referred to as an-best

list. Details regardingn-best listgeneration from e The error surface defined byoss (as a func-
decoder output can be found in (Ueffing et al., 2002).  tion of \) is piecewise linear with respect to a
single model parametey;, hence we can deter-
mine exactly where it would be useful (values
The predominant approach to reconciling the mis-  that change the result of theg max) to evalu-
match between the MAP decision rule and the eval- ate )\, for a given sentence using a simple line
uation metric has been to train the parameters intersection method.

the exponential model to correlate tNAP choice
with the maximum score as indicated by the evalu-

2.1 Minimum Error Rate Training

e Merge the list of useful evaluation points
for )\, and evaluate the corpus level

ation metric on a development set with known ref- o
erences (Och, 2003). We differentiate between the Loss(transly(f), r) at each one.
decision rule e Select the model parameter that represents the
transly (F) = arg max p (e|f) (3a) lowestLoss ask varies, sef\;, and consider the
g eeg(;;er(f) P parameten; for another dimensiop.
and the training criterion This training algorithm, referred to as minimum er-

. . ror rate (MER) training, is a greedy search in each
A = argmin Loss(transly(f),r) ~ (3b) dimension of\, made efficient by realizing that
A within each dimension, we can compute the points
where theLoss function returns an evaluation re-at which changes i\ actually have an impact on
sult quantifying the difference between the Englisiloss. The appropriate considerations for termina-
candidate translatiotransl) (f) and its correspond- tion and initial starting points relevant to any greedy
ing referencer for a source sentende We indicate search procedure must be accounted for. From the
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nature of the training procedure and thBAP de- training method to optimize the parameters the

cision rule, we can expect that the parameters sexponential model as an explicit form for the condi-

lected by MER training will strongly favor a few tional distribution in equation (1). The training task

translations in th@-bestist, namely for each source under the MBR criterion is

sentence the one resulting in the best score, moving .

most of the probability mass towards the translation A" = arg min Loss(transl\(f),r)  (5a)

that it believes should be selected. This is due to the A

decision rule, rather than the training procedure, aghere

we will see when we consider alternative decision

rules. transly (f) = arg min Z Loss(e, e )py(€|f) .
e€Genf) o/ Ganr)

2.2 The Minimum Bayes Risk Decision Rule (5b)

The Minimum Bayes Risk Decision Rule as pro_We begin with several observations about this opti-

posed by (Mangu et al., 2000) for the Word ErrmmlzatIon criterion.

Rate Metric in speech recognition, and (Kumar and o The MAP optimal\* are not the optimal para-
Byrne, 2004) when applied to translation, changes  meters for this training criterion.

the decision rule in (2) to select the translation that

has the lowest expected |oE§Loss(e, r)], which e We can expect the error surface of the MBR
can be estimated by considering a weighfegks training criterion to contain larger sections of
betweene and the elements of the-bestlist, the similar altitude, since the decision rule empha-
approximation taE, as described in (Mangu et al., sizes consensus.

2000). The resulting decision rule is: . . . . . .
e The piecewise linearity observation made in

(Papineni et al., 2002) is no longer applicable
since we cannot move ttieg operation into the
() expected value.

transly (f) = arg min Z Loss(e,e)px(€|f) .
e€Genf) o caernr)

(Kumar and Byrne, 2004) explicitly consider select-3
ing bothe and a, an alignment between the Eng-
lish and French sentences. Under a phrase badddtivated by the challenges that the MBR training
translation model (Koehn et al., 2003; Marcu andriterion presents, we present a training method that
Wong, 2002), this distinction is important and willis based on the assumption that the error surface is
be discussed in more detail. The representation tdcally non-smooth but consists of local regions of
the evaluation metric or th€oss function is in the similar Loss values. We would like to focus the
decision rule, rather than in the training criterion forsearch within regions of the parameter space that re-
the exponential model. This criterion is hard to opsult in low Loss values, simulating the effect that
timize for the same reason as the criterion in (3bthe MER training process achieves when it deter-
the objective function is not continuous m To mines the merged error boundaries across a set of
make things worse, it is more expensive to evalusentences.

ate the function at a giveR, since the decisionrule Let Score(\) be some function of

-,

Score Sampling

involves a sum over all translations. Loss(transly(f),r) that is greater or equal
. zero, decreases monotonically wifloss, and for
2.3 MBR and the Exponential Model which [(Score(X) — miny Score(N'))d is finite;

=,

Previous work has reported the success of the MB&g., 1 — Loss(transly(f),r) for the word-error
decision rule with fixed parameters relating indepenate (WER) loss and a bounded parameter space.
dent underlying models, typically including only theWhile sampling parameter vectoksand estimating
language model and the translation model as fedoss in these points, we will constantly refine
tures in the exponential model. our estimate of the error surface and thereby of
We extend the MBR approach by developing @he Score function. The main idea in our score
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sampling algorithm is to make use of thisore e Sample X\ from the discrete distribution
estimate by constructing a probability distributon ~ p~1)(\ € P) obtained by the previous it-
over the parameter space that depends oibtee eration.

estimate in the current iteration ste@nd sample

the parameter vecto¥*! for the next iteration from e Sample the new parameter vectérby choos-

that distribution. More precisely, lefc. be the ing for eachk € {1,...,m}, A} = A} + &g,
estimate ofScore in iterationi (we will explain how whereey, is sampled uniformly from the inter-
to obtain this estimate below). Then the probability ~ Val (—dx/2,dx/2) anddy is the distance be-
distribution from which we sample the parameter  tween neighboring pivot points along dimen-

vector to test in the next iteration is given by: sion k. Thus, \' is sampled from a region
) (i) around the sampled pivot.
Sc " (A) —miny Sc (X))

p(N) = - (6) e EvaluateScore(A?) and distribute this score to
(i)

—(9) .o '
Sc'(A) —miny Se (X)) dX o\
J( (A) (X)) obtain new estimateSc

This distribution produces a sequence. .., \" of P as described below.

parameter vectors that are more concentrated in ar-

eas that result in a highcore. We can select the 4 yse the updated estimaté\s(i) to generate the
value from this sequence that generates the highest gsampling distributionp® for the next iteration
Score, just as in the MER training process. according to

__The exact method of obtaining ti%ore estimate

Scis crucial: If we are not careful enough and guess

too low values ofSc()\) for parameter regions that  p{¥(\) = —
are still unknown to us, the resulting sampling dis- Y oaep(Sc
tribution p might be zero in those regions and thus

potentially optimal parameters might never beé samppe goorescore() of the currently evaluated pa-
pled. Rather than aiming for a consistent estimatqg eter vector does not only influence the score es-

of Score (i.e., an estimator that convergesdoore  inate at the pivot point of the respective region, but
when the sample size goes to infinity), we design o estimates at all pivot points. The closest piv-

with regard to yielding a suitable sampling distribu-o,[S are influenced most strongly. More precisely, for

tion p. : () .
Assume that the parameter space is bounded su%ﬂCh pivot\ € P, Sc(}) is a weighted average

thatmin, < Ay < maaxy for each dimensiork, of Score(A!),..., Score(\), where the weights

We then define a set of pivo, forming a grid of

points inR™ that are evenly spaced betweerin,, ; i i .

andmaaxz;, for each dimensiotk. Each pivot repre- w(,)(/\) = infl¥()) x C(?rr( ') with

sents a region of the parameter space where we ex- infl” (\) mvnpdf(A, A", ) and

pect generally consistent values@ifore. Wedonot  corr®(\) = 1/pt=D(\) .

restrict the values ok, to be at these pivot points

as a grid search would do, rather we treat the pivotdere, mvnpdf(x, 1, ¥) denotes then-dimensional

as landmarks within the search space. multivariate-normal probability density function
We approximate the distributiop(\) with the with meany and covariance matrix, evaluated

discrete distributiop(A € P), leaving the problem at pointz. We chose the covariance matiix =

of estimating|P| parameters. Initially, we setto diag(ds,...,d2,), where againly, is the distance be-

be uniform, i.e.,p(o)()\) = 1/|P|. For subsequent tween neighboring grid points along dimensibn

iterations, we now need an estimateSobre(\) for  The terminfl®” (\) quantifies the influence of the

each pivot\ € P in the discrete version of equationevaluated poinf\’ on the pivot), while corr(i)(/\)

(6) to obtain the new sampling distributipn Each is a correction term for the bias introduced by hav-

iterationi proceeds as follows. ing sampled\’ from p(i—1),

(M) for all pivots A €

5 (0) = miny S¢ (W)
@3 = miny 527 ()

())()\) are chosen according to
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Smoothing uncertain regions In the beginning of features in the exponential model. In this section
the optimization process, there will be pivot regionsve describe the experimental framework used in this
that have not yet been sampled from and for whickvaluation.
not even close-by regions have been sampled yet.
This will be reflected in the low sum of influence
termsinfi®™ (A) + - - - + infl® ()) of the respective
pivot pointsA. It is therefore advisable to discount
some probability mass from(? and distribute it
over pivots with low influence sums (reflecting lowWe perform our analysis on the data provided by the
confidence in the respective score estimates) accoi2B05 ACL Workshop in Exploiting Parallel Texts for
ing to some smoothing procedure. Statistical Machine Translation, working with the
o ) French-English Europarl corpus. This corpus con-
4 N-Bestlists in Phrase Based Decoding  jsts of 688031 sentence pairs, with approximately

The methods described above make extensive useloto Million words on the French side, and 138 mil-
n-bestlists to approximate the search space of carion Words on the English side. We use the data as
didate translations. In phrase based decoding we gyrovided by the workshop and run lower casing as

ten interpret the MAP decision rule to select the todUl ONly preprocessing step. We use the 15.5 mil-
scoring path in the translation lattice. Selecting 40N €ntry phrase translation table as provided for the

particular path means in fact selecting the geis), shared workshop task for the French-English data

wheres is a segmentation of the the source sentend®l: Each translation pair has a set of 5 associated

f into phrases and alignments onto their translatiofr@se translation scores that represent the maxi-

in e. Kumar and Byrne (2004) represent this decimum likelihood estimate of the phrase as well as in-

sion explicitly, since theLoss metrics considered in ternal alignment probabilities. We also use the Eng-
their work evaluate alignment information as well ad'S language model as provided for the shared task.
lexical (word) level output. When considering |exi_Slch each of these deCI.SIOH rules has its respective
cal scores as we do here, the decision rule minimi[@ning process, we split the workshop test set of
ing 0/1 loss actually needs to take the sum over 0000 sentences into a development and test set using

potential segmentations that can generate the saff'dom splitting. We tried two decoders for trans-
word sequence. In practice, we only consider thlating these sets. The first system is the Pharaoh de-

high probability segmentation decisions, namely th€°der provided by (Koehn etal., 2003) for the shared
ones that were found in the-bestlist. This gives data task. The Pharaoh decoder has support for mul-

the0/1 losscriterion shown below. tiple. translation anql Ianguage model scores as well
as simple phrase distortion and word length models.

transly (f) = arg maXZpA(e, s|f) (7) The pruning and distortion limit parameters remain

e s the same as in the provided initialization scripts,

o i i.e., DistortionLimit = 4, BeamThreshold =
The 0/1 losscriterion favors translations that are( 1 Stack — 100. For further information on

supported by several segmentation decisions. In thee e harameter settings, confer (Koehn et al., 2003).
context of phrase-based translations, this is a usefg}, 5 401 is interesting for our optimization task be-

criterion, since a given Iexicgl target wo_rd SeqUeNCEyse its eight different models lead to a search
can be correctly segmented in several dlfferentwaygpace with seven free parameters. Here, a princi-

all of which would be scored equally by an evaluayoy optimization procedure is crucial. The second

tion metric that only considers the word sequence. joqder we tried is the CMU Statistical Translation
System (Vogel et al., 2003) augmented with the four
translation models provided by the Pharaoh system,
Our goal is to evaluate the impact of the three dan the following called CMU-Pharaoh. This system
cision rules discussed above on a large scale traraso leads to a search space with seven free parame-
lation task that takes advantage of multidimensionaeérs.

5.1 Data Sets and Resources

5 Experimental Framework
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5.2 N-Bestlists appropriately compare the MAP, 0/1 loss and MBR

As mentioned earlier, the model parametirglay decisions rules, they must all be trained with the
a large role in the search space explored by a prufi@me training method, here we use the Score Sam-
ing beam search decoder. These parameters aff@df'9 training method described above. We also re-
the histogram and beam pruning as well as the fRO"t MAP scores using the MER training described
ture cost estimation used in the Pharaoh and CM@P0Ve to determine the impact of the training algo-
decoders. The initial parameter file for Pharaoh prdithm for MAP. Note that the MER training approach

vided by the workshop provided a very poor esti€@nnot be performed on the MBR decision rule, as
mate of )\, resulting in an n-best list of limited po- explained in Section 2.3. MER training is initialized

tential. To account for this condition, we ran Min-at random values ok and run (S.UCCGSS@VG greedy
imum Error Rate training on the development dat_éeamh over the parameters) until there is no change
to determine scaling factors that can generate a In the error for three complete cycles through the pa-
bestlist with high quality translations. We realize "@mMeter set. This process is repeated with new start-
that this step biases tiebestlist towards the MAP INg parameters as well as permutations of the para-
criteria, since its parameters will likely cause morén€ter search order to ensure that there is no bias in
aggressive pruning. However, since we have chdhe search towards a particular parameter. To im-
sen a large N=1000, and retrain the MBR, MAP, an8"°Ve efficiency, pairwise scores are cached across
0/1 loss parameters separately, we do not feel thitdUests for the score at different values\ofand

the bias has a strong impact on the evaluation.  for MBR only theE[Loss(e, r)] for the top twenty
hypotheses as ranked by the model are computed.

5.3 Evaluation Metric

This paper focuses on the BLEU metric as presentédl Results

in (Papineni et al., 2002). The BLEU metric is de-
fined on a corpus level as follows. The results in Table 1 compare the BLEU score

achieved by each training method on the develop-

N ment and test data for both Pharaoh and CMU-
Z(bgpn)) Pharaoh. Score-sampling training was run for 150

! iterations to find\ for each decision rule. The MAP-
wherep, represent the precision ef-grams sug- MER training was performed to evaluate the effect
gested iné and BP is a brevity penalty measur- of the greedy search method on the generalization
ing the relative shortness @f over the whole cor- of the development set results. Each row represents
pus. To use the BLEU metric in the candidate pairan alternative training method described in this pa-
wise loss calculation in (4), we need to make a deper, while the test set columns indicate the criteria
cision regarding cases where higher order n-granused to select the final translation outgut The
matches are not found between two candidates. Kbold face scores are the scores for matching train-
mar and Byrne (2004) suggest that if any n-gramigg and testing methods. The underlined score is
are not matched then the pairwise BLEU score is s#te highest test set score, achieved by MBR decod-
to zero. As an alternative we first estimate corpughng using the CMU-Pharaoh system trained for the
wide n-gram counts on the development set. WheBR decision rule with the score-sampling algo-
the pairwise counts are collected between sentengdgim. When comparing MER training for MAP-
pairs, they are added onto the baseline corpus coudigcoding with score-sampling training for MAP-
to and scored by BLEU. This scoring simulates thélecoding, score-sampling surprisingly outperforms
process of scoring additional sentences after seeiMER training for both Pharaoh and CMU-Pharaoh,

Score(€,r) = BP(€,r) * exp(

2| =

a whole corpus. although MER training is specifically tailored to
o _ the MAP metric. Note, however, that our score-
5.4 Training Environment sampling algorithm has a considerably longer run-

It is important to separate the impact of the decisioning time (several hours) than the MER algorithm
rule from the success of the training procedure. T(several minutes). Interestingly, within MER train-
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training method Dev. setsc.| testsetsc. MAP testsetsc. 0/1 loss test set sc. MBR

MAP MER (Pharaoh) 29.08 29.30 29.42 29.36
MAP score-sampl. (Pharaoh) 29.08 29.41 29.24 29.30
0/1 loss sc.-s. (Pharaoh) 29.08 29.16 29.28 29.30
MBR sc.-s. (Pharaoh) 29.00 29.11 29.08 29.17
MAP MER (CMU-Pharaoh) 28.80 29.02 29.41 29.60
MAP sc.-s. (CMU-Ph.) 29.10 29.85 29.75 29.55
0/1 loss sc.-s. (CMU-Ph.) 28.36 29.97 29.91 29.72
MBR sc.-s. (CMU-Ph.) 28.36 30.18 30.16 30.28

Table 1. Comparing BLEU scores generated by alternative training methods and decision rules

ing for Pharaoh, the 0/1 loss metric is the top perthe state of the art in machine translation, it will
former; we believe the reason for this disparity bebecome increasingly important to understand the
tween training and test methods is the impact afature and consistency of-bestlist training ap-
phrasal consistency as a valuable measure within theoaches. Our results are reported on a complete
n-bestlist. package of translation tools and resources, allow-
The relative performance of MBR score-samplindng the reader to easily recreate and build upon our
w.r.t. MAP and 0/1-loss score sampling is quite difframework. Further research might lie in finding
ferent between Pharaoh and CMU-Pharaoh: Whilefficient representations of Bayes Risk loss func-
MBR score-sampling performs worse than MARions within the decoding process (rather than just
and 0/1-loss score sampling for Pharaoh, it yields thésing MBR to rescore n-best lists), as well as
best test scores across the board for CMU-Pharadinalyses on different language pairs from the avail-
A possible reason is that the n-best lists generated Bple Europarl data. We have shown score sam-
Pharaoh have a large percentage of lexically idefpling to be an effective training method to con-
tical translations, differing only in their segmenta-duct these experiments and we hope to establish its
tions. As a result, the 1000-best lists generated byse in the changing landscape of automatic trans-
Pharaoh contain only a small percentage of uniquation evaluation. The source code is available at:
translations, a condition that reduces the potentiaww.cs.cmu.edu/"zollmann/scoresampling/
of the Minimum Bayes Risk methods. The CMU
decoder, contrariwise, prunes away alternatives b8- Acknowledgments

low a certain score-threshold during decoding angle thank Stephan Vogel, Ying Zhang, and the

does not recover them when generating the n-beghonymous reviewers for their valuable comments
list. The n-best lists of this system are therefore typisnq suggestions.

cally more diverse and in particular contain far more
unigue translations.
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