
Proceedings of the ACL Workshop on Computational Approaches to Semitic Languages, pages 39–46,
Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Choosing an Optimal Architecture for Segmentation and POS-Tagging of
Modern Hebrew

Roy Bar-Haim
Dept. of Computer Science

Bar-Ilan University
Ramat-Gan 52900, Israel

barhair@cs.biu.ac.il

Khalil Sima’an
ILLC

Universiteit van Amsterdam
Amsterdam, The Netherlands
simaan@science.uva.nl

Yoad Winter
Dept. of Computer Science

Technion
Haifa 32000, Israel

winter@cs.technion.ac.il

Abstract

A major architectural decision in de-
signing a disambiguation model for seg-
mentation and Part-of-Speech (POS) tag-
ging in Semitic languages concerns the
choice of the input-output terminal sym-
bols over which the probability distribu-
tions are defined. In this paper we de-
velop a segmenter and a tagger for He-
brew based on Hidden Markov Models
(HMMs). We start out from a morpholog-
ical analyzer and a very small morpholog-
ically annotated corpus. We show that a
model whose terminal symbols are word
segments (=morphemes), is advantageous
over a word-level model for the task of
POS tagging. However, for segmentation
alone, the morpheme-level model has no
significant advantage over the word-level
model. Error analysis shows that both
models are not adequate for resolving a
common type of segmentation ambiguity
in Hebrew – whether or not a word in a
written text is prefixed by a definiteness
marker. Hence, we propose a morpheme-
level model where the definiteness mor-
pheme is treated as a possible feature of
morpheme terminals. This model exhibits
the best overall performance, both in POS
tagging and in segmentation. Despite the
small size of the annotated corpus avail-
able for Hebrew, the results achieved us-
ing our best model are on par with recent

results on Modern Standard Arabic.

1 Introduction

Texts in Semitic languages like Modern Hebrew
(henceforthHebrew) and Modern Standard Ara-
bic (henceforthArabic), are based on writing sys-
tems that allow the concatenation of different lexi-
cal units, calledmorphemes. Morphemes may be-
long to various Part-of-Speech (POS) classes, and
their concatenation forms textual units delimited by
white space, which are commonly referred to as
words. Hence, the task of POS tagging for Semitic
languages consists of a segmentation subtask and
a classification subtask. Crucially, words can be
segmented into different alternative morpheme se-
quences, where in each segmentation morphemes
may be ambiguous in terms of their POS tag. This
results in a high level of overall ambiguity, aggra-
vated by the lack of vocalization in modern Semitic
texts.

One crucial problem concerning POS tagging of
Semitic languages is how to adapt existing methods
in the best way, and which architectural choices have
to be made in light of the limited availability of an-
notated corpora (especially for Hebrew). This paper
outlines some alternative architectures for POS tag-
ging of Hebrew text, and studies them empirically.
This leads to some general conclusions about the op-
timal architecture for disambiguating Hebrew, and
(reasonably) other Semitic languages as well. The
choice of tokenization level has major consequences
for the implementation using HMMs, the sparseness
of the statistics, the balance of the Markov condi-

39

tioning, and the possible loss of information. The
paper reports on extensive experiments for compar-
ing different architectures and studying the effects
of this choice on the overall result. Our best result
is on par with the best reported POS tagging results
for Arabic, despite the much smaller size of our an-
notated corpus.

The paper is structured as follows. Section 2 de-
fines the task of POS tagging in Hebrew, describes
the existing corpora and discusses existing related
work. Section 3 concentrates on defining the dif-
ferent levels of tokenization, specifies the details of
the probabilistic framework that the tagger employs,
and describes the techniques used for smoothing the
probability estimates. Section 4 compares the differ-
ent levels of tokenization empirically, discusses their
limitations, and proposes an improved model, which
outperforms both of the initial models. Finally, sec-
tion 5 discusses the conclusions of our study for seg-
mentation and POS tagging of Hebrew in particular,
and Semitic languages in general.

2 Task definition, corpora and related
work

Words in Hebrew texts, similar to words in Ara-
bic and other Semitic languages, consist of a stem
and optional prefixes and suffixes.Prefixesinclude
conjunctions, prepositions, complementizers and the
definiteness marker (in a strict well-defined order).
Suffixesinclude inflectional suffixes (denoting gen-
der, number, person and tense), pronominal comple-
ments with verbs and prepositions, and possessive
pronouns with nouns.

By the termword segmentationwe henceforth re-
fer to identifying the prefixes, the stem and suffixes
of the word. ByPOS tag disambiguationwe mean
the assignment of a proper POS tag to each of these
morphemes.

In defining the task of segmentation and POS tag-
ging, we ignore part of the information that is usu-
ally found in Hebrew morphological analyses. The
internal morphological structure of stems is not an-
alyzed, and the POS tag assigned to stems includes
no information about their root, template/pattern, in-
flectional features and suffixes. Only pronominal
complement suffixes on verbs and prepositions are
identified as separate morphemes. The construct

state/absolute,1 and the existence of a possessive
suffix are identified using the POS tag assigned to
the stem, and not as a separate segment or feature.
Some of these conventions are illustrated by the seg-
mentation and POS tagging of the wordwfnpgfnw
(“and that we met”, pronouncedve-she-nifgashnu):2

w/CC: conjunction
f /COM: complementizer
npgfnw/VB: verb

Our segmentation and POS tagging conform with
the annotation scheme used in the Hebrew Treebank
(Sima’an et al., 2001), described next.

2.1 Available corpora

The Hebrew Treebank (Sima’an et al., 2001) con-
sists of syntactically annotated sentences taken from
articles from theHa’aretzdaily newspaper. We ex-
tracted from the treebank a mapping from each word
to its analysis as a sequence of POS tagged mor-
phemes. The treebank version used in the current
work contains 57 articles, which amount to 1,892
sentences, 35,848 words, and 48,332 morphemes.
In addition to the manually tagged corpus, we have
access to an untagged corpus containing 337,651
words, also originating fromHa’aretznewspaper.

The tag set, containing 28 categories, was ob-
tained from the full morphological tagging by re-
moving the gender, number, person and tense fea-
tures. This tag set was used for training the POS
tagger. In the evaluation of the results, however, we
perform a further grouping of some POS tags, lead-
ing to a reduced POS tag set of 21 categories. The
tag set and the grouping scheme are shown below:
{NN}, {NN-H}, {NNT}, {NNP}, {PRP,AGR}, {JJ}, {JJT},

{RB,MOD}, {RBR}, {VB,AUX}, {VB-M}, {IN,COM,REL},

{CC}, {QW}, {HAM}, {WDT,DT}, {CD,CDT}, {AT}, {H},

{POS}, {ZVL}.

2.2 Related work on Hebrew and Arabic

Due to the lack of substantial tagged corpora, most
previous corpus-based work on Hebrew focus on the

1The Semitic construct state is a special form of a word
that participates in compounds. For instance, in the Hebrew
compoundbdiqt hjenh(“check of the claim”), the word bdiqt
(“check of”/“test of”) is the construct form of the absolute form
bdiqh(“check”/“test”).

2In this paper we use Latin transliteration for Hebrew letters
following (Sima’an et al., 2001).

40

development of techniques for learning probabilities
from large unannotated corpora. The candidate anal-
yses for each word were usually obtained from a
morphological analyzer.

Levinger et al. (1995) propose a method for
choosing a most probable analysis for Hebrew
words using an unannotated corpus, where each
analysis consists of the lemma and a set of morpho-
logical features. They estimate the relative frequen-
cies of the possible analyses for a given wordw by
defining a set of “similar words”SW (A) for each
possible analysisA of w. Each wordw′ in SW (A)
corresponds to an analysisA′ which differs fromA
in exactly one feature. Since each set is expected to
contain different words, it is possible to approximate
the frequency of the different analyses using the av-
erage frequency of the words in each set, estimated
from the untagged corpus.

Carmel and Maarek (1999) follow Levinger et
al. in estimating context independent probabilities
from an untagged corpus. Their algorithm learns fre-
quencies of morphological patterns (combinations
of morphological features) from the unambiguous
words in the corpus.

Several works aimed at improving the “similar
words” method by considering the context of the
word. Levinger (1992) adds a short context filter that
enforces grammatical constraints and rules out im-
possible analyses. Segal’s (2000) system includes,
in addition to a somewhat different implementation
of “similar words”, two additional components: cor-
rection rules̀a la Brill (1995), and a rudimentary de-
terministic syntactic parser.

Using HMMs for POS tagging and segmenting
Hebrew was previously discussed in (Adler, 2001).
The HMM in Adler’s work is trained on an untagged
corpus, using the Baum-Welch algorithm (Baum,
1972). Adler suggests various methods for perform-
ing both tagging and segmentation, most notable are
(a) The usage of word-level tags, which uniquely de-
termine the segmentation and the tag of each mor-
pheme, and (b) The usage of a two-dimensional
Markov model with morpheme-level tags. Only the
first method (word-level tags) was tested, resulting
in an accuracy of 82%. In the present paper, both
word-level tagging and morpheme-level tagging are
evaluated.

Moving on to Arabic, Lee et al. (2003) describe a

word segmentation system for Arabic that uses an n-
gram language model over morphemes. They start
with a seed segmenter, based on a language model
and a stem vocabulary derived from a manually seg-
mented corpus. The seed segmenter is improved it-
eratively by applying a bootstrapping scheme to a
large unsegmented corpus. Their system achieves
accuracy of 97.1% (per word).

Diab et al. (2004) use Support Vector Machines
(SVMs) for the tasks of word segmentation and POS
tagging (and also Base Phrase Chunking). For seg-
mentation, they report precision of 99.09% and re-
call of 99.15%, when measuringmorphemesthat
were correctly identified. For tagging, Diab et al.
report accuracy of 95.49%, with a tag set of 24 POS
tags. Tagging was applied to segmented words, us-
ing the “gold” segmentation from the annotated cor-
pus (Mona Diab, p.c.).

3 Architectures for POS tagging Semitic
languages

Our segmentation and POS tagging system consists
of a morphological analyzerthat assigns a set of
possible candidate analyses to each word, and adis-
ambiguatorthat selects from this set a single pre-
ferred analysis per word. Each candidate analysis
consists of a segmentation of the word into mor-
phemes, and a POS tag assignment to these mor-
phemes. In this section we concentrate on the ar-
chitectural decisions in devising an optimal disam-
biguator, given a morphological analyzer for He-
brew (or another Semitic language).

3.1 Defining the input/output

An initial crucial decision in building a disambigua-
tor for a Semitic text concerns the “tokenization” of
the input sentence: what constitutes a terminal (i.e.,
input) symbol. Unlike English POS tagging, where
the terminals are usually assumed to be words (de-
limited by white spaces), in Semitic texts there are
two reasonable options for fixing the kind of termi-
nal symbols, which directly define the correspond-
ing kind of nonterminal (i.e., output) symbols:

Words (W): The terminals are words as they ap-
pear in the text. In this case a nonterminala
that is assigned to a wordw consists ofa se-
quenceof POS tags, each assigned to a mor-

41

pheme ofw, delimited with a special segmenta-
tion symbol. We henceforth refer to such com-
plex nonterminals asanalyses. For instance,
the analysisIN-H-NN for the Hebrew word
bbit uniquely encodes the segmentationb-h-bit.
In Hebrew, this unique encoding of the segmen-
tation by the sequence of POS tags in the anal-
ysis is a general property: given a wordw and
a complex nonterminala = [t1 . . . tp] for w, it
is possible to extenda back to a full analysis
ã = [(m1, t1) . . . (mp, tp)], which includes the
morphemesm1 . . .mp that make outw. This is
done by finding a match fora in Analyses(w),
the set of possible analyses ofw. Except for
very rare cases, this match is unique.

Morphemes (M): In this case the nonterminals are
the usual POS tags, and the segmentation is
given by the input morpheme sequence. Note
that information about how morphemes are
joined into words is lost in this case.

Having described the main input-output options for
the disambiguator, we move on to describing the
probabilistic framework that underlies their work-
ings.

3.2 The probabilistic framework

Let wk
1 be the input sentence, a sequence of words

w1 . . . wk. If tokenization is per word, then the
disambiguator aims at finding the nonterminal se-
quenceak

1 that has the highest joint probability with
the given sentencewk

1 :

arg max
ak

1

P (wk
1 ,ak

1) (1)

This setting is the standard formulation of proba-
bilistic tagging for languages like English.

If tokenization is per morpheme, the disambigua-
tor aims at finding a combination of a segmentation
mn

1 and a taggingtn1 for mn
1 , such that their joint

probability with the given sentence,wk
1 , is maxi-

mized:

arg max
(mn

1 ,tn1)∈ANALY SES(wk
1)

P (wk
1 ,mn

1 , tn1), (2)

where ANALY SES(wk
1) is the set of possible

analyses for the input sentencewk
1 (output by the

morphological analyzer). Note thatn can be dif-
ferent fromk, and may vary for different segmen-
tations. The original sentence can be uniquely re-
covered from the segmentation and the tagging.
Since all the〈mn

1 , tn1 〉 pairs that are the input for
the disambiguator were derived fromwk

1 , we have
P (wk

1 |mn
1 , tn1) = 1, and thusP (wk

1 ,mn
1 , tn1) =

P (tn1 ,mn
1). Therefore, Formula (2) can be simpli-

fied as:

arg max
(mn

1 ,tn1)∈ANALY SES(wk
1)

P (mn
1 , tn1) (3)

Formulas (1) and (3) can be represented in a unified
formula that applies to both word tokenization and
morpheme tokenization:

arg max
(en

1 ,An
1)∈ANALY SES(wk

1)

P (en
1 , An

1) (4)

In Formula (4)en
1 represents either a sequence of

words or a sequence of morphemes, depending on
the level of tokenization, andAn

1 are the respective
nonterminals – either POS tags or word-level anal-
yses. Thus, the disambiguator aims at finding the
most probable〈terminal sequence, nonterminal
sequence〉 for the given sentence, where in the
case of word-tokenization there is only one possible
terminal sequence for the sentence.

3.3 HMM probabilistic model

The actual probabilistic model used in this work for
estimatingP (en

1 , An
1) is based on Hidden Markov

Models (HMMs). HMMs underly many successful
POS taggers , e.g. (Church, 1988; Charniak et al.,
1993).

For a k-th order Markov model (k = 1 or k = 2),
we rewrite (4) as:

arg max
en
1 ,An

1

P (en
1 , An

1) ≈

arg max
en
1 ,An

1

n∏
i=1

P (Ai | Ai−k, . . . , Ai−1)P (ei | Ai)

(5)

For reasons of data sparseness, actual models we use
work with k = 2 for the morpheme level tokeniza-
tion, and withk = 1 for the word level tokenization.

42

For these models, two kinds of probabilities need
to be estimated:P (ei | Ai) (lexical model) and
P (Ai |Ai−k, . . . , Ai−1) (language model). Because
the only manually POS tagged corpus that was avail-
able to us for training the HMM was relatively small
(less than 4% of the Wall Street Journal (WSJ) por-
tion of the Penn treebank), it is inevitable that major
effort must be dedicated to alleviating the sparseness
problems that arise. For smoothing the nonterminal
language model probabilities we employ the stan-
dard backoff smoothing method of Katz (1987).

Naturally, the relative frequency estimates of
the lexical model suffer from more severe data-
sparseness than the estimates for the language
model. On average, 31.3% of the test words do
not appear in the training corpus. Our smooth-
ing method for the lexical probabilities is described
next.

3.4 Bootstrapping a better lexical model

For the sake of exposition, we assume word-level
tokenization for the rest of this subsection. The
method used for the morpheme-level tagger is very
similar.

The smoothing of the lexical probability of a word
w given an analysisa, i.e., P (w | a) = P (w,a)

P (a) ,
is accomplished by smoothing the joint probability
P (w,a) only, i.e., we do not smoothP (a).3 To
smoothP (w,a), we use a linear interpolation of
the relative frequency estimates from the annotated
training corpus (denotedrf tr(w,a)) together with
estimates obtained byunsupervised estimationfrom
a large unannotated corpus (denotedemauto(w,a)):

P (w,a) = λ rf tr(w,a)+(1−λ) emauto(w,a)
(6)

whereλ is an interpolation factor, experimentally set
to 0.85.

Our unsupervised estimation method can be
viewed as a single iteration of the Baum-Welch
(Forward-Backward) estimation algorithm (Baum,
1972) with minor differences. We apply this method
to the untagged corpus of 340K words. Our method
starts out from a naively smoothed relative fre-

3the smoothed probabilities are normalized so that∑
w P (w,a) = P (a)

quency lexical model in our POS tagger:

PLM0(w|a) =

{
(1− p0) rf tr(w,a) ftr(w) > 0
p0 otherwise

(7)
Whereftr(w) is the occurrence frequency ofw in
the training corpus, andp0 is a constant set experi-
mentally to10−10. We denote the tagger that em-
ploys a smoothed language model and the lexical
model PLM0 by the probability distributionPbasic

(over analyses, i.e., morpheme-tag sequences).
In the unsupervised algorithm, the modelPbasic

is used to induce adistribution of alternative analy-
ses(morpheme-tag sequences) for each of the sen-
tences in the untagged corpus; we limit the num-
ber of alternative analyses per sentence to 300. This
way we transform the untagged corpus into a “cor-
pus” containing weighted analyses (i.e., morpheme-
tag sequences). This corpus is then used to calcu-
late the updated lexical model probabilities using
maximum-likelihood estimation. Adding the test
sentences to the untagged corpus ensures non-zero
probabilities for the test words.

3.5 Implementation4

The set of candidate analyses was obtained from Se-
gal’s morphological analyzer (Segal, 2000). The
analyzer’s dictionary contains 17,544 base forms
that can be inflected. After this dictionary was ex-
tended with the tagged training corpus, it recog-
nizes 96.14% of the words in the test set.5 For each
train/test split of the corpus, we only use the training
data for enhancing the dictionary. We used SRILM
(Stolcke, 2002) for constructing language models,
and for disambiguation.

4 Evaluation

In this section we report on an empirical comparison
between the two levels of tokenization presented in
the previous section. Analysis of the results leads to
an improved morpheme-level model, which outper-
forms both of the initial models.

Each architectural configuration was evaluated in
5-fold cross-validated experiments. In a train/test

4http://www.cs.technion.ac.il/∼barhaim/MorphTagger/
5Unrecognized words are assumed to be proper nouns, and

the morphological analyzer proposes possible segmentations for
the word, based on the recognition of possible prefixes.

43

split of the corpus, the training set includes 1,598
sentences on average, which on average amount to
28,738 words and 39,282 morphemes. The test set
includes 250 sentences. We estimatesegmentation
accuracy– the percentage of words correctly seg-
mented into morphemes, as well astagging accu-
racy – the percentage of words that were correctly
segmented for which each morpheme was assigned
the correct POS tag.

For each parameter, the average over the five folds
is reported, with the standard deviation in parenthe-
ses. We used two-tailed paired t-test for testing the
significance of the difference between the average
results of different systems. The significance level
(p-value) is reported.

The first two lines in Table 1 detail the results ob-
tained for both word (W) and morpheme (M) lev-
els of tokenization. The tagging accuracy of the

Accuracy per word (%)
Tokenization Tagging Segmentation
W 89.42 (0.9) 96.43 (0.3)
M 90.21 (1.2) 96.25 (0.5)
M+h 90.51 (1.0) 96.74 (0.5)

Table 1: Level of tokenization - experimental results

morpheme tagger is considerably better than what
is achieved by the word tagger (difference of 0.79%
with significance levelp = 0.01). This is in spite of
the fact that the segmentation achieved by the word
tagger is a little better (and a segmentation error im-
plies incorrect tagging). Our hypothesis is that:

Morpheme-level taggers outperform
word-level taggers in their tagging ac-
curacy, since they suffer less from data
sparseness. However, they lack some
word-level knowledge that is required for
segmentation.

This hypothesis is supported by the number of
once-occurring terminals in each level: 8,582 in the
word level, versus 5,129 in the morpheme level.

Motivated by this hypothesis, we next consider
what kind of word-level information is required for
the morpheme-level tagger in order to do better in
segmentation. One natural enhancement for the
morpheme-level model involves adding information

about word boundaries to the tag set. In the en-
hanced tag set, nonterminal symbols include addi-
tional features that indicate whether the tagged mor-
pheme starts/ends a word. Unfortunately, we found
that adding word boundary information in this way
did not improve segmentation accuracy.

However, error analysis revealed a very common
type of segmentation errors, which was found to be
considerably more frequent in morpheme tagging
than in word tagging. This kind of errors involves
a missing or an extra covert definiteness marker’h’ .
For example, the wordbbit can be segmented either
asb-bit (“in a house”) or asb-h-bit (“in the house”),
pronouncedbebayitandbabayit, respectively. Un-
like other cases of segmentation ambiguity, which
often just manifest lexical facts about spelling of He-
brew stems, this kind of ambiguity is productive: it
occurs whenever the stem’s POS allows definiteness,
and is preceded by one of the prepositionsb/k/l. In
morpheme tagging, this type of error was found on
average in 1.71% of the words (46% of the segmen-
tation errors). In word tagging, it was found only
in 1.36% of the words (38% of the segmentation er-
rors).

Since in Hebrew there should be agreement be-
tween the definiteness status of a noun and its related
adjective, this kind of ambiguity can sometimes be
resolved syntactically. For instance:

“bbit hgdwl” impliesb-h-bit (“in the big house”)
“bbit gdwl” impliesb-bit (“in a big house”)

By contrast, in many other cases both analyses
are syntactically valid, and the choice between them
requires consideration of a wider context, or some
world knowledge. For example, in the sentence
hlknw lmsibh(“we went to a/the party”),lmsibh
can be analyzed either asl-msibh (indefinite,“to a
party”) or as l-h-mbsibh (definite,“to the party”).
Whether we prefer “the party” or “a party” depends
on contextual information that is not available for
the POS tagger.

Lexical statistics can provide valuable informa-
tion in such situations, since some nouns are more
common in their definite form, while other nouns are
more common as indefinite. For example, consider
the wordlmmflh(“to a/the government”), which can
be segmented either asl-mmflh or l-h-mmflh. The

44

Tokenization Analysis
W (lmmflhIN-H-NN)
M (IN l) (H h) (NN mmflh)
M+h (IN l) (H-NN hmmflh)

Table 2: Representation ofl-h-mmflh in each level
of tokenization

stemmmflh(“government”) was found 25 times in
the corpus, out of which only two occurrences were
indefinite. This strong lexical evidence in favor of
l-h-mmflh is completely missed by the morpheme-
level tagger, in which morphemes are assumed to
be independent. The lexical model of the word-
level tagger better models this difference, since it
does take into account the frequencies ofl-mmflh
and l-h-mmlh, in measuring P(lmmflh|IN-NN) and
P(lmmflh|IN-H-NN). However, since the word tag-
ger considerslmmflh, hmmflh(“the government”),
andmmflh(“a government”) as independent words,
it still exploits only part of the potential lexical evi-
dence about definiteness.

In order to better model such situations, we
changed the morpheme-level model as follows. In
definite words the definiteness articleh is treated
as a manifestation of a morphological feature of the
stem. Hence the definiteness marker’s POS tag (H)
is prefixed to the POS tag of the stem. We refer by
M+h to the resulting model that uses this assump-
tion, which is rather standard in theoretical linguistic
studies of Hebrew. The M+hmodel can be viewed as
an intermediate level of tokenization, between mor-
pheme and word tokenization. The different analy-
ses obtained by the three models of tokenization are
demonstrated in Table 2.

As shown in Table 1, the M+h model shows
remarkable improvement in segmentation (0.49%,
p < 0.001) compared with the initial morpheme-
level model (M). As expected, the frequency of seg-
mentation errors that involve covert definiteness (h)
dropped from 1.71% to 1.25%. The adjusted mor-
pheme tagger also outperforms the word level tagger
in segmentation (0.31%,p = 0.069). Tagging was
improved as well (0.3%,p = 0.068). According to
these results, tokenization as in the M+h model is
preferable to both plain-morpheme and plain-word

tokenization.

5 Conclusion

Developing a word segmenter and POS tagger for
Hebrew with less than 30K annotated words for
training is a challenging task, especially given the
morphological complexity and high degree of am-
biguity in Hebrew. For comparison, in English a
baseline model that selects the most frequent POS
tag achieves accuracy of around the 90% (Charniak
et al., 1993). However, in Hebrew we found that a
parallel baseline model achieves only 84% using the
available corpus.

The architecture proposed in this paper addresses
the severe sparseness problems that arise in a num-
ber of ways. First, the M+h model, which was
found to perform best, is based on morpheme-
level tokenization, which suffers of data sparse-
ness less than word tokenization, and makes use of
multi-morpheme nonterminals only in specific cases
where it was found to be valuable. The number of
nonterminal types found in the corpus for this model
is 49 (including 11 types of punctuation marks),
which is much closer to the morpheme-level model
(39 types) than to the word-level model (205 types).
Second, the bootstrapping method we present ex-
ploits additional resources such as a morphological
analyzer and an untagged corpus, to improve lexi-
cal probabilities, which suffer from data sparseness
the most. The improved lexical model contributes
1.5% to the tagging accuracy, and 0.6% to the seg-
mentation accuracy (compared with using the basic
lexical model), making it a crucial component of our
system.

Among the few other tools available for POS tag-
ging and morphological disambiguation in Hebrew,
the only one that is freely available for extensive
training and evaluation as performed in this paper
is Segal’s ((Segal, 2000), see section 2.2). Com-
paring our best architecture to the Segal tagger’s re-
sults under the same experimental setting shows an
improvement of 1.5% in segmentation accuracy and
4.5% in tagging accuracy over Segal’s results.

Moving on to Arabic, in a setting comparable to
(Diab et al., 2004), in which the correct segmenta-
tion is given, our tagger achieves accuracy permor-
phemeof 94.9%. This result is close to the re-

45

sult reported by Diab et al., although our result was
achieved using a much smaller annotated corpus.
We therefore believe that future work may benefit
from applying our model, or variations thereof, to
Arabic and other Semitic languages.

One of the main sources for tagging errors in our
model is the coverage of the morphological analyzer.
The analyzer misses the correct analysis of 3.78% of
the test words. Hence, the upper bound for the accu-
racy of the disambiguator is 96.22%. Increasing the
coverage while maintaining the quality of the pro-
posed analyses (avoiding over-generation as much
as possible), is crucial for improving the tagging re-
sults.

It should also be mentioned that a new version of
the Hebrew treebank, now containing approximately
5,000 sentences, was released after the current work
was completed. We believe that the additional an-
notated data will allow to refine our model, both in
terms of accuracy and in terms of coverage, by ex-
panding the tag set with additional morpho-syntactic
features like gender and number, which are prevalent
in Hebrew and other Semitic languages.

Acknowledgments

We thank Gilad Ben-Avi, Ido Dagan and Alon Itai
for their insightful remarks on major aspects of this
work. The financial and computational support of
the Knowledge Center for Processing Hebrew is
gratefully acknowledged. The first author would like
to thank the Technion for partially funding his part
of the research. The first and third authors are grate-
ful to the ILLC of the University of Amsterdam for
its hospitality while working on this research. We
also thank Andreas Stolcke for his devoted technical
assistance with SRILM.

References

Meni Adler. 2001. Hidden Markov Model for Hebrew
part-of-speech tagging. Master’s thesis, Ben Gurion
University, Israel. In Hebrew.

Leonard Baum. 1972. An inequality and associated max-
imization technique in statistical estimation for proba-
bilistic functions of a Markov process. InInequalities
III:Proceedings of the Third Symposium on Inequali-
ties, University of California, Los Angeles, pp.1-8.

Eric Brill. 1995. Transformation-based error-driven
learning and natural language processing: A case
study in part-of-speech tagging.Computational Lin-
guistic, 21:784–789.

David Carmel and Yoelle Maarek. 1999. Morphological
disambiguation for Hebrew search systems. InPro-
ceedings of the 4th international workshop,NGITS-99.

Eugene Charniak, Curtis Hendrickson, Neil Jacobson,
and Mike Perkowitz. 1993. Equations for part-of-
speech tagging. InNational Conference on Artificial
Intelligence, pages 784–789.

K. W. Church. 1988. A stochastic parts program and
noun phrase parser for unrestricted text. InProc. of
the Second Conference on Applied Natural Language
Processing, pages 136–143, Austin, TX.

Mona Diab, Kadri Hacioglu, and Daniel Jurafsky. 2004.
Automatic tagging of Arabic text: From raw text to
base phrase chunks. InHLT-NAACL 2004: Short Pa-
pers, pages 149–152.

S.M. Katz. 1987. Estimation of probabilities from sparse
data from the language model component of a speech
recognizer. IEEE Transactions of Acoustics, Speech
and Signal Processing, 35(3):400–401.

Young-Suk Lee, Kishore Papineni, Salim Roukos, Os-
sama Emam, and Hany Hassan. 2003. Language
model based Arabic word segmentation. InACL,
pages 399–406.

M. Levinger, U. Ornan, and A. Itai. 1995. Morphological
disambiguation in Hebrew using a priori probabilities.
Computational Linguistics, 21:383–404.

Moshe Levinger. 1992. Morphological disambiguation
in Hebrew. Master’s thesis, Computer Science Depart-
ment, Technion, Haifa, Israel. In Hebrew.

Erel Segal. 2000. Hebrew morphological ana-
lyzer for Hebrew undotted texts. Master’s the-
sis, Computer Science Department, Technion,
Haifa, Israel. http://www.cs.technion.ac.il/-
∼erelsgl/bxi/hmntx/teud.html.

K. Sima’an, A. Itai, Y. Winter, A. Altman, and N. Nativ.
2001. Building a tree-bank of Modern Hebrew text.
Traitment Automatique des Langues, 42:347–380.

Andreas Stolcke. 2002. SRILM - an extensible language
modeling toolkit. InICSLP, pages 901–904, Denver,
Colorado, September.

46

