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Preface

Semitic Languages

The Semitic family includes many languages and dialects spoken by a large number of native speakers
(around 300 Million). However, Semitic languages are still understudied. The most prominent members
of this family are Arabic and its dialects, Hebrew, Amharic, Aramaic, Maltese and Syriac. Beyond their
shared ancestry which is apparent through pervasive cognate sharing, a common characteristic of these
languages is the rich and productive pattern-based morphology and similar syntactic constructions.

Previous Efforts

An increasing body of computational linguistics work is starting to appear for both Arabic and Hebrew.
Arabic alone, as the largest member of the Semitic family, has been receiving a lot of attention lately
in terms of dedicated workshops and conferences. These include, but are not limited to, the workshop
on Arabic Language Resources and Evaluation (LREC 2002), a special session on Arabic processing
in Traitement Automatiqgue du Langage Naturel (TALN 2004), the Workshop on Computational
Approaches to Arabic Script-based Languages (COLING 2004), and the NEMLAR Arabic Language
Resources and Tools Conference in Cairo, Egypt (2004). This phenomenon has been coupled with a
relative surge in resources for Arabic due to concerted efforts by the LDC and ELDA/ELRA. However,
there is an apparent lag in the development of resources and tools for other Semitic languages. Often,
work on individual Semitic languages, unfortunately, still tends to be done with limited awareness of
ongoing research in other Semitic languages. Within the last four years, only three workshops addressed
Semitic languages: an ACL 2002 Workshop on Computational Approaches to Semitic Languages and
an MT Summit IX Workshop on Machine Translation for Semitic Languages in 2003, and the EAMT
2004, held in Malta, had a special session on Semitic languages.

Current Workshop

Welcome to the ACL 2005 Workshop on Computational Approaches to Semitic Languages. This
workshop is a sequel to the ACL 2002 workshop and shares its goals of: (i) heightening awareness
amongst Semitic-language researchers of shared breakthroughs and challenges, (ii) highlighting issues
common to all Semitic languages as much as possible, (iii) encouraging the potential for developing
coordinated approaches; and (iv) in addition, leveraging resource and tool creation for less prominent
members of the Semitic language family.

We received 21 submissions, we accepted 12. The accepted papers cover several languages: Modern
Standard Arabic, Dialectal Arabic, Hebrew, and Amharic. They cover a span of topics in computational
linguistics, from morphological analysis and disambiguation and diacritization to information retrieval
and document classification using both symbolic and statistical approaches.

We hope you enjoy reading this volume as much as we did.
The workshop organizers,

Kareem Darwish, Mona Diab, Nizar Habash
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Memory-based mor phological analysis generation and
part-of-speech tagging of Arabic

Erwin Marsi, Antal van den Bosch
ILK, Tilburg University
P.O. Box 90153
NL-5000 LE Tilburg
The Netherlands
{E.C.Marsi,Antal.vdnBoscf@uvt.nl

Abstract

We explore the application of memory-
based learning to morphological analy-
sis and part-of-speech tagging of written
Arabic, based on data from the Arabic
Treebank. Morphological analysis — the
construction of all possible analyses of
isolated unvoweled wordforms — is per-
formed as a letter-by-letter operation pre-
diction task, where the operation encodes
segmentation, part-of-speech, character
changes, and vocalization. Part-of-speech
tagging is carried out by a bi-modular tag-
ger that has a subtagger for known words
and one for unknown words. We report on
the performance of the morphological an-
alyzer and part-of-speech tagger. We ob-
serve that the tagger, which has an accu-
racy of 91.9% on new data, can be used to
select the appropriate morphological anal-
ysis of words in context at a precision of
64.0 and a recall of 89.7.

I ntroduction

Abdehadi Soudi
Center for Computational Linguistics
Ecole Nationale de L'Industrie Minérale
Rabat,
Morocco,
asoudi@gmail.com/asoudi@enim.ac.ma

learning algorithms. The data facilitates machine-
learned part-of-speech taggers, tokenizers, and shal-
low parsing units such as chunkers, as exemplified
by Diab et al. (2004).

However, Arabic appears to be a special challenge
for data-driven approaches. It is a Semitic language
with a non-concatenative morphology. In addition to
prefixation and suffixation, inflectional and deriva-
tional processes may cause stems to undergo infixa-
tional modification in the presence of different syn-
tactic features as well as certain consonants. An
Arabic word may be composed of a stem consist-
ing of a consonantal root and a pattern, affixes, and
clitics. The affixes include inflectional markers for
tense, gender, and number. The clitics may be ei-
ther attached to the beginning of stems (proclitics)
or to the end of stems (enclitics) and include pos-
sessive pronouns, pronouns, some prepositions, con-
junctions and determiners.

Arabic verbs, for example, can be conjugated ac-
cording to one of the traditionally recognized pat-
terns. There are 15 triliteral forms, of which at least
9 are in common. They represent very subtle dif-
ferences. Within each conjugation pattern, an entire
paradigm is found: two tenses (perfect and imper-
fect), two voices (active and passive) and five moods

Memory-based learning has been successfully afindicative, subjunctive, jussive, imperative and en-
plied to morphological analysis and part-of-speeckrgetic). Arabic nouns show a comparably rich and
tagging in Western and Eastern-European languagesmplex morphological structure. The broken plu-
(van den Bosch and Daelemans, 1999; Daelemansrat system, for example, is highly allomorphic: for
al., 1996). With the release of the Arabic Treebank given singular pattern, two different plural forms
by the Linguistic Data Consortium (current versionmay be equally frequent, and there may be no way
3), a large corpus has become available for Arae predict which of the two a particular singular will
bic that can act as training material for machinetake. For some singulars as many as three further
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statistically minor plural patterns are also possible.frequency exceptions (Daelemans et al., 1999).
Various ways of accounting for Arabic morphol- An instance consists of a fixed-length vector of
ogy have been proposed. The type of account of feature-value pairs, and the classification of that
Arabic morphology that is generally accepted byarticular feature-value vector. After the instance
(computational) linguists is that proposed by (Mcbase is stored, new (test) instances are classified by
Carthy, 1981). In his proposal, stems are formethatching them to all instances in the instance base,
by a derivational combination of a root morphemend by calculating with each match thistance,
and a vowel melody. The two are arranged accordyiven by a distance kernel function. Classification
ing to canonical patterns. Roots are said to intein memory-based learning is performed by the
digitate with patterns to form stems. For examNN algorithm that searches for tihieénearest neigh-
ple, the Arabic stenkatab ("he wrote”) is com- bours’ according to thé\(X,Y") kernel function.
posed of the morphemktb ("the notion of writ- The distance function and the classifier can be
ing”) and the vowel melody morpheme 'a-a’. Therefined by several kernel plug-ins, such as feature
two are integrated according to the pattern CVCV@veighting (assigning larger distance to mismatches
(C=consonant, V=vowel). This means that wordn important features), and distance weighting (as-
structure in this morphology is not built linearly assigning a smaller vote in the classification to more
is the case in concatenative morphological systemslistant nearest neighbors). Details can be found in
The attempts to model Arabic morphology in a(Daelemans et al., 2004).
two-level system (Kay’s (1987) Finite State Model,
Beesley’s (1990; 1998) Two-Level Model and Ki-3 Morphological analysis

raz’s (1994) Multi-tape Two-Level Model) reflect We focus first on morphological analysis . Training

McCarthy's separation of levels. It is beyond theon data extracted from the Arabic Treebank, we in-

scope of this paper to provide a detailed descriptioHuce a morphological analysis generator which we

of these models, but see (Soudi, 2002). T
_ control for undergeneralization (recall errors) and
In this paper, we explore .the use Of memory'overgeneralization (precision errors).
based learning for morphological analysis and part-

of-speech (PoS) tagging of written Arabic. The nex8.1 Data

sectlgn summarlzes_the prmmples_of memory'/-basergll1 Arabic Treebank

learning. The following three sections describe our

exploratory work on memory-based morphological Our point of departure is the Arabic Treebank 1
analysis and PoS tagging, and integration of the twg\TB1), version 3.0, distributed by LDC in 2005,
tasks. The final two sections contain a short discugtore specifically the “after treebank” PoS-tagged

sion of related work and an overall conclusion. ~ data. Unvoweled tokens as they appear in the orig-
inal news paper are accompanied in the treebank

2 Memory-based learning by vocalized versions; all of their morphological

analyses are generated by means of Tim Buckwal-
Memory-based learning, also known as instancder’'s Arabic Morphological Analyzer (Buckwalter,
based, example-based, or lazy learning (Aha et aRP02), and the appropriate morphological analysis is
1991; Daelemans et al., 1999), extensions ofithe singled out. An example is given in Figure 1. Thein-
nearest neighbor classifier (Cover and Hart, 1967jput token (NPUT STRI NG) is transliteratedL(OoK- UP
is a supervised inductive learning algorithm fomoRrRD) according to Buckwalter’s transliteration sys-
learning classification tasks. Memory-based learriem. All possible vocalizations and their morpho-
ing treats a set of labeled (pre-classified) trainingpgical analyzes are listed@.uUtl ON). The analysis
instances as points in a multi-dimensional featurts rule-based, and basically consists of three steps.
space, and stores them as such irirsance base  First, all possible segmentations of the input string
in memory. Thus, in contrast to most other ma———— _ _

All experiments with memory-based learning were per-

C_hme Ie_ammg alg_omhms’ 't_ performs_ no aIC)Stracformed with TIMBL, version 5.1 (Daelemans et al., 2004),
tion, which allows it to deal with productive but low- available fromhtt p: / /i 1 k. uvt. nl .



INPUT STRING \ 331\ 203\ 330\ 252\ 330\ 250 =====Kk
LOOK- UP WORD:  kt b

ka/ PREP+; ka; k; ku
t a/ PREP+t ; uti;ata;t;utu
b = = = = = ab/ PV+a/ PVSUFF_SUBJ: 3V5+;

Comment :
| NDEX: P2V88 b/ NOUN_PROP+; ub/ NOUN+i / CASE_DEF_GEN+;
SOLUTI ON 1: (kataba) [katab-u_1] katab/PV+a/ PVSUFF_SUBJ: 3MB ub/ NOUNt+a/ CASE_DEF_ACCH;
(GLOSS): wite + hel/it [verb] ub/ NOUN+K/ CASE_| NDEF_GEN+;
* SOLUTION 2: (kutiba) [katab-u_1] kutib/PV_PASS+a/ PVSUFF_SUBJ: 3VB i b/ PV_PASS+a/ PVSUFF_SUBJ: 3VB+;
(GLOSS): be witten/be fated/ be destined + he/it [verb] ub/ NOUN+N/ CASE_| NDEF_NOWF; ub/ NOUNt;
SOLUTION 3: (kutub) [kitAb_1] kutub/ NOUN ub/ NOUN+u/ CASE_DEF_NOW+

(GLOSS): books

SOLUTI ON 4: k b kitAb_1] k b/ NOUN+u/ CASE_DEF_NOM .

(A beake ) et nom H/ ASEDEF- Figure 2: Instances for the analyses of the wkitd
SOLUTI ON 5: (kutuba) [kitAb_1] kutub/ NOUN+a/ CASE_DEF_ACC . :

(GL0SS): books + [def.acc.] In F|gure 1
SOLUTI ON 6 (Kutubi) [KitAb 1] kutub/ NOUNi / CASE DEF_GEN

(G.0S9): books + [def . gen. ] 3.1.3 Creatinginstances

SOLUTION 7: (KutubN) [kitAb_1] kut ub/ NOUN+N CASE_I NDEF_NOM

SOLUT O B oot oot Lo e mi ST ket by NOUNFKI CASE. | NDEF. GEN These separate lexicons were created for training
SOLUTTON Bt Coehy [DRFALLT] Kt bl NOUN. PROP and testing material. The lexical entries in a lexi-
SOLUTT N 10: (Kat b TDECAULT]  Kal PREPH b/ NOUN_PROP con were converted fmstances suitable to memory-
(G089 Tikelsuch as + NOTINLEXI GO based learning of the mapping from words to their
Figure 1: Example token fromrs 1 analyses (van den Bosch and Daelemans, 1999). In-

stances consist of a sequence of feature values and a
in terms of prefixes (0 to 4 characters long), stems (aprresponding class, representing a potentially com-
least one character), and suffixes (0 to 6 charactepéex morphological operation.
long) are generated. Next, dictionary lookup is used The features are created by sliding a window over
to determine if these segments are existing morphthe unvoweled look-up word, resulting in one in-
logical units. Finally, the numbers of analyses is furstance for each character. Using a 5-1-5 window
ther reduced by checking for the mutual compatibilyields 11 features, i.e. the input character in focus,
ity of prefix+stem, stem-suffix, and prefix-stem plus the five preceding and five following characters.
in three compatibility tables. The resulting analy-The equal sign (=) is used as a filler symbol.
ses have to a certain extent been manually checked.The instance classes represent the morphological
Most importantly, a star*() preceding a solution in- analyses. The classes corresponding to a word’s
dicates that this is the correct analysis in the givepharacters should enable us to derive all associated
context. analyses. This implies that the classes need to en-
code several aspects simultaneously: vocalization,
morphological segmentation and tagging. The fol-
lowing template describes the format of classes:

We grouped the 734 files from the treebank int@l ass = subanal ysis; subanal ysis;
eleven parts of approximately equal size. Ten parts

3.1.2 Preprocessing

.. . . ?ubanal ysis = preceding vowels & tags +
were used for training and testing our morphologica input character +
analyzer, while the final part was used as held-out following vowel s & tags

material for testing the morphological analyzer ingq, example, the classes of the instances in Fig-
combination with the PoS tagger (described in Segyre 2 encode the ten solutions for the wdad in
tion 4). Figure 1. The ratio behind this encoding is that
In the corpus the number of analyses per word allows for a simple derivation of the solution,
is not entirely constant, either due to the automatiakin to the way that the pieces of a jigsaw puz-
generation method or to annotator edits. As our inizle can be combined. We can exhaustively try all
tial goal is to predict all possible analyses for a givewombinations of the subanalyses of the classes, and
word, regardless of contextual constraints, we firstheck if the right side of one subanalysis matches
created dexicon that maps every word to all anal- the left side of a subsequent subanalysis. This re-
yses encountered and their respective frequenciesnstruction process is illustrated in Figure 3 (only
From the 185,061 tokens in the corpus, we extractddo reconstructions are depicted, corresponding to
16,626 unique word types — skipping punctuation toSOLUTION 1 and SOLUTION 4). For exam-
kens — and 129,655 analyses, which amounts to 7p8e, the subanalysika from the first class in Fig-
analyses per type on average. ure 2 matches the subanalysis a from the sec-



ka ku

ata utu #Wrds Prec Rec F

ab/ PV+a/ PVSUFF_SUBJ: 3M5 ub/ NOUN+u/ CASE_DEF_NOM
Kat abl PVeal PVSUEF_ SUBJ: 3M6 Kut ub/ NOUN+ CASE. DEF_NCM Known with lookup 3220 92.6 98.1 95.3
. . . Known without lookup 3220 49.9 95.0 65.5
Figure 3: lllustration of how two morphological

gure 3: lllustration of how two morphological )\ 847 22.8 26.8 24.7

analyses are reconstructed from the classes in Fig=
ure 2.

Table 1: Results of initial experiments split into
ond class, which in turn matches the subanalyknown and unknown words, and with and without
sisab/ PV+a/ PVSUFF_SUBJ: 3MsS from the third lookup of known words.

class; together these constitute the complete analysis
kat ab/ Pv+a/ PVSUFF_SUBJ: 3MS.

#Wrds Prec Rec F

3.2 Initial Experiments Known 3220 156 99.0 26.9

. _ _ Unknown 847 39 668 7.5
To test the feasibility of our approach, we first train

and test on the full data set. Timbl is used with its detgpje 2: Results of experiments for improving the

fault settings (overlap distance function, gain-ratiqeca|, split into known and unknown words.

feature weightingk = 1). Rather than evaluating

on the accuracy of predicting the complex classegnalysis overgeneration seems to be a side effect

we evaluate on the complete correctness of all recoonf the way we encode and reconstruct the analyses.

structed analyses, in terms of precision, recall, arhe recall is low for unknown words only. There

F-score (van Rijsbergen, 1979). As expected, thigppear to be at least two reasons for this undergen-

results in a near perfect recall (97.5). The precisiorgration problem. First, if just one of the predicted

however, is much lower (52.5), indicating a substarelasses is incorrect (one of the pieces of the jigsaw

tial amount of analysis overgeneration; almost onpuzzle is of the wrong shape) then many, or even alll

in two generated analyses is actually not valid. Witlof the reconstructions fail. Second, some generaliza-

an F-score of only 68.1, we are clearly not able teions cannot be made, because infrequent classes are

reproduce the training data perfectly. overshadowed by more frequent ones with the same
Next we split the data in 9 parts for training andfeatures. Consider, for example, the instance for the

1 part for testing. Thé-NN classifier is again used third character (l) of the worfEl:

with its default settings. Table 1 shows the results = = = j g| === = =

broken down into known and unknown words. As ] ]

known words can be looked up in the lexicon derivedfS €@l class in the test data is:

from the training material, the first row presents al/VERB_PERFECT+; ol / NOUN+

the results with lookup and the second row withoWyhen thek-NN classifier is looking for its nearest

lookup (that is, with prediction). The fact that &VeMheighbors, it finds three: two with a “verb imperfect”
with lookup the performance is not perfect show§ag and one with a “noun” tag.

that the upper bound for this task is not 100%. The
. : { al /VERB_| MPERFECT+ 2, ol / NOUN+ 1}

reason is that apparantly some words in the test ma-
terial have received analyses that never occur in thherefore, the class predicted by the classifier is
training material and vice versa. For known words| / VERB.I MPERFECT+, because this is the majority
without lookup, the recall is still good, but the preci-class in the NN-set. So, although a part of the cor-
sion is low. This is consistent with the initial resultsrect solution is present in the NN-set, simple major-
mentioned above. For unknown words, both recalty voting prevents it from surfacing in the output.
and precison are much worse, indicating rather poor
generalization. 3.3 Improving recall

To sum up, there appear to be problems with bothn an attempt to address the low recall, we revised
the precision and the recall. The precision is low foour experimental setup to take advantage of the com-
known words and even worse for unknown wordsplete NN-set. As before, theNN classifier is used,

4



Prec Rec F score. This yieled am-best value of 40 and tag
nown 58604 666 (05 62403l TR D L e (ovcept the
Unknown 28.7 (3.7) 37.2(1.2) 32.2(2.5) eXp 1 (excep

held out data) using the method described in the pre-
All 53.4(1.2) 62.2(0.6) 57.5(0.8) . - N ) :
vious section in combination with the filters. Aver-

Table 3: Average results and SD of the 10-fold C\R9€ Scores of the 10 folds are given in Table 3. In

experiment, split into known and unknown words comparison with the initial results, _both precision
and recall on unknown words has improved, indi-

but rather than relying on the classifier to do the magating that overgeneration and undergeneration can
jority voting over the (possibly weighted) classes irbe midly counteracted.

thek-NN set and to output single class, we perform
a reconstruction of analyses combiniigclasses in
the k-NN set. To allow for more classes irNN’s  Admittedly, the performance is not very impressive.
output, we increasé to 3 while keeping the other We have to keep in mind, however, that the task is
settings as before. As expected, this approach ifOt an easy one. It includes vowel insertion in am-
creases the number of analyses. This, in turn, ifiguous root forms, which —in contrast to vowel in-
creases the recall dramatically, up to nearly perfegertion in prefixes and suffixes — is probably irreg-
for known words; see Table 2. However, this gaitllar and unpredictable, unless the appropriate stem
in recall is at the expense of the precision, whictvould be known. As far as the evaluation is con-
drops dramatically. So, although our revised apcerned, we are unsure whether the analyses found
proach solves the issues above, it introduces massifethe treebank for a particular word are exhaus-

3.5 Discussion

overgeneration. tive. If not, some of the predictions that are currently
_ o counted as precision errors (overgeneration) may in
3.4 Improving precision fact be correct alternatives.

We try to tackle the overgeneration problem by fil- Since instances are generated for each type rather
tering the analyses in two ways. First, by rankinghan for each token in the data, the effect of to-
the analyses and limiting output to thebest. The ken frequency on classification is lost. For exam-
ranking mechanism relies on the distribution of théple, instances from frequent tokens are more likely
classes in the NN-set. Normally, some classes occtfr occur in thek-NN set, and therefore their (par-
more frequently than others in the NN-set. Duringial) analyses will show up more frequently. This is
the reconstruction of a particular analysis, we sur@in issue to explore in future work. Depending on
the frequencies of the classes involved. The resulthe application, it may also make sense to optimize
ing score is then used to rank the analyses in den the correct prediction of unkown words, or on in-
creasing order, which we filter by taking thebest. ~ creasing only the recall.

The second filter employs the fact that only cer- )
tain sequences of morphological tags are valid. Ta‘é Part-of-speech tagging

bigrams are already implicit in the way that thewe employmsT, a memory-based tagger-generator
classes are constructed, because a class contaifgl tagger (Daelemans et al., 1996) to produce a
the tags preceding and following the input charagpart-of-speech (PoS) tagger based onatel cor-

ter. However, cooccurrence restrictions on tags mepug We first describe how we prepared the corpus
stretch over longer distances; tag trigram informadata. We then describe how we generated the tag-
tion is not available at all. We therefore derive ger (a two-module tagger with a module for known
frequency list of all tag trigrams occurring in thewords and one for unknown words), and subse-
training data. This information is then used to fllterquenﬂy we report on the accuracies obtained on test

analyses containing tag trigrams occurring below gaterial by the generated tagger. We conclude this
certain frequency threshold in the training data. ~————
Both filters were optimized on the fold that was In our experiments we used thas software pack-
0 p age, version 2 (Daelemans et al., 2003), available from
used for testing so far, maximizing the overall Fhttp://ilk.uvt.nl/.



w CONJ

bdA  VERB_PERFECT could. The input on which the known-word tag-
styfn NOUN_PROP ; P i ; _
knt  NOUN PROP ger bases its preo!lctlon for a given focus word con
NEYLA - ADUNSURF_MASC_SGACC_ | NDEF sists of the following set of features and parameter
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, PUNC settings: (1) The word itself, in a local context of
Al A ADV

-n FUNC_WORD the two preceding words and one subsequent word.
Only the 200 most frequent words are represented

Figure 4: Part of amTB1 sentence with unvoweled @ themselves; other words are reduced to a generic

words (left) and their respective PoS tags (right). String —cf. (Daelemans et al., 2003) for details. (2)
The possible tags of the focus word, plus the pos-

section by describing the effect of using the outpuip|e tags of the next word, and tidsambiguated
of the morphological analyzer as extra input to theags of two words to the left (which are available be-
tagger. cause the tagger operates from the beginning to the
end of the sentence). The known-words tagger is
based on &-NN classifier witht = 15, the modi-
While the morphological analyzer attempts to genefiied value difference metric (MVDM) distance func-
ate all possible analyses for a given unvoweled worgion, inverse-linear distance weighting, and GR fea-
the goal of PoS tagging is to select one of thesgire weighting. These settings were manually opti-
analyses as the appropriate one given the contextized on a held-out validation set (taken from the
as the annotators of thers1 corpus did using the training data).
* marker. We developed a PoS tagger that is trained The unknown-word tagger attempts to derive as
to predict an unvoweled word in context, a concatemych information as possible from the surface form
nation of the PoS tags of its morphemes. Essentially the word, by using its suffix and prefix letters as
this is the task of the morphological analyzer withfeatyres. The following set of features and param-
out segmentation and vocalization. Figure 4 showsters are used: (1) The three prefix characters and
part of a sentence where for each word the respectiyge four suffix characters of the focus word (possi-
tag is given in the second column. Concatenation igqy encompassing the whole word); (2) The possible
marked by the delimitef. tags of the next word, and the disambiguated tags
We trained on the full ten folds used in the previqf two words to the left. The unknown-words tag-
ous sections, and tested on the eleventh fold. Tl'geér is based on &-NN classifier withk = 19, the
training set thus contains 150,966 words in 4,60 odified value difference metric (MVDM) distance
sentences; the test set contains 15,102 words in 4ﬁ9‘|ction, inverse-linear distance weighting, and GR

sentences. 358 unique tags occur in the corpus. f8ature weighting — again, manually tuned on vali-
the test set 947 words occur that do not occur in th@ation material.

training set.

4.1 Data preparation

The accuracy of the tagger on the held-out cor-
pus is 91.9% correctly assigned tags. On the 14155
known words in the test set the tagger attains an ac-

Memory-based tagging is based on the idea thaiiracy of 93.1%; on the 947 unknown words the ac-
words occurring in similar contexts will have thecyracy is considerably lower: 73.6%.

same PoS tag. A particular instantiatiomgT, was

proposed in (Daelemans etal., 1996)svhasthree 5 |ntegrating morphological analysis and

modules. First, it has a lexicon module which stores part-of-speech tagging

for all words occurring in the provided training cor-

pus their possible PoS tags (tags which occur belowhile morphological analysis and PoS tagging are

a certain threshold, default 5%, are ignored). Se@nds in their own right, the usual function of the

ond, it generates two distinct taggers; one for knowtwo modules in higher-level natural-language pro-

words, and one for unknown words. cessing or text mining systems is that they jointly
The known-word tagger can obviously benefidetermine for each word in a text the appropriate

from the lexicon, just as a morphological analyzesingle morpho-syntactic analysis. In our setup, this

4.2 Memory-based tagger generator



All words Known words Unknown words
Part-of-speech source Precision Recall Precision Recakcigion Recall

Gold standard 70.1 97.8 75.8 99.5 30.2 73.4
Predicted 64.0 89.7 69.8 92.0 23.9 59.0

Table 4: Precision and recall of the identification of thetegtually appropriate morphological analysis,
measured on all test words and split on known words and unkieovds. The top line represents the upper-
bound experiment with gold-standard PoS tags; the bottoerépresents the experiment with predicted PoS
tags.

amounts to predicting the solution that is precededhatches (a precision of 30.2).

by “*” in the original ATB1 data. For this purpose, Next, the experiment was repeated wtiedicted

the PoS tag predicted byBT, as described in the PoS tags and morphological analyses. The results
previous section, serves to select the morphologicale presented in the bottom result line of Table 4.
analysis that is compatible with this tag. We emThe precision and recall of identifying correct anal-
ployed the following two rules to implement this: yses of known words degrades as compared to the
(1) If the input word occurs in the training data,upper-bounds results due to incorrect PoS tag pre-
then look up the morphological analyses of the wordictions. On unknown words the combination of
in the training-based lexicon, and return all morheavy overgeneration by the morphological analyzer
phological analyses with a PoS content matchingnd the 73.6% accuracy of the tagger leads to a low
the tag predicted by the tagger. (2) Otherwise, lgirecision of 23.9 and a fair recall of 59.0. On both
the memory-based morphological analyzer produdenown and unknown words the integration of the
analyses, and return all analyses with a PoS contemforphological analyzer and the tagger is able to nar-
matching the predicted tag. row down the analyses by the analyzer to a subset of
dnatching analyses that in about nine out of ten cases

We first carried out an experiment integrating th
e* soLuTI ON’ word.

output of the morphological analyzer and the Po§ONtains th
tagger, faking perfect tagger predictions, in order tg
determine the upper bound of this approach. Rath& Related work

than predicting the PoS tag withT, we directly 1o apgjication of machine learning methods to

derived the PoS tag from the annotations in the tree apic morphology and PoS tagging appears to
bank. The upper result line in Table 4 displays thge gomewhat limited and recent, compared to the
precision and recall scores on the held-out data Qf,qt jescriptive and rule-based literature particularly
identifying the appropriate morphological analysis, morphology (Kay, 1987; Beesley, 1990; Kiraz,

i.e. the solution marked by. Unsurprisingly, the 1994; Beesley, 1998: Cavalli-Sfora et al., 2000;
recall on known words is 99.5%, since we are USs o di 2002).

ing the gold-standard PoS tag which is guaranteed We are not aware of any machine-learning ap-
to be among the training-based lexicon, except for

tation di ) M int inal roach to Arabic morphology, but find related is-
some annotation discrepancies. More interestingly, oo in (Daya et al.. 2004), who propose a

POS t tually mi tch | %achine-learning method augmented with linguistic
on Fos fags actually mismalches on VOWel or ConsQe, o aints 1o identifying roots in Hebrew words —
nant changes, e.g. because it represents a differ

o ) @ felated but reverse task to ours. Arabic PoS tag-
stem —which is unpredictable by our method. ging seems to have attracted some more attention.
About one out of four unknown words has mor-Freeman (2001) describes initial work in developing
phological analyses that do not match the golda PoS tagger based on transformational error-driven

standard PoS (a recall of 73.4); at the same timé&arning (i.e. the Brill tagger), but does not provide
a considerable amount of overgeneration of analyerformance analyses. Khoja (2001) reports a 90%
ses accounts for the low amount of analyses thatccurate morpho-syntactic statistical tagger that uses



the Viterbi algorithm to select a maximally-likely K. Beesley. 1990. Finite-state description of Arabic maiph
part-of-speech tag sequence over a sentence. Dialfdy. InProceedings of the Second Cambridge Conference:

L (2004) d ib f h b dBlllngual Computing in Arabic and English.
et al. (2004) describe a part-o 'Sp_eec .tagger 8SRUBeesley. 1998. Consonant spreading in Arabic stems. In
on support vector machines that is trained on tok- Proceedings of COLING-98.

enized data (clitics are separate tokens), reportingTa Buckwalter. ~ 2002. ~ Buckwalter Arabic morpho-

. logical analyzer version 1.0. Technical Report
0
tagging accuracy of 95.5%. LDC2002L49, Linguistic Data Consortium. available
) fromhttp://ww. | dc. upenn. edu/ .
7 Conclusions V. Cavalli-Sfora, A. Soudi, and M. Teruko. 2000. Arabic

morphology generation using a concatenative strategy. In

We investigated the application of memory-based Proceedings of the First Conference of the North-American

| . A t neighbor cl ification) to mor- Chapter of the Association for Computational Linguistics,
earning ¢-nearest neighbor classification) to mor-  Sczie wa, UsA.

phological analysis and PoS tagging of unvoweled m. Cover and P. E. Hart. 1967. Nearest neighbor pattern

written Arabic, using theaTB1 corpus as training classification. Institute of Electrical and Electronics Engi-

. . . neers Transactions on Information Theory, 13:21-27.
and testing material. The morphological ar]a‘lyze\I;V. Daelemans, J. Zavrel, P. Berck, and S. Gillis. 1996T: A

was shown to attain F-scores of 0.32 amknown memory-based part of speech tagger generator. In E. Ejerhed
words when predicting all aspects of the analysis, and I. Dagan, editorsProceedings of Fourth Workshop on

. . N . Very Large Corpora, pages 14-27. ACL SIGDAT.
mCIUdmg vocalization (a partly unpredlCtable taSkW. Daelemans, A. van den Bosch, and J. Zavrel. 1999. For-

certainly if no context is available). The PoS tag- getting exceptions is harmful in language learninga-
ger attains an accuracy of about 74% on unknown chine Learning, Special issue on Natural Language Learn-

o . . ing, 34:11-41.
words, and 92% on all words (mCIUdmg knownW. Daelemans, J. Zavrel, A. van den Bosch, and K. van der

words). A combination of the two which selects  sjoot. 2003. MBT: Memory based tagger, version 2.0, ref-
from the set of generated analyses a subset of anal-erence guide. ILK Technical Report 03-13, Tilburg Univer-
yses with the PoS predicted by the tagger, yieldeﬁ/ Sity.

. ; Daelemans, J. Zavrel, K. van der Sloot, and
a recall of the contextually appropriate analysis Of A van den Bosch. 2004. TiMBL: Tilburg memory

0.90 on test words, yet a low precision of 0.64 based learner, version 5.1, reference guide. ILK Technical
; ; ; Report 04-02, Tilburg University.

largel vergeneration of invalid analy- ; .

argely caused by overgeneration o alid a ayE. Daya, D. Roth, and S. Wintner. 2004. Learning Hebrew

Ses. roots: Machine learning with linguistic constraints. Rro-

We make two final remarks. First, memory- ceedings of EMNLP'04, Barcelona, Spain.

; ; ; M. Diab, K. Hacioglu, and D. Jurafsky. 2004. Automatic tag-
based morphological analysis of Arabic words ap ging of arabic text: From raw text to base phrase chunks. In

pears feasible, but its main limitation is its inevitable  Proceedings of HLT/NAACL-2004.
inability to recognize the appropriate stem of unA. Freeman. 2001. Brill's POS tagger and a morphology parser

known words on the basis of the ambiguous root for Arabic. In ACL/EACL-2001 Workshop on Arabic Lan-
guage Processing: Satus and Prospects, Toulouse, France.

form input.; Ol_"r current _meth_Od simply overgenery, Kay. 1987. Non-concatenative finite-state morphology. |
ates vocalizations, keeping high recall at the cost of Proceedings of the third Conference of the European Chap-
low precision. Second, memory-based PoS tagging ter of the Association for Computational Linguistics, pages

. . . 2-10, Copenhagen, Denmark.
of written Arabic text also appears to be feasible; thg kpoja. 2001. APT: Arabic part-of-speech tagger. Pho-

observed performances are roughly comparable to ceedings of the Sudent Workshop at NAACL-2001.

those observed for other languages. The PoS taggifig Kiraz. 1994. Mulii-tape two-level morphology: A case
task as we define it is deliberately separated from the study in semitic non-linear morphology. Rroceedings of
askaswe y sep COLING' 94, volume 1, pages 180-186.

problem of vocalization, which is in effect the prob-j. Mccarthy. 1981. A prosodic theory of non-concatenative
lem of stem identification. We therefore consider the morphology.Linguistic Inquiry, 12:373-418.

i o . Soudi. 2002.A Computational Lexeme-based Treatment of
automatic identification of stems as a component & Arabic Morphology. Ph.D. thesis, Mohamed V University

full morpho-syntactic analysis of written Arabic an (Morocco) and Carnegie Mellon University (USA).

important issue for future research. A. van den Bosch and W. Daelemans. 1999. Memory-based
morphological analysis. |IRroceedings of the 37th Annual
Meeting of the ACL, pages 285-292, San Francisco, CA.
Morgan Kaufmann.
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Abstract

Morphological analysis is a crucial com-
ponent of several natural language pro-
cessing tasks, especially for languages
with a highly productive morphology,
where stipulating a full lexicon of sur-
face forms is not feasible. We describe
HAMSAH (HAifa Morphological System
for Analyzing Hebrew), a morphological
processor for Modern Hebrew, based on
finite-state linguistically motivated rules
and a broad coverage lexicon. The set
of rules comprehensively covers the mor-
phological, morpho-phonological and or-
thographic phenomena that are observable
in contemporary Hebrew texts. Reliance
on finite-state technology facilitates the
construction of a highly efficient, com-
pletely bidirectional system for analysis
and generation. HAMSAH is currently
the broadest-coverage and most accurate
freely-available system for Hebrew.

Shuly Wintner
Department of Computer Science
University of Haifa
31905 Haifa, Israel
shuly@cs.haifa.ac.il

As an example of root-and-pattern morphology,
consider the Hebretwoots g.d.I andr.e.m and the
patternshCCCh and CiCwC, where the ‘C’s indi-
cate the slots. When the roots combine with these
patterns the resulting lexemes ahgdlh, gidwl,
hremh, riewm, respectively. After the root com-
bines with the pattern, some morpho-phonological
alternations take place, which may be non-trivial:
for example, thehntCCCwt pattern triggers assimi-
lation when the first consonant of the roottior
d: thus, d.re+htCCCwt yields hdrewt. The same
pattern triggers metathesis when the first radical is
or e: s.d.r+htCCCwt yields hstdrwt rather than the
expectechtsdrwt. Frequently, root consonants such
asw or i are altogether missing from the resulting
form. Otherweakparadigms include roots whose
first radical isn and roots whose second and third
radicals are identical. Thus, the roatsv.m, g.n.n,
n.p.I andi.c.g, when combining with theaCCCh
pattern, yield the seemingly similar lexemiagnh,
hgnh, hplh andhcgh, respectively.

The combination of a root with a pattern produces
a base(or alexemg, which can then be inflected in
various forms. Nouns, adjectives and numerals in-

flect for number (singular, plural and, in rare cases,
also dual) and gender (masculine or feminine). In
Hebrew, like other Semitic languages, has a richddition, all these three types of nominals have two
and complex morphology. The major word formaphonologically distinct forms, known as ttaso-
tion machinery is root-and-pattern, where roots argite andconstructstates. Unfortunately, in the stan-

sequences of three (typically) or more consonantgard orthography approximately half of the nomi-
calledradicals and patterns are sequences of vow-
els and, sometimes, also consonants, with “slots*—T—— .

. . , L To facilitate readability we sometimes use a transliteration
into which the root’s consonants are being insertegt Hebrew using ASCII characters:

1 Hebrew morphology: the challenge

(interdigitation). Inflectional morphology is highy a b g d h w z x v i Kk
. . . Y

productive and consists mostly of suffixes, but some—fe r?] ?1 ;’ 3 1p TC r(r] Mr e ?

times of prefixes or circumfixes. S »m 31y bpy B % ZA A o
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nals appear to have identical forms in both statesexts in Hebrew are of the latter kind; unfortunately,
a fact which substantially increases the ambigudifferent authors use different conventions for the
ity. In addition, nominals take pronominal suffixesundotted script. Thus, the same word can be writ-
which are interpreted as possessives. These infldeh in more than one way, sometimes even within
for number, gender and persospr+h—sprh “her the same document, again adding to the ambiguity.
book”, spr+km—sprkm “your book”, etc. As ex- In light of the above, morphological analysis of
pected, these processes involve certain morphologitebrew forms is a non-trivial task. Observe that
cal alternations, as imlkh+h—mikth “her queen”, simply stipulating a list of surface forms is not a vi-
mlkh+km— mlktkm “your queen”. Verbs inflect for able option, both because of the huge number of po-
number, gender and person (first, second and thir@ntial forms and because of the complete inability
and also for a combination of tense and aspeatf such an approach to handle out-of-lexicon items;
which is traditionally analyzed as having the valueshe number of such items in Hebrew is significantly
past, present, future, imperative and infinite. VerbRirger than in European languages due to the combi-
can also take pronominal suffixes, which in this casgation of prefix particles with open-class words such
are interpreted as direct objects, but such construgs proper names. The solution must be a dedicated
tions are rare in contemporary Hebrew of the regisnorphological analyzer, implementing the morpho-
ters we are interested in. logical and orthographic rules of the language.
These matters are complicated further due to two Several morphological processors of Hebrew have
sources: first, the standard Hebrew orthographyeen proposed, including works by Choueka (1980;
leaves most of the vowels unspecified. It does natg90), Ornan and Kazatski (1986), Bentur et al.
explicate/a] and [e], does not distinguish between(1992) and Segal (1997); see a survey in Wintner
[o] and [u] and leaves many of thg] vowels un- (2004). Most of them are proprietary and hence can-
specified. Furthermore, the single letter is used not be fully evaluated. However, the main limitation
both for the vowelsfo] and [u] and for the con- of existing approaches is that they are ad-hoc: the
sonant[v], whereas i is similarly used both for ryles that govern word formation and inflection are
the vowel[i] and for the consonarfy]. On top of only implicit in such systems, usually intertwined
that, the script dictates that many particles, includyith control structures and general code. This makes
ing four of the most frequent prepositions (in”,  the maintenance of such systems difficult: correc-
k “as”, 1 to” and m “from”), the definite article tions, modifications and extensions of the lexicon
h “the”, the coordinating conjunctiow “and” and are nearly impossible. An additional drawback is
some subordinating conjunctions (sucheahat”  that all existing systems can be used for analysis but
andke “when”), all attach to the words which imme- not for generation. Finally, the efficiency of such
diately follow them. Thus, a form such abth can  systems depends on the quality of the code, and is
be read as a lexeme (the verb “capture”, third pesometimes sub-optimal.
son singular feminine past), as-bth “that+field”,
e+b+th “that+in+tea”,ebt+h “her sitting” orevenas 2  Finjte-state technology
e+bt+h “that her daughter”. When a definite nomi-
nal is prefixed by one of the prepositiohsk or I, Finite-state technology(Beesley and Karttunen,
the definite articleh is assimilated with the prepo- 2003) solves the three problems elegantly. It pro-
sition and the resulting form becomes ambiguous agdes a language of extended regular expressions
to whether or not it is definitebth can be read either which can be used to define very natural linguis-
asb+th “in tea” or asb+h+th “in the tea”. tically motivated grammar rules. Such expressions
An added complexity stems from the fact thatan then be compiled into finite-state networks (au-
there exist two main standards for the Hebrewomata and transducers), on which efficient algo-
script: one in which vocalization diacritics, knownrithms can be applied to implement both analysis
as nigqud “dots”, decorate the words, and anotherand generation. Using this methodology, a computa-
in which the dots are missing, and other charactet®nal linguist can design rules which closely follow
represent some, but not all of the vowels. Most of thetandard linguistic notation, and automatically ob-
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tain a highly efficient morphological processor. bet symbol. Square brackets are used for bracketing.
While the original Two-Level formulation In addition to sets of strings, XFST enables the
(Koskenniemi, 1983) of finite-state technologydefinition of binary relations over such sets. By de-
for morphology was not particularly well suitedfault, every set is interpreted as the identity relation,
to Semitic languages (Lavie et al.,, 1988), modwhereby each string is mapped to itself. But re-
ifications of the Two-Level paradigm and morelations can be explicitly defined using a variety of
advanced finite-state implementations have beeaperators. The.X. ' operator denotes cross prod-
applied successfully to a variety of Semitic lan-uct: the expressiomnA.x.B ' denotes the relation in
guages, including Ancient Akkadian (Kataja andvhich each string i\ is mapped to each string B
Koskenniemi, 1988), Syriac (Kiraz, 2000) andAn extremely useful operation is composition: de-
Arabic. In a number of works, Beesley (1996;noted by 0. ', it takes tworelations A andB, and
1998; 2001) describes a finite-state morphologicadroduces a new relation of paiis, ¢) such that there
analyzer of Modern Standard Arabic which handlesxists somé that(a, b) is a member ofA and (b, ¢)
both inflectional and derivational morphology,is a member oB.
including interdigitation. In the following section  Finally, XFST provides also sevenaplacerules.
we focus on a particular finite-state toolbox whichExpressions of the formA->B || L _ R ’ de-
was successfully used for Arabic. note the relation obtained by replacing strings from
In this work we use XFST (Beesley and Kart-A by strings fromB, whenever the former occur
tunen, 2003), an extended regular expression lam the context of strings froni on the left and
guage augmented by a sophisticated implementatiéhon the right. Each of the context markers can
of several finite-state algorithms, which can be usele replaced by the special symbak.' ’, indicat-
to compactly store and process very large-scale neftg a word boundary. For example, the expression
works. XFST grammars define a binary relation (a[lh]->[t] || ? _ #. ' replaces occurrences
transduction on sets of strings: a grammar mapof ‘h’ by ‘t * whenever the former occurs before the
each member of a (possibly infinite) set of stringsend of a word. Composing this example rule on an
known as thesurface or lower language, to a set (identity) relation whose strings are various words
of strings (thelexical, or upper language). The results in replacing finah with final t in all the
idea is that the surface language defines all and onlyords, not affecting the other strings in the relation.
the grammatical words in the language; and each XFST supports diverse alphabets. In particular, it
grammatical word is associated with a set of lexicatupports UTF-8 encoding, which we use for Hebrew
strings which constitutes isnalyses As an exam- (although subsequent examples use a transliteration
ple, the surface stringbth may be associated by theto facilitate readability). Also, the alphabet can in-
grammar with the set of lexical strings, or analyseg;lude multi-character symbojsin other words, one
depicted in figure 1. can define alphabet symbols which consist of several
XFST enables the definition ofariables whose (print) characters, e.g.ntimber’ or ‘tense . This
values, ordenotations are sets of strings, or lan- comes in handy whetags are defined, see below.
guages. Grammars can set and use those variab{&saracters with special meaning (such€fr ‘[ ')
by applying a variety obperators For example, the can be escaped using the symbil ‘For example,
concatenatioroperator (unfortunately indicated bythe symbol %+ is a literal plus sign.
a space) can be used to concatenate two languagesProgramming in XFST is different from program-
the expressionA B denotes the set of strings ob-ming in high level languages. While XFST rules
tained by concatenating the strings Anwith the are very expressive, and enable a true implementa-
strings inB. Similarly, the operator|" denotes set tion of some linguistic phenomena, it is frequently
union, ‘& denotes intersection; * set complement, necessary to specify, within the rules, information
‘-’ set difference and*’ Kleene closure; $A’ de- that is used mainly for “book-keeping”. Due to
notes the set of strings containing at least one irthe limited memory of finite-state networks, such
stance of a string from as a substring. The empty information is encoded inags which are multi-
string is denoted byd’ and ?’ stands for any alpha- character symbols attached to strings. These tags
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[+verb][+id]9430[+base]ebt[+root]ebt[+binyan]+Pa’al[+agr]+3p/F/Sg[+tense]+past
[+verb][+id]1541[+base]ebh[+root]ebh[+binyan]+Pa’al[+agr]+3p/F/Sg[+tense]+past
[+conjJe[+prep]b[+noun][+id]19804[+base]th[+gender]+M[+number]+Sg[+construct]+true
[+conjle[+prep]b[+noun][+id]19804[+base]th[+gender]+M[+number]+Sg[+construct]+false
[+conjle[+prep]b[+defArt][+noun][+id]19804[+base]th[+gender]+M[+number]+Sg[+construct]+false
[+conjle[+noun][+id]19130[+base]bth[+gender]+F[+number]+Sg[+construct]+false
[+conjJe[+noun][+id]1379[+base]bt[+gender]+F[+number]+Sg[+construct]+false[+poss]+3p/F/Sg
[+noun][+id]17280[+base]ebt[+gender]+F[+number]+Sg[+construct]+false[+poss]+3p/F/Sg

Figure 1: The analyses of the surface st ebth

can be manipulated by the rules and thus propa- system is highly efficient. While the network
gate information among rules. For example, nhouns has close to 2 million states and over 2 million

are specified fonumber and the number feature arcs, its compiled size is approximately 4Mb
is expressed as a concatenation of thertagnber and analysis is extremely fast (between 50
with the multi-character symbotsingular or and 100 words per second).

+plural . Rules which apply to plural nouns only
can use this information: ifouns is an XFST vari-
able denoting the set of all nouns, then the expres-
sion $[number %-+plural] .0. nouns de-
notes only the plural nouns. Once all linguistic pro-

cessing is complete, “book-keeping” tags are erased. | N€ System consists of two main components: a
lexiconrepresented in Extensible Markup Language

3 A morpho'ogica' grammar of Hebrew (XML), and a set of finite-state rUIeS, implemented
in XFST. The use of XML supports standardization,
The importance of morphological analysis as a presllows a format that is both human and machine
liminary phase in a variety of natural language proreadable, and supports interoperability with other
cessing applications cannot be over-estimated. Thgplications. For compatibility with the rules, the
lack of good morphological analysis and disamtexicon is automatically converted to XFST by ded-

biguation systems for Hebrew is reported as one @tated programs. We briefly describe the lexicon in
the main bottlenecks of a Hebrew to English masection 3.1 and the rules in section 3.2.

chine translation system (Lavie et al. (2004)). The _
contribution of our system is manyfold: 3.1 The lexicon

e HAMSAH is the broadest_coverage and mosfrhe lexicon is a list of lexical entries, each with a
accurate publicly available morphological anbase(citation) form and a uniquiel. The base form
alyzer of Modern Hebrew. It is based on aof nouns and adjectives is the absolute singular mas-
lexicon of over 20,000 entries, which is con-culine, and for verbs it is the third person singu-
stantly being updated and expanded, and its s masculine, past tense. It is listed in dotted and
of rules cover all the morphological, morpho-tndotted script as well as using a one-to-one Latin
phonological and orthographic phenomena oﬁransliteration. Figure 2 depicts the lexical entry of
served in Contemporary Hebrew texts. Comthe wordbli “without”. In SUbsequent examples we
pared to Segal (1997), our rules are probablietain only the transliteration forms and suppress the
similar in coverage but our lexicon is signif- Hebrew ones.
icantly Iarger._ HAMS_AH also supports non- _.om dotted=" ,5;.. id="4917"
standard spellings which are excluded from the translit="bli"* undotted=" omrs

work of Segal (1997). <conjunction type="coord"/>
e The system is fully reversible: it can be used/item>
both for analysis and for generation.

e Morphological knowledge is expressed through
linguistically motivated rules. To the best of
our knowledge, this is the first formal grammar
for the morphology of Modern Hebrew.

. Figure 2: The lexical entry dfli “without”
e Due to the use of finite-state technology, the g y B
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The lexicon specifies morpho-syntactic featuregon form. For example, some adverbs inflect for
(such as gender or number), which can later be us@égrson, number and gender (e gy, “slowly”), so
by parsers and other applications. It also lists sethis is indicated in the lexicon. The lexicon also
eral lexical proerties which are specifically targetedpecifies the person, number and gender of pro-
at morphological analysis. A typical example is thenouns, the type of proper names (location, person,
feminine suffix of adjectives, which can be one ofbrganization), etc. The lexical representation of
h, it or t, and cannot be predicted from the baseerbs is more involved and is suppressed for lack
form. The lexicon lists information pertaining to of space.
non-default behavior with idiosyncratic entries. Irregularities are expressed directly in the lexi-

Adjectives inflect regularly, with few exceptions.con, in the form of additional or alternative lexi-
Their citation form is the absolute singular mascueal entries. This is facilitated through the use of
line, which is used to generate the feminine formthree optional elements in lexicon itemadd, re-
the masculine plural and the feminine plural. Arplace andremove For example, the noubhriim
additional dimension is status, which can be alnoon” is also commonly spellechrim, so the addi-
solute or construct. Figure 3 lists the lexicon entional spelling is specified in the lexicon, along with
try of the adjectiveyilai “supreme”: its feminine the standard spelling, usiragld As another exam-
form is obtained by adding the suffix (hence ple, consider Segolate nouns suchbagr “morn-
feminine="t" ). Other features are determineding”. Its plural form isbqrim rather than the default
by default. This lexicon entry yieldgilai, yilait, yi- bwqrim; such stem changing behavior is specified
laiim, yilaiwt etc. in the lexicon usingeplace Finally, the verbykwl
“can” does not have imperative inflections, which
are generated by default for all verbs. To prevent the
default behavior, the superfluous forms emmovel.

The processing of irregular lexicon entries re-
quires some explanation. Lexicon items containing
add removeand replaceelements are included in
the general lexicon without theedd, removeandre-
laceelements, which are listed in special lexicons.
ge general lexicon is used to build a basic morpho-
E§1ogical finite-state network. Additional networks are
The lexicon specifies the feminine suffix via tieen- Built using the.same set of_rules for tbd(.j’ remove

andreplacelexicons. The final network is obtained

inine attribute. Nouns regularly inflect for number, :
. 'hy subtracting theemovenetwork from the general
but some nouns have only a plural or only a singu-

: ) one (using the set difference operator), adding the
lar form. The plural suffix g for masculinewt for add network (using the set union operator), and fi-
feminine by default) is specified through tphural 9 P ’

. . . nall lyingpriority union with the replacenet-
attribute. Figure 4 demonstrates a masculine nodls. Y @PPyingprio Fy union with the rep ace et

. . . work. This final finite-state network contains only
with an irregular plural suffixwt.

and all the valid inflected forms.

<item id="13852" translit="yilai">
<adjective feminine="t" />
</item>

Figure 3: A lexicon item fowilai “supreme”

Similarly, the citation form of nouns is the ab-
solute singular masculine form. Hebrew has grarr{%
matical gender, and the gender of nouns that den
animate entities coincides with their natural gend

<item id="5044" translit="ewlIxn"> The lexicon is represented in XML, while the
<noun gender="masculine" morphological analyzer is implemented in XFST,
number="singular" so the former has to be converted to the latter. In
plural="wt" /></item> XFST, a lexical entry is a relation which holds be-

tween the surface form of the lemma and a set of
Figure 4: A lexicon item for the nouewlIxn “table”  lexical strings. As a surface lemma is processed by
the rules, its associated lexical strings are manipu-
Closed-class words are listed in the lexicon in dated to reflect the impact of inflectional morphol-
similar manner, where the specific category detepgy. The surface string of XFST lexical entries is the
mines which attributes are associated with the citaitation form specified in the XML lexicon. Figure 5
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lists the XFST representation of the lexical entry ofags. A similar filter is applied to the the lower side
the wordbli, whose XML representation was listedof the network.

Infigure 2. tagAffixesFilter
[+negation][+id]21542[+undotted] -0. ' _
‘Sa[+translit]bli prefixesFilters
.0.
Figure 5: The lexicon item afli in XFST [ prefixes inflectedWord |

0.
removeTagsFilter

3.2 Morphological and orthographic rules

In this section we discuss the set of rules which 19" 6: A high level view of the analyzer

constitute the morphological grammatr, i.e., the im- . - .
plementation of linguistic structures in XFST. The As an e>§am_ple, conslder the feminine singular
grammar includes hundreds of rules; we presentfgrm Of adjgctlves, which S genera}ted 'from. the
small sample, exemplifying the principles that gov_mascullne s_ln_gular by _addlng a suffix, eithier it .
ern the overall organization of the grammar. Thé" & Some idiosyncratic forms hgve no masculine
linguistic information was collected from severalsIngular form, bgtdo have”afemlnlne smgul_ar form,
sources (Barkali, 1962; Zdaga, 1974: Alon, 199 f;or examplehrh “pregnant”. Therefore, as figure 7

Cohen, 1996; Schwarzwald, 2001; Schwarzwalds,howsoi smé;ul_ar :emmlhnelaqjecnves are elthde][ ex-
2002; Ornan, 2003). tracted verbatim from the lexicon or generated from

. . the singular masculine form by suffixation. The rule
The grammar consists of specific rules for ever .
}F/J %-+feminine <- ? || %+gender _ ]

part of speech category, which are applied to the ac-hanges the gender attributefeaninine  for the

propriate lexicons. For each category, a variable IS 0 e :
k L . inflected feminine forms. This is a special form of
defined whose denotation is the set of all lexical en- . o
) . ) a replace rule which replaces any symbd&’)'by
tries of that category. Combined with the category- ) L y
. i . the multi-character symbohfeminine ’, in the
specific rules, we obtain morphological grammars ) ) : .
context of occurring after+gender ’. The right

for every category (not including idiosyncrasies). ontext is empty. meani thin
These grammars are too verbose on the lexical siace, P, rgnything

as they contain all the information that was listed injefine feminineSingularAdjective [
the lexicon. Filters are therefore applied to the lexi- [$[%+gender [%-+feminine]]
cal side to remove the unneeded information. .0. adjective ] |

Our rules support surface forms that are made of[ %-+feminine <- ? || %-+gender _ ]
zero or more prefix particles, followed by a (pos- .0. [ sufH | sufT | suflT ]
sibly inflected) lexicon item. Figure 6 depicts the];
high-level organization of the grammar (recall from
section 2 that.o. ’denotes composition). The vari- Figure 7: Feminine adjectives
able inflectedWord denotes a union of all the
possible inflections of the entire lexicon. Similarly, Figure 8 shows how the suffix (the value of the
prefixes is the set of all the possible sequencesariableHE) is used in the inflection. The default
of prefixes. When the two are concatenated, thdg not to add an additiondl if the masculine ad-
yield a language of all possible surface forms, vastljective already terminates with it, asamwrh “male
over-generating. On the upper side of this languageacher— mwrh “female teacher”. This means that
a prefix particle filter is composed, which enforcegxceptions to this default, such glswh “tall, m” —
linguistically motivated constraints on the possiblegbwhh “tall, f”, are being improperly treated. Such
combinations of prefixes with words. On top offorms are explicitly listed in the lexicon as idiosyn-
this another filter is composed, which handles “coserasies (using the add/replace/remove mechanism),
metic” changes, such as removing “book-keepingand will be corrected at a later stage. The suffixes
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andit are handled in a similar way.

define sufH [
[ [ $[%+feminine %-+h] .o.
masculineSingularAdjective |
[ 0 .x. addedHE ] ]
.0. [ addedHE -> 0 || HE _ .#. ]
.0. [ addedHE -> HE ]

]1
Figure 8: Adding the suffit

Figure 9 shows how plural nouns with the suf-

4 Conclusion

We described a broad-coverage finite-state grammar
of Modern Hebrew, consisting of two main compo-
nents: a lexicon and a set of rules. The current un-
derlying lexicon includes over 20,000 items. The av-
erage number of inflected forms for a lexicon item
is 33 (not including prefix sequences). Due to the
use of finite-state technology, the grammar can be
used for generation or for analysis. It induces a very
efficient morphological analyzer: in practice, over
eighty words per second can be analyzed on a con-
temporary workstation.

fix are processed. On the lower side some condi- For lack of space we cannot fully demonstrate the
tional alternations are performed before the suffix isutput of the analyzer; refer back to figure 1 for

added. The first alternation rule repladds with

an example. HAMSAH is now used for a number

ih at the end of a word, ensuring that nouns wrtterdgf projects, including as a front end for a Hebrew

with a spurious such asniih “second” are properly
inflected asniwt “seconds” rather thaaniiwt. The
second alternation rule removes fin&ab ensure that
a singular noun such aseait “truck” is properly in-
flected to its plural formrmeaiwt. The third ensures
that nouns ending iwt such assmkwt “authority”
are properly inflected asmkwiwt. Of course, ir-
regular nouns such asiit “spear”, whose plural is
xnitwt rather tharkniwt, are lexically specified and
handled separately. Finally, a finalis removed by

to English machine translation system (Lavie et al.,
2004). It is routinely tested on a variety of texts,
and tokens with zero analyses are being inspected
manually. A systematic evaluation of the quality of
the analyzer is difficult due to the lack of available
alternative resources. Nevertheless, we conducted
a small-scale evaluation experiment by asking two
annotators to review the output produced by the an-
alyzer for a randomly chosen set of newspaper arti-
cles comprising of approximately 1000 word tokens.

the fourth rule, and subsequently the plural suffix iThe following table summarizes the results of this

concatenated.

define pluralWTNoun [

[ %+plural <- %-+singular || %+number _ ]

.0. $[%+number %-+singular]

0. $[%+plural %+wt]

.0. noun

.0. [ YOD YOD HE -> YOD HE || _ #. ]

.0. [ ALEF YOD TAV -> ALEF YOD || _ # ]
.0. [ VAV TAV -> VAV YOD || _ # ]

.0. [ [HE|TAV] > 0 || _ #. ]

[ 0 x. [VAV TAV] ]

I;

Figure 9: Plural nouns witkvt suffix

experiment.
number %
tokens 959 100.00%
no analysis 37 3.86%
no correct analysis 41 4.28%
correct analysis produced 881 91.86%

The majority of the missing analyses are due to out-
of-lexicon items, particularly proper names.

In addition to maintenance and expansion of the
lexicon, we intend to extend this work in two main
directions. First, we are interested in automatic
methods for expanding the lexicon, especially for
named entities. Second, we are currently working on

The above rules only superficially demonstrate disambiguation module which will rank the analy-
the capabilities of our grammar. The bulk of theses produced by the grammar according to context-
grammar consists of rules for inflecting verbs, independent criteria. Existing works on part-of-speech
cluding a complete coverage of the weak paradigmt&agging and morphological disambiguation in He-
The grammar also contains rules which govern thierew (Segal, 1999; Adler, 2004; Bar-Haim, 2005)

possible combinations of prefix particles and théeave much room for further research.

words they combine with.
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Abstract

We present MAGEAD, a morphological
analyzer and generator for the Arabic
language family.  Our work is novel
in that it explicitly addresses the need
for processing the morphology of the di-
alects. MAGEAD provides an analysis to
a root+pattern representation, it has sep-
arate phonological and orthographic rep-
resentations, and it allows for combining
morphemes from different dialects.

1 Introduction

In this paper we present initial work on MAGEAD, a
morphological analyzer and generator for the Arabic
language family, by which we mean both Modern
Standard Arabic (MSA) and the spoken dialects.®
There has been much work on Arabic morphol-
ogy (for an overview, see (Al-Sughaiyer and Al-
Kharashi, 2004)). Our work is novel in that it ex-
plicitly addresses the need for processing the mor-
phology of the dialects. There are several important
consequences:

e First, we want to be able to exploit the exist-
ing regularities among the dialects and between
the dialects and MSA, in particular systematic
sound changes which operate at the level of the

TWe would like to thank two anonymous reviewers for help-
ful comments, and Amittai Aviram for his feedback and help
with the implementation. The work reported in this paper was
supported by NSF Award 0329163.
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root consonants, and pattern changes. This re-
quires an explicit analysis into root and pat-
tern.

e Second, the dialects are mainly used in spo-
ken communication and in the rare cases when
they are written they do not have standard
orthographies, and different (inconsistent) or-
thographies may be used even within a single
written text. We thus need a representation of
morphology that incorporates models of both
phonology and orthography.

e Third, in certain contexts, speakers often create
words with morphemes from more than one di-
alect, or from a dialect and MSA.. For example,
the verb stem may be from MSA while the di-
alectal present progressive prefix is used. This
means that our analyzer needs to be able to have
access to morphological data from more than
one member of the language family.

In addition, we add two general requirements for
morphological analyzers. First, we want both a mor-
phological analyzer and a morphological generator.
Second, we want to use a representation that is de-
fined in terms of a lexeme and attribute-value pairs
for morphological features such as aspect or person.
This is because we want our component to be us-
able in natural language processing (NLP) applica-
tions such as natural language generation and ma-
chine translation, and the lexeme provides a usable
lexicographic abstraction.

We tackle these requirements by implementing
the multitape approach of Kiraz (2000), which we

Proceedings of the ACL Workshop on Computational Approaches to Semitic Languages 1724,
Ann Arbor, June 200502005 Association for Computational Linguistics



extend by adding an additional tape for indepen-
dently modeling phonology and orthography. This is
the first large-scale implementation of (Kiraz, 2000).
We use the AT&T finite-state toolkit (Mohri et al.,
1998) for the implementation. The use of finite state
technology makes MAGEAD usable as a generator as
well as an analyzer, unlike some morphological an-
alyzers which cannot be converted to generators in a
straightforward manner (Buckwalter, 2004; Habash,
2004).

This paper is organized as follows. In Section 2,
we discuss the linguistic situation of the Arabic-
speaking world. In Section 3, we present the rele-
vant facts about morphology in the Arabic language
family. We then present our approach to morpho-
logical analysis in Section 4, and its implementation
in Section 5. We conclude by sketching the planned
evaluation.

2 TheArabic Dialects

The Arabic-speaking world is characterized by
diglossia (Ferguson, 1959). Modern Standard Ara-
bic (MSA) is the shared written language from Mo-
rocco to the Gulf, but it is not a native language of
anyone. It is spoken only in formal, scripted con-
texts (news, speeches). In addition, there is a con-
tinuum of spoken dialects (varying geographically,
but also by social class, gender, etc.) which are na-
tive languages, but rarely written (except in very in-
formal contexts: blogs, email, etc). Dialects dif-
fer phonologically, lexically, morphologically, and
syntactically from one another; many pairs of di-
alects are mutually unintelligible. In unscripted sit-
uations where spoken MSA would normally be re-
quired (such as talk shows on TV), speakers usually
resort to repeated code-switching between their di-
alect and MSA, as nearly all native speakers of Ara-
bic are unable to produce sustained spontaneous dis-
course in MSA.

3 Arabic Dialect M orphology

3.1 Types of Arabic Morphemes

Arabic morphemes fall into three categories: tem-
platic morphemes, affixational morphemes, and
non-templatic word stems (NTWSs). Affixational
morphemes are concatenated to form words, while
templatic morphemes are interleaved. Templatic
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morphemes come in three types that are equally
needed to create a word stem: roots, patterns and vo-
calisms. Affixes can be classified into prefixes, suf-
fixes and circumfixes, which precede, follow or sur-
round the word stem, respectively. Finally NTWSs
are word stems that are not constructed from a
root/pattern/vocalism combination. The following
three subsections discuss each of the morpheme cat-
egories. This is followed by a brief discussion of
some morphological adjustment phenomena.

3.1.1 Roots, Patterns and Vocalism

The root morpheme is a sequence of three, four,
or five consonants (termed radicals) that signifies
some abstract meaning shared by all its derivations.
For example, the words? M{ katab ‘to write’,
—slS” kaAtib ‘writer’, and 45 maktuwb ‘written’
all share the root morpheme ktb (—<>s) “writing-
related’.

The pattern morpheme is an abstract template in
which roots and vocalisms are inserted. We will
represent the pattern as a string of letters including
special symbols to mark where root radicals and vo-
calisms are inserted. We use numbers (i.e. 1, 2, 3,
4, or 5) to indicate radical position® and the symbol
V is used to indicate the position of the vocalism.
For example, the pattern 1V22V3 indicates that the
second root radical is to be doubled. A pattern can
include letters for additional consonants and vowels,
e.g., the verbal pattern V1tV2V3.

The vocalism morpheme specifies which short
vowels to use with a pattern.* A word stem is
constructed by interleaving the three types of tem-
platic morphemes. For example, the word stem
S~ katab ‘to write’ is constructed from the root
ktb (—>s)), the pattern 1V2V3 and the vocalism aa.

2|n this paper, we use the following conventions for repre-
senting examples. All orthographic word forms are provided
in undiacritized Arabic script followed by a diacritized ver-
sion in the Buckwalter trandliteration scheme, which is a 1-
to-1 trandliteration of MSA orthographic symbols using ASCI|
characters (Buckwalter, 2004). All morphemes are shown dia-
critized in the Buckwalter tranditeration of a plausible standard
orthographic representation, though we sometimes include an
undiacritized version in Arabic script in parentheses for clarity.
All phonemic sequences are written between the usua slashes,
but we use the Buckwalter scheme (with obvious adjustments)
rather than | PA to represent phonemes.

3Often in the literature, radical position isindicated with C.

“Traditional accounts of Arabic morphology collapse vocal-
ism and pattern.



3.1.2 Affixational Morphemes

Arabic affixes can be prefixes such as sa+
(+) “will/[future]’, suffixes such as +uwna (o s+)
‘[masculine plural]” or circumfixes such as ta++na
(w++5) “[subject 2nd person feminine plural]’. Mul-
tiple affixes can appear in a word. For example, the
word g 5280 s wasayaktubuwnahA ‘and they will
write it” has two prefixes, one circumfix and one suf-
fixes:®

(1) wasayaktubuwnahA
wa+ sa+ y+ aktub +uwna +hA
and will 3person write masculine-plural it

Some of the affixes can be thought of as ortho-
graphic clitics, such as w+ (+s) ‘and’ prepositions
(I+ (#) “to/for’, b+ (+5) “in/with’ and k+ (+57) ‘as’)
or the pronominal object clitics (e.g., +hA (a+) in
the example above). Others are bound morphemes.

3.1.3 Non-Templatic Word Stem

NTWS are word stems that are not derivable from
templatic morphemes. They tend to be foreign
names and borrowed terms. For example, ksl s
waA$nTun “‘Washington’. Word stems can still take
affixational morphemes, e.g., © sbiil Jls waAl-
waA%nTuniy"uwn ‘and the Washingtonians’.

3.1.4 Morphological Rewrite Rules

An Arabic word is constructed by first creating a
word stem from templatic morphemes or by using a
NTWS. Affixational morphemes are then added to
this stem. The process of combining morphemes in-
volves a number of phonological, morphemic and
orthographic rules that modify the form of the cre-
ated word so it is not a simple interleaving or con-
catenation of its morphemic components.

An example of a phonological rewrite rule is the
voicing of the /t/ of the verbal pattern V1tV2V3
(Form VI1II) when the first root radical is /z/, /d/, or
I*I (5, >, or 5): the verbal stem zhr+V1tV2V3+iaa
is realized phonologically as /izdahar/ (orthograph-
ically: ,ao3l) “flourish’ not /iztahar/ (orthographi-
cally: ,3l). An example of a morphemic rewrite
rule is the feminine morpheme, +p (s+). Phono-
logically, it is realized as /t/ word-internally, but it

SWe analyze the imperfective word stem asincluding an ini-

tial short vowel, and leave adiscussion of thisanaysisto future
publications.
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is silent at the end of a word. Orthographically,
it is realized as < t in word-internal position (i.e.,
when followed by a letter), but as s+ +p word-finally.
For example, >amiyrap+nA (b+s ,..l) is realized as
LQ)MI >amiyratnA ‘our princess’ (phonologically:
I’amiyratnA/)®. Finally, an example of an ortho-
graphic rewrite rule is the deletion of the Alif ()
of the definite article morpheme Al+ (+J1) in nouns
when preceded by the preposition I+ (+)) (in both of
the following examples, the Alif is silent):

(2) a. <b lilbayti /lilbayti/ ‘to the house’
li+ Al+ bayt +i
to+ the+ house +[genitive]

b. <.JL biAlbayti /bilbayti/ ‘in the house’
bi+ Al+ bayt +i
in+ the+ house +[genitive]

3.2 Morpheme Type and Function and the
Lexeme

The type of morpheme is independent of the mor-
phological function it is used for (derivational or in-
flectional). Although affixational morphemes tend
to be inflectional and templatic morphemes deriva-
tional, there are many exceptions. For example, the
plural of LS kitAb ‘book’ is not formed through
affixation of the inflectional plural morphemes +At
(e1+) or +uwn (e s+), but rather through the use of
a different pattern, resulting in S~ kutub ‘books’.
This form of plural construction is called “broken
plural” in Arabic to distinguish it from the strictly
affixational “sound plural”. Conversely, the adjec-
tive 9,.{ kutubiy™ ‘book-related’ is derived from

the noun S~ kutub ‘books’ using affixational mor-
phemes. Note that approaches for Arabic stemming
that are limited to handling affixational morphology
will both miss related terms that are inflected tem-
platically and conflate derived forms generated af-
fixationally.

A common misconception about Arabic morphol-
ogy concerns the regularity of derivational morphol-
ogy. However, the meaning of a word cannot be
predicted from the root and the pattern+vocalism
pair. For example, the masculine noun 8 mak-
tab ‘office/bureau/agency’ and the feminine noun

®The case markers are ignored in this example for the sake
of simplicity.



4.:52. maktabap ‘library/bookstore’ are derived from
the root s ktb “writing-related’ with the pat-
tern+vocalism mal2a3, which indicates location.
The exact type of the location is thus idiosyncratic,
and it is not clear how the gender can account for
the semantic difference. It is this unpredictability of
derivational meaning that makes us prefer lexemes
as deepest units of morphological analysis, rather
than root+pattern pairs. We use the root+pattern
analysis only to relate different dialects, and since
it has proven useful for certain natural language pro-
cessing tasks, such as IR (Abu-Salem et al., 1999).
We use the lexemic representation to represent the
lexicon for applications such as machine translation,
including translation between dialects. We return to
the definition of “lexeme” in Section 4.2.

3.3 Dialect Morphology

Arabic dialect morphology shares with MSA mor-
phology the root-and-pattern system. Additionally,
each dialect morphology shares with MSA morphol-
ogy some of the morphology lexicon (inventory of
morphemes), and the morphological rules. Consider
the following forms by way of example:

(3) Egyptian: _;Slelixe mabin}ulhalak$ =
ma+ b+ n+ ['wl + V12V3 + iu] +ha +lak +$
MSA: el | 355 ¥ 1A naquwluha laka =
IA/n+ [gwl + V12V3 + au] +u +ha / la +ka

Here, the Egyptian stem is formed from the same
pattern as the MSA stem, but the initial radical, q
in MSA, has become ’ in Egyptian through regular
sound change. The vocalism in Egyptian also differs
from that in MSA. Then, we add the first person plu-
ral subject agreement marker, the prefix n+ (which
in MSA is the circumfix n++u) and the third person
feminine singular object clitic +ha (same in MSA).
In Egyptian, we add a second person masculine sin-
gular indirect object clitic +lak, the present progres-
sive prefix b+, and the negation circumfix ma++$.
None of these exist in MSA: their meaning is repre-
sented with separate words, or as a zero morpheme
in the case of the present tense marker. Note that
Egyptian orthography is not standardized, so that the
form above could be plausibly written in any of the
following orthographies, among others: 3834 jole
mAbin&ulhalak$, _:SOdin L mA bin}ulhAlak$,

Sddic. mabinqulhalak$, (53 Wi L mA bin-
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qulhA lak$, (83 W siu L mA binquwlhA lak$.

Within a word form, all morphemes need not be
from the same dialect. Consider the following ex-
ample.” The speaker, who is a journalist conducting
an interview, switches from MSA to Egyptian (be-
tween square brackets) for a complementizer (_JJI
Ailliy) that introduces a relative clause. He then con-
tinues in Egyptian with the prefix b+ (+) ‘[present
progressive]’, and then, inside the word, returns to
MSA, using an MSA verb in which the passive voice
is formed with MSA morphology, -tuwaj ah (4= ¢5-
) “be directed’.

(@) Wiz - [+ W] 5V oo Sl ] 23S o
Lo jeel g8 as dm 5ol 514 el ol gl

T )>T
hal kaAnat <isra}iyl AilmafruwD hiya
Aal>uwlaY [Ailliy bi+] tuwaj’ah laha
Ailguw™aAt  AilmaSriy'ap >aw kaAnat

tuwaj ah Did quw™aAt Earabiy™ap >uxraY?
Should it have been Israel first [that] Egyptian
armies were directed towards, or were they to
be directed against other Arab armies?

4 Morphological Analysisof Arabic

4.1 Previous Work

Despite the complexity of Semitic root-and-pattern
morphology, computational morphologists have
taken up the challenge of devising tractable systems
for computing it both under finite-state methods and
non-finite-state methods. Kataja and Koskenniemi
(1988) presented a system for handling Akkadian
root-and-pattern morphology by adding a additional
lexicon component to Koskenniemi’s two-level mor-
phology (1983). The first large scale implementa-
tion of Arabic morphology within the constraints of
finite-state methods was that of Beesley et al. (1989)
with a ‘detouring’ mechanism for access to mul-
tiple lexica, which later gave rise to other works
by Beesley (Beesley, 1998) and, independently, by
Buckwalter (2004).

The now ubiquitous linguistic approach of Mc-
Carthy (1981) to describe root-and-pattern morphol-

"This example is a transcript of a broadcast originally
taken from the Al-Jazeera web site. It can now be found at
http://web.archive.org/web/20030210100557/www.aljazeera.net/
programs/century_witness/articles/2003/1/1-24-1.htm .



ogy under the framework of autosegmental phonol-
ogy gave rise to a number of computational propos-
als. Kay (1987) devised a framework with which
each of the autosegmental tiers is assigned a tape
in a multi-tape finite state machine, with an addi-
tional tape for the surface form. Kiraz (2000,2001)
extended Kay’s approach and implemented a work-
ing multi-tape system with pilot grammars for Ara-
bic and Syriac. Other autosegmental approaches
(described in more details in Kiraz 2001 (Chapter
4)) include those of Kornai (1995), Bird and Ellison
(1994), Pulman and Hepple (1993), whose formal-
ism Kiraz adopted, and others. In this work we fol-
low the multi-tape approach, and specifically that of
(Kiraz, 2000). This is the first large-scale implemen-
tation of that approach.

4.2 Our Approach: Outline

In our approach, there are three levels of representa-
tion:

Lexeme Level. Words are represented in terms of
a lexeme and features. Example:

(5) Aizdaharat: Aizdahar, POS:V PER:3 GEN:F
NUM:SG ASPECT:PERF

The list of features is dialect-independent. The
lexeme itself can be thought of as a triple consisting
of aroot (or an NTWS), a meaning index, and a mor-
phological behavior class (MBC). The MBC maps
the features to morphemes. For example, [+FEM]
for ~olS™ kaAtib ‘writeryase * yields 43S~ kaAti-
bap ‘writereey  which is different from [+FEM]
for _a.l AabyaD ‘whiteyasc * Which yields stao
bayDaA’ ‘whitecs, ’. The MBCs are of course spe-
cific to the dialect in question or MSA (though con-
ceivably some can be shared between dialects). For
convenience (as in the example above), lexemes are
often represented using a citation form.

Morpheme Level. Words are represented in
terms of morphemes. (5) is now represented as fol-
lows:

(6) Aizdaharat: [zhr + V1tV2V3 + iaa] + at

Surface Level. Words are a string of characters.
Using standard MSA orthography, our example be-
comes:

(7) < o3l Aizdaharat
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Phonologically, we get:
(8) /izdaharat/

This paper focuses on the morpheme layer (mor-
phology) and the transition between the morpheme
and the surface levels. This transition draws on the
following resources:

e a unified context-free grammar for morphemes
(for all dialects together) which specifies the or-
dering of affixival morphemes.

e Morphophonemic and phonological rules that
map from the morphemic representation to the
phonological representation.

e Orthographic rules that map from phonology
and morphology to an orthographic represen-
tation.

We will next discuss the formal representational
and computational framework for these resources.

4.3 Multitape Automata

We follow (Kiraz, 2000) in using a multitape anal-
ysis. We extend that analysis by introducing a fifth
tier. The five tiers are used as follows:

Tier 1. pattern and affixival morphemes.
Tier 2: root.

Tier 3: vocalism.

Tier 4: phonological representation.
Tier 5: orthographic representation.

Tiers 1 through 3 are always input tiers. Tier 4
is first an output tier, and subsequently an input tier.
Tier 5 is always an output tier. All tiers are read
or written at the same time, so that the rules of the
multi-tier automaton are rules which scan the input
tiers and, depending on the state, write to the output
tier. The introduction of two surface-like tiers is due
to the fact that many dialects do not have a standard
orthography, as discussed above in Section 3.3.

5 Implementing Multitape Automata

We have implemented multi-tape finite state au-
tomata as a layer on top of the AT&T two-tape finite
state transducers. Conversion from this higher layer
(the new Morphtools format) to the Lextools for-
mat (an NLP-oriented extension of the AT&T toolkit



for finite-state machines, (Sproat, 1995)) is done for
different types of Lextools files such as rule files or
context-free grammar files. A central concept here
is that of the multitape string (MTS), a special rep-
resentation of multiple tiers in Morphtools that gets
converted to a sequence of multi-tier tokens (MTT)
compatible with Lextools. In the next section, we
discuss the conversion of MTS into MTT. Then, we
discuss an example rule conversion.

5.1 The Multitape String

A multitape string (MTS)
<T, RV, P, O>. where:

is represented as

e T is the template or basic pattern. The template
is represented as a string indicating the position
of root consonant (1,2,3,4,5 or C), vowel (V),
and any consonant or vowel deemed to be part
of the template but not a separate morpheme.
For example, Arabic verb form Il pattern is rep-
resented as 1V22V3 and form VIII is repre-

sented as V1t V2V3.

R is the root radicals (consonants).
V is the vocalism vowels.

P is the phonological level.

O is the orthographic level.

There are two special symbols: (1) %is a wild
card symbol that can match anything (appropriate
for that tier) and (2) @cLetter> (e.g., @X) is a
variable whose type can be defined explicitly. Both
symbols can appear in any tier (except that in our
current implementation, %cannot appear in tier T).

The first (or template) tier (T) is always required.
The additional tiers can be left underspecified. For
example, the full MTS specification for the root zhr
with form V111 with active vocalism is:

(9) <vitvavs, zhr,iaa>

When converting an MTS to Lextools format, the
T tier is used to create a basic default sequence of
multi tier tokens (MTTs). For our example (9),
V1t V2V3 leads to this initial MTT sequence:

(10) [ vou%®0] [19900] [t0000] [VO%O0]
[ 29900] [ VO%©0] [3%900]

When the symbol V appears in the template, a 0
is inserted in the radical position (since no radical
can be inserted here) and a wild card is inserted in

22

the vocalism position. The opposite is true for when
radical symbol (C,1,2,3,4,5) appears in the template,
a 0 is inserted in the vocalism tier (as no vowel from
the vocalism can be inserted here) and a wild card
in the radical tier. all other characters appearing in
the template tier (e.g., t in the example above), are
paired with Os in all other tiers.

Additional information from other tiers are then
written on top of the default MTT sequence created
from the template tier. The representation in (10)
is transformed into (12), using the information from
the root and vocalism tiers in (9):

(11) [voi 00] [1z000] [t0000] [V0a00]
[ 2h000] [ V0a00] [ 3r000]

This sequence corresponds to the form /iztahar/.
After applying phonological rules, which will be
discussed in the next section, the MTT sequence is
as follows. Note that the fourth tier has been filled
in.

(12) [Vvoii0] [1z0z0] [t00dO] [VOaaO]
[ 2hOh0] [VOaaO] [3r0rQ0]

In this fourth tier, this represents the phonolog-
ical form /izdahar/. Applying orthographic rules
for diacritized orthography, we write symbols into
the fifth tier, which corresponds to the orthographic
form a5 5 Aizdahar.

(13) [0000A] [VOiii] [1z0zz] [t00dd]
[ VOaaa] [2hOhh] [VOaaa] [3rOrr]

Note that the fourth tier provides the (phonemic)
pronunciation for the orthography in the fifth tier.

5.2 Representing the Structure of the Word

The basic structure of the word is represented us-
ing a context-free grammar (CFG). The CFG cov-
ers all dialects and MSA, and only when they dif-
fer in terms of the morpheme sequencing does the
CFG express dialect-specific rules. How exactly to
write this CFG is an empirical question: for exam-
ple, if frequently speakers mix MSA verb stems with
ECA subject agreement suffixes, then the following
grammar fragment would not be sufficient. We in-
tend to develop probabilistic models of intra-word
code switching in order to guide the morphological
analysis in the presence of code switching.

The following rule is the top-level rule which



states that a word is a verb, a noun, or a particle,
and it can be preceded by an optional conjunction
(for example, w+). It holds in all dialects and MSA.

(14) [WORD] -> [ CONJ] ?
([ VERB] | [NOUN] | [ PART] )

The following rule expands verbs to three inflec-
tional types and adds an optional object clitic. For
Egyptian (ECA) only, an indirect object clitic can
also be added.

(15) [ VERB] -> ([PV.VERB]|[I V.VERB])
[ OBJ_PRON] ? [ ECA: | OBJ_PRON] ?

The next level of expansion then introduces spe-
cific morphemes for the two classes of perfective
verbs and imperfective verbs. Here, we split into
separate forms for each dialect and MSA; we give
examples for MSA and Egyptian.

(16) a [PV.VERB| -> [ MBA: PV.VERB_.STEM
[ MBA: SUF: PVSUBJ _19]

b. [PV.VERB| -> [ ECA: PV.VERB.STEM
[ ECA: SUF: PVSUBJ-19]

This list is continued (for all dialects and MSA)
for all combinations of person, number, and gender.
In the case of the imperfective, we get additional
prefixes, and circumfixes for the subject clitics. Note
that here we allow a combination of the MSA imper-
fective verb stem with the Egyptian prefixes, but we
do not allow the MSA prefixes with the Egyptian
verb stem.

(17) a [IV.VERB] -> ([ MBA: FUT]|
[ MSA: RESULT] | [ MBA: SUBJUNC] |

[ MSA: EMPHATI C] | [ ECA: PRESENT] |
[ ECA: FUT] ) ? [ MBA: | V.VERB.CONJUG

b. [ V.VERB] -> ([ECA: FUT] |
[ ECA: PRESENT] ) ? [ ECA: | V.VERB.CONJUG

We then give the verbal stem morphology for
MSA (the Egyptian case is similar).

(18) [ MBA: | V.VERB.CONUUG - >
[ MBA: PRE: | VSUBJ1S] [ MSA: | V.VERB_STEM
[ MBA: SUF: | VSUBJ 18]

Again, this list is continued for all valid combi-
nations of person, number, and gender. The verbal
stems are expanded to possible forms (combination
of pattern and vocalism, not specified for root), or
NTWSs. Since the forms are specific to perfective
or imperfective aspect, they are listed separately.
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(19) [ MBA: PV.VERB.STEM -> ([ MBA: FORMI _PV] |
[ MSA: FORMI | _PV] | [ MSA: FORMI | | _PV] |
[ MBA: FORMI V.PV] | ...)

Each form is expanded separately:
(20) a [ MBA: FORMI _PV] -> (<1V2V3, % aa>|
<1V2V3, % ai >| <1V2V3, % au>)
b. [ MBA: FORMI | PV] -> <1V22V3, % aa>

Separate rules introduce the morphemes
which are represented by nonterminals such as
[ MSA: PRE: | VSUBJ 1S] or [ ECA: PRESENT] .
Such a context-free specification using MTS is then
compiled into MTT sequences in the same manner
as described above. The resulting specification is a
valid input to Lextools, which generates the finite
state machines.

5.3 Representing Rules

We now discuss the representation of rules. We start
out with three default rules which are the same for all
Arabic dialects and MSA (and possibly for all lan-
guages that use templatic morphology). Rule (21a)
writes a letter which is in the pattern tier but which is
not specified as either root or vocalism to the fourth
(phonological) tier, while Rule (21b) and (21c) write
a radical and a pattern vowel, respectively.
(21) a <@ ,,0> -> @, @X=[LETTER]

b. <C, @, ,0> -> @

c. <V,,@ 0> -> @&

Phonological and morphemic rules have the same
format, as they write to the fourth tier, usually
overwriting a symbol placed there by the default
rules. Rule (22) implements the rule mentioned in
Section 3.1.4 (in Form VIII, the /t/ of the pattern
changes to a /d/ if the first radical is /z/, /d/, or
/*). Rule (22) accounts for the surface phonolog-
ical form in (8); without Rule (22), we would have
iztahar instead of izdahar.

(22) <t,,, t>->d / <1,@4,> _, @F[zd«]

For the orthography we use the fifth tier. As in
the case of phonology, we have default rules, which
yield a simple phonemic orthography.

(3) a <@,,, @ 0> -> @, @=[LETTER],
@X=[ LETTER]

b. <V,, @, @ 0> -> @,
c. <C @, , @ 0> -> @,

d <+ ,,++> ->0

@=[ LETTER]
@=[ LETTER]



These default rules cover much of MSA orthog-
raphy, but in addition, there are some special ortho-
graphic rules, for example:

(24) <ov,, @, @ 0> -> A@, # ., @=[LETTER]

This rule inserts an Alif at the beginning of a word
which starts with a pattern vowel.

6 Outlook

This paper describes work in progress. We are cur-
rently in the process of populating MAGEAD with
morphological data and rules for MSA and Egyp-
tian, with smaller efforts for Yemeni and Levantine.
We intend to evaluate MAGEAD using a double strat-
egy: a test suite of selected surface word/analysis
pairs which tests the breadth of phenomena covered,
and a test corpus, which tests the adequacy on real
text. The test suite can be assembled by hand over
time from individual examples and is used for re-
gression testing during development, as well as for
qualitative assessment of the analyzer or generator.
The only test corpus we currently have is the Penn
Arabic Treebank for MSA.

In the next phase of the development work, we
will link the list of morphemes obtained during anal-
ysis to the lexeme level of representation. This will
be done using a dialect-specific lexicon, but we will
also develop tools to exploit the lexical similarity
between the dialects and MSA (and among the di-
alects) by hypothesizing lexemes based on regular
sound change rules.
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Abstract

This paper explores the effect of
improved morphol ogical analysis,
particularly context sensitive morphology,
on monolingual Arabic Information
Retrieval (IR). It also compares the effect
of context sensitive morphology to non-
context sensitive morphology. The results
show that better coverage and improved
correctness have a dramatic effect on IR
effectiveness and that context sensitive
morphology further improves retrieval
effectiveness, but the improvement is not
statistically significant. Furthermore, the
improvement obtained by the use of
context sensitive morphology over the use
of light stemming was not significantly
significant.

1 Introduction

Due to the morphological complexity of the Arabic
language, much research has focused on the effect
of morphology on Arabic Information Retrieval
(IR). The goal of morphology in IR is to conflate
words of similar or related meanings. Severdl
early studies suggested that indexing Arabic text
using roots significantly increases retrieval
effectiveness over the use of words or stems [1, 3,
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11]. However, al the studies used small test
collections of only hundreds of documents and the
morphology in many of the studies was done
manually.

Performing morphological analysis for Arabic IR
using existing Arabic morphological analyzers,
most of which use finite state transducers [4, 12,
13], is problematic for two reasons. First, they
were designed to produce as many analyses as
possible without indicating which analysis is most
likely. This property of the analyzers complicates
retrieval, because it introduces ambiguity in the
indexing phase as well as the search phase of
retrieval. Second, the use of finite state
transducers inherently limits coverage, which the
number of words that the analyzer can analyze, to
the cases programmed into the transducers.
Darwish attempted to solve this praoblem by
developing a statistical morphological analyzer for
Arabic called Sebawai that attempts to rank
possible analyses to pick the most likely one [7].
He concluded that even with ranked analysis,
morphological analysis did not yield statistically
significant improvement over words in IR. A later
study by Aljlayl et al. on a large Arabic collection
of 383,872 documents suggested that lightly
stemmed words, where only common prefixes and
suffixes are stripped from them, were perhaps
better index term for Arabic [2]. Similar studies by
Darwish [8] and Larkey [14] also suggested that
light stemming is indeed superior to morphological
analysisin the context of IR.
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However, the shortcomings of morphology might
be attributed to issues of coverage and correctness.
Concerning coverage, analyzers typically fail to
analyze Arabized or trandliterated words, which
may have prefixes and suffixes attached to them
and are typicaly valuable in IR. As for
correctness, the presence (or absence) of a prefix
or suffix may significantly alter the analysis of a
word. For example, for the word “Alksyr” is
unambiguously analyzed to theroot “ksr” and stem
“ksyr.”  However, removing the prefix “Al”
introduces an additional analysis, namely to the
root “syr” and the stem “syr.” Perhaps such
ambiguity can be reduced by using the context in
which the word is mentioned. For example, for the
word “ksyr” in the sentence “sAr ksyr” (and he
walked like), theletter “k” islikely to be a prefix.

The problem of coverage is practically diminated
by light stemming. However, light stemming
yields greater consistency without regard to
correctness. Although consistency is more
important for IR applications than linguistic
correctness, perhaps improved correctness would
naturally yield great consistency. Lee et al. [15]
adopted a trigram language model (LM) trained on
a portion of the manually segmented LDC Arabic
Treebank in developing an Arabic morphology
system, which attempts to improve the coverage
and linguistic correctness over existing statistical
analyzers such as Sebawai [15]. The analyzer of
Lee et a. will be henceforth referred to as the
IBM-LM analyzer. IBM-LM's analyzer combined
the trigram LM (to analyze a word within its
context in the sentence) with a prefix-suffix filter
(to eiminate illegal prefix suffix combinations,
hence improving correctness) and unsupervised
stem acquisition (to improve coverage). Lee et al.
report a 2.9% error rate in analysis compared to
7.3% error reported by Darwish for Sebawai [7].
This paper evaluates the IBM-LM analyzer in the
context of a monolingual Arabic IR application to
determine if in-context morphology leads to
improved retrieval effectiveness compared to out-
of-context analysis. To determine the effect of
improved analysis, particularly the use of in-
context morphology, the analyzer is used to
produce analyses of words in isolation (with no
context) and in-context. Since IBM-LM only
produces stems, Sebawai was used to produce the
roots corresponding to the stems produced by
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IBM-LM. Both are compared to Sebawai and light
stemming.

The paper will be organized as follows: Section 2
surveys related work; Section 3 describes the IR
experimental setup for testing the IBM-LM
analyzer; Section 4 presents experimental results;
and Section 5 concludes the paper.

2 Related Work

Most early studies of character-coded Arabic text
retrieval relied on relatively small test collections
[1, 3, 9, 11]. The early studies suggested that
roots, followed by stems, were the best index terms
for Arabic text. Morerecent studies are based on a
single large collection (from TREC-2001/2002) [9,
10]. The studies examined indexing using words,
word clusters [14], terms obtained through
morphological analysis (e.g., stems and roots [9]),
light stemming [2, 8, 14], and character n-grams of
various lengths [9, 16]. The effects of normalizing
dternative characters, removal of diacritics and
stop-word removal have also been explored [6,
19]. These studies suggest that perhaps light
stemming and character n-grams are the better
index terms.

Concerning morphology, some attempts were
made to use statistics in conjunction with rule-
based morphology to pick the most likely analysis
for a particular word or context. In most of these
approaches an Arabic word is assumed to be of the
form prefix-stem-suffix and the stem part may or
may not be derived from a linguistic root. Since
Arabic morphology is ambiguous, possible
segmentations (i.e. possible prefix-stem-suffix
tuples) are generated and ranked based on the
probability of occurrence of prefixes, suffixes,
stems, and stem template. Such systems that use
this methodology include RDI’s MORPHO3 [5]
and Sebawai [7]. The number of manually crafted
rules differs from system to system. Further
MORPHO3 uses a word trigram model to improve
in-context morphology, but uses an extensive set of
manually crafted rules. The IBM-LM analyzer
uses a trigram language model with a minimal set
of manually crafted rules [15]. Like other
statistical  morphology systems, the IBM-LM
analyzer assumes that a word is constructed as
prefix-stem-suffix. Given a word, the analyzer
generates all possible segmentations by identifying
all matching prefixes and suffixes from a table of



prefixes and suffixes. Then given the possible
segmentations, the trigram language model scoreis
computed and the most likely segmentation is
chosen. The analyzer was trained on a manually
segmented Arabic corpus from LDC.

3 Experimental Design

IR experiments were done on the LDC
LDC2001T55 collection, which was used in the
Text REtrieval Conference (TREC) 2002 cross-
language track. For brevity, the collection is
referred to as the TREC collection. The collection
contains 383,872 articles from the Agence France
Press (AFP) Arabic newswire. Fifty topics were
developed cooperatively by the LDC and the
National Institute of Standards and Technology
(NIST), and relevance judgments were developed
at the LDC by manualy judging a pool of
documents obtained from combining the top 100
documents from all the runs submitted by the
participating teams to TREC's cross-language
track in 2002. The number of known relevant
documents ranges from 10 to 523, with an average
of 118 relevant documents per topic [17]. Thisis
presently the best available large Arabic
information retrieval test collection. The TREC
topic descriptions include a title field that briefly
names the topic, a description field that usually
consists of a single sentence description, and a
narrative field that is intended to contain any
information that would be needed by a human
judge to accurately assess the relevance of a
document [10]. Queries were formed from the
TREC topics by combining the title and
description fields. This is intended to model the
sort of statement that a searcher might initially
make when asking an intermediary, such as a
librarian, for help with a search.
Experiments were performed for the queries with
the following index terms:
* W: words.
e Is: lightly stemmed words, obtained using Al-
Stem [17]".
e SEB-s: stems obtained using Sebawai.
e SEB-r: roots obtained using Sebawai.

L A slightly modified version of Leah Larkey's Light-10 light
stemmer [8] was also tried, but the ssemmer produced very
similar results to Al-Stem.
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e cIBM-LMS: stems obtained using the IBM-
LM analyzer in context. Basically, the entire
TREC collection was processed by the
analyzer and the prefixes and suffixes in the
segmented output were removed.

e cIBM-SEB-r: roots obtained by analyzing the
in-context stems produced by IBM-LM using
Sebawai.

* IBM-LMS: stems obtained using the IBM-LM
analyzer without any contextual information.
Basically, al the unique words in the
collection were analyzed one by one and the
prefixes and suffixes in the segmented output
were removed.

e IBM-SEB-r: roots obtained by analyzing the
out-of-context stems produced by IBM-LM
using Sebawai.

All retrieval experiments were performed using the
Lemur language modeling toolkit, which was
configured to use Okapi BM-25 term weighting
with default parameters and with and without blind
relevance feedback (the top 20 terms from the top
5 retrieved documents were used for blind
relevance feedback). To observe the effect of
aternate indexing terms mean uninterpolated
average precision was used as the measure of
retrieval  effectiveness.  To determine if the
difference between results was dtatistically
significant, a Wilcoxon signed-rank test, which isa
nonparametric significance test for correlated
samples, was used with p values less than 0.05 to
claim significance.

4 Resultsand Discussion

Figure 1 shows a summary of the results for
different index terms. Tables 1 and 2 show
statistical  significance between different index
terms using the p value of the Wilcoxon test.
When comparing index terms obtained using IBM-
LM and Sebawai, the results clearly show that
using better morphological analysis produces
better retrieval effectiveness.  The dramatic
difference in retrieval effectiveness between
Sebawai and IBM-LM highlight the effect of errors
in morphology that lead to inconsistency in
analysis. When using contextual information in
analysis (compared to analyzing words in isolation
— out of context) resulted in only a 3% increasein
mean average precision when using stems (IBM-
LMS), which is a small difference compared to the
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Figure1l. Comparing index term with and without blind relevance feedback using mean average
precision

effect of blind relevance feedback (about 6%
increase) and produced mixed results when using
roots (IBM-SEB-r). Nonetheless, the improvement
for stems was almost statistically significant with p
values of 0.063 and 0.054 for the cases with and
without blind relevance feedback. Also
considering that improvement in retrieva
effectiveness resulted from changing the analysis
for only 0.12% of the words in the collection (from
analyzing them out of context to analyzing them in
context)® and that the authors of IBM-LM report
about 2.9% error rate in morphology, perhaps
further improvement in morphology may lead to
further improvement in retrieval effectiveness.
However, further improvements in morphology
and retrieval effectiveness are likely to be difficult.
One of difficulties associated with developing
better morphology is the disagreement on what
congtitutes “better” morphology. For example,
should “mktb” and “ktb” be conflated? “mktb”
translates to office, while ktb translates to books.
Both words share the common root “ktb,” but they
are not interchangeable in meaning or usage. One

2 Approximately 7% of unique tokens had two or more differ-
ent analysis in the collection when doing in-context morphol -
ogy. Intokenswith more than one analysis, one of the
anayses was typically used more than 98% of thetime.
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would expect that increasing conflation would
improve recall at the expense of precision and
decreasing conflation would have the exact
opposite effect. It is known that IR is more
tolerant of over-conflation than under-conflation
[18]. This fact is apparent in the results when
comparing roots and stems. Even though roots
result in greater conflation than stems, the results
for stems and roots are amost the same.  Another
property of IR isthat IR is sensitive to consistency
of analysis. In the case of light stemming,
stemming often mistakenly removes prefixes and
suffixes leading to over conflation, for which IR is
tolerant, but the mistakes are done in a consistent
manner. It is noteworthy that sense
disambiguation has been reported to decrease
retrieval  effectiveness [18]. However, since
improving the correctness of morphological
analysis using contextual information is akin to
sense disambiguation, the fact that retrieval results
improved, though slightly, using context sensitive
morphology is a significant result.

In comparing the IBM-LM analyzer (in context or
out of context) to light stemming (using Al-Stem),
although the difference in retrieval effectivenessis
small and not statistically significant, using the
IBM-LM analyzer, unlike using Al-Stem, leads to



IBM- IBM- cIBM- | cIBM-
Is | SEBs [ SEBT 1 s | seBr | Lms | seB-r
0.055 0.475 0.671 0.038 0.027 0.019 0.049 w
0.004 0.023 0.560 0.359 0.946 0.505 Is
0.633 0.005 0.001 0.001 0.012 | SEB-s
0.039 0.007 0.020 0.064 | SEB-r
IBM-
0.0968 | 0.063 0.758 LMS
IBM-
0.396 0.090 SEB-r
cIBM-
0.001 LMS
Table 1. Wilcoxon p values (shaded=significant) , with blind relevance feedback.
IBM- IBM- cIBM- | cIBM-
Is | SEBs [ SEB1 1 s | seBr | Lms | seB-r
0.261 0.035 0.065 0.047 0.135 0.011 0.016 w
0.000 0.000 0.968 0.757 0.515 0.728 Is
0.269 0.000 0.000 0.000 0.000 | SEB-s
0.000 0.000 0.000 0.000 | SEB-r
IBM-
0.732 0.054 0.584 LMS
IBM-
0.284 0.512 SEB-r
cIBM-
0.005 LMS

Table 2. Wilcoxon p values (shaded=significant) , without blind relevanc e feedback

statistically significant improvement over using
words. Therefore there is some advantage, though
only a small one, to using statistical analysis over
using light stemming. The major drawback to
morphological analysis (specially in-context
analysis) is that it requires considerably more
computing time than light stemming?®.

5 Conclusion

The paper investigated the effect of improved
morphological  analysis, especially context
sensitive morphology, in Arabic IR applications
compared to other statistica morphological
analyzers and light stemming. The results show
that improving morphology has a dramatic effect
on IR effectiveness and that context sensitive
morphology slightly improved Arabic IR over non-
context sensitive morphology, increasing IR

3 The processing of the TREC collection using the in-context
IBM-LM required 16 hours on a 2.4 GHz Pentium 4 machine
with 1 Gigabyte of RAM compared to 10 minutesto perform
light ssemming.
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effectiveness by approximatey 3%. The
improvement is almost statistically significant.
Developing better morphology could lead to
greater retrieval effectiveness, but improving
analyzersis likely to be difficult and would require
careful determination of the proper level of
conflation. In overcoming some of the difficulties
associated with obtaining “better” morphology (or
more fundamentally the proper level of word
conflation), adaptive morphology done on a per
query term basis or user feedback might prove
valuable. Also, the scores that were used to rank
the possible analyses in a statistical morphological
analyzer may prove useful in further improving
retrieval. Other IR techniques, such as improved
blind reevance feedback or combination of
evidence approaches, can aso improve
monolingual Arabic retrieval.

Perhaps improved morphology is particularly
beneficial for other IR applications such as cross-
language IR, in which ascertaining proper
trandation of words is particularly important, and



in-document search term highlighting for display
to auser.
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Abstract

The goal of many natural language proc-
essing platforms is to be able to someday
correctly treat all languages. Each new
language, especially one from a new lan-
guage family, provokes some modifica-
tion and design changes. Here we present
the changes that we had to introduce into
our platform designed for European lan-
guages in order to handle a Semitic lan-
guage. Treatment of Arabic was
successfully integrated into our cross lan-
guage information retrieval system, which
is visible online.

1 Introduction

When a natural language processing (NLP) system
is created in a modular fashion, it can be relatively
easy to extend treatment to new languages (May-
nard, et al. 2003) depending on the depth and
completeness desired. We present here lessons
learned from the extension of our NLP system that
was originally implemented for Romance and
Germanic European' languages to a member of the
Semitic language family, Arabic. Though our sys-
tem was designed modularly, this new language
posed new problems. We present our answers to

' European languages from non indo-European families
(Basque, Finnish and Hungarian) pose some of the same prob-
lems that Arabic does.
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these problems encountered in the creation of an
Arabic processing system, and illustrate its integra-
tion into an online cross language information re-
trieval (CLIR) system dealing with documents
written in Arabic, English French and Spanish.

2 The LIMA natural language processor

Our NLP system (Besancon et al., 2003), called
LIMA®, was built using a traditional architecture
involving separate modules for
1. Morphological analysis:
a. Tokenization (separating the input
stream into a graph of words).
b. Simple word lookup (search for
words in a full form lexicon).
c. Orthographical alternative lookup
(looking for differently accented
forms, alternative hyphenisation,
concatenated words, abbreviation
recognition), which might alter the
original non-cyclic word graph by
adding alternative paths.
d. Idiomatic expressions recognizer
(detecting and considering them as
single words in the word graph).
e. Unknown word analysis.
2. Part-of-Speech and Syntactic analysis:
a. After the morphological analysis,
which has augmented the original
graph with as many nodes as there

2 LIMA stands for the LIC2M Multilingual Analyzer.

Ann Arbor, June 200502005 Association for Computational Linguistics



are interpretations for the tokens,
part-of-speech analysis using lan-
guage models from a hand-tagged
corpus reduces the number of pos-
sible readings of the input.

b. Named entity recognizer.

c. Recognition of nominal and verbal
chains in the graph.

d. Dependency relation extraction.

3. Information retrieval application:

a. Subgraph indexing.

b. Query reformulation (monolingual
reformulation for paraphrases and
synonymy; multilingual for cross
language information retrieval).

c. Retrieval scoring comparing par-
tial matches on subgraphs and en-
tities.

Our LIMA NLP system (Besancon et al., 2003)
was first implemented for English, French, German
and Spanish, with all data coded in UTF8. When
we extended the system to Arabic, we found that a
number of modifications had to be introduced. We
detail these modifications in the next sections.

3 Changes specific to Semitic languages

Two new problems posed by Arabic (and common
to most Semitic languages) that forced us to alter
our NLP system are the problem of incomplete
vowelization of printed texts’ and the problem of
agglutinative clitics. We discuss how these new
problems influenced our lexical resources and lan-
guage processing steps.

Lexical Resources

The first task for introducing a new language is to
create the lexical resources for this language. Since
Arabic presents agglutination of articles, preposi-
tions and conjunctions at the beginning of words as
well as pronouns at the end of words, and these
phenomena were not treated in our existing Euro-

? Since the headwords of our monolingual and cross-lingual
reference dictionaries for Arabic possess voweled entries, we
hope to attain greater precision by treating this problem. An
alternative but noisy approach (Larkey et al. 2002) is to reduce
to unvoweled text throughout the NLP application.
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pean languages®, we had to decide how this feature
would be handled in the lexicon. Solutions to this
problem have been proposed, ranging from genera-
tion and storage of all agglutinated words forms
(Debili and Zouari, 1985) to the compilation of
valid sequences of proclitics, words and enclitics
into finite-state machines (Beesley, 1996). Our
system had already addressed the problem of com-
pounds for German in the following way: if an in-
put word is not present in the dictionary, a
compound-searching module returns all complete
sequences of dictionary words (a list of possible
compound joining "fogemorphemes" is passed to
this module) as valid decompositions of the input
word. Though theoretically this method could be
used to treat Arabic clitics, we decided against us-
ing this existing process for two reasons:
1. Contrary to German, in which any noun
may theoretically be the first element of
a compound, Arabic clitics belong to a
small closed set of articles, conjunc-
tions, prepositions and pronouns. Al-
lowing any word to appear at the
beginning or end of an agglutinated
word would generate unnecessary noise.
2. Storing all words with all possible cli-
tics would multiply the size of lexicon
proportionally to the number of legal
possible combinations. We decided that
this would take up too much space,
though others have adopted this ap-
proach as mentioned above.

We decided to create three lexicons: two additional
(small) lists of proclitic and enclitic combinations,
and one large lexicon of full form® voweled words
(with no clitics), the creation of the large lexicon
from a set of lemmas using classic conjugation
rules did not require any modification of the exist-
ing dictionary building and compilation compo-
nent. Since our NLP system already possessed a
mechanism for mapping unaccented words to ac-
cented entries, and we decided to use this existing

* Spanish, of course, possesses enclitic pronouns for some
verb forms but these were not adequately treated until the
solution for Arabic was implemented in our system.

5 Qur dictionary making process generates all full form ver-
sions of non compound and unagglutinated words. These are e
then compiled into a finite-state automaton. Every node corre-
sponding to a full word is flagged, and an index corresponding
to the automaton path points to the lexical data for that word.



mechanism for later matching of voweled and un-
voweled versions of Arabic words in applications.
Thus the only changes for lexical resources involve
adding two small clitic lexicons.

Processing Steps: Morphological analysis

Going back to the NLP processing steps listed in
section 2, we now discuss new processing changes
needed for treating Arabic. Tokenization (la) and
simple word lookup (2a) of the tokenized strings in
the dictionary were unchanged as LIMA was
coded for UTF8. If the word was not found, an
existing orthographical alternative lookup (1c) was
also used without change (except for the addition
of the language specific correspondence table be-
tween accented and unaccented characters) in order
to find lexical entries for unvoweled or partially
voweled words. Using this existing mechanism for
treating the vowelization problem does not allow
us to exploit partial vowelization as we explain in a
later section.

At this point in the processing, a word that contains
clitics will not have been found in the dictionary
since we had decided not to include word forms
including clitics. We introduced, here, a new proc-
essing step for Arabic: a clitic stemmer. This
stemmer uses the following linguistic resources:

e The full form dictionary, containing for
each word form its possible part-of-speech
tags and linguistic features (gender, num-
ber, etc.). We currently have 5.4 million
entries in this dictionary®.

e The proclitic dictionary and the enclitic
dictionary, having the same structure of
the full form dictionary with voweled and
unvoweled versions of each valid combi-
nation of clitics. There are 77 and 65 en-
tries respectively in each dictionary.

The clitic stemmer proceeds as follows on tokens
unrecognized after step lc:

e Several vowel form normalizations are
performed ( ~ " ° . are removed, | ) |
are replaced by ! and final 5 & ¢ ors
are replaced by ¢s5 ¢ & or o).

® If we generated all forms including appended clitics, we
would generate an estimated 60 billion forms (Attia, 1999).

33

e All clitic possibilities are computed by us-
ing proclitics and enclitics dictionaries.

e A radical, computed by removing these
clitics, is checked against the full form
lexicon. If it does not exist in the full form
lexicon, re-write rules (such as those de-
scribed in Darwish (2002)) are applied,
and the altered form is checked against the
full form dictionary. For example, consider
the token 2! 5 and the included clitics (s,
#), the computed radical 's does not exist
in the full form lexicon but after applying
one of the dozen re-write rules, the modi-
fied radical s is found the dictionary and
the input token is segmented into root and
clitics as: pa + 5o + 5= aalsa,

e The compatibility of the morpho-syntactic
tags of the three components (proclitic,
radical, enclitic) is then checked. Only
valid segmentations are kept and added
into the word graph. Table 1 gives some
examples of segmentations’ of words in
the sentence 481 =l 4l 5 ) 5 Sl lgaila (4

Agglutinated Segmentations of the aggluti-
word nated word
) ot 9= Oey
Luls L + ila = Lails
FIE] LIRS + Jl = a0
il 4+ [J+ 1] = adall
gAY e + J = g )
A8 e + [d+ 1] = &8
Cladlaall Glladlas + J) = caldadlaal
Gildilag + [J + 1] = clladlall
ahall bl 4 [J) + J] = ahall
208 s+t d= o
D[+ 1= s
48h o+ u»AA = 4ud)

Table 1: Segmentations of some agglutinated words.

Producing this new clitic stemmer for Arabic al-
lowed us to correctly treat a similar (but previously
ignored) phenomenon in Spanish in which verb
forms can possess pronominal enclitics. For exam-
ple, the imperative form of “give to me” is written
as “dame”, which corresponds to the radical “da”
followed the enclitic “me”. Once we implemented
this clitic stemmer for Arabic, we created an en-

" For example, the agglutinated word sl has two

segmentations but only the segmentation: dalals + JI = ada)all
will remain after POS tagging in step 2a



clitic dictionary for Spanish and then successfully
used the same stemmer for this European language.
At this point, the treatment resumes as with Euro-
pean languages. The detection of idiomatic® ex-
pressions (step 1d) is performed after clitic
separation using rules associated with trigger
words for each expression. Once a trigger is found,
its left and right lexical contexts in the rule are then
tested. The trigger must be an entry in the full form
lexicon, but can be represented as either a surface
form or a lemma form combined with its morpho-
syntactic tag. Here we came across another prob-
lem specific to Semitic languages. Since Arabic
lexicon entries are voweled and since input texts
may be partially voweled or unvoweled, we are
forced to only use lemma forms to describe Arabic
idiomatic expressions rules with the existing
mechanism, or else enter all the possible partial
vowelizations for each word in an idiomatic ex-
pression. Since, at this point after step lc, each
recognized word is represented with all its possible
voweled lemmas in the analysis graph, we devel-
oped 482 contiguous idiomatic voweled expression
rules. For example one of the developed rules rec-
ognizes in the text S o5 (January) as a whole
and tags the expression as a being a month.

After idiomatic expression recognition, any nodes
not yet recognized are assigned (in step le) default
linguistic values based on features recognized dur-
ing tokenization (e.g. presence of uppercase or
numbers or special characters). Nothing was
changed for this step of default value assignment in
order to treat Arabic, but since Semitic languages
do not have the capitalization clues that English
and French have for recognizing proper and since
Arabic proper names can often be decomposed into
simple words (much like Chinese names), the cur-
rent implementation of this step with our current
lexical resources poses some problems.

For example, consider the following sentence:
Guibase s alia )y (onlfl Jiandlly Jitisg o5l il
da_dl aS )% Frank Lampard celebrates the score by
Chelsea and his team mate Eidur Gudjohnsen
shares his elation. The name <) 4 (Frank) is iden-

8 An idiom in our system is a (possibly non-contiguous se-
quence) of known words that act as a single unit. For example,
made up in He made up the story on the spot. Once an
idiomatic expression is recognized the individual words nodes
are joined into one node in the word graph.
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tified as such because it is found in the lexicon; the
name )Y (Lampard) is not in the lexicon and
incorrectly stemmed as 2,k + ¥ (plural of the noun
2. (grater)); the name Lsy (Eidur) is incorrectly
tagged as a verb; and o252 (Gudjohnsen), which
is not in the dictionary and for which the clitic
stemmer does not produce any solutions receives
the default tags adjective, noun, proper noun and
verb, to be decided by the part-of-speech tagger.
To improve this performance, we plan to enrich the
Arabic lexicon with more proper names, using ei-
ther name recognition (Maloney and Niv, 1998) or
a back translation approach after name recognition
in English texts (Al-Onaizan and Knight, 2002).

Processing Steps: Part-of-speech analysis

For the succeeding steps involving part-of-speech
tagging, named entity recognition, division into
nominal and verbal chains, and dependency extrac-
tion no changes were necessary for treating Arabic.
After morphological analysis, as input to step 2a,
part-of-speech tagging, we have the same type of
word graph for Arabic text as for European text:
each node is annotated with the surface form, a
lemma and a part-of-speech in the graph. If a word
is ambiguous, then more than one node appears in
the graph for that word. Our part-of-speech tagging
involves using a language model (bigrams and tri-
grams of grammatical tags) derived from hand-
tagged text to eliminate unattested or rare sub paths
in the graph of words representing a sentence. For
Arabic, we created a hand-tagged corpus, and
where then able to exploit the existing mechanism.

One space problem that has arisen in applying
the existing processing designed for European lan-
guages comes from the problem of vowelization.
With our previous European languages, it was ex-
tremely rare to have more than one possible lem-
matization for a given pair: (surface form,
grammatical part-of-speech tag)’. But, in Arabic
this can be very common since an unvoweled
string can correspond to many different words,
some with the same part-of-speech but different
lemmas. The effect of this previously unseen type
of ambiguity on our data structures was to greatly
increase the word graph size before and after part-
of-speech tagging. Since each combination of (sur-

° One example from French is the pair (étaient, finite-verb)
that can correspond to the two lemmas: étre and étayer.



face-form, part-of-speech-tag, and lemma) gives
rise to a new node, the graph becomes larger, in-
creasing the number of paths that all processing
steps must explore. The solution to this for Arabic
and other Semitic languages is simple, though we
have not yet implemented it. We plan to modify
our internal data structure so that each node will
correspond to the surface form, a part-of-speech
tag, and a set of lemmas: (surface-form, part-of-
speech-tag, {lemmas}). The inclusion of a set of
possible lemmas, rather than just one lemma, in a
node will greatly reduce the number of nodes in
the graph and speed processing time.

The next step in our NLP system, after part-of-
speech tagging, is named entity recognition
(Abuleil and Evans, 2004) using name triggers
(e.g., President, lake, corporation, etc.). Beyond the
problem mentioned above of distinguishing possi-
ble proper nouns, here we had an additional prob-
lem since our recognizer extracted the entity in its
surface form. Since in Arabic, as in other Semitic
languages, the input text is usually only partially
voweled, this gave rise to many different forms
(corresponding to different surface forms) for the
same entity. This minor problem was solved by
storing the fully voweled forms of the entities (for
application such as information retrieval as shown
below) rather than the surface form.

After named entity recognition, our methods of
verbal and nominal chain recognition and depend-
ency extraction did not require any modifications
for Arabic. But since the sentence graphs, as men-
tioned above, are currently large, we have re-
stricted the chains recognized to simple noun and
verb chunks (Abney, 1991) rather than the more
complex chains (Marsh, 1984) we recognize for
European languages. Likewise, the only depend-
ency relations that we extract for the moment are
relations between nominal elements. We expect
that the reduction in sentence graph once lemmas
are all collected in the same word node will allow
us to treat more complex dependency relations.

4 Integration in a CLIR application

The results of the NLP steps produce, for all lan-
guages we treat, a set of normalized lemmas, a set
of named entities and a set of nominal compounds
(as well as other dependency relations for some
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languages). These results can be used for any natu-
ral language processing application. For example,
we have integrated LIMA as a front-end for a cross
language information retrieval system. The inclu-
sion of our Arabic language results into the infor-
mation retrieval system did not necessitate any
modifications to this system.

This information retrieval (IR) application in-
volves three linguistic steps, as shown in section 2.
First, in step 3a, subgraphs (compounds and their
components) of the original sentence graph are
stored. For example, the NLP analysis will recog-
nize an English phrase such as “management of
water resources” as a compound that the IR system
will index. This phrase and its sub-elements are
normalized and indexed (as well as simple words)
in the following head-first normalized forms:

® management_water_resource
® resource_water
® management_resource

Parallel head-first structures are created for differ-
ent languages, for example, the French ‘“‘gestion
des ressource en eau” generates:

® gestion_ressource_eau

® ressource_eau

e gestion_ressource.

The corresponding Arabic phrase: ekl ) se 5]

is likewise indexed with voweled forms:

S IR AR A

[ ) Q JB_;_;L:A

e 5ol 2y

When a question is posed to our cross language IR
(CLIR) system it undergoes the same NLP treat-
ment as in steps la to 3a. Then the query is refor-
mulated wusing synonym dictionaries and
translation dictionaries in step 3b. For Arabic, we
have not yet acquired any monolingual synonym
dictionaries, but we have purchased and modified
cross-lingual transfer dictionaries between Arabic
and English, Arabic and French, and Arabic and
Spanish'®. When a compound is found in a query,
it is normalized and its sub elements are extracted
as shown above. Using the reformulation dictionar-
ies, variant versions of the compound are generated
(monolingual, then cross-lingual versions) and at-

191 indén and Piitulainen (2004) propose a method for extract-
ing monolingual synonym lists from bilingual resources.



tested variants are retained as synonyms to the
original compound'' (Besancon et al., 2003). To
integrate the Arabic version into our CLIR system,
no modifications were necessary beyond acquiring
and formatting the cross language reformulation
dictionaries.

The final NLP step (3c) involving in our CLIR
system involves ranking relevant documents. Con-
trary to a bag of word system, which uses only
term frequency in queries and documents, our sys-
tem (Besangon et al., 2003) returns documents in
ranked weighted classes'”> whose weightings in-
volve the presence of named entities, the com-
pleteness of the syntactic subgraphs matched, and
the database frequencies of the words and sub-
graphs matched.

Example

An online version of our cross language retrieval
system involving our Arabic processing is visible
online at a third party site: http://alma.oieau.fr.
This base contains 50 non-parallel documents
about sustainable development for each of the fol-
lowing languages: English, Spanish, French and
Arabic. The user can enter a query in natural lan-
guage and specify the language to be used. In the
example of the Figure 1, the user entered the query
“slaall 2 50 33” and selected Arabic as the language
of the query.

Relevant documents are grouped into classes char-
acterized by the same set of concepts (i.e., refor-
mulated subgraphs) as the query contains. Figure 2
shows some classes corresponding to the query “
sl 2,50 3,107 The query term ol 2,50 350 is a
term composed of three words: skw, 2,15« and 3,1
This compounds, its derived variants and their sub
elements are reformulated into English, French,
and Spanish and submitted to indexed versions of
documents in each of these languages (as well as
against Arabic documents). The highest ranking

! This technique will only work with translations which have
at least one subelement that is has a parallel between lan-
guages, but this is often the case for technical terms.

12 This return to a mixed Boolean approach is found in current
research on Question Answering systems (Tellex et al., 2003).
Our CLIR system resembles such systems, which return the
passage in which the answer is found, since we highlight the
most significant passages of each retrieved document.
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classes (as seen in Figure 2 for this example)
match the following elements:

Class Query terms Number of retrieved documents
1 slaa 3 )50 3] 14

2 aL;\A:UbA_‘ ) sa Bl 18

3 3l 5e 30 colra 9

Terms of the query or the expansion of these terms
which are found in the retrieved documents are
highlighted as illustrated in Figures 2 and 3.

5 Conclusion

We have presented here an overview of our natural
language processing system and its use in a CLIR
setting. This article describes the changes that we
had to implement to extend this system, which was
initially implemented for treating European lan-
guages to the Semitic language, Arabic. Every new
language possesses new problems for NLP sys-
tems, but treating a language from a new language
family can severely test the original design. We
found that the major problems we encountered in
dealing with a language from the Semitic language
family involved the problems of dealing with par-
tially voweled or unvoweled text (two different
problems), and of dealing with clitics. To treat the
problem of clitics, we introduced two new lexicons
and added an additional clitic stemming step at an
appropriate place in our morphological analysis.
For treating the problem of vowelization, we sim-
ply used existing methods for dealing with unac-
cented text, but this solution is not totally
satisfactory for two reasons: we do not adequately
exploit partially voweled text, and our data struc-
tures are not efficient for associating many differ-
ent lemma (differing only in vowelization) with a
single surface form. We are currently working on
both these aspects in order to improve our treat-
ment of Arabic. But the changes, that we describe
here, involved in adding Arabic were not very ex-
tensive, and we able to integrate Arabic language
treatment into a cross language information re-
trieval platform using one man-year of work after
having created the lexicon and training corpus. A
version of our CLIR is available online and illus-
trated in this article. We plan to more fully evalu-
ate the performance of the CLIR system using the
TREC 2001 and TREC 2002 in the coming year.
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Figure 1: User interface for querying the database. The user can choose between English, French, Spanish and Ara-
bic as input language. For best results, the query should be syntactically correct and not in telegraphic form.
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Choosing an Optimal Architecture for Segmentation and POS-Tagging of
Modern Hebrew

Roy Bar-Haim
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Abstract

A major architectural decision in de-
signing a disambiguation model for seg-
mentation and Part-of-Speech (POS) tag-
ging in Semitic languages concerns the
choice of the input-output terminal sym-
bols over which the probability distribu-
tions are defined. In this paper we de-
velop a segmenter and a tagger for He-
brew based on Hidden Markov Models
(HMMs). We start out from a morpholog-
ical analyzer and a very small morpholog-
ically annotated corpus. We show that a
model whose terminal symbols are word
segments (=morphemes), is advantageous
over a word-level model for the task of
POS tagging. However, for segmentation
alone, the morpheme-level model has no
significant advantage over the word-level
model. Error analysis shows that both
models are not adequate for resolving a
common type of segmentation ambiguity
in Hebrew — whether or not a word in a
written text is prefixed by a definiteness
marker. Hence, we propose a morpheme-
level model where the definiteness mor-
pheme is treated as a possible feature of
morpheme terminals. This model exhibits
the best overall performance, both in POS
tagging and in segmentation. Despite the
small size of the annotated corpus avail-
able for Hebrew, the results achieved us-
ing our best model are on par with recent
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results on Modern Standard Arabic.

1 Introduction

Texts in Semitic languages like Modern Hebrew
(henceforthHebrew and Modern Standard Ara-
bic (henceforthArabic), are based on writing sys-
tems that allow the concatenation of different lexi-
cal units, callednorphemes Morphemes may be-
long to various Part-of-Speech (POS) classes, and
their concatenation forms textual units delimited by
white space, which are commonly referred to as
words Hence, the task of POS tagging for Semitic
languages consists of a segmentation subtask and
a classification subtask. Crucially, words can be
segmented into different alternative morpheme se-
guences, where in each segmentation morphemes
may be ambiguous in terms of their POS tag. This
results in a high level of overall ambiguity, aggra-
vated by the lack of vocalization in modern Semitic
texts.

One crucial problem concerning POS tagging of
Semitic languages is how to adapt existing methods
in the best way, and which architectural choices have
to be made in light of the limited availability of an-
notated corpora (especially for Hebrew). This paper
outlines some alternative architectures for POS tag-
ging of Hebrew text, and studies them empirically.
This leads to some general conclusions about the op-
timal architecture for disambiguating Hebrew, and
(reasonably) other Semitic languages as well. The
choice of tokenization level has major consequences
for the implementation using HMMs, the sparseness
of the statistics, the balance of the Markov condi-

Proceedings of the ACL Workshop on Computational Approaches to Semitic Languages 3946,
Ann Arbor, June 200502005 Association for Computational Linguistics



tioning, and the possible loss of information. Thestate/absoluté, and the existence of a possessive
paper reports on extensive experiments for compasuffix are identified using the POS tag assigned to
ing different architectures and studying the effectthe stem, and not as a separate segment or feature.
of this choice on the overall result. Our best resulSome of these conventions are illustrated by the seg-
is on par with the best reported POS tagging resultaentation and POS tagging of the wosdnpgfnw

for Arabic, despite the much smaller size of our an“and that we met”, pronounceagk-she-nifgashrt?
notated corpus.

The paper is structured as follows. Section 2 de-
fines the task of POS tagging in Hebrew, describes
the existing corpora and discusses existing related
work. Section 3 concentrates on defining the dif- Qur segmentation and POS tagging conform with
ferent levels of tokenization, specifies the details ofe annotation scheme used in the Hebrew Treebank

the probabilistic framework that the tagger employgSima’an et al., 2001), described next.
and describes the techniques used for smoothing the

probability estimates. Section 4 compares the diffe?-1 Available corpora

ent levels of tokenization empirically, discusses theiThe Hebrew Treebank (Sima’an et al., 2001) con-
limitations, and proposes an improved model, whicBists of syntactically annotated sentences taken from
outperforms both of the initial models. Finally, sec-articles from theHa’aretz daily newspaper. We ex-
tion 5 discusses the conclusions of our study for segracted from the treebank a mapping from each word
mentation and POS tagging of Hebrew in particulato its analysis as a sequence of POS tagged mor-

w/CC: conjunction
fICOM: complementizer
npgfnwVB: verb

and Semitic languages in general. phemes. The treebank version used in the current
work contains 57 articles, which amount to 1,892

2 Task definition, corpora and related sentences, 35,848 words, and 48,332 morphemes.
work In addition to the manually tagged corpus, we have

_ o ) access to an untagged corpus containing 337,651
Words in Hebrew texts, similar to words in Ara-\yqords, also originating frora’aretznewspaper.
bic and other Semitic languages, consist of a stem 1, tag set, containing 28 categories, was ob-
and.opticlmal prefixes_ gnd suﬁixe@refixe;include tained from the full morphological tagging by re-
conjunctions, prepositions, complementizers and tr}ﬁovmg the gender, number, person and tense fea-
definiteness marker (in a strict well-defined orderyyres. This tag set was used for training the POS
Suffixesnclude inflectional suffixes (denoting gen-yygger. In the evaluation of the results, however, we
der, number, person and tense), pronominal complge orm a further grouping of some POS tags, lead-
ments with verbs and prepositions, and possessifigy 1o a reduced POS tag set of 21 categories. The
pronouns with nouns. _ tag set and the grouping scheme are shown below:
By the termword segmentatiowe henceforth re- (N1, (NN-H), {NNT}, {NNP}, {PRPAGR, {33, {337},
fer to identifying the prefixes, the stem and suffixesrg mopy}, {RBR}, {VB,AUX 1, {VB-M}, {IN,COM,REL},

of the word. ByPOS tag disambiguatiowe mean (ccy, (Qw}, {HAM}, {WDT,DT}, {CD,CDT}, {AT}, {H},
the assignment of a proper POS tag to each of theggog, (zvL ).
morphemes.
In defining the task of segmentation and POS tagz-2 Related work on Hebrew and Arabic

ging, we ignore part of the information that is usuDue to the lack of substantial tagged corpora, most
ally found in Hebrew morphological analyses. Theprevious corpus-based work on Hebrew focus on the
internal morphological structure of stems is not an-—; — _ _

| d d the POS taq assianed to stems inclu The Semitic construct state is a special form of a word
ay;e » an . g g .dl‘ﬁ§t participates in compounds. For instance, in the Hebrew
no information about their root, template/pattern, ineompoundbdiqt hjenh(“check of the clairf), the word bdigt
flectional features and suffixes. Only pronomina{;‘chec[f of”/“t?s“t of”g is the construct form of the absolute form

. . digh (“check”/“test”).

complement suffixes on verbs and prepositions ar

) » € 2n this paper we use Latin transliteration for Hebrew letters
identified as separate morphemes. The construetiowing (Sima’an et al., 2001).
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development of techniques for learning probabilitiesvord segmentation system for Arabic that uses an n-
from large unannotated corpora. The candidate anafam language model over morphemes. They start
yses for each word were usually obtained from avith a seed segmenter, based on a language model
morphological analyzer. and a stem vocabulary derived from a manually seg-

Levinger et al. (1995) propose a method fomented corpus. The seed segmenter is improved it-
choosing a most probable analysis for Hebrewratively by applying a bootstrapping scheme to a
words using an unannotated corpus, where eatdirge unsegmented corpus. Their system achieves
analysis consists of the lemma and a set of morphaccuracy of 97.1% (per word).
logical features. They estimate the relative frequen- Diab et al. (2004) use Support Vector Machines
cies of the possible analyses for a given warthy (SVMs) for the tasks of word segmentation and POS
defining a set of “similar wordsSW (A) for each tagging (and also Base Phrase Chunking). For seg-
possible analysisl of w. Each wordw’ in SW(A) mentation, they report precision of 99.09% and re-
corresponds to an analysi€ which differs fromA  call of 99.15%, when measuringiorphemeshat
in exactly one feature. Since each set is expected weere correctly identified. For tagging, Diab et al.
contain different words, it is possible to approximateeport accuracy of 95.49%, with a tag set of 24 POS
the frequency of the different analyses using the avags. Tagging was applied to segmented words, us-
erage frequency of the words in each set, estimatduh the “gold” segmentation from the annotated cor-
from the untagged corpus. pus (Mona Diab, p.c.).

Carmel and Maarek (1999) follow Levinger et

al. in estimating context independent probabilitie$ ~Architectures for POS tagging Semitic
from an untagged corpus. Their algorithm learns fre-  languages

quencies of morphological patterns (combinationg, ;. segmentation and POS tagging system consists
of morphological features) from the unamblguou%f a morphological analyzethat assigns a set of

words in the corpus. , _ __ possible candidate analyses to each word, atig-a
Several works aimed at improving the “similary oy atorthat selects from this set a single pre-
words” method by considering the context of thggeq analysis per word. Each candidate analysis
word. Levinger (1992) adds a short contextfllterthag:onsiStS of a segmentation of the word into mor-
enforces grammatical constraints and rules out i"b'hemes, and a POS tag assignment to these mor-
possible analyses. Segal's (2000) system includes,emes. In this section we concentrate on the ar-

in ?qd',t'on toa s:,omewhat'qllfferent implementationyyisectyral decisions in devising an optimal disam-
of “similar words”, two additional components: Cor'biguator, given a morphological analyzer for He-

rection rulesa la Brill (1995), and a rudimentary de- , ., (or another Semitic language).
terministic syntactic parser.
Using HMMs for POS tagging and segmenting3.1 Defining the input/output

Hebrew was previously discussed in (Adler, 2001)a jnjtial crucial decision in building a disambigua-
The HMM in Adler's workis trained on an untaggedyq for 4 Semitic text concerns the “tokenization” of
corpus, using the Baum-Welch algorithm (Baumhe jnput sentence: what constitutes a terminal (i.e.,
1972). Adler suggests various methods for perforrr]hput) symbol. Unlike English POS tagging, where
ing both tagging and segmentation, most notable affe terminals are usually assumed to be words (de-
(@) The usage of word-level tags, which uniquely degmited by white spaces), in Semitic texts there are
termine the segmentation and the tag of each mQgyq reasonable options for fixing the kind of termi-

pheme, and (b) The usage of a two-dimensionly| symnols, which directly define the correspond-
Markov model with morpheme-level tags. Only th%g kind of nonterminal (i.e., output) symbols:
first method (word-level tags) was tested, resulting

in an accuracy of 82%. In the present paper, bottWords (W): The terminals are words as they ap-

word-level tagging and morpheme-level tagging are  pear in the text. In this case a nontermiaal

evaluated. that is assigned to a word consists ofa se-
Moving on to Arabic, Lee et al. (2003) describea  quenceof POS tags, each assigned to a mor-
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pheme ofw, delimited with a special segmenta-morphological analyzer). Note that can be dif-
tion symbol. We henceforth refer to such comferent from#k, and may vary for different segmen-
plex nonterminals aanalyses For instance, tations. The original sentence can be uniquely re-
the analysisIN-H-NN for the Hebrew word covered from the segmentation and the tagging.
bbituniquely encodes the segmentatibh-bit ~ Since all the(m?, t}) pairs that are the input for
In Hebrew, this unique encoding of the segmenthe disambiguator were derived fromf, we have
tation by the sequence of POS tags in the anaR(wf|m¥,t}) = 1, and thusP(w}, m}, ) =
ysis is a general property: given a wardand  P(t}, m}). Therefore, Formula (2) can be simpli-
a complex nonterminat = [t; ..., for w, it fied as:

is possible to extend back to a full analysis

@ = [(m1,t1) ... (my,t,)], which includes the arg max P(mt,t7)  (3)
morphemesn; . .. m, that make outo. This is (m}¢7)€ANALY SES (wy)

done by finding a match far in Analyses(w),
the set of possible analyses @f Except for
very rare cases, this match is unique.

Formulas (1) and (3) can be represented in a unified
formula that applies to both word tokenization and
morpheme tokenization:

Morphemes (M): In this case the nonterminals are
the usual POS tags, and the segmentation is
given by the input morpheme sequence. Note
that information about how morphemes aran Formula (4)e} represents either a sequence of
joined into words is lost in this case. words or a sequence of morphemes, depending on

the level of tokenization, and? are the respective

Having described the main input-output options foF1onterminals — either POS tags or word-level anal-

the dls_a_mp|guator, we move on tq descr!blng thf’/ses. Thus, the disambiguator aims at finding the
probabilistic framework that underlies their work-

; most probabldterminal sequence, nonterminal
INgs. sequence) for the given sentence, where in the
3.2 The probabilistic framework case of word-tokenization there is only one possible
rminal sequence for the sentence.

arg max P(el, AY) 4)
(e?, AT)EANALY SES(w¥)

Let w} be the input sentence, a sequence of Worég
wy ... wg. |If tokenization is per word, then the

disambiguator aims at finding the nonterminal se3.3 HMM probabilistic model
quencea? that has the highest joint probability with

. . The actual probabilistic model used in this work for
the given sentence?’:

estimatingP (e, A7) is based on Hidden Markov

arg maxP(w’f, allc) 1) Models (HMMs). HMMs underly many sugcessful
ak POS taggers , e.g. (Church, 1988; Charniak et al.,
1993).
This setting is the standard formulation of proba- For a k-th order Markov modek(= 1 or k = 2),
bilistic tagging for languages like English. we rewrite (4) as:

If tokenization is per morpheme, the disambigua-
tor aims at finding a combination of a segmentation .o ax P(e?, A7)

mY and a tagging? for m[, such that their joint e, A
probability with the given sentenceyf, is maxi- n
mized: argmax [ [ P(A; | Ai_g, ..., Aii1)P(e; | Ay)
e -
arg max Pwh,m ), (2) 5)

(m} t7)EANALY SES(wk)
For reasons of data sparseness, actual models we use
where ANALY SES(w¥) is the set of possible work with k& = 2 for the morpheme level tokeniza-
analyses for the input sentened (output by the tion, and withk = 1 for the word level tokenization.
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For these models, two kinds of probabilities needjuency lexical model in our POS tagger:
to be estimated:P(e; | A;) (lexical model) and

P(A; | Ai_y, ..., A1) (language model). Because (wla) = (1 —=po) rfyr(w,a)  fir(w) >0
the only manually POS tagged corpus that was avai[{DLM0 Po otherwise
able to us for training the HMM was relatively small (7)

(less than 4% of the Wall Street Journal (WSJ) potwhere f,,.(w) is the occurrence frequency af in
tion of the Penn treebank), it is inevitable that majothe training corpus, angy is a constant set experi-
effort must be dedicated to alleviating the sparsenegsentally to10~'9. We denote the tagger that em-
problems that arise. For smoothing the nonterminglloys a smoothed language model and the lexical
language model probabilities we employ the stanmodel P, by the probability distributionP,, ;.
dard backoff smoothing method of Katz (1987).  (over analyses, i.e., morpheme-tag sequences).
Naturally, the relative frequency estimates of In the unsupervised algorithm, the mod8),;.
the lexical model suffer from more severe datais used to induce distribution of alternative analy-
sparseness than the estimates for the languages(morpheme-tag sequences) for each of the sen-
model. On average, 31.3% of the test words dtences in the untagged corpus; we limit the num-
not appear in the training corpus. Our smoothber of alternative analyses per sentence to 300. This
ing method for the lexical probabilities is describedvay we transform the untagged corpus into a “cor-

next. pus” containing weighted analyses (i.e., morpheme-
' _ tag sequences). This corpus is then used to calcu-
3.4 Bootstrapping a better lexical model late the updated lexical model probabilities using

For the sake of exposition, we assume word-levan@ximum-likelihood estimation. Adding the test
tokenization for the rest of this subsection. Théentences to the untagged corpus ensures non-zero
method used for the morpheme-level tagger is vefyrobabilities for the test words.

similar. 5

The smoothing of the lexical probability of a word _ _
P(w,a)  The set of candidate analyses was obtained from Se-

w given an analysis, i.e., P(w | a) = HOR ) :

is accomplished by smoothing the joint pro abilitygalT mo'rpf:quct)_glcal analytzgr (51(3792242300)' fThe

P(w,a) only, i.e., we do not smoottP(a).® To analyzers dictionary: contains L7, ase forms
that can be inflected. After this dictionary was ex-

smooth P(w, a), we use a linear interpolation oft ded with the t d traini i
the relative frequency estimates from the annotateq 0co W € tagged training corpus, It recog-

training corpus (denotef,, (w, a)) together with nizes 96.14% of the words in the test 3d¥or each

estimates obtained hynsupervised estimatidrom :jra;n/;est Spr:'t of_the;}orr;gst,. we onl>\//\tljse thzt;irlll'_nl\%
a large unannotated corpus (denot@al,,;,(w, a)): ata for enhancing the dictionary. Ve use

(Stolcke, 2002) for constructing language models,
and for disambiguation.

Implementation’

P(w,a) = Arfy(w,a)+(1—X) emgyo(w, a)
(6) 4 Evaluation

where) is an interpolation factor, experimentally setn this section we report on an empirical comparison
to 0.85. between the two levels of tokenization presented in

Our unsupervised estimation method can pihe previous section. Analysis of the results leads to
viewed as a single iteration of the Baum-Welctn improved morpheme-level model, which outper-

(Forward-Backward) estimation algorithm (Baumforms both of the initial models.

1972) with minor differences. We apply this method Each architectural configuration was evaluated in
to the untagged corpus of 340K words. Our methog-fold cross-validated experiments. In a train/test

starts out from a naively smoothed relative fre- “hitp:/mww.cs.technion.ac.i#barhaim/MorphTagger/

- SUnrecognized words are assumed to be proper nouns, and
the smoothed probabilities are normalized so thathe morphological analyzer proposes possible segmentations for
> Plw,a) = P(a) the word, based on the recognition of possible prefixes.
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split of the corpus, the training set includes 1,59&bout word boundaries to the tag set. In the en-
sentences on average, which on average amounthanced tag set, nonterminal symbols include addi-
28,738 words and 39,282 morphemes. The test sinal features that indicate whether the tagged mor-
includes 250 sentences. We estimsg¢gmentation pheme starts/ends a word. Unfortunately, we found
accuracy— the percentage of words correctly segthat adding word boundary information in this way
mented into morphemes, as well @&§ging accu- did not improve segmentation accuracy.
racy — the percentage of words that were correctly However, error analysis revealed a very common
segmented for which each morpheme was assigngghe of segmentation errors, which was found to be
the correct POS tag. considerably more frequent in morpheme tagging
For each parameter, the average over the five foldisan in word tagging. This kind of errors involves
is reported, with the standard deviation in parenthea missing or an extra covert definiteness matker
ses. We used two-tailed paired t-test for testing theor example, the worbbit can be segmented either
significance of the difference between the averagaesb-bit (“in a house”) or ab-h-bit (“in the house”),
results of different systems. The significance levgbironouncedebayitand babayit respectively. Un-
(p-value) is reported. like other cases of segmentation ambiguity, which
The first two lines in Table 1 detail the results ob-often just manifest lexical facts about spelling of He-
tained for both word (W) and morpheme (M) lev-brew stems, this kind of ambiguity is productive: it
els of tokenization. The tagging accuracy of theccurs whenever the stem’s POS allows definiteness,
and is preceded by one of the preposititwigl. In

Accuracy per word (%) morpheme tagging, this type of error was found on
Tokenization| Tagging | Segmentation average in 1.71% of the words (46% of the segmen-
W 89.42(0.9)] 96.43(0.3) tation errors). In word tagging, it was found only
M 90.21(1.2)| 96.25(0.5) in 1.36% of the words (38% of the segmentation er-
M+h 90.51 (1.0)| 96.74 (0.5) rors).

Table 1: Level of tokenization - experimental results Since in H(_et?rew there should be agreement be-
tween the definiteness status of a noun and its related

adjective, this kind of ambiguity can sometimes be

morpheme tagger is considerably better than wh solved syntactically. For instance:

is achieved by the word tagger (difference of 0.79%

with significance levep = 0.01). This is in spite of «ppjt hgdwl” impliesb-h-bit (“in the big house”)
the fact that the segmentation achieved by the worghpit gdwl” impliesb-bit (“in a big house”)
tagger is a little better (and a segmentation error im-

plies incorrect tagging). Our hypothesis is that: By contrast, in many other cases both analyses
are syntactically valid, and the choice between them
requires consideration of a wider context, or some
world knowledge. For example, in the sentence
hiknw Imsibh(“we went to a/the party”),lmsibh
can be analyzed either &snsibh (indefinite,"to a
party”) or asl-h-mbsibh (definite,“to the party”).
Whether we prefer “the party” or “a party” depends
This hypothesis is supported by the number ofn contextual information that is not available for
once-occurring terminals in each level: 8,582 in th¢he POS tagger.
word level, versus 5,129 in the morpheme level. Lexical statistics can provide valuable informa-
Motivated by this hypothesis, we next considetion in such situations, since some nouns are more
what kind of word-level information is required for common in their definite form, while other nouns are
the morpheme-level tagger in order to do better imore common as indefinite. For example, consider
segmentation. One natural enhancement for thbe wordimmflh(“to a/the government”), which can
morpheme-level model involves adding informatiorbe segmented either &snmflh or I-h-mmflh The

Morpheme-level taggers outperform
word-level taggers in their tagging ac-
curacy, since they suffer less from data
sparseness. However, they lack some
word-level knowledge that is required for
segmentation.
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Tokenization| Analysis tokenization.

w (ImmflhIN-H-NN)

M (IN'1) (H h) (NN mmflp 5 Conclusion
M+h (IN 1) (H-NN hmmflh

Developing a word segmenter and POS tagger for
Table 2: Representation ¢h-mmflhin each level Hebrew with less than 30K annotated words for
of tokenization training is a challenging task, especially given the
morphological complexity and high degree of am-
biguity in Hebrew. For comparison, in English a
stemmmflh(*government”) was found 25 times in baseline model that selects the most frequent POS
the corpus, out of which only two occurrences wereag achieves accuracy of around the 90% (Charniak
indefinite. This strong lexical evidence in favor ofet al., 1993). However, in Hebrew we found that a
I-h-mmflhis completely missed by the morpheme-parallel baseline model achieves only 84% using the
level tagger, in which morphemes are assumed tgvailable corpus.
be independent. The lexical model of the word- The architecture proposed in this paper addresses
level tagger better models this difference, since the severe sparseness problems that arise in a num-
does take into account the frequenCiESI-ﬂimﬂh ber of ways. First, the Mk modeL which was
and l-h-mmlhy in measuring ROIMfIHIN-NN) and  found to perform best, is based on morpheme-
PImmfIHIN-H-NN). However, since the word tag- |eve| tokenization, which suffers of data sparse-
ger considersmmflh hmmflh(“the government”), ness less than word tokenization, and makes use of
andmmflh(*a government”) as independent wordsmuylti-morpheme nonterminals only in specific cases
it still exploits only part of the potential lexical evi- where it was found to be valuable. The number of
dence about definiteness. nonterminal types found in the corpus for this model
In order to better model such situations, wds 49 (including 11 types of punctuation marks),
changed the morpheme-level model as follows. Iwhich is much closer to the morpheme-level model
definite words the definiteness artidbeis treated (39 types) than to the word-level model (205 types).
as a manifestation of a morphological feature of th&econd, the bootstrapping method we present ex-
stem. Hence the definiteness marker's POS tag (lg)oits additional resources such as a morphological
is prefixed to the POS tag of the stem. We refer bgnalyzer and an untagged corpus, to improve lexi-
M+h to the resulting model that uses this assumpzal probabilities, which suffer from data sparseness
tion, which is rather standard in theoretical linguistidhe most. The improved lexical model contributes
studies of Hebrew. The M#model can be viewed as 1.5% to the tagging accuracy, and 0.6% to the seg-
an intermediate level of tokenization, between momentation accuracy (compared with using the basic
pheme and word tokenization. The different analylexical model), making it a crucial component of our
ses obtained by the three models of tokenization asystem.
demonstrated in Table 2. Among the few other tools available for POS tag-
ging and morphological disambiguation in Hebrew,
As shown in Table 1, the M* model shows the only one that is freely available for extensive
remarkable improvement in segmentation (0.49%yaining and evaluation as performed in this paper
p < 0.001) compared with the initial morpheme-is Segal’s ((Segal, 2000), see section 2.2). Com-
level model (M). As expected, the frequency of segparing our best architecture to the Segal tagger’s re-
mentation errors that involve covert definitendss ( sults under the same experimental setting shows an
dropped from 1.71% to 1.25%. The adjusted morimprovement of 1.5% in segmentation accuracy and
pheme tagger also outperforms the word level taggdr5% in tagging accuracy over Segal’s results.
in segmentation (0.31%, = 0.069). Tagging was  Moving on to Arabic, in a setting comparable to
improved as well (0.3%p = 0.068). According to (Diab et al., 2004), in which the correct segmenta-
these results, tokenization as in the Mmodel is tion is given, our tagger achieves accuracy iper-
preferable to both plain-morpheme and plain-worgghemeof 94.9%. This result is close to the re-
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sult reported by Diab et al., although our result wagric Brill. 1995. Transformation-based error-driven
achieved using a much smaller annotated corpus.learning and natural language processing: A case
We therefore believe that future work may benefit Smgg(;lﬂzlpiréﬂ-?ssp;ech tagging-omputational Lin-
from applying our model, or variations thereof, to ' '
Arabic and other Semitic languages. Dac\i/id Cagmel and ;(oelletl)\/laarek. 19hgg. Morphological
; : : isambiguation for Hebrew search systems. Pin-
moodr(]jigir:zec:)r\]/aelrnazzgfctehsefr?qrotr?)?lgcl)llr:)%i?:rarlo ;;Tygg: ceedings of the 4th international workshop,NGITS-99
The analyzer misses the correct analysis of 3.78% &tigene Charniak, Curtis Hendrickson, Neil Jacobson,
the test words. Hence, the upper bound for the accu-2and Mike Perkowitz. 1993. Equations for part-of-
racy of the disambiguator is 96.22%. Increasing the spee_ch tagging. INational Conference on Atrtificial
y ) g - ' . g Intelligence pages 784—789.
coverage while maintaining the quality of the pro- _
posed analyses (avoiding over-generation as mu&h W. Chtr']rCh- 1988. ]ﬁStOChatSt.lCt %a;ts tert:gramfand
: - - - : : _ noun phrase parser for unrestricted text. Piroc. o
as possible), is crucial for improving the tagging re the Second Conference on Applied Natural Language
sults. Processingpages 136—143, Austin, TX.
It should also be mentioned that a new version of Diab. Kadri Haciodl d Daniel Jurafskv. 2004
- - ona Diab, Kadri Hacioglu, and Daniel Jurafsky. :
the Hebrew treebank, now containing apprommatelVl Automatic tagging of Arabic text: From raw text to
5,000 sentences, was re_Ieased after the current WOrkhase phrase chunks. HLT-NAACL 2004: Short Pa-
was completed. We believe that the additional an- pers pages 149-152.
notated data will allow to refine our model, both in L .
S.M. Katz. 1987. Estimation of probabilities from sparse

terms_, of accuracy an_d in te_rr_ns of coverage, by e_x- data from the language model component of a speech
panding the tag set with additional morpho-syntactic recognizer. IEEE Transactions of Acoustics, Speech
features like gender and number, which are prevalent and Signal Processin@5(3):400-401.
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Abstract

We applied Conditional Random Fields
(CRFs) to the tasks of Amharic word seg-
mentation and POS tagging using a small
annotated corpus of 1000 words. Given
the size of the data and the large number of
unknown words in the test corpus (80%),
an accuracy of 84% for Amharic word
segmentation and 74% for POS tagging
is encouraging, indicating the applicabil-
ity of CRFs for a morphologically com-

and also bringing in the experience from other lan-
guages in solving these problems, since POS taggers
have been developed for several languages resulting
in a rich body of knowledge.

Several attempts have been made in the past
to develop algorithms for analyzing Ambharic
words. Among these is the stemming algorithm
of Nega (1999), which reduces Amharic words
into their common stem forms by removing affixes.
Nega's work focuses on investigating the effective-
ness of the stemming algorithm in information re-
trieval for Amharic. Abyot (2000) developed a word

lex lan like Amharic. . .
plexianguage fike anc parser for Amharic verbs that analyses verbs into

their constituting morphemes and determines their
morphosyntactic categories. Abyot’s work only cov-

Part-of-speech (POS) tagging is often considere?fS verbs and their derivations. Mesfin (2001) devel-
as the first phase of a more complex natural larPed a Hidden Markov Model (HMM) based part of
guage processing application. The task is parti&Peech tagger for Amharic. Building on the work of
ularly amenable to automatic processing. SpecifMesfin, Atelach (2002) developed a stochastic syn-
cally, POS taggers that are trained on pre-annotatéftic parser for Amharic. Sisay and Haller (2003a;
corpora achieve human-like performance, which {§003b) applied finite-state tools, and corpus-based
adequate for most applications. The road to sudRethods for the Amharic morphological analysis.
high performance levels is, however, filled with alhis work provided important insights into the is-
hierarchy of sub-problems. Most techniques genefes surrounding the development of Amharic nat-
ally assume the availability of large POS annotatelral language processing applications, especially, in
corpora. The development of annotated corpora {#PMPpiling a preliminary POS tagset for Amharic.
turn requires a standard POS tagset. None of theseln this paper, our aim is to explore recent develop-
resources are available for Amharic. This is duenents in the morphological analysis of related lan-
mainly to the fact that data preparation, i.e., develguages, such as Arabic and Hebrew, and machine
oping a comprehensive POS tagset and annotatindearning approaches, and apply them to the Amharic
reasonably sized text, is an arduous task. Althoughanguage. Amharic belongs to the Semitic family of
the POS tagging task, taken as a whole, seems chilnguages, and hence shares a number of common
lenging, a lot can be gained by analyzing it into submorphological properties with Arabic and Hebrew
problems and dealing with each one step-by-stefgr which active research is being carried out. Stud-

1 Introduction
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ies on these languages propose two alternative POSAmharic has a complex morphology. Word
tagging approaches which differ on the unit of analformation involves prefixation, suffixation, infixa-
ysis chosen; morpheme-based and word-based (B&opn, reduplication, and Semitic stem interdigitation,
Haim et al., 2004). The former presupposes a segmong others. Like other Semitic languages, e.g.,
mentation phase in which words are analysed intArabic, Amharic verbs and their derivations con-
constituting morphemes which are then passed siitute a significant part of the lexicon. In Semitic
the POS tagging step, whereas the latter applies PGfhguages, words, especially verbs, are best viewed
tagging directly on fully-inflected word forms. Due as consisting of discontinuous morphemes that are
to scarce resources, it is impossible for us to fullgombined in a non-concatenative manner. Put dif-
carry out these tasks for Amharic. Therefore, théerently, verbs are commonly analyzed as consist-
segmentation and POS tagging tasks are carried dog of root consonants, template patterns, and vowel
independently. Furthermore, POS tagging is appliggiatterns. With the exception of very few verb forms
only on fully-inflected word forms. The motivation (such as the imperative), all derived verb forms take
for doing the segmentation task comes from the neadfixes in order to appear as independent words.
to provide some measure of the complexity of the Most function words in Amharic, such as Con-
task in the context of the Amharic language. Agunction, Preposition, Article, Relative marker,
regards implementation, new models have been iftronominal affixes, Negation markers, are bound
troduced recently for segmentation and sequenceorphemes, which are attached to content words,
labeling tasks. One such model is Conditional Rarresulting in complex Amharic words composed of
dom Fields (CRFs) (Lafferty et al., 2001). In thisseveral morphemes. Nouns inflect for the mor-
paper, we describe important morphosyntactic chaphosyntactic features number, gender, definiteness,
acteristics of Amharic, and apply CRFs to Amhari@and case. Amharic adjectives share some morpho-
word segmentation and POS tagging. logical properties with nouns, such as definiteness,
The paper is organized as follows. Section 2 prosase, and number. As compared to nouns and verbs,
vides a brief description of Amharic morphology.there are fewer primary adjectives. Most adjec-
Section 3 presents some of the work done in thives are derived from nouns or verbs. Amharic
area of Amharic morphological analysis, and examhas very few lexical adverbs. Adverbial meaning
ines one POS tagset proposed by previous studigs usually expressed morphologically on the verb or
This tagset has been revised and applied on a sampough prepositional phrases. While prepositions
Amharic newspaper text, which is discussed in Se@re mostly bound morphemes, postpositions are typ-
tion 4. Section 5 describes the tasks in greater disally independent words.
tail. Section 6 provides a brief description of CRFs, The segmentation task (cf. Section 7.1) consid-
the machine learning algorithm that will be appliecers the following bound morphemes as segments:
in this paper. Section 7 describes the experimentRrepositions, Conjunctions, Relative Makers, Aux-
setup and Section 8 presents the result of the expdary verbs, Negation Marker and Coordinate Con-
iment. Finally, Section 9 makes some concludingunction. Other bound morphemes such as definite

remarks. article, agreement features (i.e., number, gender),
case markers, etc are not considered as segments and
2 Amharic Morphology will be treated as part of the word. These are chosen

since they are commonly treated as separate units in
Ambharic is one of the most widely spoken lan-most syntactic descriptions.
guages in Ethiopia. It has its own script that is bor- Although the above description of Amharic is far
rowed from Ge’ez, another Ethiopian Semitic lanfrom complete, it highlights some of the major char-
guage (Leslau, 1995). The script is believed to havacteristics of Amharic, which it shares with other
originated from the South Sabean script. It is a sylSemitic languages such as Arabic. It is, therefore,
labary writing system where each character reprevorthwhile to take into consideration the work done
sents an open CV syllable, i.e., a combination of &or other Semitic languages in proposing a method
consonant followed by a vowel (Daniels, 1997).  for Amharic natural language processing.
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3 Amharic POS Tagset 4 Application of the Revised Tagset

Mesfin (2001) compiled a total of 25 POS tags: NJhe above abstract POS tags are chosen by tak-
NV, NB, NP, NC, V. AUX, VCO, VP, VC, J, JC, Ing into account the proposals made in Amharic
IJNU. JPN. JP. PREP. ADV. ADVC. C. REL. ITJ.9rammar literature and the guidelines of other lan-
ORD, CRD, PUNC, and UNC. These tags captur@uages (Baye, 1986; Wilson, 1996; Khoja et al.,
important properties of the language at a higher lev€001)- Itis, however, necessary to apply the revised
of description. For example, the fact that therd@dset to a real Amharic text and see if it leads to any

is no category for Articles indicates that Amharicunforeseeable problems. Itis also useful to see the
does not have independent lexical forms for artidistribution of POS tags in a typical Amahric news-
cles. However. a close examination of the dePaper text. Therefore, we selected 5 Amharic news
scription of some of the tags reveals some mis&'ticles and applied the above tagset.
classification that we think will lead to tagging in- All the tokens in the corpus are assigned one

consistency. For example, the tag JPN is assigné’(ﬁ the tags in the proposed tagset relz_sltively easily.
to nouns with the “ye” prefix morpheme that func-1nere do not seem to be any gaps in the tagset.

tion as an adjective, e.gyetaywan sahn - A Unlike Mesfin (2001), who assigns collocations a
Taiwan made plate  (Mesfin, 2001). This ex- single POS tag, we have assumed that each token

ample shows that grammatical function takes precéhould be treated separately. This means that words
dence over morphological form in deciding the P0§hat are part of_ a coIIocatlorj are assigned tags indi-
category of aword. In Amharic, the ye+NOUN con-Vidually. This in turn contributes towards a better
struction can also be used to represent other kind@99Ing consistency by minimizing context depen-
of relation such as Possession relation. On tH€nt decision-making steps.

other hand, the ye+NOUN construction is a simple Table 1 shows the distribution of POS tags in the
morphological variant of the NOUN that can easilycCrPus. Nouns constitute the largest POS category
be recognized. Therefore, treating ye+NOUN conll! the corpus based on the above tagging scheme.
struction as a subclass of a major noun class will re-Nis seems to be characteristic of other languages
sult in a better tagging consistency than treating it 460- However, Amharic makes extensive use of noun
an adjective. Furthermore, a hierarchical tagset, oflauses for representing different kinds of subordi-
ganized into major classes and subclasses, seem$'#§€ clauses. Noun clauses are headed by a verbal
be a preferred design strategy (Wilson, 1996; KhojAoun, which is assigned a noun POS tag. This adds
et al., 2001). Although it is possible to guess (fronf® the skewedness of POS tag distributions which
the tagset description) some abstract classes suchiBglurn biases the POS tagger that relies heavily on
N* (nouns), V* (verbs), J* (adjectives), etc., such gnorphological features as we will show in Section 7.
hierarchical relation is not clearly indicated. One adlnterjections, on the other hand, do not occur in the
vantage of such a hierarchical organization is that f2MPle corpus, as these words usually do not appear
allows one to work at different levels of abstraction Oftén in newspaper text.

The POS tags that are used in this paper are ob-once the POS f[agset h"?‘S been compiled ar_1d
tained by collapsing some of the categories propos ted, the next Io_gmal step is to explore. automatic
by Mesfin (2001). The POS tags are Noun (N), Verl5’r1ethqu of analyzmg Amharic words, which we ex-
(V), Auxiliary verbs (AUX), Numerals (NU), Ad- plore in the next section.
jective (AJ), Adverb (AV), Adposition (AP), Inter- 5
jection (1), Residual (R), and Punctuation (PU). The
main reason for working with a set of abstract POSemitic languages like Arabic, Hebrew and Amharic
tags is resource limitation, i.e., the absence of a largeave a much more complex morphology than En-
annotated corpus. Since we are working on a smajlish. In these languages, words usually consist
annotated corpus, 25 POS tags make the data spaofeseveral bound morphemes that would normally
and the results unreliable. Therefore, we have fourtthve independent lexical entries in languages like
it necessary to revise the tagset. English. Furthermore, in Arabic and Hebrew, the

POS Tagging of Amharic
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Description POStag Frequency features that contribute to tagging accuracy.

Noun N 586 Although the segmentation and POS tagging tasks
Verb V 203 look different, both can be reduced to sequence la-
Auxiliary AUX 20 beling tasks. Since the size of the annotated cor-
Numeral NU 65 pora is very small, a method needs to be chosen
Adjective Al 31 that allows an optimal utilization of the limited re-
Adverb AV 8 sources that are available for Amharic. In this re-
Adposition AP 30 spect, CRFs are more appropriate than HMMs since
Interjection | 0 they allow us to integrate information from different
Punctuation PU 36 sources (Lafferty et al., 2001). In the next section,
Residual R 15 we provide a brief description of CRFs.

Table 1: Distribution of POS tags 6 Conditional Random Fields

Conditional Random Fields are conditional proba-

diacritics that represent most vowels and gemine?—i"ty distribution_s that take the form of expoqential

tion patterns are missing in written texts. AlthougHnodels. A special case of CRFs, linear chain CRF,
Amharic does not have a special marker for gemhich takes the following form, has been widely

ination, the Amharic script fully encodes both the!Sed for sequence labeling tasks.

vowels and the consonants, hence it does not sufferp(
from the ambiguity problem that may arise due to

.. 1
the missing vowels. 7 (o) (ZZ Nefr (6, ye—1, yt,x)> :
As mentioned briefly in Section 1, the morpho- v =1 &

logical complexity of these languages opens up difyhere Z (z) is the normalization factor,X =
ferent alternative approaches in developing PO I,...,x,} is the observation sequenc¥, =
taggers for them (Bar-Haim et al., 2004; Diab{yb ...,yr} is the label sequencesf; and \;
et al., 2004). Bar-Haim et al. (2004) showedyre the feature functions and their corresponding
that morpheme-based tagging performs better th@&bights respectively (Lafferty et al., 2001).
word-based tagging; they used Hidden Markov an important property of these models is that
Models (HMMs) for developing the tagger. probabilities are computed based on a set of feature
On the basis of the idea introduced by Bar-Hainfunctions, i.e. fi, (usually binary valued), which
et al. (2004), we formulate the following two relatedare defined on both the observatignand label se-
tasks for the analysis of Amharic words: segmenguences”. These feature functions describe differ-
tation and POS tagging (sequence labeling). Segnt aspect of the data and may overlap, providing
mentation refers to the analysis of a word into cona flexible way of describing the task. CRFs have
stituting morphemes. The POS tagging task, on tHgeen shown to perform well in a number of natural
other hand, deals with the assignment of POS tadgnguage processing applications, such as POS tag-
to words. The revised POS tags that are introduceging (Lafferty et al., 2001), shallow parsing or NP
in Section 3 will be used for this task. The mainchunking (Sha and Pereira, 2003), and hamed entity
reason for choosing words as a unit of analysis an@cognition (McCallum and Li, 2003).
adopting the abstract POS tags is that the limited re- In POS tagging, context information such as sur-
source that we have prohibits us from carrying outounding words and their morphological features,
fine-grained classification experiments. As a resuite., suffixes and prefixes, significantly improves per-
of this, we choose to aim at a less ambitious goal dormance. CRFs allow us to integrate large set of
investigating to what extent the strategies used f@uch features easily. Therefore, it would be interest-
unknown word recognitions can help fill the gap lefing to see to what extent the morphological features
by scarce resources. Therefore, we mainly focus drelp in predicting Amharic POS tags. We used the
word-based tagging and explore different kinds ofminorThird implementation of CRF (Cohen, 2004).

ylz)=
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7 Experiments N(egative). Each character in the segment is as-
o . signed one of these tags depending on where it ap-
There are_llmlted resources for the Amharlc Ianpears in the segment; at the beginning (B), at the end
guage, which can be used for developing POS tagr) inside (C), or alone (U). While the tags BCE are
ger. One resource that may be relevant for the Cufise(d to capture multi-character morphemes, the U
rent task is a dictionary consisting of some 15,008, js ysed to represent single-character morphemes.
entries (Amsalu, 1987). Each entry is assigned onfg,e negative tag (N) is assigned to the special sym-
of the five POS tags; Noun, Verb, Adjectives, Ad+g| # ysed to indicate the word boundary. Though
verb, and Adposition. Due to the morphologicakyperiments have been carried out with less elab-
complexity of the language, a fully inflected dic-g e tagging schemes such as BIO (Begin-Inside-
tionary consisting only of 15,000 entries is bouncpside), no significant performance improvement
to have limited coverage. Furthermore, the dictiopag heen observed. Therefore, results are reported
nary contains entries for phrases, which do not fagmy for the BCEUN tagging scheme.
into any of the POS cgtegories. Therefore the actual The set of features that are used for training are
number of useful entries is a lot less than 15,000. composed of character features, morphological fea-
The data for the experiment that will be describe@lure& dictionary features, the previous tag, and char-
below consists of 5 annotated news articles (1009cter bi-grams. We used a window of eleven charac-
words). The Amharic text has been transliterated Ugars centered at the current character. The charac-
ing the SERA transliteration scheme, which encodegy features consist of the current character, the five
Amharic scripts using Latin alphabets (Danielcharacters to the left and to the right of the current
1996). This data is very small compared to the datgharacters. Morphological features are generated by
used in other segmentation and POS tagging expefirst merging the set of characters that appear be-
ments. However, it is worthwhile to investigate howween the word boundaries (both left and right) and
such a limited resource can meaningfully be used fQhe current character. Then a binary feature will be

tackling the aforementioned tasks. generated in which its value depends on whether the
) resulting segment appears in a precompiled list of
7.1 Segmentation valid prefix and suffix morphemes or not. The same

The training data for segmentation task consists of $egment is also used to generate another dictionary-
news articles in which the words are annotated withased feature, i.e., it is checked whether it exists in
segment boundaries as shown in the following exhe dictionary. Character bi-grams that appear to the

ample. left and the right of the current character are also
used as features. Finally, the previous tag is also

...<seg>Ind</seg><seg> used as a feature.
astawequt</seg># .
<seg>le</seg><seg>arso 7.2 POS Tagging
</seg>#<seg> aderu The experimental setup for POS tagging is similar to
</seg># <seg>be</seg> that of the segmentation task. However, in our cur-
<seg>temeTaTaN</seg> ... rent experiments, words, instead of characters, are

annotated with their POS tags and hence we have

In this example, the morphemes are enclosed ¥ore labels now. The following example shows the
<seg> and</seg> XML tags. Word-boundaries annotation used in the training data.

are indicated using the special symbBolThe reduc-

tion of the segmentation task to a sequence labeling ...<V>yemikahEdut</V>

task is achieved by converting the XML-annotated = <N>yemrmr</N>

text into a sequence of character-tag pairs. Each <N>tegbarat</N>

character constitutes a training (test) instance. The <V>yatekorut</V>

following five tags are used for tagging the char-  <N>bemgbh</N> <N>sebl</N>
acters; B(egin), C(ontinue), E(nd), U(nique) and
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Each word is enclosed in an XML tag that denotes its)sing only these features, the system with previous
POS tag. These tags are directly used for the trainirigbel feature already achieved an accuracy of 0.819.
of the sequence-labeling task. No additional reducFhe dictionary feature improved the result by 2%
tion process is carried out. whereas the morphological features brought minor
The set of features that are used for training argnprovements. As more features are added the vari-
composed of lexical features, morphological feaation between the different runs increases slightly.
tures, dictionary features, the previous two PO®erformace significantly decreases when we omit
tags, and character bi-grams. We used a window tiie previous label feature as it is shownWithout
five words centered at the current word. The lexPrev. Labelcolumn.
ical features consist of the current word, the two ]
words to the left and to the right of the current wordS-2  POS Tagging Results
Morphological features are generated by extractingable 3 shows the word-based evaluation results of
a segment of length one to four characters long froithe POS tagging experiment. The baseline (Row 1)
the beginning and end of the word. These segmenseans assigning all the words the most frequently
are first checked against a precompiled list of vali@ccurring POS tag, i.e., N (noun). The result ob-
prefix and suffix morphemes of the language. If théained using only lexical features (Row 2) is bet-
segment is a valid morpheme then an appropriater than the baseline. Adding morphological fea-
feature will be generated. Otherwise the null pretures improves the result almost by the same amount
fix or suffix feature will be generated to indicate the(Row 3). Incorporation of the dictionary feature,
absence of an affix. The dictionary is used to gerhowever, has brought only slight improvement. The
erate a binary feature for a word based on the PO@Idition of bi-gram features improved the result by
tag found in the dictionary. In other words, if the3%.
word is found in the dictionary, its POS tag will be As mentioned before, it is not possible to com-
used as a feature. For each word, a set of charactgre the results, i.e. 74% accuracy (With Prev. La-
bi-grams has been generated and each character lig), with other state of the art POS taggers since our
gram is used as a feature. Finally, the last two PO@ata is very small compared to the data used by other

tags are also used as a feature. POS taggers. It is also difficult to claim with abso-
lute certainty as to the applicability of the technique
8 Results we have applied. However, given the fact that 80%

o ) of the test instances are unseen instances, an accu-
We conducted a 5-fold cross-validation experlmen}aCy of 74% is an acceptable result. This claim re-

In each run, one article is used as a test dataset 80y es further support when we look at the results re-
the remaining four articles are used for training. Th%orted for unknown word guessing methods in other
results reported in the sections below are the averaggyg tagging experiments (Nakagawa et al., 2001).

of these five runs. On average 80% of the words iR e add more features, the system shows less vari-

the test files are unknown words. Most of the Unzion among the different folds. As with segmenta-

known words (on average 60%) are nouns. tion task, the omission of the previous label feature

decreases performace. The system with only lexical

features and without previous label feature has the

As mentioned in Section 7.1, four sets of featuressame performace as the baseline system.

i.e., character features, morphological features, dic-

tionary features, and previous label, are used for 23 Error Analysis

segmentation task. Table 2 shows results for somighe results of both the segmentation and POS tag-

combinations of these features. The results withogfing tasks show that they are not perfect. An ex-

the previous label feature are also showvithout amination of the output of these systems shows cer-

Prev. Labe). tain patterns of errors. In case of the segmenta-
The simple character features are highly information task, most of the words that are incorrectly seg-

tive features, as can be seen in Table 2 (Row limented have the same beginning or ending charac-

8.1 Segmentation Result
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With Prev. Label Without Prev. Label

Features accuracy stddev accuracy stddev
Char. 0.819 0.7 0.661 4.7
Char.+Dict. 0.837 1.6 0.671 4.1
Char.+Dict.+Morph. 0.841 1.7 0.701 3.9

Table 2: Segmentation Results

With Prev. Label Without Prev. Label

Features accuracy stddev accuracy stddev
Baseline 0.513 6.4 - -
Lex. 0.613 5.3 0.513 6.4
Lex.+Morph. 0.700 5.0 0.688 5.2
Lex.+Morph.+Dict. 0.713 4.3 0.674 5.6
Lex.+Morph.+Dict.+Bigram  0.748 4.3 0.720 2.9

Table 3: Word-based evaluation results of POS tagging

ters as words with affix morphemes. Increasing thproved parameters for both segmentation and POS
size of the lexical resources, such as the dictionaritagging models.

can help the system in distinguishing between words

that have affixes from those that do not. 9 Concluding Remarks

The POS tagging system, on the other handp this paper, we provided preliminary results of the
has difficulties in distinguishing between nouns angppncaﬁon of CRFs for Amharic word segmentation
other POS tags. This in turn shows how similagnd POS tagging tasks. Several features were exam-
nouns are to words in other POS tags morphologned for these tasks. Character features were found
ically, since our experiment relies heavily on mortp pe useful for the segmentation task whereas mor-
phological features. This is not particularly surphological and lexical features significantly improve
prising given that most Amharic affixes are shareg¢he results of the POS tagging task. Dictionary-
among nouns and words in other POS tags. IBased features contribute more to the segmentation
Ambharic, if a noun phrase contains only the heaghsk than to the POS tagging task. In both experi-
noun, most noun affixes, such as prepositions, defents, omition of previous label feature hurts per-
inite article, and case marker appear on the heggdrmance.
noun. If, on the other hand, a noun phrase containsNthough the size of the data limits the scope of
prenominal constituents such as adjectives, numefe claims that can be made on the basis of the re-
als, and other nouns, then the above noun affixegits, the results are good especially when we look
appear on prenominal constituents, thereby blurringt them from the perspective of the results achieved
the morphological distinction between the noung, unknown word recognition methods of POS tag-
and other constituents. Furthermore, similar sel§ing experiments. These results could be achieved
of morphemes are used for prepositions and subd§ince CRFs allow us to integrate several overlapping

dinate conjunctions, which again obscures the digeatures thereby enabling optimum utilization of the
tinction among the nouns and verbs. This, togethefailable information.

with the fact that nouns are the dominant POS cate- |, general, the paper dealt with a restricted as-
gory in the data, resulted in most words being misgsect of the morphological analysis of Amharic, i.e.,
classified as nouns. Ambharic word segmentation and POS tagging. Fur-
In general, we believe that the above problems cahermore, these tasks were carried out relatively in-
be alleviated by making more training data availabldependently. Future work should explore how these
to the system, which will enable us to determine imtasks could be integrated into a single system that
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allows for fine-grained POS tagging of AmharicSisay Fissaha Adafre and Johann Haller. 2003b. Ap-
words. Parallel to this, resource development needsPplication of corpus-based techniques to Amharic texts.
to be given due attention. As mentioned, the lack M?ﬁ?('r\‘/s Tlr(aﬂsmt"(\)l” fogslemmc languaggT Sum-

' ! it orkshop, New Orleans
of adequate resources such as a large POS annotateg1 P
corpus imposes restrictions on the kind of method¥esfin Getachew. 2001. Automatic part of speech
that can be applied. Therefore, the development of t299ing for Amharic language: An experiment using
a standard Amharic POS tagset and annotation of a\sl’éorggisuc HMM Master Thesis, Addis Ababa Uni-
reasonably sized corpus should be given priority.
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Abstract

Natural language processing technology
for the dialects of Arabic is still in its
infancy, due to the problem of obtaining
large amounts of text data for spoken Ara-
bic. In this paper we describe the de-
velopment of a part-of-speech (POS) tag-
ger for Egyptian Colloguial Arabic. We
adopt a minimally supervised approach
that only requires raw text data from sev-
eral varieties of Arabic and a morpholog-
ical analyzer for Modern Standard Ara-
bic. No dialect-specific tools are used. We
present several statistical modeling and
cross-dialectal data sharing techniques to
enhance the performance of the baseline
tagger and compare the results to those
obtained by a supervised tagger trained
on hand-annotated data and, by a state-of-
the-art Modern Standard Arabic tagger ap-
plied to Egyptian Arabic.

1 Introduction

Part-of-speech (POS) tagging is a core natural lan-
guage processing task that can benefit a wide range
of downstream processing applications. Tagging
is often the first step towards parsing or chunking
(Osborne, 2000; Koeling, 2000), and knowledge
of POS tags can benefit statistical language mod-
els for speech recognition or machine translation
(Heeman, 1998; Vergyri et al., 2004). Many ap-
proaches for POS tagging have been developed in
the past, including rule-based tagging (Brill, 1995),
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HMM taggers (Brants, 2000; Cutting and oth-
ers, 1992), maximum-entropy models (Rathnaparki,
1996), cyclic dependency networks (Toutanova et
al., 2003), memory-based learning (Daelemans et
al., 1996), etc. All of these approaches require ei-
ther a large amount of annotated training data (for
supervised tagging) or a lexicon listing all possible
tags for each word (for unsupervised tagging). Tag-
gers have been developed for a variety of languages,
including Modern Standard Arabic (MSA) (Khoja,
2001; Diab et al., 2004). Since large amount of text
material as well as standard lexicons can be obtained
in these cases, POS tagging is a straightforward task.

The dialects of Arabic, by contrast, are spoken
rather than written languages. Apart from small
amounts of written dialectal material in e.g. plays,
novels, chat rooms, etc., data can only be obtained
by recording and manually transcribing actual con-
versations. Moreover, there is no universally agreed
upon writing standard for dialects (though several
standardization efforts are underway); any large-
scale data collection and transcription effort there-
fore requires extensive training of annotators to en-
sure consistency. Due to this data acquisition bot-
tleneck, the development of NLP technology for di-
alectal Arabic is still in its infancy. In addition to the
problems of sparse training data and lack of writing
standards, tagging of dialectal Arabic is difficult for
the following reasons:

e Resources such as lexicons, morphological an-
alyzers, tokenizers, etc. are scarce or non-
existent for dialectal Arabic.

o Dialectal Arabic is a spoken language. Tagging
spoken language is typically harder than tag-
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Ann Arbor, June 200502005 Association for Computational Linguistics



ging written language, due to the effect of dis-
fluencies, incomplete sentences, varied word
order, etc.

e The rich morphology of Arabic leads to a
large number of possible word forms, which
increases the number of out-of-vocabulary
(OOV) words.

e The lack of short vowel information results in
high lexical ambiguity.

In this paper we present an attempt at developing
a POS tagger for dialectal Arabic in a minimally
supervised way. Our goal is to utilize existing re-
sources and data for several varieties of Arabic in
combination with unsupervised learning algorithms,
rather than developing dialect-specific tools. The
resources available to us are the CallHome Egyp-
tian Colloquial Arabic (ECA) corpus, the LDC Lev-
antine Arabic (LCA) corpus, the LDC MSA Tree-
bank corpus, and a generally available morpholog-
ical analysis tool (the LDC-distributed Buckwalter
stemmer) for MSA. The target dialect is ECA, since
this is the only dialectal corpus for which POS an-
notations are available. Qur general approach is
to bootstrap the tagger in an unsupervised way us-
ing POS information from the morphological ana-
lyzer, and to subsequently improve it by integrating
additional data from other dialects and by general
machine learning techniques. We compare the re-
sult against the performance of a tagger trained in a
supervised way and an unsupervised tagger with a
hand-developed ECA lexicon.

2 Data

The ECA corpus consists of telephone conversations
between family members or close friends, with one
speaker being located in the U.S. and the other in
Egypt. We use the combined train, eval96 and hub5
sections of the corpus for training, the dev set for
development and the eval97 set for evaluation. The
LCA data consists of telephone conversations on
pre-defined topics between Levantine speakers pre-
viously unknown to each other; all of the available
data was used. The Treebank corpus is a collection
of MSA newswire text from Agence France Press,
An Nahar News, and Unmah Press. We use parts 1
(v3.0), 2 (v2.0) and 3 (v1.0). The sizes of the vari-
ous corpora are shown in Table 1.
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The ECA corpus was originally transcribed in a “ro-
manized” form; a script representation was then de-
rived automatically from the romanized transcripts.
The script, therefore, does not entirely conform to
the MSA standard: romanized forms may repre-
sent actual pronunciations and contain such MSA
— ECA changes as /6/ — /sl or It/ and /8] — [z/
or /d/. The resulting representation cannot be unam-
biguously mapped back to MSA script; the variants
/sl or /t/, for instance, are represented by o O O,

rather than . This introduces additional noise into

the data, but it also mimics the real-world situation
of variable spelling standards that need to be handled
by a robust NLP system. We use the script represen-
tation of this corpus for all our experiments. The
ECA corpus is accompanied by a lexicon contain-
ing the morphological analysis of all words, i.e. an
analysis in terms of stem and morphological charac-
teristics such as person, number, gender, POS, etc.
Since the analysis is based on the romanized form, a
single tag can be assigned to the majority of words
(75% of all tokens) in the corpus. We use this assign-
ment as the reference annotation for our experiments
to evaluate the output of our tagger. The remaining
25% tokens (ambiguous words) have 2 or more tags
in the lexicon and are thus ignored during evaluation
since the correct reference tag cannot be determined.

Both the LCA and the MSA Treebank data sets
were transcribed in standard MSA script. The LCA
corpus only consists of raw orthographic transcrip-
tions; no further annotations exist for this data set.
Each word in the Treebank corpus is associated with
all of its possible POS tags; the correct tag has been
marked manually. We use the undecomposed word
forms rather than the forms resulting from splitting
off conjunctions, prepositions, and other clitics. Al-
though improved tokenization can be expected to
result in better tagging performance, tokenization
tools for dialectal Arabic are currently not available,
and our goal was to create comparable conditions
for tagging across all of our data sets. Preprocessing
of the data thus only included removing punctuation
from the MSA data and removing word fragments
from the spoken language corpora. Other disfluen-
cies (fillers and repetitions) were retained since they
are likely to have predictive value. Finally, single-
ton words (e.g. inconsistent spellings) were removed



from the LCA data. The properties of the different
data sets (number of words, n-grams, and ambigu-
ous words) are displayed in Table 1.

ECA LCA | MSA
train | dev | test

sentences | 25k | 6k 2.7k | 114k | 20k
# tokens 156k | 31k | 12k | 476k | 552k
# types 15k |5k | 1.5k | 16k | 65k
# bigrams | 81k | 20k | 7k 180k | 336k
# trigrams | 125k | 26k | 10k | 320k | 458k
% ambig. | 24.4 | 27.8 | 28.2 | — —

Table 1: Corpus statistics for ECA, LCA and MSA.

The only resource we utilize in addition to raw
data is the LDC-distributed Buckwalter stemmer.
The stemmer analyzes MSA script forms and out-
puts all possible morphological analyses (stems and
POS tags, as well as diacritizations) for the word.
The analysis is based on an internal stem lexi-
con combined with rules for affixation. Although
the stemmer was developed primarily for MSA, it
can accommodate a certain percentage of dialectal
words. Table 2 shows the percentages of word types
and tokens in the ECA and LCA corpora that re-
ceived an analysis from the Buckwalter stemmer.
Since both sets contain dialectal as well as standard
MSA forms, it is not possible to determine precisely
how many of the unanalyzable forms are dialectal
forms vs. words that were rejected for other rea-
sons, such as misspellings. The higher percentage
of rejected word types in the ECA corpus is most
likely due to the non-standard script forms described
above.

Type Token
N | ECA \ LCA | ECA \ LCA
0 | 376 | 233 | 182 | 282
1 (340 | 525 | 336 | 404
2 1194 |17.7 | 264 | 199
3172 |52 |162 | 105
4 114 |10 |50 |23
5101 (01 |04 |06

Table 2: Percentage of word types/tokens with N possible
tags, as determined by the Buckwalter stemmer. Words with
0 tags are unanalyzable.

The POS tags used in the LDC ECA annota-

57

tion and in the Buckwalter stemmer are rather fine-
grained; furthermore, they are not identical. We
therefore mapped both sets of tags to a unified, sim-
pler tagset consisting only of the major POS cate-
gories listed in Table 2. The mapping from the orig-
inal Buckwalter tag to the simplified set was based
on the conversion scheme suggested in (Bies, 2003).
The same underlying conversion rules were applica-
ble to most of the LDC tags; those cases that could
not be determined automatically were converted by
hand.

[ Symbol | Gloss [ (%) |
CcC coordinating conjunction | 7.15
DT determiner 2.23
FOR foreign word 1.18
IN preposition 7.46
JJ adjective 6.02
NN noun 19.95
NNP proper noun 3.55
NNS non-singular noun 3.04
NOTAG | non-word 0.05
PRP pronoun 5.85
RB adverb 4.13
RP particle 9.71
UH disfluency, interjection 9.55
VBD perfect verb 6.53
VBN passive verb 1.88
VBP imperfect verb 10.62
WP relative pronoun 1.08

Table 3: Collapsed tagset and percentage of occur-
rence of each tag in the ECA corpus.

Prior to the development of our tagger we com-
puted the cross-corpus coverage of word n-grams
in the ECA development set, in order to verify our
assumption that utilizing data from other dialects
might be helpful. Table 4 demonstrates that the
n-gram coverage of the ECA development set in-
creases slightly by adding LCA and MSA data.

Types Tokens
1gr | 2gr | 3gr | 1gr | 2gr | 3gr
ECA 64 |33 |12 |94 |58 |22
LCA 31 |9 14169 |20 |37
ECA+LCA |68 [35 |13 |95 |60 |23
MSA 32 |37 |02 |66 |86 |03
ECA+MSA |71 (34 |12 |95 |60 |22

Table 4: Percentages of n-gram types and tokens in ECA dev
set that are covered by the ECA training set, the LCA set, com-
bined ECA training + LCA set, and MSA sets. Note that adding
the LCA or MSA improves the coverage slightly.



3 Basdine Tagger

We use a statistical trigram tagger in the form of a
hidden Markov model (HMM). Let wq.ps be a se-
quence of words (wg, w1, ..., wys) and to.ps be the
corresponding sequence of tags. The trigram HMM
computes the conditional probability of the word
and tag sequence p(wo.ar, to:ar) as:

M
P(to.arlwonr) = [ [ plwilts)p(tilti-1, ti—a) (1)
i=0

The lexical model p(w;|t;) characterizes the dis-
tribution of words for a specific tag; the contex-
tual model p(t;|t;—1,t;—2) is trigram model over
the tag sequence. For notational simplicity, in
subsequent sections we will denote p(t;|t;—1,t;—2)
as p(tilh;), where h; represents the tag history.
The HMM s trained to maximize the likelihood
of the training data. In supervised training, both
tag and word sequences are observed, so the max-
imum likelihood estimate is obtained by relative fre-
quency counting, and, possibly, smoothing. Dur-
ing unsupervised training, the tag sequences are
hidden, and the Expectation-Maximization Algo-
rithm is used to iteratively update probabilities based
on expected counts. Unsupervised tagging re-
quires a lexicon specifying the set of possible tags
for each word. Given a test sentence wy,,,, the
Viterbi algorithm is used to find the tag sequence
maximizing the probability of tags given words:
thy = argmaxy,, p(to.ar|wy.,,). Our taggers
are implemented using the Graphical Models Toolkit
(GMTK) (Bilmes and Zweig, 2002), which allows
training a wide range of probabilistic models with
both hidden and observed variables.

As a first step, we compare the performance of
four different baseline systems on our ECA dev set.
First, we trained a supervised tagger on the MSA
treebank corpus (System 1), in order to gauge how a
standard system trained on written Arabic performs
on dialectal speech. The second system (System II)
is a supervised tagger trained on the manual ECA
POS annotations. System 11 is an unsupervised tag-
ger on the ECA training set. The lexicon for this
system is derived from the reference annotations of
the training set — thus, the correct tag is not known
during training, but the lexicon is constrained by
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expert information. The difference in accuracy be-
tween Systems Il and I11 indicates the loss due to the
unsupervised training method. Finally, we trained a
system using only the unannotated ECA data and a
lexicon generated by applying the MSA analyzer to
the training corpus and collecting all resulting tags
for each word. In this case, the lexicon is much less
constrained; moreover, many words do not receive
an output from the stemmer at all. This is the train-
ing method with the least amount of supervision and
therefore the method we are interested in most.
Table 5 shows the accuracies of the four systems
on the ECA development set. Also included is a
breakdown of accuracy by analyzable (AW), unana-
lyzable (UW), and out-of-vocabulary (OOV) words.
Analyzable words are those for which the stemmer
outputs possible analyses; unanalyzable words can-
not be processed by the stemmer. The percent-
age of unanalyzable word tokens in the dev set is
18.8%. The MSA-trained tagger (System I) achieves
an accuracy of 97% on a held-out set (117k words)
of MSA data, but performs poorly on ECA due to
a high OOV rate (43%). By contrast, the OOV
rate for taggers trained on ECA data is 9.5%. The
minimally-supervised tagger (System IV) achieves a
baseline accuracy of 62.76%. In the following sec-
tions, we present several methods to improve this
system, in order to approximate as closely as possi-
ble the performance of the supervised systems. *

System | Total | AW | UW | OOV
| 39.84 | 55.98 | 21.05 | 19.21
I 92.53 | 98.64 | 99.09 | 32.20
" 84.88 | 90.17 | 99.11 | 32.64
v 62.76 | 67.07 | 20.74 | 21.84

Table 5: Tagging accuracy (%) for the 4 baseline
systems. AW = analyzable words, UW unanalyzable
words, OOV = out-of-vocabulary words.

4 System Improvements

4.1 Adding Affix Features

The low accuracy of unanalyzable and OOV words
may significantly impact downstream applications.

1The accuracy of a naive tagger which labels all words with
the most likely tag (NN) achieves an accuracy of 20%. A tagger
which labels words with the most likely tag amongst its possible
tags achieves an accuracy of 52%.



One common way to improve accuracy is to add
word features. In particular, we are interested in
features that can be derived automatically from the
script form, such as affixes. Affix features are
added in a Naive Bayes fashion to the basic HMM
model defined in Eq.1. In addition to the lexical
model p(w;|t;) we now have prefix and suffix mod-
els p(a;|t;) and p(b;|t;), where a and b are the prefix
and suffix variables, respectively. The affixes used
are: o, la-, ? d- -, s LG,

-U, -JU. Affixes are derived for each word by simple
substring matching. More elaborate techniques are
not used due to the philosophy of staying within a
minimally supervised approach that does not require
dialect-specific knowledge.

4.2 Constraining the Lexicon

The quality of the lexicon has a major impact on
unsupervised HMM training. Banko et. al. (2004)
demonstrated that tagging accuracy improves when
the number of possible tags per word in a “noisy lex-
icon” can be restricted based on corpus frequency.
In the current setup, words that are not analyzable
by the MSA stemmer are initally assigned all pos-
sible tags, with the exception of obvious restricted
tags like the begin and end-of-sentence tags, NO-
TAG, etc. Our goal is to constrain the set of tags for
these unanalyzable words. To this end, we cluster
both analyzable and unanalyzable words, and reduce
the set of possible tags for unanalyzable words based
on its cluster membership. Several different clus-
tering algorithms could in principle be used; here
we utilize Brown’s clustering algorithm (Brown and
others, 1992), which iteratively merges word clus-
ters with high mutual information based on distribu-
tional criteria. The tagger lexicon is then derived as
follows:

1. Generate K clusters of words from data.

2. For each cluster C, calculate P(t|C) =
> wea,c P(tlw)P(w|C) where ¢ and w are the
word and tag, and A is the set of analyzable
words.

3. The cluster’s tagset is determined by choosing
all tags ¢’ with P(¢’|C') above a certain thresh-
old ~.

4. All unanalyzable words within this cluster are
given these possible tags.
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The number of clusters K and the threshold ~ are
variables that affect the final tagset for unanalyzable
words. Using K = 200 and v = 0.05 for instance,
the number of tags per unanalyzable word reduces to
an average of four and ranges from one to eight tags.
There is a tradeoff regarding the degree of tagset re-
duction: choosing fewer tags results in less confus-
ability but may also involve the removal of the cor-
rect tag from a word’s lexicon entry. We did not
optimize for K and ~ since an annotated develop-
ment set for calculating accuracy is not available in
a minimally supervised approach in practice. Never-
theless, we have observed that tagset reduction gen-
erally leads to improvements compared to the base-
line system with an unconstrained lexicon.

The improvements gained from adding affix fea-
tures to System IV and constraining the lexicon are
shown in Table 6. We notice that adding affix fea-
tures yields improvements in OOV accuracy. The
relationship between the constrained lexicon and un-
analyzable word accuracy is less straighforward. In
this case, the degradation of unanalyzable word ac-
curacy is due to the fact that the constrained lexicon
over-restricts the tagsets of some frequent unanalyz-
able words. However, the constrained lexicon gen-
erally improves the overall accuracy and is thus a
viable technique. Finally, the combination of affix
features and constrained lexicon results in a tagger
with 69.83% accuracy, which is a 7% absolute im-
provement over System IV.

System Total | AW | UW | OOV
System IV 62.76 | 67.07 | 20.74 | 21.84
+affixes 67.48 | 71.30 | 22.82 | 29.82
+constrained lex | 66.25 | 70.29 | 21.28 | 26.32
+both 69.83 | 74.10 | 24.65 | 27.68

Table 6: Improvements in tagging accuracy from
adding affix features and constraining lexicon.

5 Cross-Dialectal Data Sharing

Next we examine whether unannotated corpora in
other dialects (LCA) can be used to further improve
the ECA tagger. The problem of data sparseness for
Avrabic dialects would be less severe if we were able
to exploit the commonalities between similar di-
alects. In natural language processing, Kim & Khu-



danpur (2004) have explored techniques for using
parallel Chinese/English corpora for language mod-
eling. Parallel corpora have also been used to in-
fer morphological analyzers, POS taggers, and noun
phrase bracketers by projections via word align-
ments (Yarowsky et al., 2001). In (Hana et al.,
2004), Czech data is used to develop a morphologi-
cal analyzer for Russian.

In contrast to these works, we do not require par-
allel/comparable corpora or a bilingual dictionary,
which may be difficult to obtain. Our goal is to
develop general algorithms for utilizing the com-
monalities across dialects for developing a tool for
a specific dialect. Although dialects can differ very
strongly, they are similar in that they exhibit mor-
phological simplifications and a different word or-
der compared to MSA (e.g. SVO rather than VSO
order), and close dialects share some vocabulary.

Each of the tagger components (i.e. contextual
model p(t;|h;), lexical model p(w;|t;), and affix
model p(a;|t;)p(b;|t;)) can be shared during train-
ing. In the following, we present two approaches
for sharing data between dialects, each derived from
following different assumptions about the underly-
ing data generation process.

5.1 Contextual Model Interpolation

Contextual model interpolation is a widely-used
data-sharing technique which assumes that mod-
els trained on data from different sources can be
“mixed” in order to provide the most appropriate
probability distribution for the target data. In our
case, we have LCA as an out-of-domain data source,
and ECA as the in-domain data source, with the
former being about 4 times larger than the latter.
If properly combined, the larger amount of out-of-
domain data might improve the robustness of the
in-domain tagger. We therefore use a linear inter-
polation of in-domain and out-of-domain contextual

models. The joint probability p(wo.ar,to.ar) be-
comes:
M
[ pewilts) we(tilha) + (1 = Npoti|hi) (2)
=0

Here )\ defines the interpolation weights for the ECA
contextual model pg(t;|h;) and the LCA contex-
tual model py (¢;|hi). pe(wylt,) is the ECA lexi-
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cal model. The interpolation weight X is estimated
by maximizing the likelihood of a held-out data set
given the combined model. As an extension, we al-
low the interpolation weights to be a function of the
current tag: A(t;), since class-dependent interpola-
tion has shown improvements over basic interpola-
tion in applications such as language modeling (Bu-
Iyko et al., 2003).

5.2 Joint Training of Contextual Model

As an alternative to model interpolation, we consider
training a single model jointly from the two different
data sets. The underlying assumption of this tech-
nique is that tag sequences in LCA and ECA are
generated by the same process, whereas the obser-
vations (the words) are generated from the tag by
two different processes in the two different dialects.
The HMM model for joint training is expressed as:

M
[T ipswilt:) + (1 = ci)pr(wilt:)pes L (tilhi)
i=0

1 if word w; is ECA )
where o= .

0 otherwise

A single conditional probability table is used for
the contextual model, whereas the lexical model
switches between two different parameter tables,
one for LCA observations and another for ECA ob-
servations. During training, the contextual model is
trained jointly from both ECA and LCA data; how-
ever, the data is divided into ECA and LCA portions
when updating the lexical models. Both the contex-
tual and lexical models are trained within the same
training pass. A graphical model representation of
this system is shown in Figure 1. This model can
be implemented using the functionality of switching
parents (Bilmes, 2000) provided by GMTK.

During decoding, the tagger can in principle
switch its lexical model to ECA or LCA, depending
on the input; this system thus is essentially a multi-
dialect tagger. In the experiments reported below,
however, we exclusively test on ECA, and the LCA
lexical model is not used. Due to the larger amount
of data available for contextual model, joint train-
ing can be expected to improve the performance on
the target dialect. The affix models can be trained
jointly in a similar fashion.



5.3 Data sharing results

The results for data sharing are shown in Table 7.
The systems Interpolate-A and Interpolate-\(¢;) are
taggers built by interpolation and class-dependent
interpolation, respectively. For joint training, we
present results for two systems: JointTrain(1:4) is
trained on the existing collection ECA and LCA
data, which has a 1:4 ratio in terms of corpus size;
JointTrain(2:1) weights the ECA data twice, in or-
der to bias the training process more towards ECA’s
distribution. We also provide results for two more
taggers: the first (CombineData) is trained “naively”
on the pooled data from both ECA and LCA, with-
out any weighting, interpolation, or changes to the
probabilistic model. The second (CombineLex) uses
a contextual model trained on ECA and a lexical
model estimated from both ECA and LCA data. The
latter was trained in order to assess the potential for
improvement due to the reduction in OQV rate on
the dev set when adding the LCA data (cf. Table 4).
All the above systems utilize the constrained lexi-
con, as it consistently gives improvements.

Table 7 shows that, as expected, the brute-force
combination of training data is not helpful and de-
grades performance. CombineLex results in higher
accuracy but does not outperform models in Table 6.
The same is true of the taggers using model interpo-
lation. The best performance is obtained by the sys-
tem using the joint contextual model with separate
lexical models, with 2:1 weighting of ECA vs. LCA
data. Finally, we added word affix information to
the best shared-data system, which resulted in an ac-
curacy of 70.88%. In contrast, adding affix to Com-
bineData achieves 61.78%, suggesting that improve-
ments in JointTrain comes from the joint training
technique rather than simple addition of new data.
This result is directly comparable to the best system
in Section 4 (last row of Table 6)2.

The analysis of tagging errors revealed that the
most frequent confusions are between VBD/NNS,

2\We also experimented with joint training of ECA+MSA.
This gave good OOV accuracy, but overall it did not improve
over the best system in Section 4. Also, note that all accura-
cies are calculated by ignoring the scoring of ambiguous words,
which have several possible tags as the correct reference. If we
score the ambiguous words as correct when the hypothesized
tag is within this set, the accuracy of ECA+LCA+affix Joint-
Train rises to 77.18%, which is an optimistic upper-bound on
the total accuracy.
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System Total | AW | UW | OOV
CombineData 60.79 | 64.21 | 20.27 | 26.10
CombineLex 65.13 | 69.47 | 18.81 | 22.34
Interpolate-\ 62.82 | 67.42 | 16.98 | 17.44
Interpolate-A(¢;) | 63.49 | 67.96 | 17.19 | 19.33
JointTrain(1:4) 62.53 | 66.18 | 27.78 | 26.52
JointTrain(2:1) 66.95 | 71.02 | 31.72 | 26.81
JointTrain(2:1)+affix

w/ ECA+LCA 70.88 | 75.20 | 28.17 | 34.06
w/ ECA+MSA | 67.85 | 71.50 | 17.76 | 31.76

Table 7: Tagging accuracy for various data sharing
methods.

ECA LCA

Figure 1: Graphical Model of Joint Training: switching be-
tween different lexical models while sharing the underlying
contextual model. The variable s represents the « term in Eq.
3 and chooses the lexical model depending on the origin of the
word.

VBP/VBD, and JJ/NN. Commonly mistagged words
include cases like _aas (“means”-3rd.sg), which is

labeled as a particle.in the reference but is most often
tagged as a verb, which is also a reasonable tag.

6 Discussion and Future Work

Table 8 highlights the performance of the various
taggers on the ECA evaluation set. The accuracy
of the unsupervised HMM tagger (System V) im-
proves from 58.47% to 66.61% via the affix fea-
tures and constrained lexicon, and to a 68.48% by
including joint training. These improvements are
statistical significant at the 0.005 level according to
a difference-of-proportions test.

Several of the methods proposed here deserve fur-
ther work: first, additional ways of constraining the
lexicon can be explored, which may include impos-
ing probability distributions on the possible tags for
unanalyzable words. Other clustering algorithms
(e.g. root-based clustering of Arabic (De Roeck and



Al-Fares, 2000)), may be used instead of, or in addi-
tion to, distribution-based clustering.

Cross-dialectal data sharing for tagging also de-
serves more research. For instance, the performance
of the contextual model interpolation might be in-
creased if one trains interpolation weights depen-
dent on the classes based on previous two tags.
Joint training of contextual model and data sharing
for lexical models can be combined; other dialec-
tal data may also be added into the same joint train-
ing framework. It would also be useful to extend
these methods to create a more fine-grained part-of-
speech tagger with case, person, number, etc. in-
formation. Stems, POS, and fine-grained POS can
be combined into a factorial hidden Markov model,
so that relationships between the stems and POS as
well as data sharing between dialects can be simul-
taneously exploited to build a better system.

In conclusion, we have presented the first steps
towards developing a dialectal Arabic tagger with
minimal supervision. We have shown that adding
affix features and constraining the lexicon for unan-
alyzable words are simple resource-light methods to
improve tagging accuracy. We also explore the pos-
sibility of improving an ECA tagger using LCA data
and present two data sharing methods. The combi-
nation of these techniques yield a 10% improvement
over the baseline.

System Total | AW | UW | OQV
System IV 58.47 | 64.71 | 22.34 | 17.50
+affix+lexicon | 66.61 | 72.87 | 20.17 | 25.49
Interpolate 11 60.07 | 66.56 | 20.55 | 17.61
JointTr.+affix | 68.48 | 76.20 | 48.44 | 17.76
CombineLex | 61.35 | 68.12 | 16.02 | 16.87

Table 8: Tagging accuracy on ECA evaluation set
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Abstract

Arabic presents an interesting challenge to
natural language processing, being a highly
inflected and agglutinative language. In
particular, this paper presents an in-depth
investigation of the entity detection and
recognition (EDR) task for Arabic. We
start by highlighting why segmentation is
a necessary prerequisite for EDR, continue
by presenting a finite-state statistical seg-
menter, and then examine how the result-
ing segments can be better included into
a mention detection system and an entity
recognition system; both systems are statis-
tical, build around the maximum entropy
principle. Experiments on a clearly stated
partition of the ACE 2004 data show that
stem-based features can significantly im-
prove the performance of the EDT system
by 2 absolute F-measure points. The sys-
tem presented here had a competitive per-
formance in the ACE 2004 evaluation.

1 Introduction

Information extraction is a crucial step toward un-
derstanding and processing language. One goal of
information extraction tasks is to identify important
conceptual information in a discourse. These tasks
have applications in summarization, information re-
trieval (one can get all hits for Washington/person
and not the ones for Washington/state or Washing-
ton/city), data mining, question answering, language
understanding, etc.

In this paper we focus on the Entity Detection and
Recognition task (EDR) for Arabic as described in
ACE 2004 framework (ACE, 2004). The EDR has
close ties to the named entity recognition (NER) and
coreference resolution tasks, which have been the fo-
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cus of several recent investigations (Bikel et al., 1997;
Miller et al., 1998; Borthwick, 1999; Mikheev et al.,
1999; Soon et al., 2001; Ng and Cardie, 2002; Florian
et al., 2004), and have been at the center of evalu-
ations such as: MUC-6, MUC-7, and the CoNLL’02
and CoNLL’03 shared tasks. Usually, in computa-
tional linguistics literature, a named entity is an in-
stance of a location, a person, or an organization, and
the NER task consists of identifying each of these
occurrences. Instead, we will adopt the nomencla-
ture of the Automatic Content Extraction program
(NIST, 2004): we will call the instances of textual
references to objects/abstractions mentions, which
can be either named (e.g. John Mayor), nominal
(the president) or pronominal (she, it). An entity is
the aggregate of all the mentions (of any level) which
refer to one conceptual entity. For instance, in the
sentence

President John Smith said he has no com-
ments

there are two mentions (named and pronomial) but
only one entity, formed by the set {John Smith, he}.

We separate the EDR task into two parts: a men-
tion detection step, which identifies and classifies all
the mentions in a text — and a coreference resolution
step, which combinines the detected mentions into
groups that refer to the same object. In its entirety,
the EDR task is arguably harder than traditional
named entity recognition, because of the additional
complexity involved in extracting non-named men-
tions (nominal and pronominal) and the requirement
of grouping mentions into entities. This is particu-
larly true for Arabic where nominals and pronouns
are also attached to the word they modify. In fact,
most Arabic words are morphologically derived from
a list of base forms or stems, to which prefixes and
suffixes can be attached to form Arabic surface forms
(blank-delimited words). In addition to the differ-
ent forms of the Arabic word that result from the
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derivational and inflectional process, most preposi-
tions, conjunctions, pronouns, and possessive forms
are attached to the Arabic surface word. It is these
orthographic variations and complex morphological
structure that make Arabic language processing chal-
lenging (Xu et al., 2001; Xu et al., 2002).

Both tasks are performed with a statistical frame-
work: the mention detection system is similar to
the one presented in (Florian et al., 2004) and
the coreference resolution system is similar to the
one described in (Luo et al., 2004). Both systems
are built around from the maximum-entropy tech-
nique (Berger et al., 1996). We formulate the men-
tion detection task as a sequence classification prob-
lem. While this approach is language independent,
it must be modified to accomodate the particulars of
the Arabic language. The Arabic words may be com-
posed of zero or more prefixes, followed by a stem and
zero or more suffixes. We begin with a segmentation
of the written text before starting the classification.
This segmentation process consists of separating the
normal whitespace delimited words into (hypothe-
sized) prefixes, stems, and suffixes, which become the
subject of analysis (tokens). The resulting granular-
ity of breaking words into prefixes and suffixes allows
different mention type labels beyond the stem label
(for instance, in the case of nominal and pronominal
mentions). Additionally, because the prefixes and
suffixes are quite frequent, directly processing unseg-
mented words results in significant data sparseness.

We present in Section 2 the relevant particularities
of the Arabic language for natural language process-
ing, especially for the EDR task. We then describe
the segmentation system we employed for this task in
Section 3. Section 4 briefly describes our mention de-
tection system, explaining the different feature types
we use. We focus in particular on the stem n-gram,
prefix n-gram, and suffix n-gram features that are
specific to a morphologically rich language such as
Arabic. We describe in Section 5 our coreference
resolution system where we also describe the advan-
tage of using stem based features. Section 6 shows
and discusses the different experimental results and
Section 7 concludes the paper.

2 Why is Arabic Information
Extraction difficult?

The Arabic language, which is the mother tongue of
more than 300 million people (Center, 2000), present
significant challenges to many natural language pro-
cessing applications. Arabic is a highly inflected and
derived language. In Arabic morphology, most mor-
phemes are comprised of a basic word form (the root
or stem), to which many affixes can be attached to
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form Arabic words. The Arabic alphabet consists
of 28 letters that can be extended to ninety by ad-
ditional shapes, marks, and vowels (Tayli and Al-
Salamah, 1990). Unlike Latin-based alphabets, the
orientation of writing in Arabic is from right to left.
In written Arabic, short vowels are often omitted.
Also, because variety in expression is appreciated
as part of a good writing style, the synonyms are
widespread. Arabic nouns encode information about
gender, number, and grammatical cases. There are
two genders (masculine and feminine), three num-
bers (singular, dual, and plural), and three gram-
matical cases (nominative, genitive, and accusative).

A noun has a nominative case when it is a subject,
accusative case when it is the object of a verb, and
genitive case when it is the object of a preposition.
The form of an Arabic noun is consequently deter-
mined by its gender, number, and grammatical case.
The definitive nouns are formed by attaching the
Arabic article  J! to the immediate front of the
nouns, such as in the word & &)1 (the company).
Also, prepositions such as o (by), and (J (to) can be
attached as a prefix as in & &l (to thé company).
A noun may carry a possessive pronoun as a suffix,
such as in ﬁf:{ﬂ (their company). For the EDR task,
in this previous example, the Arabic blank-delimited
word & should be split into two tokens: "y 5 and

he first token iS5~ /% is a mention that refers to
an organization, whereas the second token o is also
a mention, but one that may refer to a person. Also,
the prepositions (i.e., & and J) not be considered a
part of the mention.

Arabic has two kinds of plurals: broken plurals and
sound plurals (Wightwick and Gaafar, 1998; Chen
and Gey, 2002). The formation of broken plurals is
common, more complex and often irregular. As an
example, the plural form of the noun Jo , (man) is
J& , (men), which is formed by inserting the infix
l. The plural form of the noun S (book) is 8~
(books), which is formed by deleting the infix |. The
plural form and the singular form may also be com-
pletely different (e.g. 38! ,) for woman, but slai for
women). The sound plurals are formed by adding
plural suffixes to singular nouns (e.g., & meaning
researcher): the plural suffix is ! for feminine nouns
in grammatical cases (e.g., &U=U), () g for masculine
nouns in the nominative case (e.g., O ¢=U), and
for masculine nouns in the genitive and accusative
cases (e.g., J&=>U). The dual suffix is ! for the nom-
inative case (e.g., yl=U), and -, for the genitive or
accusative (e.g., (=),

Because we consider pronouns and nominals as men-

tions, it is essential to segment Arabic words into
these subword tokens. We also believe that the in-



formation denoted by these affixes can help with the
coreference resolution task!.

Arabic verbs have perfect and imperfect tenses (Ab-
bou and McCarus, 1983). Perfect tense denotes com-
pleted actions, while imperfect denotes ongoing ac-
tions. Arabic verbs in the perfect tense consist of a
stem followed by a subject marker, denoted as a suf-
fix. The subject marker indicates the person, gender,
and number of the subject. As an example, the verb
J;b (to meet) has a perfect tense =G for the third

person feminine singular, and b,\.?@ for the third per-

son masculine plural. We notice also that a verb with
a subject marker and a pronoun suffix can be by itself
a complete sentence, such us in the word ﬁ,:L{G: it

has a third-person feminine singular subject-marker
& (she) and a pronoun suffix ea (them). It is also

a complete sentence meaning “she met them.” The
subject markers are often suffixes, but we may find
a subject marker as a combination of a prefix and a

suffix as in ﬁ.b\.a.o (she meets them). In this example,
the EDR system should be able to separate ﬁ,\;\m,

to create two mentions (& and o). Because the

two mentions belong to different entities, the EDR
system should not chain them together. An Arabic
word can potentially have a large number of vari-
ants, and some of the variants can be quite complex.
As an example, consider the word [i>Wy (and to

her researchers) which contains two prefixes and one

suffix (b + &0+ J+ ).

3 Arabic Segmentation

Lee et al. (2003) demonstrates a technique for seg-
menting Arabic text and uses it as a morphological
processing step in machine translation. A trigram
language model was used to score and select among
hypothesized segmentations determined by a set of
prefix and suffix expansion rules.

In our latest implementation of this algorithm, we
have recast this segmentation strategy as the com-
position of three distinct finite state machines. The
first machine, illustrated in Figure 1 encodes the pre-
fix and suffix expansion rules, producing a lattice of
possible segmentations. The second machine is a dic-
tionary that accepts characters and produces identi-
fiers corresponding to dictionary entries. The final
machine is a trigram language model, specifically a
Kneser-Ney (Chen and Goodman, 1998) based back-
off language model. Differing from (Lee et al., 2003),
we have also introduced an explicit model for un-

'As an example, we do not chain mentions with dif-
ferent gender, number, etc.
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known words based upon a character unigram model,
although this model is dominated by an empirically
chosen unknown word penalty. Using 0.5M words
from the combined Arabic Treebanks 1V2, 2V2 and
3V1, the dictionary based segmenter achieves a exact
word match 97.8% correct segmentation.

Figure 1: Illustration of dictionary based segmenta-
tion finite state transducer

3.1 Bootstrapping

In addition to the model based upon a dictionary of
stems and words, we also experimented with models
based upon character n-grams, similar to those used
for Chinese segmentation (Sproat et al., 1996). For
these models, both arabic characters and spaces, and
the inserted prefix and suffix markers appear on the
arcs of the finite state machine. Here, the language
model is conditioned to insert prefix and suffix mark-
ers based upon the frequency of their appearance in
n-gram character contexts that appear in the train-
ing data. The character based model alone achieves
a 94.5% exact match segmentation accuracy, consid-
erably less accurate then the dictionary based model.

However, an analysis of the errors indicated that the
character based model is more effective at segment-
ing words that do not appear in the training data.
We seeked to exploit this ability to generalize to im-
prove the dictionary based model. As in (Lee et al.,
2003), we used unsupervised training data which is
automatically segmented to discover previously un-
seen stems. In our case, the character n-gram model
is used to segment a portion of the Arabic Giga-
word corpus. From this, we create a vocabulary of
stems and affixes by requiring that tokens appear
more than twice in the supervised training data or
more than ten times in the unsupervised, segmented
corpus.

The resulting vocabulary, predominately of word
stems, is 53K words, or about six times the vo-
cabulary observed in the supervised training data.
This represents about only 18% of the total num-
ber of unique tokens observed in the aggregate
training data. With the addition of the automat-
ically acquired vocabulary, the segmentation accu-
racy achieves 98.1% exact match.



3.2 Preprocessing of Arabic Treebank Data

Because the Arabic treebank and the gigaword cor-
pora are based upon news data, we apply some
small amount of regular expression based preprocess-
ing. Arabic specific processing include removal of
the characters tatweel (-), and vowels. Also, the fol-

lowing characters are treated as an equivalence class
during all lookups and processing: (1) s ‘s, and

(2) | ‘| 4 1. We define a token and introduce whites-

pace boundaries between every span of one or more
alphabetic or numeric characters. Each punctuation
symbol is considered a separate token. Character
classes, such as punctuation, are defined according
to the Unicode Standard (Aliprand et al., 2004).

4 Mention Detection

The mention detection task we investigate identifies,
for each mention, four pieces of information:

1. the mention type: person (PER), organiza-
tion (ORG), location (LOC), geopolitical en-
tity (GPE), facility (FAC), vehicle (VEH), and
weapon (WEA)

2. the mention level (named, nominal, pronominal,
or premodifier)

3. the mention class (generic, specific, negatively
quantified, etc.)

4. the mention sub-type, which is a sub-category
of the mention type (ACE, 2004) (e.g. OrgGov-
ernmental, FacilityPath, etc.).

4.1 System Description

We formulate the mention detection problem as a
classification problem, which takes as input seg-
mented Arabic text. We assign to each token in the
text a label indicating whether it starts a specific
mention, is inside a specific mention, or is outside
any mentions. We use a maximum entropy Markov
model (MEMM) classifier. The principle of maxi-
mum entropy states that when one searches among
probability distributions that model the observed
data (evidence), the preferred one is the one that
maximizes the entropy (a measure of the uncertainty
of the model) (Berger et al., 1996). One big advan-
tage of this approach is that it can combine arbitrary
and diverse types of information in making a classi-
fication decision.

Our mention detection system predicts the four la-
bels types associated with a mention through a cas-
cade approach. It first predicts the boundary and
the main entity type for each mention. Then, it uses
the information regarding the type and boundary in
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different second-stage classifiers to predict the sub-
type, the mention level, and the mention class. Af-
ter the first stage, when the boundary (starting, in-
side, or outside a mention) has been determined, the
other classifiers can use this information to analyze
a larger context, capturing the patterns around the
entire mentions, rather than words. As an example,
the token sequence that refers to a mention will be-
come a single recognized unit and, consequently, lex-
ical and syntactic features occuring inside or outside
of the entire mention span can be used in prediction.

In the first stage (entity type detection and classifica-
tion), Arabic blank-delimited words, after segment-
ing, become a series of tokens representing prefixes,
stems, and suffixes (cf. section 2). We allow any
contiguous sequence of tokens can represent a men-
tion. Thus, prefixes and suffixes can be, and often
are, labeled with a different mention type than the
stem of the word that contains them as constituents.

4.2 Stem n-gram Features

We use a large set of features to improve the predic-
tion of mentions. This set can be partitioned into
4 categories: lexical, syntactic, gazetteer-based, and
those obtained by running other named-entity clas-
sifiers (with different tag sets). We use features such
as the shallow parsing information associated with
the tokens in a window of 3 tokens, POS, etc.

The context of a current token ¢; is clearly one of
the most important features in predicting whether ¢;
is a mention or not (Florian et al., 2004). We de-
note these features as backward token tri-grams and
forward token tri-grams for the previous and next
context of t; respectively. For a token t;, the back-
ward token n-gram feature will contains the previous
n — 1 tokens in the history (t;—n41,-..t;—1) and the
forward token n-gram feature will contains the next
n —1 tokens (tit1,...titn—1)-

Because we are segmenting arabic words into
multiple tokens, there is some concern that tri-
gram contexts will no longer convey as much
contextual information.  Consider the following
sentence extracted from the development set:

el el Qo el e Ve
tion “This represents the location for Political
Party Office”). The “Political Party Office” is
tagged as an organization and, as a word-for-word
translation, is expressed as “to the Office of the
political to the party”. It is clear in this example
that the word s (location for) contains crucial

(transla-

information in distinguishing between a location
and an organization when tagging the token s



(office). After’ segmentation, t’he sentence becomes:

oSGl e M et o+ L
ot Jr g st

When predicting if the token _aa ((;ﬂice) is the

beginning of an organization or not, backward and
forward token n-gram features contain only J! + )

(for the) and _qliw + d‘ (the political). This is
most likely not "enough context, and addressing the

problem by increasing the size of the n-gram context
quickly leads to a data sparseness problem.

We propose in this paper the stem n-gram features as
additional features to the lexical set. If the current
token t; is a stem, the backward stem n-gram feature
contains the previous n — 1 stems and the forward
stem n-gram feature will contain the following n — 1
stems. We proceed similarly for prefixes and suffixes:
if t; is a prefix (or suffix, respectively) we take the
previous and following prefixes (or suffixes)?. In the
sentence shown above, when the system is predict-
ing if the token _S& (office) is the beginning of an

organization or not, the backward and forward stem
n-gram features contain e S (represent location
of) and & > _sliw (political office). The stem fea-

tures contain e;lough information in this example to
make a decision that S (office) is the beginning of

an organization. In our experiments, n is 3, therefore
we use stem trigram features.

5 Coreference Resolution

Coreference resolution (or entity recognition) is de-
fined as grouping together mentions referring to the
same object or entity. For example, in the following
text,

(I) “John believes Mary to be the best student”

three mentions “John”, “Mary”, “student” are un-
derlined. “Mary” and “student” are in the same en-
tity since both refer to the same person.

The coreference system system is similar to the Bell
tree algorithm as described by (Luo et al., 2004).

In our implementation, the link model between a
candidate entity e and the current mention m is com-
puted as

Pr(L=1le,m) =~ nr?ae)ipL(L =1le,mg,m), (1)
k

2Thus, the difference to token n-grams is that the to-
kens of different type are removed from the streams, be-
fore the features are created.
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where my, is one mention in entity e, and the basic
model building block Pr(L = 1le,my, m) is an ex-
ponential or maximum entropy model (Berger et al.,
1996).

For the start model, we use the following approxima-
tion:

Ps(S =1le1,eq,- -+, e, m) =
1- max Pr(L = 1le;,m) (2)

The start model (cf. equation 2) says that the prob-
ability of starting a new entity, given the current
mention m and the previous entities ey, eq, - - -, e, is
simply 1 minus the maximum link probability be-
tween the current mention and one of the previous
entities.

The maximum-entropy model provides us with a
flexible framework to encode features into the the
system. Our Arabic entity recognition system uses
many language-indepedent features such as strict
and partial string match, and distance features (Luo
et al., 2004). In this paper, however, we focus on the
addition of Arabic stem-based features.

5.1 Arabic Stem Match Feature

Features using the word context (left and right to-
kens) have been shown to be very helpful in corefer-
ence resolution (Luo et al., 2004). For Arabic, since
words are morphologically derived from a list of roots
(stems), we expected that a feature based on the
right and left stems would lead to improvement in
system accuracy.

Let my and msy be two candidate mentions where
a mention is a string of tokens (prefixes, stems,
and suffixes) extracted from the segmented text.
In order to make a decision in either linking the
two mentions or not we use additional features
such as: do the stems in m; and ms match, do
stems in mi; match all stems in mo, do stems
in my partially match stems in mo. We proceed
similarly for prefixes and suffixes. Since prefixes and
suffixes can belong to different mention types, we
build a parse tree on the segmented text and we can
explore features dealing with the gender and number
of the token. In the following example, between
parentheses we make a word-for-word translations in
order to better explain our stemming feature. Let us

take the two mentions o = @l KU

(to-the-office  the-politic to—the—i)arty) and
34 K (office  the-party’s)  segmented  as

gT,J-_>+‘_ﬁ-¢- J+ d\,L:w+di+g_,.:.<;+ di-f—d
and s+ o> + di + U..(L respectively. In our



development corpus, these two mentions are chained
to the same entity. The stemming match feature
in this case will contain information such us all
stems of ms match, which is a strong indicator
that these mentions should be chained together.
Features based on the words alone would not help
this specific example, because the two strings my
and ms do not match.

6 Experiments

6.1 Data

The system is trained on the Arabic ACE 2003 and
part of the 2004 data. We introduce here a clearly
defined and replicable split of the ACE 2004 data,
so that future investigations can accurately and cor-
rectly compare against the results presented here.

There are 689 Arabic documents in LDC’s 2004 re-
lease (version 1.4) of ACE data from three sources:
the Arabic Treebank, a subset of the broadcast
(bnews) and newswire (nwire) TDT-4 documents.
The 178-document devtest is created by taking
the last (in chronological order) 25% of docu-
ments in each of three sources: 38 Arabic tree-
bank documents dating from “20000715” (i.e., July
15, 2000) to “20000815,” 76 bnews documents from
“20001205.1100.0489” (i.e., Dec. 05 of 2000 from
11:00pm to 04:89am) to “20001230.1100.1216,” and
64 nwire documents from “20001206.1000.0050” to
“20001230.0700.0061.” The time span of the test
set is intentionally non-overlapping with that of the
training set within each data source, as this models
how the system will perform in the real world.

6.2 Mention Detection

We want to investigate the usefulness of stem n-
gram features in the mention detection system. As
stated before, the experiments are run in the ACE’04
framework (NIST, 2004) where the system will iden-
tify mentions and will label them (cf. Section 4)
with a type (person, organization, etc), a sub-type
(OrgCommercial, OrgGovernmental, etc), a mention
level (named, nominal, etc), and a class (specific,
generic, etc). Detecting the mention boundaries (set
of consecutive tokens) and their main type is one of
the important steps of our mention detection sys-
tem. The score that the ACE community uses (ACE
value) attributes a higher importance (outlined by
its weight) to the main type compared to other sub-
tasks, such as the mention level and the class. Hence,
to build our mention detection system we spent a lot
of effort in improving the first step: detecting the
mention boundary and their main type. In this pa-
per, we report the results in terms of precision, recall,
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and F-measure®.

Lexical features
Precision | Recall | F-measure

(%) (%) (%)
Total 73.3 58.0 64.7
FAC 76.0 24.0 36.5
GPE 79.4 65.6 71.8
LOC 57.7 29.9 39.4
ORG 63.1 46.6 53.6
PER 73.2 63.5 68.0
VEH 83.5 29.7 43.8
WEA 77.3 25.4 38.2
Lexical features + Stem

Precision | Recall | F-measure

(%) (%) (%)
Total 73.6 59.4 65.8
FAC 72.7 29.0 41.4
GPE 79.9 67.2 73.0
LOC 58.6 31.9 41.4
ORG 62.6 47.2 53.8
PER 73.8 64.6 68.9
VEH 81.7 35.9 49.9
WEA 78.4 29.9 43.2

Table 1: Performance of the mention detection sys-
tem using lexical features only.

To assess the impact of stemming n-gram features
on the system under different conditions, we consider
two cases: one where the system only has access to
lexical features (the tokens and direct derivatives in-
cluding standard n-gram features), and one where
the system has access to a richer set of information,
including lexical features, POS tags, text chunks,
parse tree, and gazetteer information. The former
framework has the advantage of being fast (making
it more appropriate for deployment in commercial
systems). The number of parameters to optimize in
the MaxEnt framework we use when only lexical fea-
tures are explored is around 280K parameters. This
number increases to 443K approximately when all in-
formation is used except the stemming feature. The
number of parameters introduced by the use of stem-
ming is around 130K parameters. Table 1 reports
experimental results using lexical features only; we
observe that the stemming n-gram features boost the
performance by one point (64.7 vs. 65.8). It is im-
portant to notice the stemming n-gram features im-
proved the performance of each category of the main

type.

In the second case, the systems have access to a large
amount of feature types, including lexical, syntac-
tic, gazetteer, and those obtained by running other

3The ACE value is an important factor for us, but its
relative complexity, due to different weights associated
with the subparts, makes for a hard comparison, while
the F-measure is relatively easy to interpret.



AllFeatures
Precision | Recall | F-measure

(%) (%) (%)
Total 74.3 64.0 68.8
FAC 72.3 36.8 48.8
GPE 80.5 70.8 75.4
LOC 61.1 35.4 44.8
ORG 61.4 50.3 55.3
PER 75.3 70.2 72.7
VEH 83.2 38.1 52.3
WEA 69.0 36.6 47.8
All-Features + Stem

Precision | Recall | F-measure

(%) (%) (%)
Total 74.4 64.6 69.2
FAC 68.8 38.5 49.4
GPE 80.8 71.9 76.1
LOC 60.2 36.8 45.7
ORG 62.2 51.0 56.1
PER 75.3 70.2 72.7
VEH 81.4 41.8 55.2
WEA 70.3 38.8 50.0

Table 2: Performance of the mention detection sys-
tem using lexical, syntactic, gazetteer features as well
as features obtained by running other named-entity
classifiers

named-entity classifiers (with different semantic tag
sets). Features are also extracted from the shal-
low parsing information associated with the tokens
in window of 3, POS, etc. The All-features system
incorporates all the features except for the stem n-
grams. Table 2 shows the experimental results with
and without the stem n-grams features. Again, Ta-
ble 2 shows that using stem n-grams features gave
a small boost to the whole main-type classification
system?. This is true for all types. It is interesting to
note that the increase in performance in both cases
(Tables 1 and 2) is obtained from increased recall,
with little change in precision. When the prefix and
suffix n-gram features are removed from the feature
set, we notice in both cases (Tables 1 and 2) a in-
significant decrease of the overall performance, which
is expected: what should a feature of preceeding (or
following) prepositions or finite articles captures?

As stated in Section 4.1, the mention detection sys-
tem uses a cascade approach. However, we were curi-
ous to see if the gain we obtained at the first level was
successfully transfered into the overall performance
of the mention detection system. Table 3 presents
the performance in terms of precision, recall, and F-
measure of the whole system. Despite the fact that
the improvement was small in terms of F-measure
(59.4 vs. 59.7), the stemming n-gram features gave

4The difference in performance is not statistically sig-
nificant
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interesting improvement in terms of ACE value to
the hole EDR system as showed in section 6.3.

Precision | Recall | F-measure
(%) (%) (%)
All-Features 64.2 55.3 59.4
All-Features+Stem 64.4 55.7 59.7
Lexical 64.4 50.8 56.8
Lexical+Stem 64.6 52.0 57.6

Table 3: Performance of the mention detection sys-
tem including all ACE’04 subtasks

6.3 Coreference Resolution

In this section, we present the coreference results on
the devtest defined earlier. First, to see the effect of
stem matching features, we compare two coreference
systems: one with the stem features, the other with-
out. We test the two systems on both “true” and
system mentions of the devtest set. “True” men-
tions mean that input to the coreference system are
mentions marked by human, while system mentions
are output from the mention detection system. We
report results with two metrics: ECM-F and ACE-
Value. ECM-F is an entity-constrained mention F-
measure (cf. (Luo et al., 2004) for how ECM-F is
computed), and ACE-Value is the official ACE eval-
uation metric. The result is shown in Table 4: the
baseline numbers without stem features are listed un-
der “Base,” and the results of the coreference system
with stem features are listed under “Base+Stem.”

On true mention, the stem matching features im-
prove ECM-F from 77.7% to 80.0%, and ACE-value
from 86.9% to 88.2%. The similar improvement is
also observed on system mentions.The overall ECM-
F improves from 62.3% to 64.2% and the ACE value
improves from 61.9 to 63.1%. Note that the increase
on the ACE value is smaller than ECM-F. This is
because ACE-value is a weighted metric which em-
phasizes on NAME mentions and heavily discounts
PRONOUN mentions. Overall the stem features give
rise to consistent gain to the coreference system.

7 Conclusion

In this paper, we present a fully fledged Entity Detec-
tion and Tracking system for Arabic. At its base, the
system fundamentally depends on a finite state seg-
menter and makes good use of the relationships that
occur between word stems, by introducing features
which take into account the type of each segment.
In mention detection, the features are represented as
stem n-grams, while in coreference resolution they
are captured through stem-tailored match features.



Base Base+Stem
ECM-F ACEVal | ECM-F ACEVal
Truth 7.7 86.9 80.0 88.2
System 62.3 61.9 64.2 63.1

Table 4: Effect of Arabic stemming features on coref-
erence resolution. The row marked with “Truth”
represents the results with “true” mentions while the
row marked with “System” represents that mentions
are detected by the system. Numbers under “ECM-
F” are Entity-Constrained-Mention F-measure and
numbers under “ACE-Val” are ACE-values.

These types of features result in an improvement in
both the mention detection and coreference resolu-
tion performance, as shown through experiments on
the ACE 2004 Arabic data. The experiments are per-
formed on a clearly specified partition of the data, so
comparisons against the presented work can be cor-
rectly and accurately made in the future. In addi-
tion, we also report results on the official test data.

The presented system has obtained competitive re-
sults in the ACE 2004 evaluation, being ranked
amongst the top competitors.
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Abstract

The paper addresses using artificial neu-
ral networks for classification of Amharic
news items. Ambharic is the language for
countrywide communication in Ethiopia
and has its own writing system contain-
ing extensive systematic redundancy. It is
quite dialectally diversified and probably
representative of the languages of a conti-
nent that so far has received little attention
within the language processing field.

The experiments investigated document
clustering around user queries using Self-
Organizing Maps, an unsupervised learn-
ing neural network strategy. The best
ANN model showed a precision of 60.0%

when trying to cluster unseen data, and a
69.5% precision when trying to classify it.

Introduction

Box 1263, SE-164 29 Kista, Sweden
gamback@sics.se

Many of the languages of Africa have few speak-
ers, and some lack a standardised written form, both
creating problems for building language process-
ing systems and reducing the need for such sys-
tems. However, this is not true for the major African
languages and as example of one of those this pa-
per takes Amharic, the Semitic language used for
countrywide communication in Ethiopia. With more
than 20 million speakers, Amharic is today probably
one of the five largest on the continent (albeit diffi-
cult to determine, given the dramatic population size
changes in many African countries in recent years).
The Ethiopian culture is ancient, and so are the
written languages of the area, with Amharic using
its own script. Several computer fonts for the script
have been developed, but for many years it had no
standardised computer representatinfich was a
deterrent to electronic publication. An exponentially
increasing amount of digital information is now be-
ing produced in Ethiopia, but no deep-rooted cul-
ture of information exchange and dissemination has
been established. Different factors are attributed to

Even though the last years have seen an increasifis including lack of digital library facilities and
trend in investigating applying language processingentral resource sites, inadequate resources for elec-
methods to other languages than English, most gfonic publication of journals and books, and poor
the work is still done on very few and mainly Euro-gocymentation and archive collections. The diffi-
pean and East-Asian languages; for the vast numbgjities to access information have led to low expec-
of languages of the African continent there still réyations and under-utilization of existing information
mains plenty of work to be done. The main obstazegqyrces, even though the need for accurate and fast
cles to progress in language processing for these agormation access is acknowledged as a major fac-
two-fold. Firstly, the peculiarities of the languagesr affecting the success and quality of research and

themselves might force new strategies to be deve(!revelopment, trade and industry (Furzey, 1996).
oped. Secondly, the lack of already available re-

sources and tools makes the creation and testing of *An international standard for Amharic was agreed on only
new ones more difficult and time-consuming.

*Author for correspondence.
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in year 1998, following Amendment 10 to ISO-10646-1. The
standard was finally incorporated into Unicode in year 2000:
www.unicode.org/charts/PDF/U1200.pdf
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In recent years this has lead to an increasing awarg- Atrtificial Neural Networks

ness that Amharic language processing resources _
and digital information access and storage facilifrtificial Neural Networks (ANN) is a computa-

ties must be created. To this end, some work hd9nal paradigm inspired by the neurological struc-

now been carried out, mainly by Ethiopian Telecomture of the human brain, and ANN terminology bor-

the Ethiopian Science and Technology CommissiofoWs from neurology: the brain consists of millions

Addis Ababa University, the Ge'ez Frontier Foun-Cf neurons connected to each other through long and

dation, and Ethiopian students abroad. So have, f§#in strands called axons; the connecting points be-
example, Sisay and Haller (2003) looked at AmharifVe€n neurons are called synapses. N
word formation and lexicon building; Nega and Wil- ANNS have proved themselves useful in deriving
lett (2002) at stemming; Atelach et al. (2003a) afneéaning from complicated or imprecise data; they
treebank building; Daniel (Yacob, 2005) at the col€an be used to extract patterns and detect trends that
lection of an (untagged) corpus, tentatively to b&re to0 complex to be noticed by either humans or
hosted by Oxford University’s Open Archives Ini- Other computational and statistical techniques. Tra-
tiative; and Cowell and Hussain (2003) at characditionally, the most common ANN setup has been
ter recognitior?. See Atelach et al. (2003b) for anthe backpropaggnon archlt.ecture (Rumelhart et al.,
overview of the efforts that have been made so far t4986), & supervised learning strategy where input
develop language processing tools for Amharic. data is fed forward in the network to the output

The need for investigating Amharic information"odes (normally with an intermediate hidden layer

access has been acknowledged by the Europe%fnnc’des) while errors in matches are propagated

Cross-Language Evaluation Forum, which added dtfickwards in the net during training.
Amharic—English track in 2004. However, the tas o
addressed was for accessing an English databz?s‘el Self-Organizing Maps
in English, with only the original questions beingSelf-Organizing Maps (SOM) is an unsupervised
posed in Amharic (and then translated into Englishjearning scheme neural network, which was in-
Three groups participated in this track, with Atelactvented by Kohonen (1999). It was originally devel-
et al. (2004) reporting the best results. oped to project multi-dimensional vectors on a re-
In the present paper we look at the problem ofluced dimensional space. Self-organizing systems
mapping questions posed in Amharic onto a colcan have many kinds of structures, a common one
lection of Amharic news items. We use the Selfconsists of an input layer and an output layer, with
Organizing Map (SOM) model of artificial neural feed-forward connections from input to output lay-
networks for the task of retrieving the document€rs and full connectivity (connections between all
matching a specific query. The SOMs were implepeurons) in the output layer.
mented using the Matlab Neural Network Toolbox. A SOM is provided with a set of rules of a lo-
The rest of the paper is laid out as follows. Seccal nature (a signal affects neurons in the immedi-
tion 2 discusses artificial neural networks and in pagte vicinity of the current neuron), enabling it to
ticular the SOM model and its application to infor-learn to compute an input-output pairing with spe-
mation access. In Section 3 we describe the Amharfdfic desirable properties. The learning process con-
language and its writing system in more detail toSists of repeatedly modifying the synaptic weights
gether with the news items corpora used for trainingf the connections in the system in response to input
and testing of the networks, while Sections 4 and §ctivation) patterns and in accordance to prescribed
detail the actual experiments, on text retrieval antdles, until a final configuration develops. Com-
text classification, respectively. Finally, Section gnonly both the weights of the neuron closest match-

sums up the main contents of the paper. ing the inputs and the weights of its neighbourhood
nodes are increased. At the beginning of the training
Z_In the text we follow the Ethiopian practice of referring to the neighbourhood (where input patterns cluster de-
Ethiopians by their given names. However, the reference list di heir similari be fairly | d
follows Western standard and is ordered according to surnamB€NAINg on their simi arity) can e_ airly large an
(i.e., the father’s name for an Ethiopian). then be allowed to decrease over time.
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2.2 Neural network-based text classification eter, if the training set is a singular value decom-

N | networks h b idel din text cl osition reduced vector space. Tambouratzis et al.
eural networks nave been widely used intex Cafzoos) use SOMs for categorizing texts according to

sification, where they can be given terms and ha egister and author style and show that the results are

'ng the_ (_)utput nodes rep_resent c_ategorl_es. Ruézquivalent to those generated by statistical methods.
and Srinivasan (1999) utilize an hierarchical array

of backpropagation neural networks for (nonlineary  processing Amharic
classification of MEDLINE records, while Ng et al.
(1997) use the simplest (and linear) type of ANNEthiopia with some 70 million inhabitants is the
classifier, the perceptron. Nonlinear methods hav&ird most populous African country and harbours
not been shown to add any performance to linedpore than 80 different languag&sThree of these
ones for text categorization (Sebastiani, 2002).  are dominant: Oromo, a Cushitic language spoken
SOMs have been used for information accedd the South and Central parts of the country and
since the beginning of the 90s (Lin et al., 1991). Awritten using the Latin alphabet; Tigrinya, spoken in
SOM may show how documents with similar fealhe North and in neighbouring Eritrea; and Amharic_,
tures cluster together by projecting the N-dimenSPOken in most parts of the country, but predomi-
sional vector space onto a two-dimensional grid?@ntly in the Eastern, Western, and Central regions.
The radius of neighbouring nodes may be varied tBoth Amharic and _Tlgnnya are Semitic and about as
include documents that are weaker related. The mdgPSe as are Spanish and Portuguese (Bloor, 1995),

elaborate experiments of using SOMs for documer}’l.1 The Amharic language and script
classification have been undertaken using the WEB-
SOM architecture developed at Helsinki UniversityAlready a census from 1984stimated Amharic to
of Technology (Honkela et al., 1997; Kohonen et albe mother tongue of more than 17 million people,
2000). WEBSOM is based on a hierarchical twoWith at least an additional 5 million second language
level SOM structure, with the first level forming his- SPeakers. Itis today probably the second largest lan-
togram clusters of words. The second level is used/@ge in Ethiopia (after Oromo). The Constitution
to reduce the sensitivity of the histogram to smalPf 1994 divided Ethiopia into nine fairly indepen-
variations in document content and performs furthef€nt regions, each with its own nationality language.
clustering to display the document pattern space. However, Amharic is the language for countrywide
A Self-Organizing Map is capable of Simul(,mngcommunlcatlon and was also for a long period the

new data sets without the need of retraining itSe’_(?rinc_ipal literal language and mediurr_1 of instruction
when the database is updated; something which 3 primary and secondary schools in the country,

not true for Latent Semantic Indexing, LS (Deer-Wh”e higher education is carried out in English.
wester et al., 1990). Moreover, LS| consumes am- AAmharic and Tigrinya speakers are mainly Ortho-

ple time in calculating similarities of new queriesd®X Christians, with the languages drawing com-

against all documents, but a SOM only needs to cafon roots to the ecclesiastic Ge’ez still used by the

culate similarities versus some representative subsgpPtic Church. Both languages are written using

of old input data and can then map new input straigrif'€ G€'€Z script, horizontally and left-to-right (in
onto the most similar models without having to re.cONtrast to many other Semitic languages). Writ-
compute the whole mapping ten Ge'ez can be traced back to at least the 4th

. century A.D. The first versions of the script in-
The SOM model preparation passes through th y . P
cluded consonants only, while the characters in later
processes undertaken by the LSI model and the clas- .
. . versions represent consonant-vowel (CV) phoneme
sical vector space model (Salton and McGill, 1983). ~. : .
: airs. In modern written Amharic, each syllable pat-

Hence those models can be taken as particular cases

of the SOM, when the neighbourhood diameter is *How many languages there are in a country is as much a po-
maximized. For instance. one can calculate thlgical as a linguistic issue. The number of languages of Ethiopia

T ’ and Eritrea together thus differs from 70 up to 420, depending
LSI model’s similarity measure of documents Versugp the source; however, 82 (plus 4 extinct) is a common number.

gueries by varying the SOM'’s neighbourhood diam- “Published by Ethiopia’s Central Statistal Authority 1998.
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Order] 1. 2 3 4 5 6 7 denote a single phoneme, as well as words that have
c V /s) Ju/ Ji/ [e/ Je/ [i/ o/ extremely different orthographic form and slightly
Is] p "~ 0 a 0 n o distinct phonetics, but the same meaning. As a re-
m/ | @ o m ey g g sult of this, lexical variation and homophony is very
common, and obviously deteriorates the effective-
Table 1: The orders fau (/s/) and#® (/m/) ness of Information Access systems based on strict
term matching; hence the basic idea of this research:

to use the approximative matching enabled by self-

tern comes in seven different forms (callediery,  organizing map-based artificial neural networks.
reflecting the seven vowel sounds. The first order is

the basic form; the other orders are derived from 8.2 Test data and preprocessing

by more or less regular modifications indicating thgy our SOM-based experiments, a corpus of news
different vowels. There are 33 basic forms, givingtems was used for text classification. A main ob-
7*33 syllable patterns, didEls stacle to developing applications for a language like
Two of the base forms represent vowels in isolaamharic is the scarcity of resources. No large cor-
tion (0 and x), but the rest are for consonants (ofpora for Amharic exist, but we could use a small
semivowels classed as consonants) and thus coregrpus of 206 news articles taken from the electronic
spond to CV pairs, with the first order being the basgews archive of the website of the Walta Information
symbol with no explicit vowel indicator (though a Center (an Ethiopian news agency). The training
vowel is pronounced: Cfo/). The sixth orderis am- corpus consisted of 101 articles collected by Saba
biguous between being just the consonant ofiC+ (Amsalu, 2001), while the test corpus consisted of
The writing system also includes 20 symbols fothe remaining 105 documents collected by Theodros
labialised velars (four five-character orders) and 2¢GebreMeskel, 2003). The documents were written
for other labialisation. In total, there are 2ff{8Els  ysing the Amharic software VG2 Main font.
The sequences in Table 1 (farand#°) exemplify  The corpus was matched against 25 queries. The
the (partial) symmetry of vowel indicators. selection of documents relevant to a given query,
Ambharic also has its own numbers (twenty symwas made by two domain experts (two journal-
bols, though not widely used nowadays) and its owists), one from the Monitor newspaper and the other
punctuation system with eight symbols, where thérom the Walta Information Center. A linguist from
space between words looks like a colpwhile the  Gonder College participated in making consensus of
full stop, comma and semicolon are: and:. The the selection of documents made by the two jour-
question and exclamation marks have recently beeralists. Only 16 of the 25 queries were judged to
included in the writing system. For more thorougthave a document relevant to them in the 101 docu-
discussions of the Ethiopian writing system, see, famnent training corpus. These 16 queries were found
example, Bender et al. (1976) and Bloor (1995). to be different enough from each other, in the con-
Amharic words have consonantal roots withient they try to address, to help map from document
vowel variation expressing difference in interpretaeollection to query contents (which were taken as
tion, making stemming a not-so-useful technique iclass labels). These mappings (assignment) of doc-
information retrieval (no full morphological anal- uments to 16 distinct classes helped to see retrieval
yser for the language is available yet). There is nand classification effectiveness of the ANN model.
agreed upon spelling standard for compounds and The corpus was preprocessed to normalize
the writing system uses multitudes of ways to denotgpelling and to filter out stopwords. One prepro-
compound words. In addition, not all the letters otessing step tried to solve the problems with non-
the Amharic script are strictly necessary for the prostandardised spelling of compounds, and that the
nunciation patterns of the language; some were sirsame sound may be represented with two or more
ply inherited from Ge’ez without having any semandistinct but redundant written forms. Due to the sys-
tic or phonetic distinction in modern Amharic: theretematic redundancy inherited from the Ge’'ez, only
are many cases where numerous symbols are usedatmwut 233 of the 27fidElsare actually necessary to
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Sound patterr) Matching Amharic characters 4.1  Clustering in unreduced vector space
/so/ a, In the first experiment, the selected documents were
[r9/ & @ indexed using 10,363 dimensional vectors (i.e., one
/ho/ 0, %, ch, ch, "1, 3 dimension per term in the corpus) weighted using
[io/ Ak 0,9 log-entropy weighting techniques. These vectors

were fed into an Artificial Neural Network that was
created using a SOM lattice structure for mapping
on a two-dimensional grid. Thereafter a query and
represent Amharic. Some examples of character ré91 documents were fed into the ANN to see how
dundancy are shown in Table 2. The different formglocuments cluster around the query.
were reduced to common representations. For the original, unnormalised (unreduced,
A negative dictionary of 745 words was created10,363 dimension) vector space we did not try to
containing both stopwords that are news specific artchin an ANN model for more than 5,000 epochs
the Amharic text stopwords collected by Nega (Ale{which takes weeks), given that the network perfor-
mayehu and Willett, 2002). The news specific commance in any case was very bad, and that the net-
mon terms were manually identified by looking atwork for the reduced vector space had its apex at
their frequency. In a second preprocessing step, thigat point (as discussed below).
stopwords were removed from the word collection Those documents on the node on which the sin-
before indexing. After the preprocessing, the numgle query lies and those documents in the imme-
ber of remaining terms in the corpus was 10,363. diate vicinity of it were taken as being relevant to
the query (the neighbourhood was defined to be six
4 Textretrieval nodes). Ranking of documents was performed using

the cosine similarity measure, on the single query

In a set of experiments we investigated the develj g, aytomatically retrieved relevant documents.
opment of a retrieval system using Self-Organizing g gleven-point average precision was calculated
Maps. The. term-by-roument matrix produced, ey 4 queries. For this system the average preci-
from the entire collection of 206 documents was;ion on the test set turned out to be 10.5%, as can be
used to measure the retrieval performance of the sySsan, in the second column of Table 3.

tem, of which 101 documents were used for train- g tapje compares the results on training on the

ing and the remaining for testing. After the Preprog iginal vector space to the very much improved

cessing described in the previous section, aweight%(;l]eS obtained by the ANN model trained on the re-

matrix was generated from the original matrix USianuced vector space, described in the next section.
the log-entropy weighting formula (Dumais, 1991).

Table 2: Examples of character redundancy

This helps to enhance the occurrence of a term in[ Recall | Original vector| Reduced vectot
representing a particular document and to degrade (.00 0.2080 0.8311
the occurrence of the term in the document col- 0.10 0.1986 0.7621
lection. The weighted matrix can then be dimen- 0.20 0.1896 0.7420
sionally reduced by Singular Value Decomposition, 0.30 0.1728 0.7010
SVD (Berry et al., 1995). SVD makes it possible to 0.40 0.0991 0.6888
map individual terms to the concept space. 0.50 0.0790 0.6546
A query of variable size is useful for compar- 0.60 0.0678 0.5939
ison (when similarity measures are used) only if 0.70 0.0543 0.5300
its size is matrix-multiplication-compatible with the 0.80 0.0403 0.4789
documents. The pseudo-query must result from the| (.90 0.0340 0.3440
global weight obtained in weighing the original ma- 1.00 0.0141 0.2710
trix to be of any use in ranking relevant documents. | Average 0.1052 0.5998

The experiment was carried out in two versions, with _ o _
the original vector space and with a reduced one.  Table 3: Eleven-point precision for 16 queries
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4.2 Clustering in SVD-reduced vector space 5 Document Classification

In a second experiment, vectors of numerically intn a third experiment, the SVD-reduced vector space
dexed documents were converted to weighted matigf pseudo-documents was assigned a class label
ces and further reduced USing SVD, to infer the ne%uery Content) to which the documents of the train-
for representing co-occurrence of words in identifying set were identified to be more similar (by ex-
ing a document. The reduced vector space of 1Qjerts) and the neural net was trained using the
pseudo-documents was fed into the neural net f¢jseudo-documents and their target classes. This was
training. Then, a query together with 105 documentgerformed for 100 to 20,000 epochs and the neural
was given to the trained neural net for simulation anﬂet with best accuracy was considered for testing.

inference purpose. _ The average precision on the training set was
For the rgduced vectors a wider range of valueund to be 72.8%, while the performance of the
could be tried. Thus 100, 200, ..., 1000 epochgeural net on the test set was 69.5%. A matrix of

were tried at the beginning of the experiment. Theimple queries merged with the 101 documents (that
network performance kept improving and the trainhad been used for training) was taken as input to
ing was then allowed to go on for 2000, 3000g SOM-model neural net and eventually, the 101-
..., 10,000, 20,000 epochs thereafter. The averaggmensional document and single query pairs were
classification accuracy was at an apex after 5,00@apped and plotted onto a two-dimensional space.
epochs, as can been seen in Figure 1. Figure 2 gives a flavour of the document clustering.
The neural net with the highest accuracy was se- The results of this experiment are compatible with
lected for further analysis. As in the previous modelhose of Theodros (GebreMeskel, 2003) who used
documents in the vicinity of the query were rankedhe standard vector space model and latent semantic
using the cosine similarity measure and the precisidndexing for text categorization. He reports that the
on the test set is illustrated in the third column of Tavector space model gave a precision of 69.1% on the
ble 3. As can be seen in the table, this system wagining set. LSI improved the precision to 71.6%,
effective with 60.0% eleven-point average precisiovhich still is somewhat lower than the 72.8% ob-
on the test set (each of the 16 queries was tested).tained by the SOM model in our experiments. Go-
Thus, the performance of the reduced vectdhg outside Amharic, the results can be compared to
space system was very much better than that othe ones reported by Cai and Hofmann (2003) on the
tained using the test set of the normal term docwReuters-21578 corpeisvhich contains 21,578 clas-
ment matrix that resulted in only 10.5% average presified documents (100 times the documents available
cision. In both cases, the precision of the training sébr Amharic). Used an LSI approach they obtained
was assessed using the classification accuracy whigbcument average precision figures of 88—90%.
shows how documents with similar features cluster In order to locate the error sources in our exper-
together (occur on the same or neighbouring nodespnents, the documents missed by the SOM-based
classifier (documents that were supposed to be clus-
% x { [ tered on a given class label, but were not found un-

70 . der that label), were examined. The documents that
65 _ were rejected as irrelevant by the ANN using re-
60 i duced dimension vector space were found to contain
55 only a line or two of interest to the query (for the
training set as well as for the test set). Also within
o0 l l l B the test set as well as in the training set some relevant

documents had been missed for unclear reasons.
Those documents that had been retrieved as rel-
evant to a query without actually having any rele-

Figure 1: Average network classification accuracy?ance to that query had some words that co-occur

0 5 10 15 20
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Figure 2: Document clustering at different neuron positions

with the words of the relevant documents. Very im+educed using the global weight vector obtained in
portant in this observation was that documents thateighing the original matrix.

could be of some interest to two classes were found The ANN model using unnormalised vector space
at nodes that are the intersection of the nodes cohad a precision of 10.5%, whereas the best ANN

taining the document sets of the two classes. model using reduced dimensional vector space per-
. formed at a 60.0% level for the test set. For this con-
6 Summary and Conclusions figuration we also tried to classify the data around a

A set of experiments investigated text retrieval of sedUery content, taken that query as class label. The
lected Amharic news items using Self-OrganizindeSUltS obtained then were 72.8% for the training set

Maps, an unsupervised learning neural networnd 69.5% for the test set, which is encouraging.

method. 101 training set items, 25 queries, and 10;5
test set items were selected. The content of each
news item was taken as the basis for document iff-hanks to Dr. Gashaw Kebede, Kibur Lisanu, Lars
dexing, and the content of the specific query waésker, Lemma Nigussie, and Mesfin Getachew; and
taken for query indexing. A term—document mato Atelach Alemu for spotting some nasty bugs.

trix was generated and the occurrence of terms per The work was partially funded by the Faculty of
document was registered. This original matrix wagnformatics at Addis Ababa University and the ICT
changed to a weighted matrix using the log-entropgupport programme of SAREC, the Department for
scheme. The weighted matrix was further reduceResearch Cooperation at Sida, the Swedish Inter-
using SVD. The length of the query vector was alsmational Development Cooperation Agency.
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Abstract

Arabic is usually written without short
vowels and additional diacritics, which
are nevertheless important for several
applications. We present a novel al-
gorithm for restoring these symbols,
using a cascade of probabilistic finite-
state transducers trained on the Ara-
bic treebank, integrating a word-based
language model, a letter-based lan-
guage model, and an extremely simple
morphological model. This combina-
tion of probabilistic methods and sim-
ple linguistic information yields high
levels of accuracy.

Introduction

Most semitic languages in both ancient and con-
temporary times are usually written without
short vowels and other diacritic marks, often
leading to potential ambiguity. While such am-
biguity only rarely impedes proficient speakers,
it can certainly be a source of confusion for be-
ginning readers and people with learning disabil-
ities (Abu-Rabia, 1999). The problem becomes
even more acute when people are required to
actively generate diacritized script, as used for
example in poetry or children’s books. Diacriti-
zation is even more problematic for computa-
tional systems, adding another level of ambigu-
ity to both analysis and generation of text. For
example, full vocalization is required for text-
to-speech applications, and has been shown to
improve speech-recognition perplexity and error
rate (Kirchoff et al., 2002).
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We present a system for Arabic diacritiza-
tion! in Modern Standard Arabic (MSA) using
weighted finite-state transducers. The system
is constructed using standardly available finite-
state tools, and encodes only minimal morpho-
logical knowledge, yet achieves very high levels
of accuracy. While the methods described in this
paper are applicable to additional semitic lan-
guages, the choice of MSA was motivated by the
availability of the Arabic Treebank, distributed
by the Linguistic Data Consortium (LDC), a siz-
able electronic corpus of diacritized text, which
we could use for training and testing. Such re-
sources are rare for other semitic languages.

This paper is structured as follows. In Sec-
tion 1, we describe the task, including a brief in-
troduction to Arabic diacritization, and the cor-
pus we used. In Section 2, we describe the design
of our system, which consists of a trigram word-
based language model, augmented by two exten-
sions: an extremely simple morphological ana-
lyzer and a letter-based language model, which
are used to address the data sparsity problem.
In Section 3, we report the system’s experimen-
tal evaluation. We review related work in Sec-
tion 4, and close with conclusions and directions
for future research in Section 5.

1 The task

The Arabic vowel system consists of 3 short vow-
els and 3 long vowels, as summarized in Ta-

'We distinguish between vocalization—the restora-
tion of vowel symbols—and diacritization, which includes
additionally the restoration of a richer system of diacritic
marks, as explained below.

Proceedings of the ACL Workshop on Computational Approaches to Semitic Languages 79-86,
Ann Arbor, June 200502005 Association for Computational Linguistics



Short vowels

Vocalized Unvoc. Pronounc.
Arab. | Tran. Arab. | Tran.
- u - - /u/
= a - - /a/

= i - - /1/

P uw 3 w Ju:/
= aA(D:2) | | A Ja:/
= | aY < Y®) | ja:/
= |1y $ |V [i:/

Doubled case endings

(B

/un/
- - /an/
AF ! A /an/

- K - - /in/
(1) aA may also appear as A even in vocalized text.
() In some lexical items, aA is written as ¢; in which case
it is dropped in undiacritized text.

®) Y and y can appear interchangeably in the cor-
pus (Buckwalter, 2004).

(RS

~

Table 1: Arabic vowels

ble 1.2 Short vowels are written as symbols ei-
ther above or below the letter in diacritized text,
and dropped altogether in undiacritized text.
Long vowels are written as a combination of a
short vowel symbol, followed by a vowel letter;
in undiacritized text, the short vowel symbol is
dropped. Arabic also uses vowels at the end of
words to mark case distinctions, which include
both the short vowels and an additional doubled
form (“tanween”).

Diacritized text also contains two syllabifica-
tion marks: & (trans.: ~) denoting doubling of

the preceding consonant (in this case, o), and
& (trans.: o), denoting the lack of a vowel.

The Arabic glottal stop (“hamza”) deserves
special mention, as it can appear in several dif-
ferent forms in diacritized text, enumerated in

2Throughou‘c the paper we follow Buckwalter’s
transliteration of Arabic into 7-bit ASCII charac-
ters (2002a).
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Arab. | Tran. || Arab. | Tran.
| > T |

) < £ ’

50 1& |T |

& }

Table 2: Arabic glottal stop

Table 2. In undiacritized text, it appears either
as A or as one of the forms in the table.

We used the LDC’s Arabic Treebank of dia-
critized news stories (Part 2). The corpus con-
sists of 501 news stories collected from Al-Hayat
for a total of 144,199 words. In addition to dia-
critization, the corpus contains several types of
annotations. After being transliterated, it was
morphologically analyzed using the Buckwalter
morphological analyzer (2002b). Buckwalter’s
system provides a list of all possible analyses of
each word, including a full diacritization, and
a part-of-speech (POS) tag. From this candi-
date list, annotators chose a single analysis. Af-
terwards, clitics, which are prevalent in Arabic
were separated and marked, and a full parse-
tree was manually generated. For our purposes,
we have stripped all the POS tagging, to retain
two versions of each file—diacritized and undi-
acritized, which we use for both training and
evaluation as will be explained below.

An example sentence fragment in Arabic is
given in Figure 1 in three forms: undiacritized,
diacritized without case endings, and with case
endings.

mseye 5 el Jodl Zaald L Cue¥l s,

s 5 F Al G331 Tl fW Yl

wsih s G I3 Sl AW Gl 5
Figure 1: Example sentence fragment

The transliteration and translation are given
in Figure 2. We follow precisely the form that
appears in the Arabic treebank.?

3The diacritization of this example is (strictly speak-
ing) incomplete with respect to the diacritization of the



rd Al>myn A1EAm
rad~a Al>amiyn AlEAm~

1jAmEp

Aldwl
lijAmiEap Alduwal AlEarabiy~ap Eamorw muwsaY

AlErbyp Emrw mwsY

rad~a Al>amiynu AlEAm~u lijAmiEapu Alduwali AlEarabiy~api Eamorw muwsaY

“Arab League Secretary General Amr Mussa replied...”

Figure 2: Transliteration and translation of the sentence fragment

020200

Figure 3: Basic model

2 System design

To restore diacritization, we have created a gen-
erative probabilistic model of the process of los-
ing diacritics, expressed as a finite-state trans-
ducer. The model transduces fully diacritized
Arabic text, weighted according to a language
model, into undiacritized text. To restore dia-
critics, we use Viterbi decoding, a standard al-
gorithm for efficiently computing the best path
through an automaton, to reconstruct the max-
imum likelihood diacritized word sequence that
would generate a given undiacritized word se-
quence.

The model is constructed as a composi-
tion of several weighted finite-state transduc-
ers (Pereira and Riley, 1997). Transducers are
extremely well-suited for this task as their clo-
sure under composition allows complex models
to be efficiently and elegantly constructed from
modular implementations of simpler models.

The system is implemented using the AT&T
FSM and GRM libraries (Mohri et al., 2000; Al-
lauzen et al., 2003), which provide a collection
of useful tools for constructing weighted finite-
state transducers implementing language mod-
els.

2.1 Basic model

Our cascade consists of the following transduc-
ers, illustrated in Figure 3.

determiner Al and the letter immediately following it.
For instance, in Alduwal, the d should actually have been
doubled, yielding Ald~uwal. The treebank consistently
does not diacritize A1, and we adhere to its conventions
in both training and testing.
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Language model (LM) A standard trigram
language model of Arabic diacritized words. For
smoothing purposes, we use Katz backoff (Katz,
1987). We learn weights for the model from a
training set of diacritized words. This is the
only component of the basic model for which
we learn such weights. During decoding, these
weights are utilized to choose the most prob-
able word sequence that could have generated
the undiacritized text. The model also includes
special symbols for unknown words, (unk), and
for numbers, (NuM), as explained below.

Spelling (SP) A spelling transducer that
transduces a word into its component letters.
This is a technical necessity since the language
model operates on word tokens and the follow-
ing components operate on letter tokens. For in-
stance the single token Al1>amiyn is transduced
to the sequence of tokens A,1,>,a,m,i,y,n.

Diacritic drop (DD) A transducer for drop-
ping vowels and other diacritics. The transducer
simply replaces all short vowel symbols and syl-
labification marks with the empty string, e. In
addition, this transducer also handles the mul-
tiple forms of the glottal stop (see Section 1).
Rather than encoding any morphological rules
on when the glottal stop receives each form, we
merely encode the generic availability of these
various alternatives, as transductions. For in-
stance, DD includes the option of transducing
{ to A, without any information on when such
transduction should take place.

Unknowns (UNK) Due to data sparsity, a
test input may include words that did not ap-
pear in the training data, and will thus be un-
known to the language model. To handle such
words, we add a transducer, UNK, that trans-
duces (Unk), into a stochastic sequence of ar-
bitrary letters. During decoding, the letter se-



quence is fixed, and since it has no possible dia-
critization in the model, Viterbi decoding would
choose (UNK) as its most likely generator.

UNK plays a similar purpose in handling
numbers. UNK transduces (NuM) to a stochasti-
cally generated sequence of digits. In the train-
ing data, we replace all numbers with (NuM). On
encountering a number in a test input, the de-
coding algorithm would replace the number with
(nuM). As a post-processing step, we replace all
occurrences of (Unk) and (NuM) with the original
input word/number.

2.2 Handling clitics

Arabic contains numerous clitics, which are ap-
pended to words, either as prefixes or as suf-
fixes, including the determiner, conjunctions,
some prepositions, and pronouns. Clitics pose
an important challenge for an n-gram model,
since the same word with a different clitic combi-
nation would appear to the model as a separate
token. We thus augment our basic model with
a transducer for handling clitics.

Handling clitics using a rule-based approach is
a non-trivial undertaking (Buckwalter, 2002b).
In addition to cases of potential ambiguity be-
tween letters belonging to a clitic and letters be-
longing to a word, clitics might be iteratively
appended, but only in some combinations and
some orderings. Buckwalter maintains a dictio-
nary not only of all prefixes, stems, and suffixes,
but also keeps a separate dictionary entry for
each allowed combination of diacritized clitics.
Since, unlike Buckwalter’s system, we are inter-
ested just in the most probable clitic separation
rather than the full set of analyses, we imple-
ment only a very simple transducer, and rely on
the probabilistic model to handle such ambigu-
ities and complexities.

From a generative perspective, we assume
that the hypothetical original text from which
the model starts is not only diacritized, but
also has clitics separated. We augment the
model with a transducer, Clitic Concatenation
(CC), which non-deterministically concatenates
clitics to words. CC scans the letter stream;
on encountering a potential prefix, CC can
non-deterministically append it to the following
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Figure 4: Clitic concatenation

word, merely by transducing the space follow-
ing it to €. This is done iteratively for each pre-
fix. After concatenating prefixes, CC can non-
deterministically decide that it has reached the
main word, which it copies. Finally, it concate-
nates suffixes symmetrically to prefixes. For in-
stance, on encountering the letter string w Al
>myn, CC might drop the spaces to generate
wAl>myn (“and the secretary”).

The transducer implementation of CC con-
sists of three components, depicted schemati-
cally in Figure 4. The first component itera-
tively appends prefixes. For each of a fixed set
of prefixes, it has a set of states for identify-
ing the prefix and dropping the trailing space.
A non-deterministic jump moves the transducer
to the middle component, which implements the
identity function on letters, copying the putative
main word to the output. Finally, CC can non-
deterministically jump to the final component,
which appends suffixes by dropping the preced-
ing space.

By design, CC provides a very simple model
of Arabic clitics. It maintains just a list of pos-
sible prefixes and suffixes, but encodes no in-
formation about stems or possible clitic order-
ings, potentially allowing many ungrammatical
combinations. We rely on the probabilistic lan-
guage model to assign such combinations very
low probabilities.*

We use the following list of (undiacritized) cl-
itics: (cf. Diab et al. (2004) who use the same
set with the omission of s, and ny):

prefixes: b (by/with), 1 (to), k (as), w (and),
f (and), Al (the), s (future);

suffixes: y (my/mine), ny (me), nA
(our/ours), k (your/yours), kmA (your/yours
“The only special case of multiple prefix combinations

that we explicitly encode is the combination of 1+Al (to
+ the) which becomes 11, by dropping the A.



dual), km (your/yours pl.),
knA (your/yours fem. dual), kn (your/yours
fem. pl.), h (him/his), hA (her/hers), hmA
(their/theirs masc. dual), hnA (their/theirs
fem. dual), hm (their/theirs masc. pl.), hn
(their/theirs fem. pl).

We integrate CC into the cascade by compos-
ing it after DD, and before UNK. Thus, clitics
appear in their undiacritized form. Our model
now assumes that the diacritized input text has
clitics separated. This requires two changes to
our method. First, training must now be per-
formed on text in which clitics are separated.
This is straightforward since clitics are tagged
in the corpus. Second, in the undiacritized test
data, we keep clitics intact. Running Viterbi de-
coding on the augmented model would not only
diacritize it, but also separate clitics. To gener-
ate grammatical Arabic, we reconnect the clitics
as a post-processing step. We use a greedy strat-
egy of connecting each prefix to the following
word, and each suffix to the preceding word.?

While our handling of clitics helps overcome
data sparsity, there is also a potential cost for
decoding. Clitics, which are, intuitively speak-
ing, less informative than regular words, are now
treated as lexical items of “equal stature”. For
instance, a bigram model may include the col-
location A1>amiyn AlEAm~ (the secretary gen-
eral). Once clitics are separated this becomes
Al >amiyn Al EAm~. A bigram model would
no longer retain the connection between each of
the main words, >amiyn and EAm~, but only
between them and the determiner Al, which is
potentially less informative.

mascC. mascC.

Figure 5 shows an example transduction
through the word-based model, where for illus-
tration purposes, we assume that Aldwl is an
unknown word.

2.3 Letter model for unknown words

To diacritize unknown words, we trained a
letter-based 4-gram language model of Arabic

®The only case that requires special attention is ka
which can be either a prefix (meaning “as”) or a suf-
fix (meaning “your/yours” masc.). The greedy strategy
always chooses the suffix meaning. We correct it by com-
parison with the input text.
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words, LLM, on the letter sequences of words
in the training set. Composing LLM with the
vowel-drop transducer, DD, yields a probabilis-
tic generative model of Arabic letter and di-
acritization patterns, including for words that
were never encountered in training.

In principle, we could use the letter model
as an alternative model of the full text, but we
found it more effective to use it selectively, only
on unknown words. Thus, after running the
word-based language model, we extract all the
words tagged as (UNk) and run the letter-based
model on them. Here is an example transduc-

tion:
Diacritized Alduwal
LLM (Weighted)
DD (Diacritics dropped) Aldwl

We chose not to apply any special clitic han-
dling for the letter-based model. To see why,
consider the alternative model that would in-
clude CC. Since LLM is unaware of word tokens,
there is no pressure on the decoding algorithm
to split the clitics from the word, and clitics may
therefore be incorrectly vocalized.

3 Experiments

We randomly split the set of news articles in
each of the two parts of the Arabic treebank
into a training and held-out testing set of sizes
90% and 10% respectively. We trained both
the word-based and the letter-based language
models on the diacritized version of the train-
ing set. We then ran Viterbi decoding on the
undiacritized version of the testing set, which
consists of a total of over 14,000 words. As a
baseline, we used a unigram word model with-
out clitic handling, constructed using the same
transducer technology. We ran two batches of
experiments—one in which case endings were
stripped throughout the training and testing
data, and we did not attempt to restore them,
and one in which case markings were included.

Results are reported in Table 3. For each
model, we report two measures: the word er-
ror rate (WER), and the diacritization error
rate (DER), i.e., the proportion of incorrectly
restored diacritics.

Surprisingly, a trigram word-based language



Diacritized
LM
SP

CC
UNK

rad~a Al >amiyn Al EAm~ 1i jAmiEap (UNK)
(Weighted, but otherwise unchanged)
(Change in token resolution from words to letters)
DD (Diacritics dropped) rd A1 >myn Al EAm 1 jAmEp
(Clitics concatenated) rd Al>myn A1EAm 1jAmEp
((unk) becomes Aldwl) rd Al>myn AlEAm 1jAmEp Aldwl

Figure 5: Example transduction

‘ Model ‘ without case H with case ‘
WER DER WER DER
Baseline 15.48% | 17.33% || 30.39% | 24.03%
3-gram word 14.64% | 16.9% || 28.42% | 23.34%
3-gram word + CC 8.49% | 9.32% | 24.22% | 15.36%
3-gram word + CC + 4-gram letter | 7.33% | 6.35% || 23.61% | 12.79%

Table 3: Results on the Al-Hayat corpus

model yields only a modest improvement over
the baseline unigram model. The addition of a
clitic connection model and a letter-based lan-
guage model leads to a marked improvement in
both WER and DER. This trend is repeated for
both variants of the task—either with or without
case endings. Including case information natu-
rally yields proportionally worse accuracy. Since
case markings encode higher-order grammatical
information, they would require a more powerful
grammatical model than offered by finite-state
methods.

To illustrate the system’s performance, here
are some decodings made by the different ver-
sions of the model.

Basic model

e An, <in~a, and >an~a, three versions of
the word “that”, which may all appear as
An in undiacritized text, are often confused.
As Buckwalter (2004) notes, the corpus it-
self is sometimes inconsistent about the use
of <in~a and >an~a.

Several of the third-person possessive pro-
noun clitics can appear either with a u or
an i, for instance, the third person singu-
lar masculine possessive can appear as ei-
ther hu or hi. The correct form depends
on the preceding letter and vowel (includ-
ing the case vowels). Part of the tradeoff of
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treating clitics as independent lexical items
is that the word-based model is ignorant of
the letter preceding a suffix clitic.

Clitic model

e wstkwn was correctly decoded to wa sa
takuwnu, which after post-processing be-
comes wasatakuwnu (“and [it] shall be”).

Letter model

e AstfzAz correctly decoded to {isotifozAz
(“instigation”). This example is interest-
ing, since a morphological analysis would
deterministically predict this diacritization.
The probabilistic letter model was able to
correctly decode it even though it has no
explicit encoding of such knowledge.

Non-Arabic names are obviously problem-
atic for the model. For instance bwrtlAnd
was incorrectly decoded to buwrotilAnoda
rather than buwrotlAnod (Portland), but
note that some of the diacritics were cor-
rectly restored. Al-Onaizan and Knight
(2002) proposed a transducer for modeling
the Arabic spelling of such names for the
purpose of translating from Arabic. Such a
model could be seamlessly integrated into
our architecture, for improved accuracy.



4 Related work

Gal (2002) constructed an HMM-based bigram
model for restoring vowels (but not additional
diacritics) in Arabic and Hebrew. For Arabic,
the model was applied to the Qur’an, a corpus of
about 90,000 words, achieving 14% WER. The
word-based language model component of our
system is very similar to Gal’s HMM. The very
flexible framework of transducers allows us to
easily enhance the model with our simple but ef-
fective morphology handler and letter-based lan-
guage model.

Several commercial tools are available for
Arabic diacritization, which unfortunately we
did not have access to. Vergyri and Kirchhoff
(2004) evaluated one (unspecified) system on
two MSA texts, reporting a 9% DER without
case information, and 28% DER with case end-
ings.

Kirchoff et al. (2002) focuses on vocalizing
transcripts of oral conversational Arabic. Since
conversational Arabic is much more free-flowing,
and prone to dialect and speaker differences,
diacritization of such transcripts proves much
more difficult. Kirchoff et al. started from a
unigram model, and augmented it with the fol-
lowing heuristic. For each unknown word, they
search for the closest known unvocalized word to
it according to Levenshtein distance, and apply
whatever transformation that word undergoes,
yielding 16.5% WER. Our letter-based model
provides an alternative method of generalizing
the diacritization from known words to unknown
ones.

Vergyri and Kirchhoff (2004) also handled
conversational Arabic, and showed that some of
the complexity inherent in vocalizing such text
can be offset by combining information on the
acoustic signal with morphological and contex-
tual information. They treat the latter problem
as an unsupervised tagging problem, where each
word is assigned a tag representing one of its
possible diacritizations according to Buckwal-
ter’s morphological analyzer (2002b). They use
Expectation Maximization (EM) to train a tri-
gram model of tag sequences. The evaluation
shows that the combined model yields a signifi-
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cant improvement over just the acoustic model.

5 Conclusions and future directions

We have presented an effective probabilistic
finite-state architecture for Arabic diacritiza-
tion. The modular design of the system, based
on a composition of simple and compact trans-
ducers allows us to achieve high levels of accu-
racy while encoding extremely limited morpho-
logical knowledge. In particular, while our sys-
tem is aware of the existence of Arabic clitics,
it has no explicit knowledge of how they can
be combined. Such patterns are automatically
learned from the training data. Likewise, while
the system is aware of different orthographic
variants of the glottal stop, it encodes no ex-
plicit rules to predict their distribution.

The main resource that our method relies on
is the existence of sufficient quantities of dia-
critized text. Since semitic languages are typ-
ically written without vowels, it is rare to find
sizable collections of diacritized text in digital
form. The alternative is to diacritize text using
a combination of manual annotation and compu-
tational tools. This is precisely the process that
was followed in the compilation of the Arabic
treebank, and similar efforts are now underway
for Hebrew (Wintner and Yona, 2003).

In contrast to morphological analyzers, which
usually provide only an unranked list of all pos-
sible analyses, our method provides the most
probable analysis, and with a trivial extension,
could provide a ranked n-best list. Reducing and
ranking the possible analyses may help simplify
the annotator’s job. The burden of requiring
large quantities of diacritized text could be as-
suaged by iterative bootstrapping—training the
system and manually correcting it on corpora of
increasing size.

As another future direction, we note that oc-
casionally one may find a vowel or two, even
in otherwise undiacritized text fragments. This
is especially true for extremely short text frag-
ments, where ambiguity is undesirable, as in
banners or advertisements. This raises an inter-
esting optimization problem—what is the least
number of vowel symbols that are required in



order to ensure an unambiguous reading, and
where should they be placed? Assuming that
the errors of the probabilistic model are indica-
tive of the types of errors that a human might
make, we can use this model to predict where
disambiguating vowels would be most informa-
tive. A simple change to the model described
in this paper would make vowel drop optional
rather than obligatory. Such a model would
then be able to generate not only fully unvocal-
ized text, but also partially vocalized variants
of it. The optimization problem would then be-
come one of finding the partially diacritized text
with the minimal number of vowels that would
be least ambiguous.
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Abstract

Trandation of named entities (NES),
such as person names, organization names
and location names is crucial for cross lin-
gua information retrieval, machine trans-
lation, and many other natural language
processing applications. Newly named en-
tities are introduced on daily basis in
newswire and this greatly complicates the
trandation task. Also, while some names
can be translated, others must be trandliter-
ated, and, still, others are mixed. In this
paper we introduce an integrated approach
for named entity trandation deploying
phrase-based translation, word-based trans-
lation, and trandliteration modules into a
single framework. While Arabic based,
the approach introduced here is a unified
approach that can be applied to NE transla-
tion for any language pair.

1 Introduction

Named Entities (NEs) trandation is crucial for ef-
fective crosslanguage information retrieval
(CLIR) and for Machine Trandation. There are
many types of NE phrases, such as: person names,
organization names, location names, temporal ex-
pressions, and names of events. In this paper we
only focus on three categories of NEs: person
names, location names and organization names,
though the approach is, in principle, genera
enough to accommodate any entity type.

NE identification has been an area of significant
research interest for the last few years. NE tranda-
tion, however, remains a largely unstudied prob-
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lem. NEs might be phonetically tranditerated (e.g.
persons names) and might also be mixed between
phonetic trandliteration and semantic trandation as
the case with locations and organizations names.

There are three distinct approaches that can be
applied for NE trandation, namely: a
trangliteration approach, a word based trandation
approach and a phrase based trandation approach.
The tranditeration approach depends on phonetic
trangdliteration and is only appropriate for out of
vocabulary and completely unknown words. For
more frequently used words, tranditeration does
not provide sophisticated results. A word based
approach depends upon traditional statistical
machine trandation techniques such as IBM
Model1l (Brown et al., 1993) and may not always
yield satisfactory results due to its inability to
handle difficult many-to-many phrase trand ations.
A phrase based approach could provide a good
trandation for frequently used NE phrases though
it isinefficient for less frequent words. Each of the
approaches has its advantages and disadvantages.

In this paper we introduce an integrated ap-
proach for combining phrase based NE translation,
word based NE trandation, and NE trandliteration
in a single framework. Our approach attempts to
harness the advantages of the three approaches
while avoiding their pitfalls. We aso introduce and
evaluate a new approach for aligning NEs across
paralel corpora, a process for automatically ex-
tracting new NEs trandation phrases, and a new
tranditeration approach. Asistypical for statistical
MT, the system requires the availability of general
paralel corpus and Named Entity identifiers for
the NEs of interest.

Our primary focus in this paper is on trandating
NEs out of context (i.e. NEs are extracted and
translated without any contextual clues). Although
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this is a more difficult problem than trandating
NEs in context, we adopt this approach because it
ismore generally useful for CLIR applications.

The paper is organized as follows, section 2
presents related work, section 3 describes our inte-
grated NE trandation approach, section 4 presents
the word based trandation module, the phrase
based module, the trandliteration module, and sys-
tem integration and decoding, section 5 provides
the experimental setup and results and finally sec-
tion 6 concludes the paper.

2 Rdated Work

The Named Entity trandation problem was previ-
ously addressed using two different approaches:
Named Entity phrase trandation (which includes
word-based trandation) and Named Entity trandlit-
eration. Recently, many NE phrase translation ap-
proaches have been proposed. Huang et 4.
(Huang et d., 2003) proposed an approach to ex-
tract NE trans-lingual equivalences based on the
minimization of a linearly combined multi-feature
cost. However this approach used a bilingual dic-
tionary to extract NE pairs and deployed it itera-
tively to extract more NEs. Moore (Moore, 2003),
proposed an approach deploying a sequence of cost
models. However this approach relies on ortho-
graphic clues, such as strings repeated in the
source and target languages and capitalization,
which are only suitable for language pairs with
similar scripts and/or orthographic conventions.
Most prior work in Arabic-related trandlitera-
tion has been developed for the purpose of ma-
chine trandation and for Arabic-English
trangdliteration in particular. Arbabi (Arbabi et a.,
1998) developed a hybrid neural network and
knowledge-based system to generate multiple Eng-
lish spellings for Arabic person names. Stalls and
Knight (Stalls and Knight, 1998) introduced an
approach for Arabic-English back tranditeration
for names of English origin; this approach could
only back tranditerate to English the names that
have an available pronunciation. Al-Onaizan and
Knight (Al-Onaizan and Knight, 2002) proposed a
spelling-based model which directly maps English
letter sequences into Arabic letter sequences. Their
model was trained on a small English Arabic
names list without the need for English pronuncia-
tions. Although this method does not require the
availability of English pronunciation, it has a seri-
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ous limitation because it does not provide a mecha-
nism for inserting the omitted short vowels in
Arabic names. Therefore it does not perform well
with names of Arabic origin in which short vowels
tend to be omitted.

3 Integrated Approach for Named Entity
Trandation

We introduce an integrated approach for Named
Entity (NE) trandation using phrase based tranda-
tion, word based trandation and trandliteration ap-
proaches in a single framework. Our unified
approach could handle, in principle, any NE type
for any languages pair.

The level of complication in NE translation de-
pends on the NE type, the origina source of the
names, the standard de facto translation for certain
named entities and the presence of acronyms. For
example persons names tend to be phonetically
trandliterated, but different sources might use dif-
ferent tranditeration styles depending on the origi-
nal source of the names and the idiomatic
tranglation that has been established. Consider the
following two names:

“ o pd Slla o JAK SyrAKT 2> “ Jacques Chirac”

“ e s jAK strw” 2> ¢ Jack Sraw”
Although the first names in both examples are the
same in Arabic, their trandliterations should be dif-
ferent. One might be able to distinguish between
the two by looking at the last names. This example
illustrates why tranditeration may not be good for
frequently used named entities. Trandliteration is
more appropriate for unknown NES.

For locations and organizations, the trandation
can be a mixture of trandlation and tranditeration.
For example:

Chgwg pGle 38,5 1Prkp  mAyKrwswit

Microsoft Company

wdll : Algds =2 Jerusalem

#8sh ylha: MTAr Tokyw - Tokyo Airport
These examples highlight some of the complica-
tions of NE trandation that are difficult to over-
come using any phrase based, word based or
tranditeration approach independently. An ap-
proach that integrates phrase and word based trans-
lation with tranditeration in a systematic and
flexible framework could provide a more complete
solution to the problem.

Our system utilizes a parallel corpus to sepa-
rately acquire the phrases for the phrase based sys-
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tem, the trandation matrix for the word based sys-
tem, and training data for the trandliteration sys-
tem. More details about the three systems will be
presented in the next section. Initially, the corpus
is automatically annotated with NE types in the
source and target languages using NE identifiers
similar to the systems described in (Florian et al.,
2004) for NE detection.

4 Trandation and Tranditeration Mod-
ules

41 Word Based NE Trandation

» Basic multi-cost NE Alignment

We introduce a novel NE alignment technique to
align NEs from a paralld corpus that has been
automatically annotated with NE types for source
and target languages. We use IBM Modell, as in-
troduced in (Brown et. a, 1993), with a modified
alignment cost. The cost function has some simi-
larity with the multi-cost aigning approach intro-
duced by Huang (Huang et a. 2003) but it is
significantly different. The cost for aligning any
source and target NE word is defined as:

C = Ahp(ve | W) + A2Ed(We, W) + AsTag We, W)

Where: weand W are the target and source words

respectively and A1, A2 andAs are the cost weight-
ing parameters.
Thefirst term p(We|Wr) represents the tranda-

tion log probability of target word (we) given the
source word (W ). The second term Ed(We, Wr) is

length-normalized phonetic based edit distance
between the two words. This phonetic-based edit
distance employs an Editex style (Zobel and Dart,
1996) distance measure, which groups letters that
can result in similar pronunciations, but doesn’t
require that the groups be digoint, and can thus
reflect the correspondences between letters with
similar pronunciation more accurately. The Editex
distance (d) between two lettersaand bis:
d(a,b) = 0if both areidentical
= 1if they are in the same group
= 2 otherwise
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The Editex distance between two words is the
summation of Editex distance between their letters
and length-normalized edit distanceis:

d (We, Wf)
max (| We |, | wr [)
where d(we, Wr) is the “Editex” style edit distance
and max(|wel,|wr |) is the maximum of the two
lengths for the source and target, normalizing the
edit distance.

The Editex edit distance is deployed between
English words and “romanized” Arabic words with
agrouping of similar consonants and a grouping of
similar vowels. This helps in identifying the corre-
spondence between rare NEs during the alignment.
For example, consider two rare NE phrases that
occur once in the training:

“ ) sandle (S gy i ALY Lin SIS s j g (oo ti] 2 g
= GE./J g—.’r‘-‘"”ﬂ“'-”,

“waqd AstdEY wzyr  AlxArjyp  AlyAbAny
NWhwtAKA mASymwr A Alsfyr AlSyny wAnj yy”

Ed(we, W) =log(1-

“Japanese Foreign Minister Nobutaka Machi-
mura has summoned the Chinese ambassador
Wang Yee”

Thus the task of the alignment techniqueisto align

S 51 55 :nWbwkAtA — Nobutaka

1) saile : MASymwrA — Machimura

&5 :wAng — Wang

&Yy — Yee

If a pure Model-1 alignment was used, then the

model would have concluded that al words could
be aigned to all others with equal probability.
However, the multi-cost alignment technique could
align two named entities using a single training
sample. This approach has significant effect in cor-
rectly aligning rare NEs.
The term Tag(we,Wr) in the alignment cost func-
tion is the NE type cost which increases the align-
ment cost when the source and target words are
annotated with different types and is zero other-
wise.

The parameters of the cost function
(A1,42,43) can be tuned according to the NE
category and to frequency of a NE. For example, in
the case of person’s names, it might be advanta-
geous to use a larger A, (boosting the weight of
trangliteration).




e Multi-cost Named Entity Alignment
by Content Words Elimination

In the case of organization and location names,
many content words, which are words other than
the NEs, occur in the NE phrases. These content
words might be aigned incorrectly to rare NE
words. A two-phase alignment approach is de-
ployed to overcome this problem. The first phaseis
aligning the content words using a content-word-
only trandlation matrix. The successfully aligned
content words are removed from both the source
and target sentences. In the second phase, the re-
maining words are subsequently aligned using the
multi-cost alignment technique described in the
previous section. This two-phase approach filters
out the words that might be incorrectly aligned
using the single phase alignment techniques. Thus
the alignment accuracy is enhanced; especially for
organization names since organization names used
to contain many content words.

The following example illustrates the technique,
consider two sentences to be aligned and to avoid
language confusion let's assume symbolic sen-
tences by denoting:

» Wsi: content words in the source sentence.

* NEsi: the Named Entity source words.

»  Witi: the content words in the target sentence.

* NEti: the Named Entity target words.

The source and target sentences are represented
asfollows:

Source: Ws1 Ws2 NEs1 NEs2 Ws3 Ws4 Ws5
Target: W1 W2 WA3 NEt1 NEt2 NEt3 W4 NEt4
After the first phase is applied, the remaining not
aligned words might look like that:

Source: NEs1 NEs2 Ws4 Ws5

Target: W3 NEt1 NEt2 NEt3 NEt4

The example clarify that the elimination of some
content words facilitates the task of NEs alignment
since many of the words that might lead to confu-
sion have been eliminated.

As shown in the above example, different mis-
matched identification of NEs could result from
different identifiers. The “Multi-cost Named En-
tity Alignment by Content Words Elimination”
technique helpsin reducing alignment errors due to
identification errors by reducing the candidate
words for alignment and thus reducing the aligner
confusion.
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4.2 Phrase Based Named Entity Transa-

tion

For phrase-based NE trandation, we used an ap-
proach similar to that presented by Tillman (Till-
mann, 2003) for block generation with
modifications suitable for NE phrase extraction. A
block is defined to be any pair of source and target
phrases. This approach starts from a word align-
ment generated by HMM Viterbi training (Vogel
et. Al, 1996), which is done in both directions be-
tween source and target. The intersection of the
two alignments is considered a high precison
alignment and the union is considered a low preci-
sion alignment. The high precision alignments are
used to generate high precision blocks which are
further expanded using low precision alignments.
The reader is referred to (Tillmann, 2003) for de-
tailed description of the agorithm.

In our approach, for extracting NE blocks, we
limited high precision alignments to NE phrases of
the same NE types. In the expansion phase, the
multi-cost function described earlier is used. Thus
the blocks are expanded based on a cost depending
on the type matching cost, the edit distance cost
and the translation probability cost.

To explain this procedure, consider the following
sentences pair:
pell |y gapile [SUigr g3 ALL Lin SIS g (oo tiss] 25
s isal”

“waqd AstdEY wzyr  AlxArjyp  AlyAbAny

NWbwtAKA mASymwr A Alsfyr AlSyny wAnj yy”
“Japanese Foreign Minister Nobutaka Machi-
mura has summoned the Chinese ambassador
Wang Yee
The underlined words are the words that have
been identified by the NE identifiers as person
names. In the Arabic sentence, the identifier
missed the second name of the first Named En-
tity (mASymwrA) and did not identify the word
as person name by mistake. The high precision
block generation technique will generate the fol-
lowing two blocks:

(Sl 1 i (nWbWEAKA): Nobutaka
&l (WAN] yy) : Wang Yee

The expansion technique will try to expand the
blocks on all the four possible dimensions (right
and left of the blocks in the target and source) of
each block. Theresult of the expansion will be:




Lsanila SGsg  (NWhwtAKA  mASymwrA)
Nobutaka Machimura
Therefore, the multi-cost expansion technique en-
ables expansions sensitive to the trandation prob-
ability and the edit distance and providing a
mechanism to overcome NE identifiers errors.

4.3 Named Entity Trandliteration

NE trandliteration is essentia for translating Out
Of Vocabulary (OOV) words that are not covered
by the word or phrase based models. As mentioned
earlier, phonetic and orthographic differences be-
tween Arabic and English make NE trandliteration
challenging.

We used a block based trandliteration method,
which trangdliterates sequence of letters from the
source language to sequence of letters in the target
language. These source and target sequences con-
struct the blocks which enables the modeling of
vowels insertion. For example, consider Arabic
name “¢g<&  $kry,” which is tranditerated as
“Shoukry.” The system tries to model bi-grams
from the source language to n-grams in the target
language as follows:

$k — shouk

kr— kr

ry —ry

To obtain these block tranglation probabilities,
we use the tranglation matrix, generated in section
4.1 from the word based adignment models. First,
the translation matrix is filtered out to only pre-
serve highly confident trandations; trandations
with probabilities less than a certain threshold are
filtered out. Secondly, the resulting high confident
tranglations are further refined by calculating pho-
netic based edit distance between both romanized
Arabic and English names. Name pairs with an edit
distance greater than a predefined threshold are
aso filtered out. The remaining highly confident
name pairs are used to train aletter to | etter tranda-
tion matrix using HMM Viterbi training (Vogel et
al., 1996).

Each bi-gram of letters on the source side is
aligned to an n-gram of letters sequence on the tar-
get side, such that vowels have very low cost to be
aligned to NULL. The block probabilities are cal-
culated and refined iteratively for each source and
target sequences. Finally, for a source block s and
a target block t, the probability of s being trans-
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lated as t is the ratio of their co-occurrence and
total source occurrence:

P(t|s) = N(t,s)/N(s).
The resulting block translation probabilities and
the letter to letter trandation probabilities are com-
bined to construct a Weighted Finite State Trans-
ducer (WFST) for trandating any source sequence
to atarget sequence.

Furthermore, the constructed translation WFST
is composed with two language models (LM)
transducers namely a letter trigram model and a
word unigram model. The trigram letter based LM
acts to provide high recall results while the word
based unigram LM acts for providing high precisin
results.

4.4  System Integration and Decoding

The three constructed models in the steps
above, namely phrase-based NE trand ation, word-
based trandation, and trandliteration, are used to
generate hypotheses for each source NE phrase.
We used a dynamic programming beam search
decoder similar to the decoder described by
Tillman (Tillmann, 2003).

We employed two language models that were built
from NE phrases extracted from monolingual tar-
get datafor each NE category under consideration.

The first language model is a trigram language
model on NE phrases. The second language model
is a class based language model with a class for
unknown NEs. Every NE that do exist in the
monolingual data but out of the vocabulary of the
phrase and word trandation models are considered
unknown. This helps in correctly scoring OOV
hypothesis produced by the trandliteration module.

5 Experimental Setup

We test our system for Arabic to English NE trans-
lation for three NE categories, namely names of
persons, organizations, and locations. The system
has been trained on a news domain parallel corpus
containing 2.8 million Arabic words and 3.4 mil-
lion words. Monolingual English data was anno-
tated with NE types and the extracted named
entities were used to train the various language
models described earlier.

We manually constructed atest set asfollows:



Category No. of No. of
Phrases Words
Person names 803 1749
Organization names 312 867
L ocation names 345 614

The BLEU score (Papineni et al., 2002) with asin-
gle reference tranglation was deployed for evalua-
tion. BLEU-3 which uses up to 3-grams is
deployed since three words phrase is a reasonable
length for various NE types. Table 1 reports the
results for person names; the baseline system is a
general-purpose machine trandation system with
relatively good Bleu score.

System Bleu Score
Baseline 0.2942
Word based only 0.3254
Word + Phrase 0.4620
Word + Phrase + Tranditera- 0.5432
tion

Table 1: Person Names Results

Table 2 reports the bleu score for Location cate-
gory with the same three systems presented before
with persons:

System Bleu
Score
Baseline 0.2445
Word based only 0.3426
Word + Phrase 0.4721
Word + Phrase + Trandliteration 0.4983

Table 2: Locations Names Results

Table 3 reports the bleu score for Organization
category with the same three systems presented
before:

System Bleu Score
Baseline 0.2235
Word based only 0.2541
Word + Phrase 0.3789
Word + Phrase + Tranditera- 0.3876
tion

Table 3: Organizations Names Results

Figure 1, illustrates various BLEU scores for
various categories. The results indicate that phrase
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based translation provided enhancement for all NE
types, while trandliteration proved more effective
for person names.
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0.5 4

0.4 4

0.3 4

0.2 A

0.1 A

04

Person Location Organization

[@ Baseline @Word O Word+Phrase OWord+Phrase+Translitertaion]

Figure 1. Various BLEU scores for various
categories

It is also worth mentioning that evaluating the
system using a single reference has limitations;
many good trandations are considered wrong be-
cause they do not exist in the single reference.

6 Conclusion and Future Work

We have presented an integrated system that can
handle various NE categories and requires the
regular parallel and monolingual corporawhich are
typically used in the training of any statistical ma-
chine translation system along with NEs identifier.
The proposed approach does not require any costly
special resources, lexicons or any type of annotated
data.

The system is composed of multiple trandation
modules that give flexibility for different named
entities type's trandation requirements. This gives
agreat flexibility that enables the system to handle
NEs of any type.

We will evaluate the effect of the system on
CLIR and MT tasks. We will also try to investigate
new approaches for deploying NE trandation in
general phrase based MT system.

Acknowledgment

We would like to thank Salim Roukos and Kishore
Papineni for several invaluable suggestions and
guidance. We would like aso to thank Christoph
Tillmann for help with various components.

We would like also to thank Kareem Darwish for
hisinvaluable help in editing this paper.



References

Yaser Al-Onaizan and Kevin Knight. 2002. Machine
Trangliteration of Names in Arabic Text. In Proceed-
ings of the ACL Workshop on Computational Ap-
proaches to Semitic Languages.

Peter F. Brown, Vincent J. Della Pietra, Stephen A.
Della Pietra, and Robert L. Mercer. 1993. The Mathe-
matics of Statistical Machine Trandation: Parameter
Estimation. Computational Linguistics, 19(2):263-311.

Radu Florian, Hany Hassan, Abraham Ittycheriah, H.
Jing, Nanda Kambhatla, Xiaogiang Luo, Nicolas
Nicolov, Salim Roukos: A Statistical Model for Multi-
lingual Entity Detection and Tracking. HLT-NAACL
2004: 1-8

Fei Huang, Stephan Vogel and Alex Waibel, Auto-
matic Extraction of Named Entity Trandingual
Equivalence Based on Multi-feature Cost Minimiza-
tion, in the Proceedings of the 2003 Annua Confer-
ence of the Association for Computational Linguistics
(ACL'03), Workshop on Multilingual and Mixed-
language Named Entity Recognition, July, 2003

Leah Larkey, Nasreen AbdulJaleel, and Margaret
Connell, What's in a Name? Proper Names in Arabic
Cross-Language Information Retrieval. CIIR Technical
Report, IR-278,2003.

Kishore Papineni, Salim Roukos, Todd Ward, and
Wei-Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of machine tranglation. In Proc. of the 40"
Annual Conf. of the Association for Computational
Linguistics (ACL 02), pages 311-318, Philadelphia,
PA, Jduly.

Bonnie G. Stalls and Kevin Knight.. Trandating
Names and Technical Terms in Arabic Text. In Pro-
ceedings of the COLING/ACL Workshop on Compu-
tational Approachesto Semitic Languages. 1998.

Christoph Tillmann,. A Projection Extension Algo-
rithm for Statistical Machine Trandation. In Proc of
Empirical Methods in Natural Language Processing,
2003

Stefan Vogel, Hermann Ney, and Christoph Till-
mann.. HMM Based Word Alignment in Statistical
Machine Translation. In Proc. of the 16™ Int. Conf. on
Computational Linguistics (COLING), 1996

J. Zobel and P. Dart, Phonetic String Matching: Les-
sons from Information Retrieval. SIGIR Forum, special
issue:166--172, 1996

93






Author Index

Bar-Haim, Roy,39

Darwish, Kareem25
Duh, Kevin,55

Elkateb-Gara, Faiza1
Emam, Ossama&5
Eyassu, Samuel,1

Fissaha Adafre, Sisay,/
Florian, Raduf3

Gamtbiack, Bprn, 71
Grefenstette, Gregor$1

Habash, Nizarl7
Hassan, Hany5, 87

Kiraz, George L7
Kirchhoff, Katrin, 55

Luo, Xiaogiang 63
Marsi, Erwin,1
Nelken, Rani,/9
Rambow, Owenl7

Semmar, Nasreding,1
Shieber, Stuart M.79
Sima’an, Khalil,39
Sorensen, Jeffre$3
Sorensen, JeffreR7
Soudi, Abdelhadil

van den Bosch, Antall,

Winter, Yoad,39
Wintner, Shuly9

Yona, Shlomo9

Zitouni, Imed,63

95



	Program
	Memory-based morphological analysis generation and part-of-speech tagging of Arabic
	A finite-state morphological grammar of Hebrew
	Morphological Analysis and Generation for Arabic Dialects
	Examining the Effect of Improved Context Sensitive Morphology on Arabic Information Retrieval
	Modifying a Natural Language Processing System for European Languages to Treat Arabic in Information Processing and Information Retrieval Applications
	Choosing an Optimal Architecture for Segmentation and POS-Tagging of Modern Hebrew
	Part of Speech tagging for Amharic using Conditional Random Fields
	POS Tagging of Dialectal Arabic: A Minimally Supervised Approach
	The Impact of Morphological Stemming on Arabic Mention Detection and Coreference Resolution
	Classifying Amharic News Text Using Self-Organizing Maps
	Arabic Diacritization Using Weighted Finite-State Transducers
	An Integrated Approach for Arabic-English Named Entity Translation

