Semantic Role L abeling Using Complete Syntactic Analysis

Mihai Surdeanu
Technical University of Catalunya
surdeanu@ si . upc. edu

Abstract

In this paper we introduce a semantic role
labeling system constructed on top of the
full syntactic analysis of text. The la-
beling problem is modeled using a rich
set of lexical, syntactic, and semantic at-
tributes and learned using one-versus-all
AdaBoost classifiers.

Our results indicate that even a simple ap-
proach that assumes that each semantic ar-
gument maps into exactly one syntactic
phrase obtains encouraging performance,
surpassing the best system that uses par-
tial syntax by almost 6%.

1 Introduction

Most current semantic role labeling (SRL) ap-
proaches can be classified in one of two classes:
approaches that take advantage of complete syntac-
tic analysis of text, pioneered by (Gildea and Juraf-
sky, 2002), and approaches that use partial syntac-
tic analysis, championed by the previous CoNLL
shared task evaluations (Carreras and Marquez,
2004).

However, to the authors’ knowledge, a clear anal-
ysis of the benefits of using full syntactic analysis
versus partial analysis is not yet available. On one
hand, the additional information provided by com-
plete syntax should intuitively be useful. But, on
the other hand, the state-of-the-art of full parsing
is known to be less robust and perform worse than
the tools used for partial syntactic analysis, which

221

Jordi Turmo
Technical University of Catalunya
turno@ si . upc. edu

would decrease the quality of the information pro-
vided. The work presented in this paper contributes
to this analysis by introducing a model that is en-
tirely based on the full syntactic analysis of text,
generated by a real-world parser.

2 System Description

2.1 Mapping Arguments to Syntactic
Constituents

Our approach maps each argument label to one syn-
tactic constituent, using a strategy similar to (Sur-
deanu et al., 2003). Using a bottom-up approach,
we map each argument to the first phrase that has the
exact same boundaries and climb as high as possible
in the syntactic tree across unary production chains.
Unfortunately, this one-to-one mapping between
semantic arguments and syntactic constituents is not
always possible. One semantic argument may be
mapped to many syntactic constituents due to: (a)
intrinsic differences between the syntactic and se-
mantic representations, and (b) incorrect syntactic
structure. Figure 1 illustrates each one of these sit-
uations: Figure 1 (a) shows a sentence where each
semantic argument correctly maps to one syntac-
tic constituent; Figure 1 (b) illustrates the situation
where one semantic argument correctly maps to two
syntactic constituents; and Figure 1 (c) shows a one-
to-many mapping caused by an incorrect syntactic
structure: argument AO maps to two phrases, the ter-
minal “by” and the noun phrase “Robert Goldberg”,
due to the incorrect attachment of the last preposi-
tional phrase, “at the University of California”.
Using the above observations, we separate one-

Proceedings of the 9th Conference on Computational Natural Language Learning (GoNLL)
pages 221-224, Ann Arbor, June 20082005 Association for Computational Linguistics

S

N

NP NP VP
—_— NP
NP PP

VBG

NN

The luxury auto maker last year sold 1,214 cars in the U.S.

N

NNS

rising consumer prices

VP
PP

developed by Robert Goldberg at the University of California

A0 AM-TMP P AL AM-LOC P Al
(@) (b)

P A0 AM-LOC
(©)

Figure 1: Mapping semantic arguments to syntactic constituents: (a) correct one—to-one mapping; (b) correct
one-to-many mapping; (c) one-to-many mapping due to incorrect syntax.

(a) (b) (©
Training 96.06% | 2.49% | 1.45%
Development | 91.36% | 4.83% | 3.81%

Table 1: Distribution of semantic arguments accord-
ing to their mapping to syntactic constituents ob-
tained with the Charniak parser: (a) one-to-one, (b)
one-to-many, all syntactic constituents have same
parent, (C) one-to-many, syntactic constituents have
different parents.

to-many mappings in two classes: (a) when the syn-
tactic constituents mapped to the semantic argument
have the same parent (Figure 1 (b)) the mapping is
correct and/or could theoretically be learned by a
sequential SRL strategy, and (b) when the syntac-
tic constituents mapped to the same argument have
different parents, the mapping is generally caused
by incorrect syntax. Such cases are very hard to be
learned due to the irregularities of the parser errors.

Table 1 shows the distribution of semantic argu-
ments into one of the above classes, using the syn-
tactic trees provided by the Charniak parser. For the
results reported in this paper, we model only one-
to-one mappings between semantic arguments and
syntactic constituents. A subset of the one-to-many
mappings are addressed with a simple heuristic, de-
scribed in Section 2.4.

2.2 Features

The features incorporated in the proposed model
are inspired from the work of (Gildea and Juraf-
sky, 2002; Surdeanu et al., 2003; Pradhan et al.,
2005; Collins, 1999) and can be classified into five
classes: (a) features that capture the internal struc-
ture of the candidate argument, (b) features extracted

222

The syntactic label of the candidate constituent.

The constituent head word, suffixes of length 2, 3, and 4,
lemma, and POS tag.

The constituent content word, suffixes of length 2, 3, and
4, lemma, POS tag, and NE label. Content words, which
add informative lexicalized information different from
the head word, were detected using the heuristics

of (Surdeanu et al., 2003).

The first and last constituent words and their POS tags.
NE labels included in the candidate phrase.

Binary features to indicate the presence of temporal cue
words, i.e. words that appear often in AM TMP phrases
in training.

For each TreeBank syntactic label we added a feature to
indicate the number of such labels included in the
candidate phrase.

The sequence of syntactic labels of the constituent
immediate children.

Table 2: Argument structure features

The phrase label, head word and POS tag of the
constituent parent, left sibling, and right sibling.

Table 3: Argument context features

from the argument context, (c) features that describe
properties of the target predicate, (d) features gener-
ated from the predicate context, and (e) features that
model the distance between the predicate and the ar-
gument. These five feature sets are listed in Tables 2,
3,4,5, and 6.

2.3 Classifier

The classifiers used in this paper were devel-
oped using AdaBoost with confidence rated predic-
tions (Schapire and Singer, 1999). AdaBoost com-
bines many simple base classifiers or rules (in our
case decision trees of depth 3) into a single strong
classifier using a weighted-voted scheme. Each base
classifier is learned sequentially from weighted ex-
amples and the weights are dynamically adjusted ev-
ery learning iteration based on the behavior of the

The predicate word and lemma.

The predicate voice. We currently distinguish five voice
types: active, passive, copulative, infinitive, and progressive.
A binary feature to indicate if the predicate is frequent - i.e.
it appears more than twice in the training partition - or not.

Table 4: Predicate structure features

Sub-categorization rule, i.e. the phrase structure rule that
expands the predicate immediate parent, e.g.
NP — VBG NN NNS for the predicate in Figure 1 (b).

Table 5: Predicate context features

The path in the syntactic tree between the argument phrase
and the predicate as a chain of syntactic labels along with
the traversal direction (up or down).

The length of the above syntactic path.

The number of clauses (S* phrases) in the path.

The number of verb phrases (VP) in the path.

The subsumption count, i.e. the difference between the
depths in the syntactic tree of the argument and predicate
constituents. This value is 0 if the two phrases share the
same parent.

The governing category, which indicates if NP

arguments are dominated by a sentence (typical for
subjects) or a verb phrase (typical for objects).

We generalize syntactic paths with more than 3

elements using two templates:

(@) Arg T Ancestor | N; | Pred, where Ar g is the
argument label, Pr ed is the predicate label, Ancest or
is the label of the common ancestor, and N; is instantiated
with all the labels between Pr ed and Ancest or in

the full path; and

(b) Arg T N; T Ancest or | Pred, where N; is
instantiated with all the labels between Ar g and

Ancest or in the full path.

The surface distance between the predicate and the
argument phrases encoded as: the number of tokens, verb
terminals (VB*), commas, and coordinations (CC) between
the argument and predicate phrases, and a binary feature to
indicate if the two constituents are adjacent.

A binary feature to indicate if the argument starts with a
predicate particle, i.e. a token seen with the RP* POS
tag and directly attached to the predicate in training.

Table 6: Predicate-argument distance features

previously learned rules.

We trained one-vs-all classifiers for the top 24
most common arguments in training (including
R- A* and C- A*). For simplicity we do not la-
bel predicates. Following the strategy proposed
by (Carreras et al., 2004) we select training exam-
ples (both positive and negative) only from: (a) the
first S* phrase that includes the predicate, or (b)
from phrases that appear to the left of the predicate
in the sentence. More than 98% of the arguments
fall into one of these classes.

At prediction time the classifiers are combined us-

223

ing a simple greedy technique that iteratively assigns
to each predicate the argument classified with the
highest confidence. For each predicate we consider
as candidates all AMattributes, but only numbered
attributes indicated in the corresponding PropBank
frame.

2.4 Argument Expansion Heuristics

We address arguments that should map to more
than one terminal phrase with the following post-
processing heuristic: if an argument is mapped to
one terminal phrase, its boundaries are extended
to the right to include all terminal phrases that are
not already labeled as other arguments for the same
predicate. For example, after the system tags “con-
sumer” as the beginning of an A1l argument in Fig-
ure 1, this heuristic extends the right boundary of
the Al argument to include the following terminal,
“prices”.

To handle inconsistencies in the treatment of
quotes in parsing we added a second heuristic: argu-
ments are expanded to include preceding/following
quotes if the corresponding pairing quote is already
included in the argument constituent.

3 Evaluation

3.1 Data

We trained our system using positive examples ex-
tracted from all training data available. Due to mem-
ory limitations on our development machines we
used only the first 500,000 negative examples. In the
experiments reported in this paper we used the syn-
tactic trees generated by the Charniak parser. The
results were evaluated for precision, recall, and F}
using the scoring script provided by the task orga-
nizers.

3.2 Results and Discussion

Table 7 presents the results obtained by our system.
On the WSJ data, our results surpass with almost 6%
the results obtained by the best SRL system that used
partial syntax in the CONLL 2004 shared task eval-
uation (Hacioglu et al., 2004). Even though these
numbers are not directly comparable (this year’s
shared task offers more training data), we consider
these results encouraging given the simplicity of
our system (we essentially model only one-to-one

Precision Recall | Fg=1
Development 79.14% | 71.57% | 75.17
Test WSJ 80.32% | 72.95% | 76.46
Test Brown 72.41% | 59.67% | 65.42
Test WSJ+Brown 79.35% | 71.17% | 75.04
Test WSJ Precision Recall | Fg=1
Overall 80.32% | 72.95% | 76.46
A0 87.09% | 85.21% | 86.14
Al 79.80% | 72.23% | 75.83
A2 74.74% | 58.38% | 65.55
A3 83.04% | 53.76% | 65.26
A4 77.42% | 70.59% | 73.85
A5 0.00% | 0.00% | 0.00
AM ADV 57.82% | 46.05% | 51.27
AM CAU 49.38% | 54.79% | 51.95
AM DI R 62.96% | 40.00% | 48.92
AM DI S 72.19% | 76.25% | 74.16
AM EXT 60.87% | 43.75% | 50.91
AM LCOC 64.19% | 52.34% | 57.66
AM MNR 63.90% | 44.77% | 52.65
AM MOD 98.09% | 93.28% | 95.63
AM NEG 96.15% | 97.83% | 96.98
AM PNC 55.22% | 32.17% | 40.66
AM PRD 0.00% | 0.00% | 0.00
AM REC 0.00% | 0.00% | 0.00
AM TMP 79.17% | 73.41% | 76.18
R- A0 84.85% | 87.50% | 86.15
R- A1 75.00% | 71.15% | 73.03
R- A2 60.00% | 37.50% | 46.15
R- A3 0.00% | 0.00% | 0.00
R- A4 0.00% | 0.00% | 0.00
R- AM: ADV 0.00% | 0.00% | 0.00
R- AM CAU 0.00% | 0.00% | 0.00
R- AM EXT 0.00% | 0.00% | 0.00
R-AM LOC | 68.00% | 80.95% | 73.91
R- AM M\NR 30.00% | 50.00% | 37.50
R- AM TMP 60.81% | 86.54% | 71.43
[V [0.00% | 0.00% [0.00 |

Table 7: Overall results (top) and detailed results on
the WSJ test (bottom).

mappings between semantic arguments and syntac-
tic constituents). Only 0.14% out of the 75.17% F
measure obtained on the development partition are
attributed to the argument expansion heuristics in-
troduced in Section 2.4.

4 Conclusions

This paper describes a semantic role labeling sys-
tem constructed on top of the complete syntactic
analysis of text. We model semantic arguments that
map into exactly one syntactic phrase (about 90%
of all semantic arguments in the development set)
using a rich set of lexical, syntactic, and semantic
attributes. We trained AdaBoost one-versus-all clas-

224

sifiers for the 24 most common argument types. Ar-
guments that map to more than one syntactic con-
stituent are expanded with a simple heuristic in a
post-processing step.

Our results surpass with almost 6% the results ob-
tained by best SRL system that used partial syntax in
the CoNLL 2004 shared task evaluation. Although
the two evaluations are not directly comparable due
to differences in training set size, the current results
are encouraging given the simplicity of our proposed
system.

5 Acknowledgements

This research has been partially funded by the Euro-
pean Union project “Computers in the Human Inter-
action Loop” (CHIL - IP506909). Mihai Surdeanu is
a research fellow within the Ramon y Cajal program
of the Spanish Ministry of Education and Science.

We would also like to thank Lluis Marquez and
Xavi Carreras for the help with the AdaBoost classi-
fier, for providing the set of temporal cue words, and
for the many motivating discussions.

References

X. Carreras and L. Marquez. 2004. Introduction to the CoNLL-
2004 shared task: Semantic role labeling. In Proceedings of
CoNLL 2004 Shared Task.

X. Carreras, L. Marquez, and G. Chrupata. 2004. Hierarchical
recognition of propositional arguments with perceptrons. In
Proceedings of CoNLL 2004 Shared Task.

M. Collins. 1999. Head-Driven Statistical Models for Natural
Language Parsing. PhD Dissertation, University of Penn-
sylvania.

D. Gildea and D. Jurafsky. 2002. Automatic labeling of seman-
tic roles. Computational Linguistics, 28(3).

K. Hacioglu, S. Pradhan, W. Ward, J. H. Martin, and D. Ju-
rafsky. 2004. Semantic role labeling by tagging syntactic
chunks. In Proceedings of CoNLL 2004 Shared Task.

S. Pradhan, K. Hacioglu, V. Krugler, W. Ward, J. H. Martin,
and D. Jurafsky. 2005. Support vector learning for semantic
argument classification. To appear in Journal of Machine
Learning.

R. E. Schapire and Y. Singer. 1999. Improved boosting algo-
rithms using confidence-rated predictions. Machine Learn-
ing, 37(3).

M. Surdeanu, S. Harabagiu, J. Williams, and P. Aarseth. 2003.
Using predicate-argument structures for information extrac-
tion. In Proceedings of ACL 2003.

