
Proceedings of the 9th Conference on Computational Natural Language Learning (CoNLL),
pages 205–208, Ann Arbor, June 2005.c©2005 Association for Computational Linguistics

Semantic Role Labeling using libSVM 

 

 
Necati Ercan Ozgencil Nancy McCracken 

Center for Natural Language Processing Center for Natural Language Processing 

School of Engineering and Computer Science School of Information Studies 

Syracuse University Syracuse University 
neozgenc@ecs.syr.edu njm@ecs.syr.edu 

 

 

 

 

Abstract 

We describe a system for the CoNLL-

2005 shared task of Semantic Role Label-

ing.  The system implements a two-layer 

architecture to first identify the arguments 

and then to label them for each predicate.  

The components are implemented as 

SVM classifiers using libSVM.   Features 

were adapted and tuned for the system, 

including a reduced set for the identifier 

classifier.  Experiments were conducted to 

find kernel parameters for the Radial Ba-

sis Function (RBF) kernel.  An algorithm 

was defined to combine the results of the 

argument labeling classifier according to 

the constraints of the argument labeling 

problem. 

1 Introduction and Strategy 

The Semantic Role Labeling (SRL) problem has 

been the topic of the both the CoNLL-2004 and the 

CoNLL-2005 Shared Tasks (Carreras and 

Màrquez, 2005).  The SRL system described here 

depends on a full syntactic parse from the Charniak 

parser, and investigates aspects of using Support 

Vector Machines (SVMs) as the machine learning 

technique for the SRL problem, using the libSVM 

package. 

In common with many other systems, this sys-

tem uses the two-level strategy of first identifying 

which phrases can be arguments to predicates in 

general, and then labeling the arguments according 

to that predicate.  The argument identification 

phase is a binary classifier that decides whether 

each constituent in the full syntax tree of the sen-

tence is a potential argument.  These potential ar-

guments are passed into the argument labeling 

classifier, which uses binary classifiers for each 

label to decide if that label should be given to that 

argument.  A post-processing phase picks the best 

labeling that satisfies the constraints of labeling the 

predicate arguments. 

For overall classification strategy and for 

suggestions of features, we are indebted to the 

work of Pradhan et al (2005) and to the work of 

many authors in both the CoNLL-2004 shared task 

and the similar semantic roles task of Senseval-3.  

We used the results of their experiments with 

features, and worked primarily on features for the 

identifying classifier and with the constraint 

satisfaction problem on the final argument output. 

2 System Description  

2.1 Input Data 

In this system, we chose to use full syntax trees 

from the Charniak parser, as the constituents of 

those trees more accurately represented argument 

phrases in the training data at the time of the data 

release.  Within each sentence, we first map the 

predicate to a constituent in the syntax tree.  In the 

cases that the predicate is not represented by a con-

stituent, we found that these were verb phrases of 

length two or more, where the first word was the 

main verb (carry out, gotten away, served up, etc.).  

In these cases, we used the first word constituent as 

the representation of the predicate, for purposes of 

computing other features that depended on a rela-

tive position in the syntax tree.   
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We next identify every constituent in the tree as 

a potential argument, and label the training data 

accordingly.  Although approximately 97% of the 

arguments in the training data directly matched 

constituents in the Charniak tree, only 91.3% of the 

arguments in the development set match constitu-

ents.  Examination of the sentences with incorrect 

parses show that almost all of these are due to 

some form of incorrect attachment, e.g. preposi-

tional attachment, of the parser.  Heuristics can be 

derived to correct constituents with quotes, but this 

only affected a small fraction of a percent of the 

incorrect arguments.  Experiments with corrections 

to the punctuation in the Collins parses were also 

unsuccessful in identifying additional constituents.  

Our recall results on the development directory are 

bounded by the 91.3% alignment figure. 

We also did not use the the partial syntax, 

named entities or the verb senses in the 

development data. 

2.2 Learning Components:  SVM classifiers 

For our system, we chose to use libSVM, an open 

source SVM package (Chang and Lin, 2001).   

In the SRL problem, the features are nominal, 

and we followed the standard practice of represent-

ing a nominal feature with n discrete values as n 

binary features.  Many of the features in the SRL 

problem can take on a large number of values, for 

example, the head word of a constituent may take 

on as many values as there are different words pre-

sent in the training set, and these large number of 

features can cause substantial performance issues. 

The libSVM package has several kernel func-

tions available, and we chose to use the radial basis 

functions (RBF).  For the argument labeling prob-

lem, we used the binary classifiers in libSVM, with 

probability estimates of how well the label fits the 

distribution. These are normally combined using 

the “one-against-one” approach into a multi-class 

classifier.  Instead, we combined the binary classi-

fiers in our own post-processing phase to get a la-

beling satisfying the constraints of the problem. 

2.3 The Identifier Classifier Features 

One aspect of our work was to use fewer features 

for the identifier classifier than the basic feature set 

from (Gildea and Jurafsky, 2002).  The intuition 

behind the reduction is that whether a constituent 

in the tree is an argument depends primarily on the 

structure and is independent of the lexical items of 

the predicate and headword.  This reduced feature 

set is: 

Phrase Type: The phrase label of the argument. 

Position:  Whether the phrase is before or after 

the predicate. 

Voice:  Whether the predicate is in active or 

passive voice.  Passive voice is recognized if a past 

participle verb is preceded by a form of the verb 

“be” within 3 words. 

Sub-categorization:  The phrase labels of the 

children of the predicate’s parent in the syntax tree. 

Short Path: The path from the parent of the 

argument position in the syntax tree to the parent 

of the predicate. 

The first four features are standard, and the short 

path feature is defined as a shorter version of the 

standard path feature that does not use the 

argument phrase type on one end of the path, nor 

the predicate type on the other end. 

The use of this reduced set of features was 

confirmed experimentally by comparing the effect 

of this reduced feature set on the F-measure of the 

identifier classifier, compared to feature sets that 

also added the predicate, the head word and the 

path features, as normally defined. 

 
 Reduced + Pred + Head + Path 

F-measure 81.51 81.31 72.60 81.19 

Table 1:  Additional features reduce F-measure for the 

identifier classifier. 

2.4 Using the Identifier Classifier for Train-

ing and Testing 

Theoretically, the input for training the identifier 

classifier is that, for each predicate, all constituents 

in the syntax tree are training instances, labeled 

true if it is any argument of that predicate, and 

false otherwise.  However, this leads to too many 

negative (false) instances for the training.  To cor-

rect this, we experimented with two filters for 

negative instances.  The first filter is simply a ran-

dom filter; we randomly select a percentage of ar-

guments for each argument label.  Experiments 

with the percentage showed that 30% yielded the 

best F-measure for the identifier classifier. 

The second filter is based on phrase labels from 

the syntax tree. The intent of this filter was to re-

move one word constituents of a phrase type that 

was never used.  We selected only those phrase 
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labels whose frequency in the training was higher 

than a threshold.  Experiments showed that the best 

threshold was 0.01, which resulted in approxi-

mately 86% negative training instances. 

However, in the final experimentation, compari-

son of these two filters showed that the random 

filter was best for F-measure results of the identi-

fier classifier. 

The final set of experiments for the identifier 

classifier was to fine tune the RBF kernel training 

parameters, C and gamma.  Although we followed 

the standard grid strategy of finding the best pa-

rameters, unlike the built-in grid program of 

libSVM with its accuracy measure, we judged the  

results based on the more standard F-measure of 

the classifier.  The final values are that C = 2 and 

gamma = 0.125. 

The final result of the identifier classifier trained 

on the first 10 directories of the training set is: 

Precision:  78.27%         Recall:  89.01% 

(F-measure:  83.47) 

Training on more directories did not substan-

tially improve these precision and recall figures. 

2.5   Labeling Classifier Features 

The following is a list of the features used in the 

labeling classifiers.  

Predicate:  The predicate lemma from the 

training file. 

Path:  The syntactic path through the parse tree 

from the argument constituent to the predicate. 

Head Word:  The head word of the argument 

constituent, calculated in the standard way, but 

also stemmed.  Applying stemming reduces the 

number of unique values of this feature 

substantially, 62% in one directory of training data. 

Phrase Type, Position, Voice, and Sub-
categorization:  as in the identifier classifier. 

In addition, we experimented with the following 

features, but did not find that they increased the 

labeling classifier scores. 

Head Word POS:  the part of speech tag of the 

head word of the argument constituent. 

Temporal Cue Words:  These words were 

compiled by hand from ArgM-TMP phrases in the 

training data. 

Governing Category:  The phrase label of the 

parent of the argument. 

Grammatical Rule:  The generalization of the 

subcategorization feature to show the phrase labels 

of the children of the node that is the lowest parent 

of all arguments of the predicate. 

In the case of the temporal cue words, we 

noticed that using our definition of this feature 

increased the number of false positives for the 

ARGM-TMP label; we guess that our temporal cue 

words included too many words that occured in 

other labels.   Due to lack of time, we were not 

able to more fully pursue these features. 

2.6  Using the Labeling Classifier for Train-

ing and Testing 

Our strategy for using the labeling classifier is 

that in the testing, we pass only those arguments to 

the labeling classifier that have been marked as 

true by the identifier classifier.  Therefore, for 

training the labeling classifier, instances were con-

stituents that were given argument labels in the 

training set, i.e. there were no “null” training ex-

amples. 

For the labeling classifier, we also found the 

best parameters for the RBF kernel of the classi-

fier.  For this, we used the grid program of libSVM 

that uses the multi-class classifier, using the accu-

racy measure to tune the parameters, since this 

combines the precision of the binary classifiers for 

each label.  The final values are that C = 0.5 and 

gamma = 0.5. 

In order to show the contribution of the labeling 

classifier to the entire system, a final test was done 

on the development set, but passing it the correct 

arguments.  We tested this with a labeling classi-

fier trained on 10 directories and one trained on 20 

directories, showing the final F-measure: 

10 directories:  83.27 

20 directories:  84.51 

2.7 Post-processing the classifier labels 

The final part of our system was to use the results 

of the binary classifiers for each argument label to 

produce a final labeling subject to the labeling con-

straints. 

For each predicate, the constraints are:  two con-

stituents cannot have the same argument label, a 

constituent cannot have more than one label, if two 

constituents have (different) labels, they cannot 

have any overlap, and finally, no argument can 

overlap the predicate.   
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 Precision Recall Fβ=1 

Development 73.57% 71.87% 72.71 

Test WSJ 74.66% 74.21% 74.44 

Test Brown 65.52% 62.93% 64.20 

Test WSJ+Brown 73.48% 72.70% 73.09 

 

 

Test WSJ Precision Recall Fβ=1 

Overall 74.66% 74.21% 74.44 

A0 83.59% 85.07% 84.32 
A1 77.00% 74.35% 75.65 
A2 66.97% 66.85% 66.91 
A3 66.88% 60.69% 63.64 
A4 77.66% 71.57% 74.49 
A5 80.00% 80.00% 80.00 
AM-ADV 55.13% 50.99% 52.98 
AM-CAU 52.17% 49.32% 50.70 
AM-DIR 27.43% 56.47% 36.92 
AM-DIS 73.04% 72.81% 72.93 
AM-EXT 57.69% 46.88% 51.72 
AM-LOC 50.00% 49.59% 49.79 
AM-MNR 54.00% 54.94% 54.47 
AM-MOD 92.02% 94.19% 93.09 
AM-NEG 96.05% 95.22% 95.63 
AM-PNC 35.07% 40.87% 37.75 
AM-PRD 50.00% 20.00% 28.57 
AM-REC 0.00% 0.00% 0.00 
AM-TMP 68.69% 63.57% 66.03 
R-A0 77.61% 89.73% 83.23 
R-A1 71.95% 75.64% 73.75 
R-A2 87.50% 43.75% 58.33 
R-A3 0.00% 0.00% 0.00 
R-A4 0.00% 0.00% 0.00 
R-AM-ADV 0.00% 0.00% 0.00 
R-AM-CAU 100.00% 50.00% 66.67 
R-AM-EXT 0.00% 0.00% 0.00 
R-AM-LOC 66.67% 85.71% 75.00 
R-AM-MNR 8.33% 16.67% 11.11 
R-AM-TMP 66.67% 88.46% 76.03 

V 97.32% 97.32% 97.32 

Table 2:  Overall results (top) and detailed results on the 

WSJ test (bottom). 

 

To achieve these constraints, we used the prob-

abilities produced by libSVM for each of the bi-

nary argument label classifiers.  We produced a 

constraint satisfaction module that uses a greedy 

algorithm that uses probabilities from the matrix of 

potential labeling for each constituent and label.  

The algorithm iteratively chooses a label for a node 

with the highest probability and removes any po-

tential labeling that would violate constraints with 

that chosen label.  It continues to choose labels for 

nodes until all probabilities in the matrix are lower 

than a threshold, determined by experiments to be 

.3.  In the future, it is our intent to replace this 

greedy algorithm with a dynamic optimization al-

gorithm. 

3 Experimental Results 

3.1     Final System and Results 
 

The final system used an identifier classifier 

trained on (the first) 10 directories, in approxi-

mately 7 hours, and a labeling classifier trained on 

20 directories, in approximately 23 hours.  Testing 

took approximately 3.3 seconds per sentence. 

As a further test of the final system, we trained 

both the identifier classifier and the labeling classi-

fier on the first 10 directories and used the second 

10 directories as development tests.  Here are some 

of the results, showing the alignment and F-

measure on each directory, compared to 24. 

 
Directory: 12 14 16 18 20 24 

Alignment 95.7 96.1 95.9 96.5 95.9 91.3 

F-measure 80.4 79.6 79.0 80.5 79.7 71.1 

Table 3:  Using additional directories for testing 

 
Finally, we note that we did not correctly antici-

pate the final notation for the predicates in the test 

set for two word verbs.  Our system assumed that 

two word verbs would be given a start and an end, 

whereas the test set gives just the one word predi-

cate.   
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