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Abstract

In this paper we describe the CoNLL-
2005 shared task on Semantic Role La-
beling. We introduce the specification and
goals of the task, describe the data sets and
evaluation methods, and present a general
overview of the 19 systems that have con-
tributed to the task, providing a compara-
tive description and results.

1 Introduction

In the few last years there has been an increasing
interest in shallow semantic parsing of natural lan-
guage, which is becoming an important component
in all kind of NLP applications. As a particular case,
Semantic Role Labeling (SRL) is currently a well-
defined task with a substantial body of work and
comparative evaluation. Given a sentence, the task
consists of analyzing the propositions expressed by
some target verbs of the sentence. In particular, for
each target verb all the constituents in the sentence
which fill a semantic role of the verb have to be rec-
ognized. Typical semantic arguments include Agent,
Patient, Instrument, etc. and also adjuncts such as
Locative, Temporal, Manner, Cause, etc.

Last year, the CoNLL-2004 shared task aimed
at evaluating machine learning SRL systems based
only on partial syntactic information. In (Carreras
and Marquez, 2004) one may find a detailed review
of the task and also a brief state-of-the-art on SRL
previous to 2004. Ten systems contributed to the
task, which was evaluated using the PropBank cor-
pus (Palmer et al., 2005). The best results were
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around 70 in F; measure. Though not directly com-
parable, these figures are substantially lower than the
best results published up to date using full parsing
as input information (F; slightly over 79). In addi-
tion to the CoNLL-2004 shared task, another evalua-
tion exercise was conducted in the Senseval-3 work-
shop (Litkowski, 2004). Eight systems relying on
full parsing information were evaluated in that event
using the FrameNet corpus (Fillmore et al., 2001).
From the point of view of learning architectures and
study of feature relevance, it is also worth mention-
ing the following recent works (Punyakanok et al.,
2004; Moschitti, 2004; Xue and Palmer, 2004; Prad-
han et al., 2005a).

Following last year’s initiative, the CONLL-2005
shared task® will concern again the recognition of
semantic roles for the English language. Compared
to the shared task of CONLL-2004, the novelties in-
troduced in the 2005 edition are:

e Aiming at evaluating the contribution of full
parsing in SRL, the complete syntactic trees
given by two alternative parsers have been pro-
vided as input information for the task. The
rest of input information does not vary and cor-
responds to the levels of processing treated in
the previous editions of the CoNLL shared task,
i.e., words, PoS tags, base chunks, clauses, and
named entities.

e The training corpus has been substantially en-
larged. This allows to test the scalability of

The official CoNLL-2005 shared task web page, in-
cluding data, software and systems’ outputs, is available at
http://ww.l si.upc.edu/ ~srlconll.
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learning-based SRL systems to big datasets and
to compute learning curves to see how much
data is necessary to train. Again, we concen-
trate on the PropBank corpus (Palmer et al.,
2005), which is the Wall Street Journal part
of the Penn TreeBank corpus enriched with
predicate—argument structures.

e In order to test the robustness of the pre-
sented systems, a cross-corpora evaluation is
performed using a fresh test set from the Brown
corpus.

Regarding evaluation, two different settings were
devised depending if the systems use the informa-
tion strictly contained in the training data (closed
challenge) or they make use of external sources
of information and/or tools (open challenge). The
closed setting allows to compare systems under
strict conditions, while the open setting aimed at ex-
ploring the contributions of other sources of infor-
mation and the limits of the current learning-based
systems on the SRL task. At the end, all 19 systems
took part in the closed challenge and none of them
in the open challenge.

The rest of the paper is organized as follows. Sec-
tion 2 describes the general setting of the task. Sec-
tion 3 provides a detailed description of training,
development and test data. Participant systems are
described and compared in section 4. In particular,
information about learning techniques, SRL strate-
gies, and feature development is provided, together
with performance results on the development and
test sets. Finally, section 5 concludes.

2 Task Description

As in the 2004 edition, the goal of the task was to
develop a machine learning system to recognize ar-
guments of verbs in a sentence, and label them with
their semantic role. A verb and its set of arguments
form a proposition in the sentence, and typically, a
sentence contains a number of propositions.

There are two properties that characterize the
structure of the arguments in a proposition. First, ar-
guments do not overlap, and are organized sequen-
tially. Second, an argument may appear split into
a number of non-contiguous phrases. For instance,
in the sentence “[a1 The apple], said John, [c_a1
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is on the table]”, the utterance argument (labeled
with type Al) appears split into two phrases. Thus,
there is a set of non-overlapping arguments labeled
with semantic roles associated with each proposi-
tion. The set of arguments of a proposition can be
seen as a chunking of the sentence, in which chunks
are parts of the semantic roles of the proposition
predicate.

In practice, number of target verbs are marked
in a sentence, each governing one proposition. A
system has to recognize and label the arguments of
each target verb. To support the role labeling task,
sentences contain input annotations, that consist of
syntactic information and named entities. Section 3
describes in more detail the annotations of the data.

2.1 Evaluation

Evaluation is performed on a collection of unseen
test sentences, that are marked with target verbs and
contain only predicted input annotations.

A system is evaluated with respect to precision,
recall and the F; measure of the predicted argu-
ments. Precision (p) is the proportion of arguments
predicted by a system which are correct. Recall (r)
is the proportion of correct arguments which are pre-
dicted by a system. Finally, the F; measure com-
putes the harmonic mean of precision and recall, and
is the final measure to compare the performance of
systems. It is formulated as: F3—; = 2pr/(p + 7).

For an argument to be correctly recognized, the
words spanning the argument as well as its semantic
role have to be correct. 2

As an exceptional case, the verb argument of each
proposition is excluded from the evaluation. This ar-
gument is the lexicalization of the predicate of the
proposition. Most of the time, the verb corresponds
to the target verb of the proposition, which is pro-
vided as input, and only in few cases the verb par-
ticipant spans more words than the target verb. Ex-
cept for non-trivial cases, this situation makes the
verb fairly easy to identify and, since there is one
verb with each proposition, evaluating its recogni-
tion over-estimates the overall performance of a sys-
tem. For this reason, the verb argument is excluded
from evaluation.

2The srl -eval . pl program is the official program to

evaluate the performance of a system. It is available at the
Shared Task web page.
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Figure 1. An example of an annotated sentence, in columns. Input consists of words (1st column), PoS
tags (2nd), base chunks (3rd), clauses (4th), full syntactic tree (5th) and named entities (6th). The 7th
column marks target verbs, and their propositions are found in remaining columns. According to the
PropBank Frames, for at t r act (8th), the AO annotates the attractor, and the Al the thing attracted; for
i nt er sper se (9th), A0 is the arranger, and Al the entity interspersed.

2.2 Closed Challenge Setting

The organization provided training, development
and test sets derived from the standard sections of
the Penn TreeBank (Marcus et al., 1993) and Prop-
Bank (Palmer et al., 2005) corpora.

In the closed challenge, systems have to be built
strictly with information contained in the training
sections of the TreeBank and PropBank. Since this
collection contains the gold reference annotations
of both syntactic and predicate-argument structures,
the closed challenge allows: (1) to make use of any
preprocessing system strictly developed within this
setting, and (2) to learn from scratch any annotation
that is contained in the data. To support the former,
the organization provided the output of state-of-the-
art syntactic preprocessors, described in Section 3.

The development set is used to tune the parame-
ters of a system. The gold reference annotations are
also available in this set, but only to evaluate the per-
formance of different parametrizations of a system,
and select the optimal one. Finally, the test set is
used to evaluate the performance of a system. It is
only allowed to use predicted annotations in this set.

Since all systems in this setting have had access to
the same training and development data, the evalua-
tion results on the test obtained by different systems
are comparable in a fair manner.
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3 Data

The data consists of sections of the Wall Street Jour-
nal part of the Penn TreeBank (Marcus et al., 1993),
with information on predicate-argument structures
extracted from the PropBank corpus (Palmer et al.,
2005). In this edition of the CoNLL shared task,
we followed the standard partition used in syntactic
parsing: sections 02-21 for training, section 24 for
development, and section 23 for test. In addition, the
test set of the shared task includes three sections of
the Brown corpus (hamely, ck01-03). The predicate-
argument annotations of the latter test material were
kindly provided by the PropBank team, and are very
valuable, as they allow to evaluate learning systems
on a portion of data that comes from a different
source than training.

We first describe the annotations related to argu-
ment structures. Then, we describe the preprocess-
ing systems that have been selected to predict the
input part of the data. Figure 1 shows an example of
a fully-annotated sentence.

3.1 PropBank

The Proposition Bank (PropBank) (Palmer et al.,
2005) annotates the Penn TreeBank with verb argu-
ment structure. The semantic roles covered by Prop-
Bank are the following:



e Numbered arguments (A0O-A5, AA): Argu-
ments defining verb-specific roles. Their se-
mantics depends on the verb and the verb us-
age in a sentence, or verb sense. The most
frequent roles are AO and Al and, commonly,
AO stands for the agent and Al corresponds to
the patient or theme of the proposition. How-
ever, no consistent generalization can be made
across different verbs or different senses of the
same verb. PropBank takes the definition of
verb senses from VerbNet, and for each verb
and each sense defines the set of possible roles
for that verb usage, called the roleset. The def-
inition of rolesets is provided in the PropBank
Frames files, which is made available for the
shared task as an official resource to develop
systems.

e Adjuncts (AM): General arguments that any
verb may take optionally. There are 13 types of
adjuncts:

AM ADV : general-purpose  AM- MOD : modal verb

AM CAU : cause AM NEG: negation marker
AM DI R: direction AM PNC : purpose

AM DI S : discourse marker AM PRD: predication

AM EXT : extent AM REC: reciprocal

AM LOC: location AM TMP : temporal
AM- MNR : manner

e References (R-): Arguments representing ar-
guments realized in other parts of the sentence.
The role of a reference is the same as the role of
the referenced argument. The label isan R- tag
prefixed to the label of the referent, e.g. R- AL.

e \erbs (V): Argument corresponding to the verb
of the proposition. Each proposition has exa-
clty one verb argument.

We used PropBank-1.0. Most predicative verbs
were annotated, although not all of them (for exam-
ple, most of the occurrences of the verb “to have”
and “to be” were not annotated). We applied proce-
dures to check consistency of propositions, looking
for overlapping arguments, and incorrect semantic
role labels. Also, co-referenced arguments were an-
notated as a single item in PropBank, and we au-
tomatically distinguished between the referent and
the reference with simple rules matching pronomi-
nal expressions, which were tagged as R arguments.
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Train.  Devel. tWSJ  tBrown
Sentences 39,832 1,346 2,416 426
Tokens 950,028 32,853 56,684 7,159
Propositions 90,750 3,248 5,267 804
\Verbs 3,101 860 982 351
Arguments 239,858 8,346 14,077 2,177
A0 61,440 2,081 3,563 566
Al 84,917 2,994 4,927 676
A2 19,926 673 1,110 147
A3 3,389 114 173 12
A4 2,703 65 102 15
A5 68 2 5 0
AA 14 1 0 0
AM 7 0 0 0
AM- ADV 8,210 279 506 143
AM CAU 1,208 45 73 8
AM DI R 1,144 36 85 53
AM DI S 4,890 202 320 22
AM EXT 628 28 32 5
AM LCC 5,907 194 363 85
AM- MNR 6,358 242 344 110
AM- MOD 9,181 317 551 91
AM NEG 3,225 104 230 50
AM PNC 2,289 81 115 17
AM PRD 66 3 5 1
AM REC 14 0 2 0
AM TMP 16,346 601 1,087 112
R- A0 4,112 146 224 25
R- Al 2,349 83 156 21
R- A2 291 5 16 0
R- A3 28 0 1 0
R- A4 7 0 1 0
R- AA 2 0 0 0
R- AVt ADV 5 0 2 0
R- AM CAU 41 3 4 2
R-AM DI R 1 0 0 0
R- AM EXT 4 1 1 0
R- AM LCC 214 9 21 4
R- AM MNR 143 6 6 2
R- AM PNC 12 0 0 0
R- AM TMP 719 31 52 10

Table 1: Counts on the data sets.

A total number of 80 propositions were not compli-
ant with our procedures (one in the Brown files, the
rest in WSJ) and were filtered out from the CoNLL
data sets.

Table 1 provides counts of the number of sen-
tences, tokens, annotated propositions, distinct
verbs, and arguments in the four data sets.

3.2 Preprocessing Systems

In this section we describe the selected processors
that computed input annotations for the SRL sys-
tems. The annotations are: part-of-speech (PoS)
tags, chunks, clauses, full syntactic trees and named
entities. As it has been noted, participants were also



allowed to use any processor developed within the
same WSJ partition.

The preprocessors correspond to the following
state-of-the-art systems:

e UPC processors, consisting of:

— PoS tagger: (Giménez and Marquez,
2003), based on Support Vector Machines,
and trained on WSJ sections 02-21.

— Base Chunker and Clause Recognizer:
(Carreras and Marquez, 2003), based on
Voted Perceptrons, trained on WSJ sec-
tions 02-21. These two processors form a
coherent partial syntax of a sentence, that
is, chunks and clauses form a partial syn-
tactic tree.

o Full parser of Collins (1999), with "model 2”.
Predicts WSJ full parses, with information of
the lexical head for each syntactic constituent.
The PoS tags (required by the parser) have been
computed with (Giménez and Marquez, 2003).

e Full parser of Charniak (2000). Jointly predicts
PoS tags and full parses.

e Named Entities predicted with the Maximum-
Entropy based tagger of Chieu and Ng (2003).
The tagger follows the CoNLL-2003 task set-
ting (Tjong Kim Sang and De Meulder, 2003),
and thus is not developed with WSJ data. How-
ever, we allowed its use because there is no
available named entity recognizer developed
with WSJ data. The reported performance on
the CoNLL-2003 test is F; = 88.31, with
Prec/Rec. at 88.12/88.51.

Tables 2 and 3 summarize the performance of
the syntactic processors on the development and test
sets. The performance of full parsers on the WSJ
test is lower than that reported in the correspond-
ing papers. The reason is that our evaluation fig-
ures have been computed in a strict manner with re-
spect to punctuation tokens, while the full parsing
community usually does not penalize for punctua-
tion wrongly placed in the tree.® As it can be ob-

3Before evaluating Collins’, we raised punctuation to the
highest point in the tree, using a script that is available at the

shared task webpage. Otherwise, the performance would have
Prec./Recall figures below 37.
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Dev. tWSJ tBrown
UPC PoS-tagger | 97.13 97.36  94.73
Charniak (2000) | 92.01 92.29 87.89

Table 2: Accuracy (%) of PoS taggers.

served, the performance of all syntactic processors
suffers a substantial loss in the Brown test set. No-
ticeably, the parser of Collins (1999) seems to be the
more robust when moving from WSJ to Brown.

4 A Review of Participant Systems

Nineteen systems participated in the CoNLL-2005
shared task. They approached the task in several
ways, using different learning components and la-
beling strategies. The following subsections briefly
summarize the most important properties of each
system and provide a qualitative comparison be-
tween them, together with a quantitative evaluation
on the development and test sets.

4.1 Learning techniques

Up to 8 different learning algorithms have been ap-
plied to train the learning components of partici-
pant systems. See the “ML-method” column of ta-
ble 4 for a summary of the following information.
Log-linear models and vector-based linear classi-
fiers dominated over the rest. Probably, this is due to
the versatility of the approaches and the availability
of very good software toolkits.

In particular, 8 teams used the Maximum En-
tropy (ME) statistical framework (Che et al., 2005;
Haghighi et al., 2005; Park and Rim, 2005; Tjong
Kim Sang et al., 2005; Sutton and McCallum, 2005;
Tsai et al., 2005; Yi and Palmer, 2005; Venkatapathy
et al., 2005). Support Vector Machines (SVM) were
used by 6 teams. Four of them with the standard
polynomial kernels (Mitsumori et al., 2005; Tjong
Kim Sang et al., 2005; Tsai et al., 2005; Pradhan et
al., 2005b), another one using Gaussian kernels (Oz-
gencil and McCracken, 2005), and a last group using
tree-based kernels specifically designed for the task
(Moschitti et al., 2005). Another team used also a re-
lated learning approach, SNoW, which is a Winnow-
based network of linear separators (Punyakanok et
al., 2005).

Decision Tree learning (DT) was also represented



Devel. Test WSJ Test Brown
P(%) R(%) Fi P(%) R(%) Fi P(%) R(%) Fi
UPC Chunker 94.66 93.17 93.91 | 95.26 9452 94.89 | 92.64 90.85 91.73
UPC Clauser 90.38 84.73 87.46 | 90.93 8594 88.36 | 84.21 74.32 78.95
Collins (1999) 85.02 83.55 84.28 | 85.63 85.20 85.41 | 82.68 81.33 82.00
Charniak (2000) | 87.60 87.38 87.49 | 88.20 88.30 88.25 | 80.54 81.15 80.84

Table 3: Results of the syntactic parsers on the development, and WSJ and Brown test sets. Unlike in full
parsing, the figures have been computed on a strict evaluation basis with respect to punctuation.

by Ponzetto and Strube (2005), who used CA4.5.
Ensembles of decision trees learned through the
AdaBoost algorithm (AB) were applied by Marquez
et al. (2005) and Surdeanu and Turmo (2005). Tjong
Kim Sang et al. (2005) applied, among others,
Memory-Based Learning (MBL).

Regarding novel learning paradigms not applied
in previous shared tasks, we find Relevant Vector
Machine (RVM), which is a kernel-based linear dis-
criminant inside the framework of Sparse Bayesian
Learning (Johansson and Nugues, 2005) and Tree
Conditional Random Fields (T-CRF) (Cohn and
Blunsom, 2005), that extend the sequential CRF
model to tree structures. Finally, Lin and Smith
(2005) presented a proposal radically different from
the rest, with very light learning components. Their
approach (Consensus in Pattern Matching, CPM)
contains some elements of Memory-based Learning
and ensemble classification.

From the Machine Learning perspective, system
combination is another interesting component ob-
served in many of the proposals. This fact, which is
a difference from last year shared task, is explained
as an attempt of increasing the robustness and cover-
age of the systems, which are quite dependent on in-
put parsing errors. The different outputs to combine
are obtained by varying input information, chang-
ing learning algorithm, or considering n-best solu-
tion lists. The combination schemes presented in-
clude very simple voting-like combination heuris-
tics, stacking of classifiers, and a global constraint
satisfaction framework modeled with Integer Linear
Programming. Global models trained to re-rank al-
ternative outputs represent a very interesting alter-
native that has been proposed by two systems. All
these issues are reviewed in detail in section 4.2.
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4.2 SRL approaches

SRL is a complex task, which may be decomposed
into a number of simpler decisions and annotating
schemes in order to be addressed by learning tech-
niques. Table 4 contains a summary of the main
properties of the 19 systems presented. In this sec-
tion we will explain the contents of that table by
columns (from left-to-right).

One first issue to consider is the input structure
to navigate in order to extract the constituents that
will form labeled arguments. The majority of sys-
tems perform parse tree node labeling, searching
for a one-to—one map between arguments and parse
constituents. This information is summarized in the
“synt” column of Table 4. “col”, “cha”, “upc” stand
for the syntactic parse trees (the latter is partial) pro-
vided as input by the organization. Additionally,
some teams used lists of n-best parsings generated
by available tools (“n-cha” by Charniak parser; “n-
bikel” by Bikel’s implementation of Collins parser).
Interestingly, Yi and Palmer (2005) retrained Rat-
naparkhi’s parser using the WSJ training sections
enriched with semantic information coming from
PropBank annotations. These are referred to as AN
and AM parses. As it can be seen, Charniak parses
were used by most of the systems. Collins parses
were used also in some of the best performing sys-
tems based on combination.

The exceptions to the hierarchical processing are
the systems by Pradhan et al. (2005b) and Mitsumori
et al. (2005), which perform a chunking-based se-
guential tokenization. As for the former, the system
is the same than the one presented in the 2004 edi-
tion. The system by Marquez et al. (2005) explores
hierarchical syntactic structures but selects, in a pre-
process, a sequence of tokens to perform a sequen-
tial tagging afterwards.



ML-method synt pre label | embed | glob | post comb type
punyakanok SNoW n-cha,col X&p i+c defer yes no n-cha+col ac-ILP
haghighi ME n-cha ? i+c | dp-prob | yes no n-cha re-rank
marquez AB cha,upc seq bio Ineed no no cha+upc s-join
pradhan SVM cha,col/chunk ? c/bio ? no no cha+col—chunk stack
surdeanu AB cha prun c g-top no | yes no -
tsai ME,SVM cha X&p o defer yes no ME+SVM ac-ILP
che ME cha no c g-score no yes no -
moschitti SVM cha prun i+c Ineed no no no -
tjongkimsang | ME,SVM,TBL cha prun i+c Ineed no yes | ME+SVM+TBL | s-join
yi ME cha,AN,AM X&p i+c defer no no cha+tAN+AM ac-join
ozgencil SVM cha prun i+c | g-score | no no no -
johansson RVM cha softp i+C ? no no no -
cohn T-CRF col X&p c g-top yes no no -
park ME cha prun i+c ? no no no -
mitsumori SVM chunk no bio Ineed no no no -
venkatapathy ME col prun i+C frames | yes no no -
ponzetto DT col prun c g-top no | yes no -
lin CPM cha gt-para | i+c Ineed no no no -
sutton ME n-bikel X&p i+c | dp-prob | yes no n-bikel re-rank

Table 4: Main properties of the SRL strategies implemented by the participant teams, sorted by F; per-

formance on the WSJ+Brown test set. synt stands

for the syntactic structure explored; pre stands for

pre-processing steps; label stands for the labeling strategy; embed stands for the technique to ensure non-
embedding of arguments; glob stands for global optimization; post stands for post-processing; comb stands
for system output combination, and type stands for the type of combination. Concrete values appearing in

the table are explained in section 4.1. The symbol “?”
description papers.

In general, the presented systems addressed the
SRL problem by applying different chained pro-
cesses. In Table 4 the column “pre” summarizes pre-
processing. In most of the cases this corresponds to
a pruning procedure to filter out constituents that are
not likely to be arguments. As in feature develop-
ment, the related bibliography has been followed for
pruning. For instance, many systems used the prun-
ing strategy described in (Xue and Palmer, 2004)
(“x&p™) and other systems used the soft pruning
rules described in (Pradhan et al., 2005a) (“softp™).
Remarkably, Park and Rim (2005) parametrize the
pruning procedure and then study the effect of be-
ing more or less aggressive at filtering constituents.
In the case of Marquez et al. (2005), pre-processing
corresponds to a sequentialization of syntactic hier-
archical structures. As a special case, Lin and Smith
(2005) used the GT-PARA analyzer for converting
parse trees into a flat representation of all predicates
including argument boundaries.

The second stage, reflected in column “label” of
Table 4, is the proper labeling of selected candi-
dates. Most of the systems used a two-step proce-
dure consisting of first identifying arguments (e.g.,
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stands for unknown values not reported by the system

with a binary “null” vs. “non-null” classifier) and
then classifying them. This is referred to as “i+c” in
the table. Some systems address this phase in a sin-
gle classification step by adding a “null” category
to the multiclass problem (referred to as “c’). The
methods performing a sequential tagging use a BIO
tagging scheme (“bio”). As a special case, Mos-
chitti et al. (2005) subdivide the “i+c” strategy into
four phases: after identification, heuristics are ap-
plied to assure compatibility of identified arguments;
and, before classifying arguments into roles, a pre-
classification into core vs. adjunct arguments is per-
formed. Venkatapathy et al. (2005) use three labels
instead of two in the identification phase : “null”,
“mandatory”, and “optional”.

Since arguments in a solution do not embed and
most systems identify arguments as nodes in a hier-
archical structure, non-embedding constraints must
be resolved in order to generate a coherent argu-
ment labeling. The “embed” column of Table 4 ac-
counts for this issue. The majority of systems ap-
plied specific greedy procedures that select a subset
of consistent arguments. The families of heuristics
to do that selection include prioritizing better scored



constituents (*“g-score”), or selecting the arguments
that are first reached in a top-down exploration (“g-
top”). Some probabilistic systems include the non-
embedding constraints within the dynamic program-
ming inference component, and thus calculate the
most probable coherent labeling (“dp-prob”). The
“defer” value means that this is a combination sys-
tem and that coherence of the individual system pre-
dictions is not forced, but deferred to the later com-
bination step. As a particular case, Venkatapathy et
al. (2005) use PropBank subcategorization frames to
force a coherent solution. Note that tagging-based
systems do not need to check non-embedding con-
straints (*!need” value).

The “glob” column of Table 4 accounts for the lo-
cality/globality of the process used to calculate the
output solution given the argument prediction candi-
dates. Systems with a “yes” value in that column de-
fine some kind of scoring function (possibly proba-
bilistic) that applies to complete candidate solutions,
and then calculate the solution that maximizes the
scoring using an optimization algorithm.

Some systems use some kind of postprocessing to
improve the final output of the system by correct-
ing some systematic errors, or treating some types
of simple adjunct arguments. This information is in-
cluded in the “post” column of Table 4. In most of
the cases, this postprocess is performed on the basis
of simple ad-hoc rules. However, it is worth men-
tioning the work of Tjong Kim Sang et al. (2005)
in which spelling error correction techniques are
adapted for improving the resulting role labeling. In
that system, postprocessing is applied before system
combination.

Most of the best performing systems included a
combination of different base subsystems to increase
robustness of the approach and to gain coverage and
independence from parse errors. Last 2 columns of
Table 4 present this information. In the “comb” col-
umn the source of the combination is reported. Basi-
cally, the alternative outputs to combine can be gen-
erated by different input syntactic structures or n-
best parse candidates, or by applying different learn-
ing algorithms to the same input information.

The type of combination is reported in the last col-
umn. Marquez et al. (2005) and Tjong Kim Sang
et al. (2005) performed a greedy merging of the ar-
guments of base complete solutions (“s-join”). Yi
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and Palmer (2005) did also a greedy merging of ar-
guments but taking into account not complete so-
lutions but all candidate arguments labeled by base
systems (“ac-join”). In a more sophisticated way,
Punyakanok et al. (2005) and Tsai et al. (2005) per-
formed global inference as constraint satisfaction
using Integer Linear Programming, also taking into
account all candidate arguments (“ac-ILP”). It is
worth noting that the generalized inference applied
in those papers allows to include, jointly with the
combination of outputs, a number of linguistically-
motivated constraints to obtain a coherent solution.

Pradhan et al. (2005b) followed a stacking ap-
proach by learning a chunk-based SRL system in-
cluding as features the outputs of two syntax-based
systems. Finally, Haghighi et al. (2005) and Sut-
ton and McCallum (2005) performed a different ap-
proach by learning a re-ranking function as a global
model on top of the base SRL models. Actually,
Haghighi et al. (2005) performed a double selection
step: an inner re-ranking of n-best solutions coming
from the base system on a single tree; and an outer
selection of the final solution among the candidate
solutions coming from n-best parse trees. The re-
ranking approach allows to define global complex
features applying to complete candidate solutions to
train the rankers.

4.3 Features

Looking at the description of the different systems, it
becomes clear that the general type of features used
in this edition is strongly based on previous work on
the SRL task (Gildea and Jurafsky, 2002; Surdeanu
et al., 2003; Pradhan et al., 2005a; Xue and Palmer,
2004). With no exception, all systems have made
intensive use of syntax to extract features. While
most systems work only on the output of a parser
—Charniak’s being the most preferred— some sys-
tems depend on many syntactic parsers. In the latter
situation, either a system is a combination of many
individual systems (each working with a different
parser), or a system extracts features from many dif-
ferent parse trees while exploring the nodes of only
one parse tree. Most systems have also considered
named entities for extracting features.

The main types of features seen in this SRL edi-
tion can be divided into four general categories: (1)
Features characterizing the structure of a candidate



sources argument verb arg-verb p
synt ne[at aw ab ac ai pp sd|[v sc|rp di ps pv pi sf|as
punyakanok cha,colupc  + | + h + t + o+ S+ o+ |+ c + . + o+ ] -
haghighi cha - |+ h +  ps S+ + |+ + |+ t + 4+ . S
marquez cha,upc + | + h + t + . + |+ + |+ w,C + + + .
pradhan chacolupc + | + hec + pst + + R c,t + o+ + 4
surdeanu cha + |+ hc + p,s + . + |+ + |+ w;t + + +
tsai cha,upc + |+ h + pst - . S+ o+ |+ w + . .
che cha + + h + . . + +  + + t + +
moschitti cha - + h + p + o+ + o+ |+ t + o+ +
tjongkimsang cha + |+ . + pt . + + o+ |+ wt + + o+
yi cha,an,am - + hc - p.s + + o+ |+ w + - +
ozgencil cha . + h p . + o+ |+ + o+ .
johansson cha,upc + |+ h . - . + o+ |+ . + o+
cohn col . + h + p,s + + 4+ |+ w + . + o+
park cha . + hc - p . S . + . +
mitsumori upc,cha + | + . + t + |+ . + c,t . + .
venkatapathy col + |+ h + - . -+ + . + . .
ponzetto col,upc + |+ h + + + -oowet - . +
lin cha . + h + . . + + w
sutton bik + h + p,s + + + . . . +

Table 5: Main feature types used by the 19 participating systems in the CoNLL-2005 shared task, sorted by
performance on the WSJ+Brown test set. Sources: synt: use of parsers, namely Charniak (cha), Collins
(cal), UPC partial parsers (upc), Bikel’s Collins model (bik) and/or argument-enriched parsers (an,am); ne:
use of named entities. On the argument: at: argument type; aw: argument words, namely the head (h)
and/or content words (c); ab: argument boundaries, i.e. form and PoS of first and/or last argument words; ac:
argument context, capturing features of the parent (p) and/or left/right siblings (s), or the tokens surrounding
the argument (t); ai: indicators of the structure of the argument (e,g., on internal constituents, surround-
ing/boundary punctuation, governing category, etc.); pp: specific features for prepositional phrases; sd:
semantic dictionaries. On the verb: v: standard verb features (voice, word/lemma, PoS); sc: subcatego-
rization. On the arg-verb relation: rp: relative position; di: distance, based on words (w), chunks (c) or
the syntactic tree (t); ps: standard path; pv: path variations; pi: scalar indicator variables on the path (of
chunks, clauses, or other phrase types), common ancestor, etc.; sf: syntactic frame (Xue and Palmer, 2004);
On the complete proposition: as: sequence of arguments of a proposition.

argument; (2) Features describing properties of the
target verb predicate; (3) Features that capture the
relation between the verb predicate and the con-
stituent under consideration; and (4) Global features
describing the complete argument labeling of a pred-
icate. The rest of the section describes the most com-
mon feature types in each category. Table 5 summa-
rizes the type of features exploited by systems.

To represent an argument itself, all systems make
use of the syntactic type of the argument. Almost
all teams used the heuristics of Collins (1999) to ex-
tract the head word of the argument, and used fea-
tures that capture the form, lemma and PoS tag of
the head. In the same line, some systems also use
features of the content words of the argument, using
the heuristics of Surdeanu et al. (2003). Very gen-
erally also, many systems extract features from the
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first and last words of the argument. Regarding the
syntactic elements surrounding the argument, many
systems working on full trees have considered the
parent and siblings of the argument, capturing their
syntactic type and head word. Differently, other
systems have captured features from the left/right
tokens surrounding the argument, which are typi-
cally words, but can be chunks or general phrases in
systems that sequentialize the task (Marquez et al.,
2005; Pradhan et al., 2005b; Mitsumori et al., 2005).
Many systems use a variety of indicator features that
capture properties of the argument structure and its
local syntactic annotations. For example, indicators
of the immediate syntactic types that form the argu-
ment, flags raised by punctuation tokens in or nearby
the argument, or the governing category feature of
Gildea and Jurafsky (2002). It is also somewhat gen-



eral the use of specific features that apply when the
constituent is a prepositional phrase, such as look-
ing for the head word of the noun phrase within it.
A few systems have also built semantic dictionaries
from training data, that collect words appearing fre-
quently in temporal, locative or other arguments.

To represent the predicate, all systems have used
features codifying the form, lemma, PoS tag and
voice of the verb. It is also of general use the subcat-
egorization feature, capturing the syntactic rule that
expands the parent of the predicate. Some systems
captured statistics related to the frequency of a verb
in training data (not in Table 5).

Regarding features related to an argument-verb
pair, almost all systems use the simple feature de-
scribing the relative position between them. To
a lesser degree, systems have computed distances
from one to the other, based on the number of words
or chunks between them, or based on the syntactic
tree. Not surprisingly, all systems have extracted the
path from the argument to the verb. While almost
all systems use the standard path of (Gildea and Ju-
rafsky, 2002), many have explored variations of it.
A common one consists of the path from the argu-
ment to the lowest common ancestor of the verb and
the argument. Another variation is the partial path,
that is built of chunks and clauses only. Indicator
features that capture scalar values of the path are
also common, and concentrate mainly on looking
at the common ancestor, capturing the difference of
clausal levels, or looking for punctuation and other
linguistic elements in the path. In this category, it is
also noticeable the use of the syntactic frame feature,
proposed by Xue and Palmer (2004).

Finally, in this edition two systems apply learn-
ing at a global context (Haghighi et al., 2005; Sut-
ton and McCallum, 2005) and, consequently, they
are able to extract features from a complete labeling
of a predicate. Basically, the central feature in this
context extracts the sequential pattern of predicate
arguments. Then, this pattern can be enriched with
syntactic categories, broken down into role-specific
indicator variables, or conjoined with the predicate
lemma.

Apart from basic feature extraction, combination
of features has also been explored in this edition.
Many of the combinations depart from the manually
selected conjunctions of Xue and Palmer (2004).
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4.4 Evaluation

A baseline rate was computed for the task. It
was produced using a system developed in the past
shared task edition by Erik Tjong Kim Sang, from
the University of Amsterdam, The Netherlands. The
baseline processor finds semantic roles based on the
following seven rules:

e Tag target verb and successive particles as V.

e Tag not and n’t in target verb chunk as
AM NEG

e Tag modal verbs in target verb chunk as
AM MOD.

e Tag first NP before target verb as AO.

e Tag first NP after target verb as Al.

e Tagt hat, whi ch and who before target verb
as R- AO.

e Switch AO and Al, and R- AO and R- Al if the
target verb is part of a passive VP chunk. A
VP chunk is considered in passive voice if it
contains a form of t 0 be and the verb does
notend ini ng.

Table 6 presents the overall results obtained by
the nineteen systems plus the baseline, on the de-
velopment and test sets (i.e., Development, Test
WSJ, Test Brown, and Test WSJ+Brown). The sys-
tems are sorted by the performance on the combined
WSJ+Brown test set.

As it can be observed, all systems clearly outper-
formed the baseline. There are seven systems with a
final F; performance in the 75-78 range, seven more
with performances in the 70-75 range, and five with
a performance between 65 and 70. The best perfor-
mance was obtained by Punyakanok et al. (2005),
which almost reached an F; at 80 in the WSJ test
set and almost 78 in the combined test. Their results
on the WSJ test equal the best results published so
far on this task and datasets (Pradhan et al., 2005a),
though they are not directly comparable due to a
different setting in defining arguments not perfectly
matching the predicted parse constituents. Since the
evaluation in the shared task setting is more strict,
we believe that the best results obtained in the shared
task represent a new breakthrough in the SRL task.

It is also quite clear that the systems using com-
bination are better than the individuals. It is worth
noting that the first 4 systems are combined. The



Development Test WSJ Test Brown Test WSJ+Brown
P(%) R(%) F1 P(%) R(%) F1 P(%) R(%) F1 P(%) R(%) F1
punyakanok 80.05 74.83 7735 | 8228 76.78 79.44 | 7338 6293 67.75 | 81.18 7492 77.92
haghighi 7766 7572 76.68 | 79.54 77.39 7845 | 70.24 6537 67.71 | 7834 75.78 77.04
marquez 7839 7553 7693 | 7955 76.45 77.97 | 70.79 6435 67.42 | 7844 7483 76.59
pradhan 80.90 75.38 78.04 | 81.97 73.27 7737 | 73.73 6151 67.07 | 8093 71.69 76.03
surdeanu 79.14 7157 7517 | 80.32 7295 76.46 | 7241 59.67 6542 | 79.35 7117 75.04
tsai 81.13 7242 7653 | 82.77 7090 76.38 | 73.21 5949 65.64 | 8155 69.37 74.97
che 79.65 7134 7527 | 8048 7279 76.44 | 7113 59.99 65.09 | 79.30 71.08 74.97
moschitti 7495 7310 74.01 | 7655 7524 7589 | 6592 6183 63.81 | 7519 7345 7431
tjongkimsang | 76.79 70.01 73.24 | 79.03 72.03 75.37 | 70.45 60.13 64.88 | 77.94 7044 74.00
yi 75.70 69.99 7273 | 7751 7297 75.17 | 67.88 59.03 63.14 | 76.31 71.10 73.61
ozgencil 7357 7187 7271 | 7466 7421 7444 | 6552 6293 64.20 | 7348 7270 73.09
johansson 7340 70.85 7210 | 7546 73.18 7430 | 65.17 6059 62.79 | 7413 7150 72.79
cohn 7351 68.98 7117 | 7581 7058 73.10 | 67.63 60.08 63.63 | 7476 69.17 71.86
park 72.68 69.16 70.87 | 7469 70.78 72.68 | 6458 60.31 62.38 | 73.35 69.37 7131
mitsumori 7168 64.93 6814 | 7415 6825 71.08 | 63.24 5420 5837 | 7277 66.37 69.43
venkatapathy | 71.88 64.76 68.14 | 73.76 6552 69.40 | 65.25 55.72 60.11 | 72.66 6421 68.17
ponzetto 7182 61.60 66.32 | 75.05 64.81 6956 | 66.69 5214 5852 | 7402 63.12 68.13
lin 70.11 61.96 6578 | 71.49 64.67 67.91 | 6575 5282 5858 | 70.80 63.09 66.72
sutton 64.43 63.11 63.76 | 6857 6499 66.73 | 6291 5485 58.60 | 67.86 63.63 65.68
baseline 50.00 28.98 36.70 | 51.13 29.16 37.14 | 62.66 33.07 43.30 | 5258 29.69 37.95

Table 6: Overall precision, recall and F; rates obtained by the 19 participating systems in the CoONLL-2005
shared task on the development and test sets. Systems sorted by F; score on the WSJ+Brown test set.

best individual system on the task is that of Sur-
deanu and Turmo (2005), which obtained F;=75.04
on the combined test set, about 3 points below than
the best performing combined system. On the de-
velopment set, that system achieved a performace
of 75.17 (slightly below than the 75.27 reported by
Che et al. (2005) on the same dataset). Accord-
ing to the description papers, we find that other
individual systems, from which the combined sys-
tems are constructed, performed also very well. For
instance, Tsai et al. (2005) report F1=75.76 for a
base system on the development set, Marquez et al.
(2005) report F1=75.75, Punyakanok et al. (2005)
report F1=74.76, and Haghighi et al. (2005) report
F1=74.52.

The best results in the CoNLL-2005 shared task
are 10 points better than those of last year edition.
This increase in performance should be attributed to
a combination of the following factors: 1) training
sets have been substantially enlarged; 2) predicted
parse trees are available as input information; and 3)
more sophisticated combination schemes have been
implemented. In order to have a more clear idea of
the impact of enriching the syntactic information,
we refer to (Marquez et al., 2005), who developed
an individual system based only on partial parsing
(“upc” input information). That system performed
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F1=73.57 on the development set, which is 2.18
points below the F1=75.75 obtained by the same ar-
chitecture using full parsing, and 4.47 points below
the best performing combined system on the devel-
opment set (Pradhan et al., 2005b).

Comparing the results across development and
WSJ test corpora, we find that, with two exceptions,
all systems experienced a significant increase in per-
formance (normally between 1 and 2 F; points).
This fact may be attributed to the different levels of
difficulty found across WSJ sections. The linguistic
processors and parsers perform slightly worse in the
development set. As a consequence, the matching
between parse nodes and actual arguments is lower.

Regarding the evaluation using the Brown test
set, all systems experienced a severe drop in perfor-
mance (about 10 F; points), even though the base-
line on the Brown test set is higher than that of
the WSJ test set. As already said in previous sec-
tions, all the linguistic processors, from PoS tag-
ging to full parsing, showed a much lower perfor-
mance than in the WSJ test set, evincing that their
performance cannot be extrapolated across corpora.
Presumably, this fact is the main responsible of the
performace drop, though we do not discard an ad-
ditional overfitting effect due to the design of spe-
cific features that do not generalize well. More im-



portantly, this results impose (again) a severe criti-
cism on the current pipelined architecture for Natu-
ral Language Processing. Error propagation and am-
plification through the chained modules make the fi-
nal output generalize very badly when changing the
domain of application.

5 Conclusion

We have described the CoNLL-2005 shared task
on semantic role labeling. Contrasting with the
CoNLL-2004 edition, the current edition has in-
corporated the use of full syntax as input to the
SRL systems, much larger training sets, and cross-
corpora evaluation. The first two novelties have
most likely contributed to an improvement of re-
sults. The latter has evinced a major drawback of
natural language pipelined architectures.

Nineteen teams have participated to the task, con-
tributing with a variety of learning algorithms, la-
beling strategies, feature design and experimenta-
tion. While, broadly, all systems make use of the
same basic techniques described in existing SRL
literature, some novel aspects have also been ex-
plored. A remarkable aspect, common in the four
top-performing systems and many other, is that
of combining many individual SRL systems, each
working on different syntactic structures. Combin-
ing systems improves robustness, and overcomes
the limitations in coverage that working with a sin-
gle, non-correct syntactic structure imposes. The
best system, presented by Punyakanok et al. (2005),
achieves an Fy at 79.44 on the WSJ test. This per-
formance, of the same order than the best reported
in literature, is still far from the desired behavior of
a natural language analyzer. Furthermore, the per-
formance of such SRL module in a real application
will be about ten points lower, as demonstrated in
the evaluation on the sentences from Brown.

We conclude with two open questions. First, what
semantic knowledge is needed to improve the qual-
ity and performance of SRL systems. Second, be-
yond pipelines, what type of architectures and lan-
guage learning methodology ensures a robust per-
formance of processors.
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