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Abstract

This paper proposes a model for term re-
occurrence in a text collection based on
the gaps between successive occurrences
of a term. These gaps are modeled using
a mixture of exponential distributions. Pa-
rameter estimation is based on a Bayesian
framework that allows us to fit a flexi-
ble model. The model provides measures
of a term’s re-occurrence rate and within-
document burstiness. The model works
for all kinds of terms, be it rare content
word, medium frequency term or frequent
function word. A measure is proposed to
account for the term’s importance based
on its distribution pattern in the corpus.

1 Introduction

Traditionally, Information Retrieval (IR) and Statis-
tical Natural Language Processing (NLP) applica-
tions have been based on the “bag of words” model.
This model assumes term independence and homo-
geneity of the text and document under considera-
tion, i.e. the terms in a document are all assumed
to be distributed homogeneously. This immediately
leads to the Vector Space representation of text. The
immense popularity of this model is due to the ease
with which mathematical and statistical techniques
can be applied to it.

The model assumes that once a term occurs in a
document, its overall frequency in the entire doc-
ument is the only useful measure that associates a

term with a document. It does not take into consid-
eration whether the term occurred in the beginning,
middle or end of the document. Neither does it con-
sider whether the term occurs many times in close
succession or whether it occurs uniformly through-
out the document. It also assumes that additional
positional information does not provide any extra
leverage to the performance of the NLP and IR ap-
plications based on it. This assumption has been
shown to be wrong in certain applications (Franz,
1997).

Existing models for term distribution are based on
the above assumption, so they can merely estimate
the term’s frequency in a document or a term’s top-
ical behavior for a content term. The occurrence of
a content word is classified as topical or non-topical
based on whether it occurs once or many times in
the document (Katz, 1996). We are not aware of any
existing model that makes less stringent assumptions
and models the distribution of occurrences of a term.

In this paper we describe a model for term re-
occurrence in text based on the gaps between succes-
sive occurrences of the term and the position of its
first occurrence in a document. The gaps are mod-
eled by a mixture of exponential distributions. Non-
occurrence of a term in a document is modeled by
the statistical concept of censoring, which states that
the event of observing a certain term is censored at
the end of the document, i.e. the document length.
The modeling is done in a Bayesian framework.

The organization of the paper is as follows. In
section 2 we discuss existing term distribution mod-
els, the issue of burstiness and some other work that
demonstrates the failure of the “bag of words” as-

48



sumption. In section 3 we describe our mixture
model, the issue of censoring and the Bayesian for-
mulation of the model. Section 4 describes the
Bayesian estimation theory and methodology. In
section 5 we talk about ways of drawing infer-
ences from our model, present parameter estimates
on some chosen terms and present case studies for a
few selected terms. We discuss our conclusions and
suggest directions for future work in section 6.

2 Existing Work

2.1 Models

Previous attempts to model a term’s distribution pat-
tern have been based on the Poisson distribution. If
the number of occurrences of a term in a document
is denoted by k, then the model assumes:

p(k) = e−λ λk

k!

for k = 0, 1, 2, . . . Estimates based on this model
are good for non-content, non-informative terms, but
not for the more informative content terms (Manning
and Schütze, 1999).

The two-Poisson model is suggested as a variation
of the Poisson distribution (Bookstein and Swanson,
1974; Church and Gale, 1995b). This model as-
sumes that there are two classes of documents as-
sociated with a term, one class with a low average
number of occurrences and the other with a high av-
erage number of occurrences.

p(k) = αe−λ1
λk

1

k!
+ (1− α)e−λ2

λk
2

k!
,

where α and (1 − α) denote the probabilities of a
document in each of these classes. Often this model
under-estimates the probability that a term will oc-
cur exactly twice in a document.

2.2 Burstiness

Burstiness is a phenomenon of content words,
whereby they are likely to occur again in a text af-
ter they have occurred once. Katz (1996) describes
within-document burstiness as the close proximity of
all or some individual instances of a word within a
document exhibiting multiple occurrences.

He proposes a model for within-document bursti-
ness with three parameters as:

• the probability that a term occurs in a document
at all (document frequency)

• the probability that it will occur a second time
in a document given that it has occurred once

• the probability that it will occur another time,
given that it has already occurred k times
(where k > 1).

The drawbacks of this model are: (a) it cannot han-
dle non-occurrence of a term in a document; (b) the
model can handle only content terms, and is not suit-
able for high frequency function words or medium
frequency terms; and (c) the rate of re-occurrence of
the term or the length of gaps cannot be accounted
for. We overcome these drawbacks in our model.

A measure of burstiness was proposed as a binary
value that is based on the magnitude of average-term
frequency of the term in the corpus (Kwok, 1996).
This measure takes the value 1 (bursty term) if the
average-term frequency value is large and 0 other-
wise. The measure is too naive and incomplete to
account for term burstiness.

2.3 Homogeneity Assumption

The popular “bag of words” assumption for text
states that a term’s occurrence is uniform and ho-
mogeneous throughout. A measure of homogeneity
or self-similarity of a corpus can be calculated, by
dividing the corpus into two frequency lists based
on the term frequency and then calculating the χ2

statistic between them (Kilgarriff, 1997). Various
schemes for dividing the corpus were used (De
Roeck et al., 2004a) to detect homogeneity of terms
at document level, within-document level and by
choosing text chunks of various sizes. Their work
revealed that homogeneity increases by nullifying
the within document term distribution pattern and
homogeneity decreases when chunks of larger size
are chosen as it incorporates more document struc-
ture in it. Other work based on the same method-
ology (De Roeck et al., 2004b) reveals that even
very frequent function words do not distribute ho-
mogeneously over a corpus or document. These (De
Roeck et al., 2004a; De Roeck et al., 2004b) provide
evidence of the fact that the ”bag of words” assump-
tion is invalid. Thus it sets the platform for a model
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that defies the independence assumption and consid-
ers the term distribution pattern in a document and
corpus.

3 Modeling

3.1 Terminology and Notation

We build a single model for a particular term in a
given corpus. Let us suppose the term under consid-
eration is x as shown in Figure 1. We describe the
notation for a particular document, i in the corpus.

Figure 1: The document structure and the gaps be-
tween terms

• di denotes the number of words in document i
(i.e. the document length).

• ni denotes the number of occurrences of term
x in document i.

• wi1 denotes the position of the first occurrence
of term x in document i.

• wi2, . . . , wini denotes the successive gaps be-
tween occurrences of term x in document i.

• wini+1 denotes the gap for the next occurrence
of x, somewhere after the document ends.

• ceni is the value at which observation wini+1

is censored, as explained in section 3.2.2.

3.2 The Model

We suppose we are looking through a document,
noting when the term of interest occurs. Our model
assumes that the term occurs at some low underly-
ing base rate 1/λ1 but, after the term has occurred,
then the probability of it occurring soon afterwards
is increased to some higher rate 1/λ2. Specifically,
the rate of re-occurrence is modeled by a mixture of
two exponential distributions. Each of the exponen-
tial components is described as follows:

• The exponential component with larger mean
(average), 1/λ1, determines the rate with which
the particular term will occur if it has not oc-
curred before or it has not occurred recently.

• The second component with smaller mean
(average), 1/λ2, determines the rate of re-
occurrence in a document or text chunk given
that it has already occurred recently. This com-
ponent captures the bursty nature of the term in
the text (or document) i.e. the within-document
burstiness.

The mixture model is described as follows:

φ(wij) = pλ1e
−λ1wij + (1− p)λ2e

−λ2wij

for j ∈ {2, . . . , ni}. p and (1 − p) denote respec-
tively, the probabilities of membership for the first
and the second exponential distribution.

There are a few boundary conditions that the
model is expected to handle. We take each of these
cases and discuss them briefly:

3.2.1 First occurrence

The model treats the first occurrence of a term dif-
ferently from the other gaps. The second exponen-
tial component measuring burstiness does not fea-
ture in it. Hence the distribution is:

φ1(wi1) = λ1e
−λ1wi1

3.2.2 Censoring

Here we discuss the modeling of two cases that
require special attention, corresponding to gaps that
have a minimum length but whose actual length is
unknown. These cases are:

• The last occurrence of a term in a document.

• The term does not occur in a document at all.

We follow a standard technique from clinical tri-
als, where a patient is observed for a certain amount
of time and the observation of the study is expected
in that time period (the observation might be the
time until death, for example). In some cases it hap-
pens that the observation for a patient does not occur
in that time period. In such a case it is assumed that
the observation would occur at sometime in the fu-
ture. This is called censoring at a certain point.
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In our case, we assume the particular term would
eventually occur, but the document has ended before
it occurs so we do not observe it. In our notation we
observe the term ni times, so the (ni + 1)th time the
term occurs is after the end of the document. Hence
the distribution of wini+1 is censored at length ceni.
If ceni is small, so that the nth

i occurrence of the
term is near the end of the document, then it is not
surprising that wini+1 is censored. In contrast if ceni

is large, so the nth
i occurrence is far from the end

of the document, then either it is surprising that the
term did not re-occur, or it suggests the term is rare.
The information about the model parameters that is
given by the censored occurrence is,

Pr(wini+1 > ceni) =
∫ ∞

ceni

φ(x)dx

= pe−λ1ceni + (1− p)e−λ2ceni ; where,

ceni = di −
ni∑

j=1

wij

Also when a particular term does not occur in a
document, our model assumes that the term would
eventually occur had the document continued indef-
initely. In this case the first occurrence is censored
and censoring takes place at the document length. If
a term does not occur in a long document, it suggests
the term is rare.

3.3 Bayesian formulation

Our modeling is based on a Bayesian approach (Gel-
man et al., 1995). The Bayesian approach differs
from the traditional frequentist approach. In the fre-
quentist approach it is assumed that the parameters
of a distribution are constant and the data varies.
In the Bayesian approach one can assign distrib-
utions to the parameters in a model. We choose
non-informative priors, as is common practice in
Bayesian applications. So we put,
p ∼ Uniform(0, 1), and
λ1 ∼ Uniform(0, 1)
To tell the model that λ2 is the larger of the two λs,
we put λ2 = λ1 + γ, where γ > 0, and
γ ∼ Uniform(0, 1)
Also ceni depends on the document length di and
the number of occurrences of the term in that doc-
ument, ni. Fitting mixture techniques is tricky and

Figure 2: Bayesian dependencies between the para-
meters

requires special methods. We use data augmenta-
tion to make it feasible to fit the model using Gibbs
Sampling (section 4.2). For details about this, see
Robert (1996) who describes in detail the fitting of
mixture models in MCMC methods (section 4.2).

4 Parameter Estimation

4.1 Bayesian Estimation

In the Bayesian approach of parameter estimation,
the parameters are uncertain, and it is assumed that
they follow some distribution. In our case the para-
meters and the data are defined as:
�Θ = {p, λ1, λ2} denote the parameters of the model.
�W = {wi1, . . . , wini , wini+1} denotes the data.
Hence based on this we may define the following:

• f(�Θ) is the prior distribution of �Θ as assigned
in section 3.3. It summarizes everything we
know about �Θ apart from the data �W .

• f( �W |�Θ) is the likelihood function. It is our
model for the data �W conditional on the para-
meters �Θ. (As well as the observed data, the
likelihood also conveys the information given
by the censored values)

• f(�Θ| �W ) is the posterior distribution of �Θ,
given �W . It describes our beliefs about the pa-
rameters given the information we have.
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Deriving the density function for a parameter set �Θ
after observing data �W , can be achieved by using
Bayes Theorem as:

f(�Θ| �W ) =
f( �W |�Θ)f(�Θ)

f( �W )
(1)

where f( �W ) is simply a normalizing constant, inde-
pendent of �Θ. It can be computed in terms of the
likelihood and prior as:

f( �W ) =
∫

f( �W |�Θ)f(�Θ)d�Θ

Hence equation 1 is reduced to:

f(�Θ| �W ) ∝ f( �W |�Θ)f(�Θ)

So, once we have specified the posterior density
function f(�Θ| �W ), we can obtain the estimates of the
parameters �Θ by simply averaging the values gener-
ated by f(�Θ| �W ).

4.2 Gibbs Sampling

The density function of Θi, f(Θi| �W ) can be ob-
tained by integrating f(�Θ| �W ) over the remaining
parameters of �Θ. But in many cases, as in ours, it is
impossible to find a closed form solution of f(Θi).

In such cases we may use a simulation process
based on random numbers, Markov Chain Monte
Carlo (MCMC) (Gilks et al., 1996). By generating
a large sample of observations from the joint distri-
bution f(�Θ, �W ), the integrals of the complex dis-
tributions can be approximated from the generated
data. The values are generated based on the Markov
chain assumption, which states that the next gener-
ated value only depends on the present value and
does not depend on the values previous to it. Based
on mild regularity conditions, the chain will gradu-
ally forget its initial starting point and will eventu-
ally converge to a unique stationary distribution.

Gibbs Sampling (Gilks et al., 1996) is a popular
method used for MCMC analysis. It provides an ele-
gant way for sampling from the joint distributions of
multiple variables: sample repeatedly from the dis-
tributions of one-dimensional conditionals given the
current observations. Initial random values are as-
signed to each of the parameters. And then these val-
ues are updated iteratively based on the joint distri-
bution, until the values settle down and converge to

a stationary distribution. The values generated from
the start to the point where the chain settles down are
discarded and are called the burn-in values. The pa-
rameter estimates are based on the values generated
thereafter.

5 Results

Parameter estimation was carried out using Gibb’s
Sampling on the WinBUGS software (Spiegelhalter
et al., 2003). Values from the first 1000 iteration
were discarded as burn-in. It had been observed that
in most cases the chain reached the stationary distri-
bution well within 1000 iterations. A further 5000 it-
erations were run to obtain the parameter estimates.

5.1 Interpretation of Parameters

The parameters of the model can be interpreted in
the following manner:

• λ̃1 = 1/λ1 is the mean of an exponential dis-
tribution with parameter λ1. λ̃1 measures the
rate at which this term is expected in a running
text corpus. λ̃1 determines the rarity of a term
in a corpus, as it is the average gap at which
the term occurs if it has not occurred recently.
Thus, a large value of λ̃1 tells us that the term
is very rare in the corpus and vice-versa.

• Similarly, λ̃2 measures the within-document
burstiness, i.e. the rate of occurrence of a term
given that it has occurred recently. It measures
the term re-occurrence rate in a burst within
a document. Small values of λ̃2 indicate the
bursty nature of the term.

• p̃ and 1 − p̃ denote, respectively, the probabil-
ities of the term occurring with rate λ̃1 and λ̃2

in the entire corpus.

Table 1 presents some heuristics for drawing in-
ference based on the values of the parameter esti-
mates.

5.2 Data

We choose for evaluation, terms from the Associ-
ated Press (AP) newswire articles, as this is a stan-
dard corpus for language research. We picked terms
which had been used previously in the literature
(Church and Gale, 1995a; Church, 2000; Manning
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�λ1 small �λ1 large
�λ2 small frequently occur-

ring and common
function word

topical content
word occurring in
bursts

�λ2 large comparatively
frequent but well-
spaced function
word

infrequent and scat-
tered function word

Table 1: Heuristics for inference, based on the para-
meter estimates.

and Schütze, 1999; Umemura and Church, 2000)
with respect to modeling different distribution, so as
to present a comparative picture. For building the
model we randomly selected 1% of the documents
from the corpus, as the software (Spiegelhalter et al.,
2003) we used is Windows PC based and could not
handle enormous volume of data with our available
hardware resources. As stated earlier, our model can
handle both frequent function terms and rare content
terms. We chose terms suitable for demonstrating
this. We also used some medium frequency terms to
demonstrate their characteristics.

5.3 Parameter estimates

Table 2 shows the parameter estimates for the cho-
sen terms. The table does not show the values of
1− p̃ as they can be obtained from the value of p̃. It
has been observed that the value λ̃1/λ̃2 is a good in-
dicator of the nature of terms, hence the rows in the
table containing terms are sorted on the basis of that
value. The table is divided into three parts. The top
part contains very frequent (function) words. The
second part contains terms in the medium frequency
range. And the bottom part contains rarely occurring
and content terms.

5.4 Discussion

The top part of the table consists of the very fre-
quently occurring function words occurring fre-
quently throughout the corpus. These statements are
supported by the low values of λ̃1 and λ̃2. These
values are quite close, indicating that the occurrence
of these terms shows low burstiness in a running text
chunk. This supports our heuristics about the value
of λ̃1/λ̃2, which is small for such terms. Moder-
ate, not very high values of p̃ also support this state-
ment, as the term is then quite likely to be gener-

Term �p �λ1
�λ2

�λ1/�λ2

the 0.82 16.54 16.08 1.03
and 0.46 46.86 45.19 1.04
of 0.58 38.85 37.22 1.04
except 0.67 21551.72 8496.18 2.54
follows 0.56 80000.00 30330.60 2.64
yet 0.51 10789.81 3846.15 2.81
he 0.51 296.12 48.22 6.14
said 0.03 895.26 69.06 12.96
government 0.60 1975.50 134.34 14.71
somewhat 0.84 75244.54 4349.72 17.30
federal 0.84 2334.27 102.57 22.76
here 0.94 3442.34 110.63 31.12
she 0.73 1696.35 41.41 40.97
george 0.88 17379.21 323.73 53.68
bush 0.71 3844.68 53.48 71.90
soviet 0.71 4496.40 59.74 75.27
kennedy 0.78 14641.29 99.11 147.73
church 0.92 11291.78 70.13 161.02
book 0.92 17143.84 79.68 215.16
vietnam 0.92 32701.11 97.66 334.86
boycott 0.98 105630.08 110.56 955.42
noriega 0.91 86281.28 56.88 1516.82

Table 2: Parameter estimates of the model for some
selected terms, sorted by the λ̃1/λ̃2 value

ated from either of the exponential distributions (the
has high value of p̃, but since the values of λ are
so close, it doesn’t really matter which distribution
generated the observation). We observe compara-
tively larger values of λ̃1 for terms like yet, follows
and except since they have some dependence on the
document topic. One may claim that these are some
outliers having large values of both λ̃1 and λ̃2. The
large value of λ̃1 can be explained, as these terms are
rarely occurring function words in the corpus. They
do not occur in bursts and their occurrences are scat-
tered, so values of λ̃2 are also large (Table 1). Inter-
estingly, based on our heuristics these large values
nullify each other to obtain a small value of λ̃1/λ̃2.
But since these cases are exceptional, they find their
place on the boundary region of the division.

The second part of the table contains mostly non-
topical content terms as defined in the literature
(Katz, 1996). They do not describe the main topic
of the document, but some useful aspects of the doc-
ument or a nearby topical term. Special attention
may be given to the term george, which describes
the topical term bush. In a document about George
Bush, the complete name is mentioned possibly only
once in the beginning and further references to it are
made using the word bush, leading to bush being as-
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signed as a topical term, but not george. The term
government in the group refers to some newswire
article about some government in any state or any
country, future references to which are made us-
ing this term. Similarly the term federal is used
to make future references to the US Government.
As the words federal and government are used fre-
quently for referencing, they exhibit comparatively
small values of λ̃2. We were surprised by the occur-
rence of terms like said, here and she in the second
group, as they are commonly considered as func-
tion words. Closer examination revealed the details.
Said has some dependence on the document genre,
with respect to the content and reporting style. The
data were based on newswire articles about impor-
tant people and events. It is true, though unfor-
tunate, that the majority of such people are male,
hence there are more articles about men than women
(he occurs 757, 301 times in 163, 884 documents as
the 13th most frequent term in the corpus, whereas
she occurs 164, 030 times in 48, 794 documents as
the 70th frequent term). This explains why he has
a smaller value of λ̃1 than she. But the λ̃2 values
for both of them are quite close, showing that they
have similar usage pattern. Again, newswire articles
are mostly about people and events, and rarely about
some location, referenced by the term here. This ex-
plains the large value of λ̃1 for here. Again, because
of its usage for referencing, it re-occurs frequently
while describing a particular location, leading to a
small value of λ̃2. Possibly, in a collection of “travel
documents”, here will have a smaller value ofλ̃1 and
thus occur higher up in the list, which would allow
the model to be used for characterizing genre.

Terms in the third part, as expected, are topical
content terms. An occurrence of such a term de-
fines the topic or the main content word of the doc-
ument or the text chunk under consideration. These
terms are rare in the entire corpus, and only appear
in documents that are about this term, resulting in
very high values of λ̃1. Also low values of λ̃2 for
these terms mean that repeat occurrences within the
same document are quite frequent; the characteris-
tic expected from a topical content term. Because of
these characteristics, based on our heuristics these
terms have very high values of λ̃1/λ̃2, and hence are
considered the most informative terms in the corpus.

5.5 Case Studies

Here we study selected terms based on our model.
These terms have been studied before by other re-
searchers. We study these terms to compare our
findings with previous work and also demonstrate
the range of inferences that may be derived from our
model.

5.5.1 somewhat vrs boycott

These terms occur an approximately equal num-
ber of times in the AP corpus, and inverse doc-
ument frequency was used to distinguish between
them (Church and Gale, 1995a). Our model also
gives approximately similar rates of occurrence (̃λ1)
for these two terms as shown in Table 2. But the re-
occurrence rate, λ̃2, is 110.56 for boycott, which is
very small in comparison with the value of 4349.72
for somewhat. Hence based on this, our model as-
signs somewhat as a rare function word occurring in
a scattered manner over the entire corpus. Whereas
boycott is assigned as a topical content word, as it
should be.

5.5.2 follows vrs soviet

These terms were studied in connection with fit-
ting Poisson distributions to their term distribution
(Manning and Schütze, 1999), and hence determin-
ing their characteristics1 . In our model, follows has
large values of both λ̃1 and λ̃2 (Table 2), so that it
has the characteristics of a rare function word. But
soviet has a large λ̃1 value and a very small λ̃2 value,
so that it has the characteristics of a topical content
word. So the findings from our model agree with the
original work.

5.5.3 kennedy vrs except

Both these terms have nearly equal inverse doc-
ument frequency for the AP corpus (Church, 2000;
Umemura and Church, 2000) and will be assigned
equal weight. They used a method (Kwok, 1996)
based on average-term frequency to determine the
nature of the term. According to our model, the λ̃2

value of kennedy is very small as compared to that
for except. Hence using the λ̃1/λ̃2 measure, we can
correctly identify kennedy as a topical content term

1The original study was based on the New York Times, ours
on the Associated Press corpus
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and except as an infrequent function word. This is in
agreement with the findings of the original analysis.

5.5.4 noriega and said

These terms were studied in the context of an
adaptive language model to demonstrate the fact that
the probability of a repeat occurrence of a term in a
document defies the “bag of words” independence
assumption (Church, 2000). The deviation from in-
dependence is greater for content terms like noriega
as compared to general terms like said. This can be
explained in the context of our model as said has
small values of λ̃1 and λ̃2, and their values are quite
close to each other (as compared to other terms, see
Table 2). Hence said is distributed more evenly in
the corpus than noriega. Therefore, noriega defies
the independence assumption to a much greater ex-
tent than said. Hence their findings (Church, 2000)
are well explained by our model.

6 Conclusion

In this paper we present a model for term re-
occurrence in text based on gaps between succes-
sive occurrences of a term in a document. Parameter
estimates based on this model reveal various charac-
teristics of term use in a collection. The model can
differentiate a term’s dependence on genre and col-
lection and we intend to investigate use of the model
for purposes like genre detection, corpus profiling,
authorship attribution, text classification, etc. The
proposed measure of λ̃1/λ̃2 can be appropriately
adopted as a means of feature selection that takes
into account the term’s occurrence pattern in a cor-
pus. We can capture both within-document bursti-
ness and rate of occurrence of a term in a single
model.
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